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Over recent years, a number of marine autopilots designed using linear techniques have
underperformed owing to their inability to cope with nonlinear vessel dynamics. To this end,
a new design framework for the development of nonlinear autopilots is proposed. Local
Control Networks (LCNs) can be used in the design of nonlinear control systems. In this
paper, a LCN approach is taken in the design of a nonlinear autopilot for controlling the
nonlinear yaw dynamics of an unmanned surface vehicle known as Springer. It is considered
the approach is the first of its kind to be used in marine control systems design. Simulation
results are presented and the performance of the nonlinear autopilot is compared with that of
an existing Springer Linear Quadratic Gaussian (LQG) autopilot using standard system
performance criteria. From the results it can be concluded the LCN autopilot out-performed
that based on LQG techniques in terms of the selected criteria. Also it provided more energy
saving control strategies and would thereby increase operational duration times for the
vehicle during real-time missions.
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1. INTRODUCTION. During the summer of 1588, Admiral Charles Howard
and Vice Admiral Francis Drake arranged for eight fire ships to be sent against the
Armada which caused the majority of the Spanish ships to break formation and leave
their safe anchorage in Calais for the open sea. Soon after this incident the Battle of
Gravelines ensued. On a later occasion in 1718, a Royal Navy blockade was set up
by Captain Woodes Rogers in Nassau Harbour with a view to capturing the pirate
Captain Charles Vane. Unfortunately for Rogers, Vane directed a blazing crewless
brigantine at the blockade. As a consequence, Rogers’ small squadron of ships was
forced to take evasive action that allowed Vane to make good his escape to continue
his life of piracy until his eventual capture in 1720. Subsequently, he was hanged in
Jamaica on 29 March 1721. It can be argued that these two incidents illustrate early
examples of Unmanned Surface Vehicles (USVs) being deployed in naval warfare.
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Nowadays USV technology is becoming widespread in the commercial, naval and
scientific sectors. Indeed they are now used for mine counter-measures (Yan et al.,
2010), surveying (Majohr et al., 2000) and environmental data gathering (Caccia,
2007), to name just three.
In recent years the SpringerUSV has been designed, built and continues to be devel-

oped. Springer is intended to be a cost effective and environmentally friendly USV; it
was designed primarily for undertaking pollutant tracking, environmental and hydro-
graphical surveys in rivers, reservoirs, inland waterways and coastal waters, parti-
cularly where shallow waters prevail. An equally important secondary role was also
envisaged for Springer as a test bed platform for other academic and scientific
institutions involved in environmental data gathering, sensor and instrumentation
technology, control systems engineering and power systems based on alternative energy
sources.
For the vehicle to be capable of undertaking the kinds of mission that are

contemplated, Springer requires robust, reliable, accurate and adaptable Navigation,
Guidance and Control (NGC) systems which allow seamless switching between
automatic and manual control modes. Such properties in NGC systems are necessary
for the changes in the dynamic behaviour of the vehicle that may occur owing to the
deployment of different payloads, mission requirements and varying environmental
conditions. Of course, an important integral component in a NGC system is the
autopilot (control) sub-system.
The development of practical ship autopilot systems can be traced back to the

Sperry Gyroscope Company (Sperry Gyroscope Company, 2011). Sperry constructed
the first automatic ship steering mechanism which he called the automatic pilot or
gyropilot (Sperry, 1922). Sperry’s gyropilot was known as ‘Metal Mick’ because in its
operation it appeared to replicate the actions of an experienced helmsman. In
addition, the work of (Minorski, 1922) is also regarded as making key contributions to
the development of automatic ship steering systems. Minorski’s main contribution
was the theoretical analysis of automatic steering and the specification of the three
term or Proportional-Integral-Derivative (PID) controller for automatic ship steering.
As in the case of Sperry’s work, his PID controller designs were predicated on visual
observation of the way the experienced helmsman would steer a ship. From those early
pioneering days ship autopilots based on PID controllers or their variants became the
norm for a number of years. While such autopilots performed satisfactorily within
given specifications, their overall operational effectiveness was limited. In an attempt
to overcome the shortcomings of these devices, more sophisticated autopilots have
been and are still being proposed. One of the more modern and favoured approaches
to autopilot design has been based on Linear Quadratic Gaussian (LQG) techniques
(Hozhuter and Schultze, 1996; Fossen, 2000; Tran et al., 2004; Moreira and Soares,
2005; Naeem et al., 2008; Fossen, 2011). However, it should be noted that, in general,
basic PID and LQG autopilots can only reliably be applied to linear ship dynamics.
The dynamic characteristics of marine vessels are invariably nonlinear and the

Springer USV is no exception. This being so it would seem appropriate to control the
vehicle with a nonlinear autopilot. Local Control Networks (LCNs) can be used in
nonlinear control system design. Furthermore, LCNs are transparent, and simple to
design compared to many other more complex nonlinear controllers. Thus LCNs were
deemed worthy of investigation for application as autopilots. Hence the intention of
this paper is to report a novel autopilot system based on a LCN design for the USV
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and to benchmark its performance against an existing Springer autopilot design
developed using LQG control techniques. It is believed that this is the first application
of a LCN in the role of a marine autopilot and, therefore, the paper offers a new
framework for marine control systems design. Details of the navigation and line-
of-sight guidance sub-systems for the vehicle can be found in (Naeem et al., 2008).
With regards to the structure and content of the paper, on completion of this

introductory material, Section 2 reports details of the Springer vehicle hardware, and
of linear and nonlinear models of its yaw dynamics. Section 3 describes the two
autopilot designs, and in Section 4 simulation results and a discussion are presented.
Finally concluding remarks are given in Section 5.

2. THE SPRINGER UNMANNED SURFACE VEHICLE. The
SpringerUSV was designed as a medium waterplane twin hull vessel which is versatile
in terms of mission profile and payload. It is approximately 4 m long and 2·3 m wide
with a displacement of 0·6 tonnes. Each hull is divided into three watertight
compartments. The NGC system is carried in watertight Peli cases and secured in a
bay area between the crossbeams. This facilitates the quick substitution of systems on
shore or at sea. The batteries which are used to provide the power for the propulsion
system and onboard electronics are carried within the hulls, accessed by a watertight
hatch. In order to prevent any catastrophe resulting from a water leakage, leak sensors
are utilized within the motor housing. If a breach is detected the onboard computer
immediately issues a warning to the user and/or takes appropriate action in order to
minimize damage to the onboard electronics (Naeem et al., 2008). A mast has also
been installed to carry the Global Positioning System (GPS) and wireless antennas.
The wireless antenna is used as a means of communication between the vessel and its
user and is intended to be utilized for remote monitoring purpose, intervention in the
case of erratic behaviour and to alter the mission parameters. The Springer is shown in
Figure 1 and the arrangement inside its hulls is depicted in Figure 2. The Peli case
layouts may be found in (Naeem et al., 2008).

Figure 1. The Springer Unmanned Surface Vehicle (USV).
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The Springer propulsion system consists of two propellers powered by a set of
24 volt 74 lbs Minn Kota Riptide transom mounted saltwater trolling motors. As
will be seen in Subsection 2.1, steering of the vessel is based on differential propeller
revolution rates.

2.1. Vehicle Steerage. The vehicle has a differential steering mechanism and thus
requires two inputs to adjust its course. This was simply modelled as a two input,
single output system in the form depicted in Figure 3, where n1 and n2 are the two
propeller thrusts in Revolutions Per Minute (RPM).
Clearly, straight line manoeuvres require both the thrusters to run at the same

speed; the differential thrust is zero in this case. By letting nc and nd represent
the common mode and differential mode thruster velocities defined, then nc and nd are
defined by Equations (1) and (2):

nc = n1 + n2
2

(1)

nd = n1 − n2
2

(2)

In order to maintain the velocity of the vessel, nc must remain constant at all times.
The differential mode input, however, oscillates about zero depending on the direction
of the manoeuvre. While the actual steerage system operates using RPM, for reasons
of convenience and ease of comparisons, results are shown in Revolutions Per Second
(RPS) where appropriate.

2.2. Linear Vehicle Yaw Dynamics. As a linear yaw dynamic model of the
vehicle is required in the design of the LQG autopilot, System Identification (SI)
(Ljung, 1999) was performed on three different sets of experimental data, collected

Figure 2. Side view of the Springer Unmanned Surface Vehicle (USV).
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with a sampling interval of 1 s for training, validating and testing the model. In
this case, only nd has been manipulated and therefore acts as the sole input to the
system. This alters both n1 and n2 whereas nc is maintained to conserve the operating
regime.
The SI of the vehicle dynamics was undertaken using a proprietary MATLAB™

toolbox. Initial results showed that dynamic models based on an AutoRegressive
with eXogenous (ARX) terms approach failed to achieve a good fit. Thus an
iterative prediction-error minimization method using the SI toolbox was employed
to estimate the parameters of an AutoRegressive Moving-Average with eXogenous
(ARMAX) variable terms type fourth-order linear state space model, which has
more flexibility in the handling of disturbance modelling than the ARX model.
The dynamic model of the Springer vehicle was obtained in State Space (SS)
form as shown in Equation (3) which was subsequently used to design the LQG
autopilot.

x(k + 1) = Ax(k) + Bu(k) + Ke(k)
y(k) = Cx(k) +Du(k) (3)

where:

A =

1·0035 −0·0012 −0·0056 −0·0057
0·0247 0·9752 −0·1372 −0·1241
0·0349 −0·0103 −0·4166 0·7517
0·0325 −0·0987 −0·0604 0·0073





, B =

0·0000025
−0·0000654
0·0004235
−0·0003025





,

K =

0·0275
−1·2455
1·8949
−1·6802





, C = 42·3573 −0·0940 −0·0288 0·0354[ ]

, D = 0[ ]

(4)

Figures 4a, 4b and 4c show the performance of the SS model on training, validation
and test data sets which produces mean-squared errors of 0·00057465 rad2,
0·0075 rad2 and 0·00042696 rad2 respectively.
Although the SS model fits well (Figure 4c) on the series-parallel configuration (one-

step-ahead prediction), its performance deteriorates for the parallel response (iterated
prediction) and indicates the poor predictive capability of the model. Figure 5 shows
the series-parallel and parallel configuration of the model and the Figure 6 illustrates
the predictive capability of the SS model on a parallel model output of the test dataset
producing a mean-squared error of 0·307 rad2. The poor predictive capability may be
because of the highly nonlinear dynamics of the Springer vehicle were not captured in

Figure 3. Block diagram representation of a two-input Unmanned Surface Vehicle (USV).
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the linear state-space model. Nonlinear modelling of the Springer in a parallel
configuration is thus required to obtain the true characteristics of its dynamic.
Subsection 2.3 studies the nonlinear modelling of the Springer using neural networks
and compares its predictive capability with the SS model.

a

b

c

Figure 4. (a) Performance of the State Space (SS) model: training. (b) Performance of the State
Space (SS) model: validation. (c) Performance of the State Space (SS) model: testing.
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2.3. Nonlinear Vehicle Yaw Dynamics. As shown above in the SS model case, the
linear model across an operating point does not contain the true characteristics of the
highly nonlinear Springer dynamics, thus the requirement for a nonlinear model. A
Multi-Layer Perception (MLP) type Neural Network (NN) model was developed here
using the previous dataset. A Genetic Algorithm (GA) (Sivanandam and Deepa,
2008) with a population of 20 chromosomes and a crossover probability of pc=0·65
and mutation probability of pm=0·03 was used to obtain the best NN architecture
with optimized weights and biases (Sharma et al., 2002; 2005). The GA was run for
3000 generations and after a period of trial and error, a parallel architecture network

Figure 5. Parallel and series-parallel configurations of the model.

Figure 6. Predictive capability of a parallel model.
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with ten inputs was derived:

ŷ(t) =fNN u(t− 1), u(t− 2), ŷ(t− 1), ŷ(t− 2), ŷ(t− 3),{
× ŷ(t− 4), e(t− 1), e(t− 2), e(t− 3), e(t− 4)} (5)

where:

e(t) = y(t) − ŷ(t)
and three hidden nodes were selected for modelling.
Figures 7a, 7b and 7c show the parallel model performance of the NN model on the

training, validation and test data set which produced mean-squared errors of
0·0003746 rad2, 0·003904 rad2 and 0·0007106 rad2 respectively.
The results show that NN achieved better predictive capability compared to the

state-space model considered in the Subsection 2.2.
This NN model was used to replicate the nonlinear yaw dynamics of the

Springer USV and to train a LCN autopilot to follow set point trajectories, with its
performance being judged against that of a LQG autopilot.

3. AUTOPILOT DESIGNS. In this section of the paper, both autopilot
designs are presented.

3.1. Linear Quadratic Gaussian (LQG) Autopilot Design. In this autopilot
design, a LQG controller was selected which consists of a linear combination of a
Linear Quadratic state feedback Regulator (LQR) and a Kalman filter. The LQG
controller is inherently multi-variable, therefore modification to a multi-input, multi-
output model is rather straightforward. To construct the autopilot, an LQR problem
is solved which assumes that all states are available for feedback. However, this is
not always true because either there is no available sensor to measure that state
or the measurement is very noisy. A Kalman filter can be designed to estimate the
unmeasured states. The LQR and Kalman filter were developed independently and
then combined to form an LQG controller, a method known as the separation
principle (Burl, 1999). A block diagram of the autopilot is depicted in Figure 8
showing the individual components of the LQG. In this figure, r is the reference input
which is transformed to a corresponding reference state vector using the transform-
ation matrix Nx. The block Nu compensates for any steady state errors present in the
output of the closed loop system.
The LQG controller requires an SS model of the system in the form specified in

Equation 3. The parameters A, B, C, and D are also defined in Equation 4 for the
Springer vehicle. A unique closed form solution of the LQG control law is defined as:

u(k) = KLQR(xr(k) − x̂(k)) (6)
The Kalman filter equations and a derivation of the Nx and Nu blocks respectively

are at Appendices A and B.
3.2. Local Control Network Autopilot Design. A LCN provides a ‘divide-and-

conquer’ approach to the design of a global controller for complex nonlinear systems.
It consists of several linear Local Model Controllers (LMCs) spread across the
operating regions. The operating space is decomposed into a number of regimes and
the required global controller is then formed by interpolating between simpler LMCs
that are locally valid (Johansen and Foss, 1995).
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Knowledge of these local operating regimes is therefore a key requirement for
building such controllers. It is known that a large class of nonlinear systems can be
controlled in this way, including most batch processes and many control system

a

b

c

Figure 7. (a) Performance of the Neural Network (NN) model: training. (b) Performance of the
Neural Network (NN) model: validation. (c) Performance of the Neural Network (NN) model:
testing.
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applications (Rippin, 1989). Apart from normal operation, the control system
may also have to function correctly during startup and shutdown cycles and to
operate during maintenance and fault conditions, all of which constitute different
operating regimes. In most applications, the design of a suitable LCN is done on the
basis of a priori plant knowledge (Brown et al., 1997; Townsend et al., 1998). The
interpolation is done such that the LMC which is most valid at an operating point will
be given the greatest weight, neighbouring ones will be weighted less and those for
distant operating regimes will not contribute anything to the global control at that
point.
Each LMC is thus associated with a weighting function that provides smooth

interpolation and also indicates the relative validity of it at a given operating point.
Springer had already been tested within its linear operating region using SS models
and LQG techniques. However, until this study, no work has been undertaken to test
the USV while operating in the nonlinear region of its dynamic system response. For
practical operations, the identification of distinct operating regimes are important,
which can only be obtained with a priori plant knowledge. The identification of local
operating regimes and simultaneous design of a global LCN is difficult in the absence
of a priori knowledge about the unknown plant. This paper finds such operating
regimes and constructs a suitable LCN based on GAs for Springer.

3.2.1. Local Control Networks. The general discrete LCN representation is
shown in Figure 9. Here, the same inputs, x, are fed to all the LMCs and the outputs
are weighted according to some scheduling variable or variables, φ. The LCN output ŷ
is given by the weighted sum:

ŷ =
∑N
i=1

ρi(φ)fi(x) (7)

where:

ρi(φ) is the validity or interpolation function associated with the ithLMC, fi(x).
N is the total number of LMCs.

The validity functions ρi(φ) are normalized so that the total contribution from all the
LMCs is 100%. The most widely used ρi(φ) in the literature are normalized Gaussian

Figure 8. Block diagram representation of a Linear Quadratic Gaussian (LQG) autopilot design.

290 SK SHARMA AND OTHERS VOL. 65

https://doi.org/10.1017/S0373463311000701 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463311000701


functions represented as:

ρi(φ) =
exp(−||φ− si||2/2σ2

i )∑N
j=1

exp(−||φ− si||2/2σ2
j )

(8)

The fi(x) are linear controllers. In this paper, a discrete-type PID controller is
considered for the LCN construction as it requires a smaller number of parameters
compared to that of ARMAX type linear controllers; it also avoids controller
initialization problems while reducing the GA search space.
A continuous-time PID control law is described by:

u(t) = kpe(t) + kdė(t) + kI

∫
edt (9)

where:

kp, kd and kI are the proportional, differential and the integral gains.
u is the control action.
e is the error.

The equivalent PID controller in discrete form is

u(k) = u(k − 1) + kp[e(k) − e(k − 1)] + kd [e(k) − 2e(k − 1) + e(k − 2)] + TsKIe(k)
(10)

where:

k is the sample number.
Ts is the sampling interval.

For Equations (8) and (10) the unknown parameters in each regime are the validity
function centres, si, standard deviations σi and the PID control parameters kp, kd and
kI. The identification of local operating regimes and simultaneous design of a global
LCN is difficult in the absence of a priori knowledge about the unknown plant.

Figure 9. General architecture of a Local Control Network (LCN).
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Figure 10 shows the design of a LCN involving PID-type LMCs. Here the LCN
consists ofm PID-type local model controllers. The output of the ith PID-type LMC at
sample k is ci(k) and the overall LCN output is defined as c(k) = ∑m

i=1 ci(k). The con-
trol action applied to the Springer USV at sample k is given by u(k)=c(k)+u(k−1).
The same error e(k)= r(k)−y(k), is applied to all LMCs in the network. The
scheduling variable for the validity function, ρi(φ), were chosen as φ=[y(k−1),
u(k−1)], where y(k) is the heading angle output and r(k) is the reference setpoint. A
GA is then used to construct a LCN for the USV. The GA then simultaneously
searches for the optimal number of LMCs (from a given maximum number), the
parameters of these LMCs and the parameters of the validity functions and filter.
Apart from reducing the tracking error and total controller effort, the fitness function
of the GA is also incorporated to promote transparency by encouraging all valid
LMCs to be mutually orthogonal, such that each local controller acts independently of
the rest at its operating point. In this application a steady-state GA (Michalewicz,
1996) with crossover probability of pc=0.65 and mutation probability of pm=0.03 was
applied to a population of 20 chromosomes.
The filter used in Figure 10 is of second order with the input/output relation

described in Equation (11):

a1y(k) = b1x(k) + b2x(k − 1) + b3x(k − 2) − a2y(k − 1) − a3y(k − 2) (11)

4. SIMULATION RESULTS AND DISCUSSION. The GAwas run for
2000 generations and, to allow for the stochastic nature of genetic learning, the
training process was repeated five times. The number of LMCs from the best
chromosome was selected as the optimum, along with the centres and covariances of
the associated validity function and the parameters for the filter. Figure 11a shows the
closed-loop response from the LCN in response to a step change demand in the vehicle
heading and it also reveals that a good tracking performance is achieved. Whereas
Figure 11b indicates that a smooth LCN controller effort was expended in order to
achieve such satisfactory results.
The GA selected two LMCs; Figures 12a and 12b illustrate the respective

interpolation regions for the two LMCs. Figure 13 contains a plan view with the
training data superimposed showing the operating region for Springer. It can be seen
that the GA has selected the local controllers that are occupying 100% and are thus
transparent somewhere in the operating regions. The shaded portion in the plan view

Figure 10. PID-type local control network acting on a Springer USV.
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show the areas where each controller will be acting independently in the operating
regions.
The two PID-type LMCs defining the LCN were:

C1(k) = − 1·9366[e(k) − e(k − 1)] − 0·7826
× [e(k) − 2e(k − 1) + e(k − 2)] + 0·1201e(k) (12)

C2(k) = − 1·6429[e(k) − e(k − 1)] + 0·2200
× [e(k) − 2e(k − 1) + e(k − 2)] + 0·0429e(k) (13)

a

b

Figure 11. (a) Local Control Network (LCN) response to a step change in vehicle heading:
heading response. (b) Local Control Network (LCN) response to a step change in vehicle heading:
controller effort.
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where e(k)= r(k)−y(k) is again the error between the reference and controller
trajectory.
The centres and covariances for the Gaussian interpolation functions were ρ1:

(−14·0660, 2·0260) and (14·8186, 0·6666) and ρ2: (82·8059, 1·9678) and (20·1629,
0·4573). The coefficients for the filter were: a1=1·0, a2=−0·9845, a3=0·0576,
b1=0·0500, b2=−0·0063 and b3=0·0318.
The robustness of the controller was next tested. Results in (Brown et al., 1997;

Townsend et al., 1998; Sharma et al., 2002) indicate that while the stability of a
local controller acting on a local plant model is easily proved, the global stability
of the overall closed-loop system is more problematic. One way to overcome this

a

b

Figure 12. (a) Interpolation regions for two of the Local Model Controllers (LMCs): LMC 1
interpolation region. (b) Interpolation regions for two of the Local Model Controllers (LMCs):
LMC 2 interpolation region.
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and to test the robustness of the controller is to demonstrate that it is stable
throughout the operating space of a vehicle manoeuvre. To this end, a random
sequence of course-changing manoeuvres was employed which covered the
entire operating region as shown in Figure 14. Figure 14 also reveals that the LCN
generated a stable closed-loop response and smoothly followed the reference
trajectory.
The NN model of the Springer was used directly to design a LCN in the absence of

much a priori knowledge. These results show the capacity of this approach to design-
ing a LCN based autopilot for Springer. In addition, they clearly illustrate the auto-
pilot’s ability to cope successfully when operating in both the linear and nonlinear
realms of the vehicle’s dynamic system response.
In order to make quantitative comparisons between the two autopilot designs,

the standard system performance criteria of Rise Time (TR), Settling Time (TS) and
Percentage Overshoot (%MP) were employed (Ogata, 2002). Here TR is taken as
the time required for the system response to rise from 10% to 90% of its final value.
It is used to denote the speed of response of a system. The TS is the time required
for the system response to reach and stay within a specified tolerance band of the
final value which in this case is taken as 2%. TS is the minimum time in which
the transient phase of the system response is assumed to have decayed away,
therefore, indicating the time at which the system may function at the new operating
point. Whereas %MP is the percentage maximum amount a system overshoots its
final value and is used to signify the oscillatory nature and relative stability of the
system.

Figure 13. Plan view of validity regions with training data.
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Additionally, as a measure of accuracy and autopilot control activity, the
Mean-Square Error of the Yaw Error (MSE(ψε)) and the Average Equivalent
Controller Energy (ACE(Eu)) were used. These may be considered in their discrete
forms as:

MSE(ψε) =
1
N

∑N
k=1

[y(k) − ŷ(k)]2 (14)

and:

ACE(Eu) = 1
N

∑N
k=1

[u(k)/60]2 (15)

where:

y(k) is the desired output at kth instant in rad.
ŷ(k) is the actual output at kth instant in rad
u(k) is the controller effort at kth instant in RPM.
N is the total number of samples.

As was to be expected, the LQG autopilot was also subjected to the same series of
course-changing demands displayed in Figures 11a and 14, the results of which can be
found in Figures 15(a), and 16 respectively. The response of the LQG appears to be
quite sluggish with a large TS of over 274 s. Figure 15(b) depicts the controller output
which settles to approximately zero as the vessel reaches steady state.
The step response in Figure 11 shows that the results TR=22 s, TS=37 s and

%MP=0·39% were obtained using the LCN whereas the LQG produced TR=65 s,

Figure 14. Vehicle response to a random sequence of course-changing demands in heading using
the Local Control Network (LCN).
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TS=274 s and %Mp=approximately 3·3% as depicted in Figure 15a. Hence the results
show that faster and better responses were obtained with LCN.
Table 1 compares the LCN and LQG autopilots for the different trajectories with

respect to MSE(ψε) and ACE(Eu).
As shown in Table 1, the LCN approach outperformed and produced less MSE

values compared to the LQG in all cases. A major reduction in controller effort was
also achieved by the LCN; this would save battery power when controlling the vehicle
in real-time mission scenarios.

a

b

Figure 15. (a) Linear Quadratic Gaussian (LQG) autopilot response to a step change in vehicle
heading: heading response. (b) Linear Quadratic Gaussian (LQG) autopilot response to a step
change in vehicle heading: controller effort.
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5. CONCLUDING REMARKS. A genetic learning approach to the con-
struction of Local Model Controllers (LMCs) for the Springer Unmanned Surface
Vehicle (USV) has been proposed based on Local Control Networks (LCNs). The
approach optimizes an overall LMC structure and local Proportional-Integral-
Derivative (PID) controller parameters. Also it facilitates the inclusion of transpar-
ency, generalization of constraints, and simplicity of design. Furthermore, instead of
requiring a priori knowledge of the Springer for designing a LMC, a much easier
Neural Network (NN) modelling approach from experimental data was utilized.
The results of the LCN autopilot were compared with those obtained from that de-

veloped using a LQG approach, which requires a linear model in its architecture. Even
a fourth order State Space (SS) model was unable to provide better predictive capa-
bility compared to the NN model and thus the LQG approach produced an inferior
autopilot which resulted in greater Mean-Square Error of the Yaw Error MSE(ψε)
values and consuming more controller energy compared to that of the LCN design.
Thus the LCN is more suited for use in the Springer vehicle from a practical

viewpoint in terms of manoeuvring capability and also in controller energy
consumption which would in reality provide the vehicle with longer mission durations.
Finally, it is considered that this work is the first to report a LCN approach to

marine control systems design. As a result, a new design framework for the design of
nonlinear autopilots has been presented for application in the marine sector.

Table 1. Comparison between the LCN and LQG autopilots for different trajectories.

Methods used Trajectory MSE(ψε) (rad
2) ACE(Eu) (rps)

2

LCN Step 0·825 0·00563
Random 0·1492 0·1824

LQG Step 2·0691 14·5102
Random 0·5092 4·2324

Figure 16. Vehicle response to a random sequence of course-changing demands in heading using
the Linear Quadratic Gaussian (LQG) autopilot.
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APPENDIX A. A discrete-time controlled process may be described by the linear
stochastic difference equations (A1):

x(k + 1) = Ax(k) + Bu(k) + w(k)
z(k) = Cx(k) +Du(k) + v(k) (A1)

where:

x(k) is an n×1 state vector.
A is an n×n state transition matrix.
u(k) is an l×1 input vector.
B is an n×l matrix.
w(k) is an n×1 process noise vector.
z(k) is an m×1 measurement vector.
C(k) is an m×n measurement matrix.
v(k) is an m×1 measurement noise vector.

Both the w(k) and v(k) are assumed to be uncorrelated zero mean Gaussian white
noise sequences with covariances are given by

E[w(k)wT (i)] = W(k), i = k
0, i = k

{

E[v(k)vT (i)] = V(k), i = k
0, i = k

{

E[w(k)vT (i)] = 0, for all k and i

The Kalman filter equations may be written down into time update and measured
update Equations (A2) to (A6), where:

x̂ is an estimate of the system state vector x.
K is the Kalman gain
P is the covariance matrix of the state estimation error.

Time update equations:

x̂(k + 1) = Ax̂(k) + Bu(k) (A2)

P−(k + 1) = AP(k)AT +W(k) (A3)
Measurement update equations

K(k) = P−(k)CT CP−(k)CT + V(k)[ ]−1 (A4)

x̂(k) = x̂−(k) + K(k) z(k) − Cx̂−(k)[ ] (A5)

P(k) = I− K(k)C[ ]P−(k) (A6)

The measurement update equations incorporate a new observation into the
a priori estimate from the time update equations to obtain an improved a posteriori
estimate.
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APPENDIX B. A derivation has been carried out herein to evaluate the contents
of blocks Nx and Nu in Figure 5 for reference input tracking in an LQR control
strategy (Franklin et al., 1998).
Let Nx denotes the forward block which transforms the reference input r to a

reference state xr that is an equilibrium one for that r. Mathematically, this can be
stated in Equations (B1) and (B2) as:

Nxr = xr (B1)
u = −KLQR(x− xr) (B2)

The final or steady state value of the states can be written in Equation (B3) as:

x(1) = xss = xr ⇒ Nxr = xr = xss (B3)
To compensate for any steady state output error in case of type 0 systems, a
steady state control term is needed that is proportional to the reference input, in
Equation (B4) as:

uss = Nur (B4)
Also:

Cxss = y = r ⇒ CNxr = r ⇒ CNx = I (B5)
Since the system is at steady state, i.e., x(k+1)=x(k)=xss and u=uss, therefore:

xss = Axss + Buss ⇒ (A− I)xss + Buss = 0 (B6)
Substituting Equations (B4) and (B5) in the above equations:

(A− I)Nxr+ BNur = 0 ⇒ (A− I)Nx + BNu = 0 (B7)
Finally writing Equations (B5) and (B7) in matrix form in Equation (B8):

A− I B
C 0

[ ]
Nx

Nu

[ ]
= 0

I

[ ]
(B8)

and solving for Nx and Nu yields the desired result in Equation (B9):

Nx

Nu

[ ]
= A− I B

C 0

[ ]−1 0
I

[ ]
(B9)
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