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This paper suggests a three-stage procedure for the estimation of time-invariant and rarely
changing variables in panel data models with unit effects. The first stage of the proposed
estimator runs a fixed-effects model to obtain the unit effects, the second stage breaks
down the unit effects into a part explained by the time-invariant and/or rarely changing
variables and an error term, and the third stage reestimates the first stage by pooled OLS
(with or without autocorrelation correction and with or without panel-corrected SEs) includ-
ing the time-invariant variables plus the error term of stage 2, which then accounts for the
unexplained part of the unit effects. We use Monte Carlo simulations to compare the finite
sample properties of our estimator to the finite sample properties of competing estimators.
In doing so, we demonstrate that our proposed technique provides the most reliable
estimates under a wide variety of specifications common to real world data.

1 Introduction

The analysis of “pooled” data has important advantages over pure time-series or cross-
sectional estimates—advantages that may easily justify the extra costs of collecting in-
formation in both the spatial and the longitudinal dimension. Many applied researchers
rank the ability to deal with unobserved heterogeneity across units most prominently. They
pool data just for the purpose of controlling for the potentially large number of unmea-
sured explanatory variables by estimating a “fixed-effects” (FE) model.

Yet, these clear advantages of the FE model come at a certain price. One of its draw-
backs, the problem of estimating time-invariant variables in panel data analyses’ with unit
effects, has widely been recognized: since the FE model uses only the within variance for
the estimation and disregards the between variance, it does not allow the estimation of

Authors’ note: Earlier versions of this paper have been presented at the 21st Polmeth Conference at Stanford
University, Palo Alto, July 29-31, 2004, the 2005 MPSA Conference in Chicago, April 7-10, and the APSA
Annual Conference 2005 in Washington, September 1-4 2005. We thank the referees of Political Analysis and
Neal Beck, Greg Wawro, Donald Green, Jay Goodliffe, Rodrigo Alfaro, Rob Franzese, Jorg Breitung, and Patrick
Brandt for helpful comments on previous drafts. Any remaining deficiencies are our responsibility.

"This article is about time-series—cross-sectional (TSCS) data as defined by Beck and Katz (1995) and Beck
(2001). Yet, our procedure can also be applied to panels with short time series. Note that demeaning can be
problematic when the number of periods is low.
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time-invariant variables (Baltagi 2001; Wooldridge 2002; Hsiao 2003). A second draw-
back of the FE model (and by far the less recognized one) results from its inefficiency in
estimating the effect of variables that have very little within variance. Typical examples in
political science include institutions, but political scientists have used numerous variables
that show much more variation across units than over time. An inefficient estimation is not
merely a nuisance leading to somewhat higher SEs. Inefficiency leads to highly unreliable
point estimates and may thus cause wrong inferences in the same way a biased estimator
could. Therefore, the inefficiency of the FE model in estimating variables with low within
variance needs to be taken seriously.

This article discusses a remedy to the related problems of estimating time-invariant and
rarely changing variables in FE models with unit effects. We suggest an alternative esti-
mator that allows estimating time-invariant variables and that is more efficient than the
FE model in estimating variables that have very little longitudinal variance. We call this
superior alternative “fixed effects vector decomposition” (fevd) model, because the esti-
mator decomposes the unit FE into an unexplained part and a part explained by the time-
invariant or the rarely changing variables. The fevd technique involves the following three
steps: in the first step, the procedure estimates the unit FE by running a FE estimate of the
baseline model. In the second step, the procedure splits the unit effects into an explained
and an unexplained part by regressing the unit effects on the time-invariant and/or rarely
changing explanatory variables of the original model. Finally, the third stage performs
a pooled-OLS estimation of the baseline model by including all explanatory time-variant
variables, the time-invariant variables, the rarely changing variables, and the unexplained
part of the FE vector. This third stage allows computing correct SEs for the coefficients of
the (almost) invariant variables. In addition, one can conveniently use this stage to adjust
for serial correlation of errors.”

Based on Monte Carlo simulations, we demonstrate that the vector decomposition
model has better finite sample properties in estimating models that include either time-
invariant or almost time-invariant variables correlated with unit effects than competing
estimators. In the analyses dealing with the estimation of time-invariant variables, we
compare the vector decomposition model to the FE model, the random effects (RE) model,
pooled OLS and the Hausman-Taylor procedure. We find that whereas the FE model does
not compute coefficients for the time-invariant variables, the vector decomposition model
performs far better than pooled OLS, RE, and the Hausman-Taylor procedure if both time-
invariant and time-varying variables are correlated with the unit effects.

The analysis of the rarely changing variables takes these results one step further. Again
based on Monte Carlo simulations, we show that the vector decomposition method is more
efficient than the FE model and thus gives more reliable estimates than the FE model under
a wide variety of constellations. Specifically, we find that the vector decomposition model
performs better that the FE model when the ratio between the between variance and the
within variance (b/w ratio) is large, when the overall R?is low, and when the correlation
between the time-invariant or rarely changing variable and the unit effects is low.

In a substantive perspective, this article contributes to an ongoing debate about the pros
and cons of FE models (Beck 2001; Beck and Katz 2001; Green, Kim, and Yoon 2001;
Pliimper, Troeger, and Manow 2005; Wilson and Butler 2007). Although the various

2This procedure is superficially similar to that suggested by Hsiao (2003, 52). However, Hsiao only claims that his
estimate for time-invariant variables is consistent as N approaches infinity. We are interested in the small sample
properties of our estimator and thus explore TSCS data. Hsiao (correctly) notes that his estimate is inconsistent
for TSCS. Moreover, he neither provides SEs for his estimate nor compares his estimator to others.
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parties in the debate put forward many reasons for and against FE models, this paper
analyzes the conditions under which the FE model is inferior to alternative estimation
procedures. Most importantly, it suggests a superior alternative for the cases in which the
FE model’s inefficiency impedes reliable point estimates.

We proceed as follows: in Section 2, we illustrate the estimation problem and discuss
how applied researchers dealt with it. In Section 3, we describe the econometrics of the
fevd procedure in detail. Section 4 explains the setup of the Monte Carlo experiments.
Section 5 analyzes the finite sample properties of the proposed fevd procedure relative to
the FE and the RE model, the pooled-OLS estimator, and the Hausman-Taylor procedure
in estimating time-invariant variables. Section 6 presents Monte Carlo analyses for rarely
changing variables in which we—without loss of generality—compare only the FE model
to the vector decomposition model. Section 7 concludes.

2 Estimation of Time-Invariant and Rarely Changing Variables

Time-invariant variables can be subdivided into two broadly defined categories. The first
category subsumes variables that are time invariant by definition. Often, these variables
measure geography or inheritance. Switzerland and Hungary are both landlocked coun-
tries, they are both located in Central Europe, and there is little nature and (hopefully)
politics will do about it for the foreseeable future. Along similar lines, a country may or
may not have a colonial heritage or a climate prone to tropical diseases.

The second category covers variables that are time invariant for the period under
analysis or because of researchers’ selection of cases. For instance, constitutions in post-
war OECD countries have proven to be highly durable. Switzerland has been a democracy
since 1291 and the United States has maintained a presidential system since the adoption
of the Constitution. Yet, by increasing the number of periods and/or the number of cases it
would be possible to render these variables time-variant.

A small change in the sample can turn a time-invariant variable of the second category
into a variable with very low within variation—an almost time-invariant or rarely changing
variable. The level of democracy, the status of the president, electoral rules, central bank
autonomy, or federalism—to mention just a few—do not change often even in relatively
long pooled time-series data sets. Other politically relevant variables, such as the size of
the minimum winning coalition, and the number of veto players change more frequently,
but the within variance, the variance over time, typically falls short of the between vari-
ance, the variance across units. The same may hold true for some macroeconomic aggre-
gates. Indeed, government spending, social welfare, tax rates, pollution levels, or per
capita income change from year to year, but panels of these variables can still be domi-
nantly cross-sectional.

Unfortunately, the problem of rarely changing variables in panel data with unit effects
remained by-and-large undiscussed.® Since the FE model can compute a coefficient if
regressors are almost time invariant, it seems fair to say that most applied researchers have
accepted the resulting inefficiency of the estimate without paying too much attention to
it. Yet, as Nathaniel Beck has unmistakenly formulated: “Although we can estimate
[a model] with slowly changing independent variables, the fixed effect will soak up most
of the explanatory power of these slowly changing variables. Thus, if a variable ...
changes over time, but slowly, the fixed effects will make it hard for such variables to

3None of the three main textbooks on panel data analysis (Baltagi 2001; Wooldridge 2002; Hsiao 2003) refers
explicitly to the inefficiency of estimating rarely changing variables in a FE approach.
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appear either substantively or statistically significant” (Beck 2001, 285). Perhaps even
more importantly, inefficiency does not just imply low levels of significance; point esti-
mates are also unreliable since the influence of the error on the estimated coefficients
becomes larger as the inefficiency of the estimator increases.

In comparison, by far more attention was devoted to the problem of time-invariant
variables. With the FE model not computing coefficients for time-invariant variables, most
applied researchers seem to have estimated empirical models that include time-invariant
variables by RE models or by pooled OLS (see, e.g., Knack 1993; Huber and Stephens
2001; Acemoglu et al. 2002; Elbadawi and Sambanis 2002). Acemoglu et al. (2002) justify
not controlling for unit effects by stating the following: “Recall that our interest is in the
historically determined component of institutions (that is more clearly exogenous), hence
not in the variations in institutions from year-to-year. As a result, this regression does not
(cannot) control for a full set of country dummies.” (Acemoglu et al. 2002, 27)

Clearly, both the RE model and pooled OLS are inconsistent and biased when regres-
sors are correlated with the unit effects. Employing these models trades the unbiased
estimation of time-varying variables for the ability to compute estimates of time-invariant
variables. Thus, they may be a second-best solution if researchers are solely interested in
the coefficients of the time-invariant variables.*

In contrast, econometric textbooks typically recommend the Hausman-Taylor proce-
dure for panel data with time-invariant variables and correlated unit effects (Hausman and
Taylor 1981; see Wooldridge 2002, 325-8; Hsiao 2003, 53). The estimator attempts to
overcome the bias of the RE model in the presence of correlated unit effects and the
solution is standard: use appropriate instruments for endogenous variables. In brief, this
procedure estimates a RE model and uses exogenous time-varying variables as instruments
for the endogenous time-varying variables and exogenous time-invariant variables plus the
unit means of the exogenous time-varying variables as instruments for the endogenous
time-invariant variables (textbook characterizations of the Hausman-Taylor model can be
found in Wooldridge [2002, 225-8] and Hsiao [2003, 53ff]). From an econometric per-
spective, the procedure provides a consistent solution to the potentially severe problem of
correlation between unit effects and time-invariant variables. Unfortunately, the procedure
can only work well if the instruments are uncorrelated with the errors and the unit effects
and highly correlated with the endogenous regressors. Identifying those instruments is
a formidable task especially since the unit effects are unobserved (and often unobserv-
able). Nevertheless, the Hausman-Taylor estimator has recently gained in popularity at
least among economists (Egger and Pfaffermayr 2004).

3 Fixed Effects Vector Decomposition

Recall the data-generating process (DGP) of a FE model with time-invariant variables:

K M
Yie = 0€+Z[3kxkit +ZYmZmi + u; + &, (1)
=1 =1

where the x variables are time-varying and the z variables are assumed to be time
invariant,’ u; denotes the N — 1 unit-specific effects (FE) of the DGP, g;; is the independent

“The RE model is unbiased only when the pooled-OLS model is unbiased as well. However, the RE model is,
under broad conditions, more efficient than the pooled-OLS model.
°In Section 5, we assume that one z variable is rarely changing and thus almost time invariant.
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and identically distributed error term, o is the intercept of the base unit, and § and 7y are the
parameters to be estimated.

In the first stage, the fevd procedure estimates a standard FE model. The FE
transformation can be obtained by first averaging equation (1) over T:

K M
yi=o+ Z BrXri + Z YmZmi + € + uj, (2)
=1 =

where

1 <& 1 & 1 <&
Yi:?ZYm fi:?;?cm éi:Tt:Z]eit

t=1

and e stands for the residual of the estimated model. Then equation (2) is subtracted from
equation (1). This transformation removes the individual effects #; and the time-invariant
variables z. We get

K M
Yie = Yi = Pr Z (Xkit — Xti) + Y Z (zmi — zmi) + (i — &) + (i — ;)
k=1 m=1

K
=y, =B Zjékit + éi, (3)
=1

with ¥, = yiy — Vi, Xxir = Xxir — Xri» and €;; = e;; — e; denoting the demeaned variables of the
within transformation. We run this FE model with the sole intention to obtain estimates of
the unit effects ;. At this point, it is important to note that the “estimated unit effects” i;
do not equal the unit effects u; in the DGP.® Rather, these estimated unit effects include all
time-invariant variables, the overall constant term, and the mean effects of the time-
varying variables x—or, in other words,

K
U=y — Z Br % — e, (4)
=1

where BEE is the pooled-OLS estimate of the demeaned model in equation (3).

This #; includes the unobserved unit-specific effects as well as the observed unit-
specific effects z, the unit means of the residuals ¢;, and the time-varying variables Xy;,
whereas u; only accounts for unobservable unit-specific effects. In stage 2, we regress the
unit effects i; from stage 1 on the observed time-invariant and rarely changing varia-
bles—the z variables (see equation (5)) to obtain the unexplained part /; (the residual from
regressing the unit-specific effect on the z variables). In other words, we decompose the
estimated unit effects into two parts, an explained and an unexplained part that we dub #;:

M
i = Z YmZmi + hi. (5)
m=1

SWe follow standard practice by this notation. However, from equation (4) it follows that the FE estimate of the
unit effects propels much more to the estimated unit effects. To avoid confusion and maintain consistence with
standard textbooks, we stick to this notation—needless to say that it does not make much sense.
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The unexplained part 4; is obtained by computing the residuals from equation (5):

M
hi =u; — Z Y mZmi- (6)

m=1

As we said above, this crucial stage decomposes the unit effects into an unexplained part
and a part explained by the time-invariant variables. We are solely interested in the un-
explained part h;.

In stage 3, we rerun the full model without the unit effects but include the unexplained
part h; of the decomposed unit FE vector obtained in stage 2. This stage is estimated by
pooled OLS.

K M
Yie =0+ Z BrXwir + Z YuZmi + Oh; + €. (7)
k=1 m=1

By design, A; is no longer correlated with the vector of the z variables. If the time-
invariant variables are assumed to be orthogonal to the unobserved unit effects—i.e., if the
assumption underlying our estimator is correct—the estimator is consistent. If this as-
sumption is violated, the estimated coefficients for the time-invariant variables are biased,’
but this bias is of course just the normal omitted variable bias. Yet, given that the estimated
unit effects i; consist of much more than the real unit effect u; and since we cannot
disentangle the true elements of u; from the between variation of the observed and included
variables, researchers necessarily face a choice between using as much information as
possible and using an unbiased estimator. The fevd procedure thus gives as much power as
possible to the available variables unless the within variation is sufficiently large to guar-
antee efficient estimation.

The estimation of stage 3 proves necessary for various reasons. First of all, only the third
stage allows obtaining the correct SEs. Not correcting the degrees of freedom leads to
a potentially serious underestimation of SEs and overconfidence in the results. Second, the
third stage also allows researchers to explicitly deal with the dynamics of the time-invariant
variables. This is important since estimating the model requires that heteroscedasticity and
serial correlation must be eliminated. If the structure of the data at hand is as such, we suggest
running a robust Sandwich estimator or a model with panel-corrected SEs (in stages 1 and 3)
and inclusion of the lagged dependent variable (Beck and Katz 1995) and/or modeling the
dynamics by Prais-Winsten transformation of the original data in stages 1 and 3.

4 Design of the Monte Carlo Simulations

In what follows we conduct a series of Monte Carlo analyses to compare the finite sample
properties of estimators that have frequently been applied to conditions similar to those
the fevd estimator is made for or that have been suggested by econometrics textbooks.
In particular, we are interested in the finite sample properties of competing estimators.
We follow the literature in using the root mean squared error (RMSE) as criterion.
RMSE:s provide a unified view of the two main sources of wrong point estimates: bias and
inefficiency. King, Keohane, and Verba (1994, 74) highlight the fundamental trade-off

"Note that the estimated coefficients of the time-varying variables remain unbiased even in the presence of
correlated unit effects. However, the assumptions underlying a FE model must be satisfied (no correlated
time-varying variables may exist).
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between bias and efficiency: “We would ... be willing to sacrifice unbiasedness ... in
order to obtain a significantly more efficient estimator. ... The idea is to choose the
estimator with the minimum mean squared error since it shows precisely how an estimator
with some bias can be preferred if it has a smaller variance.” This potential trade-off
between efficiency and unbiasedness implies that the choice of the best estimator typically
depends on the sample size. If researchers always went for the estimator with the best
asymptotic properties (as typically recommended in econometrics textbooks) they would
always choose the best estimator for infinitely large samples. Unfortunately, this estimator
could perform poorly in estimating the finite sample at hand.

All experiments use simulated data, which are generated to discriminate between the various
estimators, and at the same time exhibit some properties of time-series—cross-sectional and
cross-sectional-time-series data. Specifically, the DGP underlying our simulations is as follows:

Vie = oL+ Byxi, +PBoxo, +Baxs, +Paz1,+Pszo, +Pezs, + uiteir,

where the x variables are time-varying and the z variables are time invariant. Both groups are
drawn from a normal distribution. u; denotes the unit-specific unobserved effects and also
follows a normal distribution. The idiosyncratic error g;, is white noise and drawn from
a standard normal distribution for each run. The R is fixed at 50% for all simulations. x3
is a time-varying variable correlated with the unit effects u;, whereas z3 is time invariant in
Section 5 and rarely changing in Section 6. In both cases, z3 is correlated with u;. We hold the
coefficients of the true model constant throughout all experiments at the following values:

o= 1, Bl :OS, Bz :2, B3 = _15, B4: _25, BS = 18, B6:3

Among these six variables, only variables x3 and z3 are of analytical interest since only
these two variables are correlated with the unit-specific effects u;. Variables x, x,, z;, and
2, do not covary with u;. However, we include these additional time-variant and time-
invariant variables into the DGP, because we want to ensure that the Hausman-Taylor
instrumental estimation is at least just identified or even overidentified (Hausman and
Taylor 1981). For the same reason, we let z; and z, be uncorrelated with the unit effects.
Although this assumption seems unrealistic, it is necessary to satisfy the minimum con-
ditions for instruments. This unrealistic assumption thus ensures that the advantages of the
fevd estimator over the Hausman-Taylor model cannot be explained by the poor quality of
instruments.

We hold this outline of the simulations constant in Section 6, where we analyze the
properties of the FE model and the vector decomposition technique in the presence of
rarely changing variables correlated with the unit effects. Although the inclusion of the
uncorrelated variables xy, x,, z;, and z, appears not necessary in Section 6, these variables
do not adversely affect the simulations and we keep them to maintain comparability across
all experiments.® In the experiments, we varied the correlation between x; and the unit
effects corr(xs, u;) = {0.0, 0.1, 0.2, ...,0.9, 0.99} and the correlation between zz and the
unit effects corr(zs, ©;) = {0.0, 0.1, 0.2, ..., 0.9, 0.99}.9

825 in section 5 is rarely changing, the between and within SD for this variable are changed according to the
specifications in Figs. 2—4.

9We also varied the number of units (N =15, 30, 50, 70, 100) and the number of time periods (7 = 20, 40, 70,
100). We report these results only in the online appendix. The number of possible permutations of these settings
is 2000 that would have led to 2000 times the aggregated number of estimators used in both experiments times
1000 single estimations in the Monte Carlo analyses. In total, this would have given 18 million regressions.
However, without loss of generality, we simplified the Monte Carlos and estimated “only” 980,000 single
regression models.
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Table 1 Average RMSE and bias over 10 permutations times 1000 estimations

Hausman-
Pooled OLS fevd Taylor RE FE
Average Average Average Average Average

RMSE  bias RMSE  bias RMSE bias RMSE bias RMSE bias

Time-varying
variable x3;  0.187 —0.167 [0.103 0.001 0.105 -0.003 0.173 —0.149 0.103 —0.001
Time-invariant
variable zz 0494 —0.470 0.523 —0.548 1485 —1.128 0.506 —0.481
Settings of the parameter held constant
N=30,T=20
corr(u, x,) = corr(u, x,) = corr(u, z;) = corr(u, z;) = 0
corr(u, x3) = 0.5
Settings of the varying parameter
corr(u, z3) = {0.1, 0.2, ..., 0.9, 0.99}

5 The Estimation of Time-Invariant Variables

We report the RMSE and the bias of the five estimators, averaged over 10 experiments with
varying correlation between zz and u,;. The Monte Carlo analysis underlying Table 1 holds
the sample size and the correlation between x3 and u; constant. In other words, we vary
only the correlation between the correlated time-invariant variable z3 and the unit effects
corr(u, z3).

Observe first that (in this and all following tables) we highlight all estimation results if
the estimator performs best or if its RMSE exceeds that of the best estimator by less than
10%. Table 1 reveals that estimators vary widely in respect to the correlated explanatory
variables x5 and z3. Whereas the vector decomposition model, Hausman-Taylor, and the
FE model estimate the coefficient of the correlated time-varying variable (x3) with almost
identical accuracy, pooled OLS, the vector decomposition model, and the RE model
perform more or less equally well in estimating the effects of the correlated time-invariant
variable (z3). In sum, only the fevd model performs well with respect to both variables
correlated with the unit effects x3 and z3.

The poor performance of Hausman-Taylor results from the inefficiency of instrumen-
tal variable models. Although it holds true that one can reduce the inefficiency of the
Hausman-Taylor procedure by improving the quality of the instruments,'® all carefully
selected instruments have to satisfy two conditions simultaneously: they have to be un-
correlated with the unit effects and correlated with the endogenous variables. Needless to
say, finding instruments that simultaneously satisfy these two conditions is a difficult
task—especially since the unit effects cannot be observed, but only be estimated.

Pooled OLS and the RE model fail to adequately account for the correlation between
the unit effects and both the time-invariant and the time-varying variables. Hence, param-
eter estimates for all variables correlated with the unit effects are biased. When applied
researchers are theoretically interested in both time-varying and time-invariant variables,
the fevd technique is superior to its alternatives.

9This has been suggested by Amemiya and MaCurdy (1986), Breusch, Mizon, and Schmidt (1989), Baltagi and
Khanti-Akom (1990), Baltagi, Bresson, and Pirotte (2003), and Oaxaca and Geisler (2003).
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Fig. 1 Change in the RMSE over variation in the correlation between the unit effects and z3, x3,
respectively; N = 30, T = 20.

Figures 1a—d allow an equally easy comparison of the five competing estimators. Note,
in the simulations underlying these figures, we held all parameters constant and varied
only the correlation between the time-invariant variable z3 and u; (Fig. 1a and 1b) and the
time-varying variable x3 and u; (Fig. 1c and 1d), respectively. Figures 1a and 1c display the
effect of this variation on the RMSE of the estimates for the time-varying variable x5 and
Fig. 1b and 1d the effect on the coefficient of the time-invariant variable z3.

Figures 1a—d reestablish the results of Table 1. We find that fevd, RE, and pooled OLS
perform equally well in estimating the coefficient of the correlated time-invariant variable
73, whereas FE, Hausman-Taylor, and fevd are superior in estimating the coefficient of
time-varying variable x3. We find that the advantages of the vector decomposition pro-
cedure over its alternatives do not depend on the size of the correlation between the
regressors and the unit effects but rather hold over the entire bandwidth of correlations.

Of the models tested here, only the fevd model gives reliable finite sample estimates if
the data set to be estimated includes time-varying and time-invariant variables correlated
with the unit effects.'! In the next section, we further explore the fevd estimator and turn to

""The online appendix (see the Political Analysis Web page for online appendices) demonstrates that this result
also holds true when we vary the sample size. The fevd model performs best even with a comparably large
T and N.
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the perhaps more important issue of how to handle variables that are not time invariant, but
whose within variation is low—absolute and relative to the between variation.

6 Estimation of Variables with Low within Variation

One important advantage of the fevd procedure over the Hausman-Taylor procedure and
the Hsiao suggestions is that it extends nicely to almost time-invariant variables. Estima-
tion of these variables by FE gives a coefficient, but the estimation suffers from ineffi-
ciency that renders the estimated coefficients unreliable (Beck and Katz 2001; Green, Kim,
and Yoon 2001). However, if we do not estimate the model by FE, then estimated coef-
ficients are biased if the regressor is correlated with the unit effects. Nevertheless, since it
seems not unreasonable to assume that in comparative politics the unit effects are made up
primarily of geographical, cultural, and various institutional variables and since most of
these variables can in principle be observed, it is not unreasonable to perform an orthog-
onal decomposition of the explained part and an unexplained part as described above.
Clearly, the orthogonality assumption is often incorrect and this will inevitably bias the
estimated coefficients of the almost time-invariant variables. However, as we will dem-
onstrate in this section, this bias does under distinguishable conditions less harm than the
inefficiency caused by FE estimation. Obviously the performance of fevd will depend on
the exact DGP. In our simulations we show that unless the DGP is highly unfavorable for
fevd, our procedure performs reasonably well and is generally better than its alternatives.

Before we report the results of the Monte Carlo simulations, let us briefly explain why
the estimation of almost time-invariant variables by the standard FE model is problematic
due to inefficiency and what that inefficiency does to the estimate. The inefficiency of the
FE model results from the fact that it disregards the between variation. Thus, the FE model
does not take all the available information into account. In technical terms, the estimation
problem stems from the asymptotic variance of the FE estimator:

-1

_,~FE. ., N -
Avar(p ) =6, ZX,-Xi . (8)
i=1

When the FE model performs the within transformation on a variable with little within
variance, the variance of the estimates can approach infinity. Thus, if the within variation
becomes very small, the point estimates of the FE estimator become unreliable. In this
situation, the FE model does not only compute large SEs, but in addition the sampling
variance gets large and therefore the reliability of point predictions is low and the prob-
ability that the estimated coefficient deviates largely from the true coefficient increases
(see Beck and Katz 2001).

Our Monte Carlo simulations seek to identify the conditions under which the fevd
model computes more reliable coefficients than the FE model. Table 2 reports the output
of a typical simulation analogous to Table 1.'*

Results displayed in Table 2 mirror those reported in Table 1. As before, we find that
only the fevd procedure gives sufficiently reliable estimates for both the correlated

We also compared the vector decomposition and the FE model to pooled-OLS and the RE model. Since
all findings for time-invariant variables carry over to rarely changing variables, indicating that the vector
decomposition model dominates pooled-OLS and RE models, we report the results of the RE and pooled-
OLS Monte Carlos only in the online appendix.
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Table 2 Average RMSE and bias over 10 permutations times 1000 estimations

fevd FE
RMSE Average bias RMSE Average bias
Time-varying variable x3 0.069 0.001 0.069 0.000
Rarely changing variable z3 0.131 0.001 0.858 0.008
Parameters held constant
N=30,T=20

corr(u, x;) = corr(u, x,) = corr(u, z;) = corr(u, z;) = 0
corr(u, z3) = 0.3

corr(u, x3) = 0.5

Between SD (z3) = 1.2

Varied parameters
Within SD (z3) = {0.04, ..., 0.94}

time-varying x3 and the rarely changing variable z3. As expected, the FE model provides
far less reliable estimates of the coefficients of rarely changing variables. The fevd model
can improve the reliability of the estimation in the presence of variables with low within
and relatively high between variance. We also find that pooled OLS and the RE model
estimate rarely changing variables with more or less the same degree of reliability as the
fevd model but are far worse in estimating the coefficients of time-varying variables. Note
that these results are robust regardless of sample size.'?

Since any further discussion of these issues would be redundant, we do not further
consider the RE and the pooled-OLS model in this section. Rather, this section provides
answers to two interrelated questions: first, can the vector decomposition model give better
estimates (a lower RMSE) than the FE model and second, in case we can answer the first
question positively, what are the conditions that determine the relative performance of
both estimators? To answer these questions, we assess the finite sample properties of the
competing models in estimating rarely changing variables by a second series of Monte
Carlo experiments. With one notable exception, the DGP in this section are identical to the
one used in Section 5. The exception is that now zz is not time invariant but a “rarely
changing variable” with a low within variation and a defined between to within variance
ratio (b/w ratio).

The easiest way to explore the relative performance of the FE model and the vector
decomposition model is to change the ratio between the cross-sectional (between) variance
and the time-series (within) variance across experiments. We compute this b/w ratio by
dividing the between SD of a variable by the within SD of the same variable. There are two
ways to vary this ratio systematically: we can hold the between variation constant and vary
the within variation or we can hold the within variation constant and vary the between
variation. We use both techniques. In Fig. 2, we hold the between SD constant at 1.2
and change the within SD successively from 0.15 to 1.73, so that the b/w ratio varies
between 8 and 0.7. In Fig. 3, we hold the within variance constant and change the between
variance.

*We reran all Monte Carlo experiments on rarely changing variables for different sample sizes. Specifically, we
analyzed all permutations of N = {15, 30, 50, 70, 100} and T = {20, 40, 70, 100}. The results are shown in
Table A2 of Appendix A. All findings for rarely changing variables remain valid for larger and smaller samples,
as well as for N exceeding T and T exceeding N.
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fevd ~

8 7 6 5 4 3 2 1 0
ratio between/within standard deviation (z3)

Parameter settings: N=30; T=20; rho(u,x3) = 0; rho(u,z3) =0.3;
between SD (z3): 1.2; within SD (z3): 0.15...1.73

Fig. 2 The ratio of between- to within SD (z3) on RSME (z3).

Recall that the estimator with the lower RMSE gives more reliable and better estimates.
Hence, Fig. 2 shows that when the within variance increases relative to the between
variance, the FE model becomes increasingly reliable. Since the reliability of the vector
decomposition model does not change, we find that the choice of an estimator is contin-
gent. If the b/w ratio is smaller than approximately 1.7, the FE estimator performs better
than the vector decomposition model. However, the threshold depends on the correlation
between the rarely changing variables and the true unit effects. Above this threshold,
trading unbiasedness for the efficiency of the vector decomposition model improves the
estimates.

We obtain similar results when we change the within variation and keep the between
variation constant. Figure 3 shows simultaneously the results of two slightly different
experiments. In one experiment (dotted lines), we varied the within variation and kept
the between variation and the error constant. In the other experiment, we kept the between
variation constant but varied the within variation and the error variance in a way that the
fevd R? remained constant.

In both experiments, we find the threshold to be at approximately 1.7 for a correlation
of z3 and u; of 0.3. We can conclude that the result is not merely the result of the way in
which we computed variation in the b/w ratio, since the threshold level remained constant
over the two experiments.

Unfortunately, the relative performance of the FE model and the vector decomposition
model does not solely depend on the b/w ratio. Rather, we also expected, and found,
a strong influence of the correlation between the rarely changing variable and the unit
effects. The influence of the correlation between the unit effects and the rarely changing
variable obviously results from the fact that it affects the bias of the vector decomposition
model but does not influence the inefficiency of the FE model. Thus, a larger correlation
between the unit effects and the rarely changing variable renders the vector decomposition
model worse relative to the FE model. Unfortunately, this correlation is unobservable and
an indirect, Hausman-type, test does not (yet) exist. We illustrate the strength of this effect


https://doi.org/10.1093/pan/mpm002

https://doi.org/10.1093/pan/mpm002 Published online by Cambridge University Press

136 Thomas Plimper and Vera E. Troeger

0.8

0.7

0.6 5
R constant

0.5

0.4 4 fixed effects

______

0.3 + varying R?

_____

RMSE ()

0.2 1
R? constant

014 ——----—----
] varying R
0.0 T T T T T T T T T T T T T T T T 1
8 7 6 5 4 3 2 1 0
ratio between/within standard deviation (z3)

Parameter settings: N=30; T=20; rho(u,x3) = 0; rho(u,z3) =0.3
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2

Fig. 3 The ratio of between- to within SD (z3) on RSME (z3).

by relating it to the level of the b/w ratio, at which the FE model and the fevd model give
identical RMSE. Accordingly, Fig. 4 displays the dependence of the threshold level of the
b/w ratio on the correlation between the rarely changing variable and the unit effects.

Note that, as expected, the threshold b/w ratio is strictly increasing in the correlation
between the rarely changing variable and the unobserved unit effects. In the case where the
rarely changing variable shows no correlation with u;, the threshold of the b/w ratio is as
small as 0.2. At a correlation of 0.3, fevd is superior to the FE model if the b/w ratio is larger
than approximately 1.7; at a correlation of 0.5 the threshold increases to about 2.8, and at
a correlation of 0.8 the threshold gets close to 3.8. Therefore, we cannot offer a simple rule
of thumb that informs applied researchers of when the estimation of a particular model by
fevd gives better results. Perhaps even worse, the correlation between the unit effects and
the rarely changing variable cannot be directly observed, because the unit effects are
unobservable. However, the odds are that at a b/w ratio of at least 2.8, the variable is better
included into the stage 2 estimation of fevd than estimated by a standard FE model.

Applied researchers can improve estimates created by the vector decomposition model
by reducing the potential for correlation. To do so, stage 2 of the fevd model needs to be
carefully studied. We can reduce the potential for bias of the estimation by including
additional time-invariant or rarely changing variables into stage 2. This may reduce bias
but is likely to also reduce efficiency. Alternatively, applied researchers can use variables
that are uncorrelated with the unit effects as instruments for potentially correlated time-
invariant or rarely changing variables—a strategy that resembles the Hausman-Taylor
model. Yet, as we have repeatedly pointed out: it is impossible to tell good from bad
instruments since the unit effects cannot be observed.

The decision whether to treat a variable as time invariant or varying depends on the b/w
ratio of this variable and on the correlation between the unit effects and the rarely changing
variables. In this respect, the estimation of time-invariant variables is just a special case of
the estimation of rarely changing variables—a special case in which the b/w ratio equals
infinity.
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Parameter settings: N=30; T=20; R2=0.5; rho(u,x3) = 0;

rho(u,z3) = {0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9};
between SD (z3): 0.4...8; within SD (z3): 1

Fig. 4 The correlation between z3 and u; and the minimum ratio between the between- and within
SD that renders fevd superior to the FE model.

These findings suggest that—strictly speaking—the level of within variation does not
influence the relative performance of fevd and FE models. However, with a relatively large
within variance, the problem of inefficiency does not matter much—the RMSE of the FE
estimator will be low. Still, if the within variance is large but the between variance is much
larger, the vector decomposition model will perform better on average. With a large within
variance, the actual absolute advantage in reliability of the fevd estimator will be tiny.

From a more general perspective, the main result of this section is that the choice
between the FE model and the fevd estimator depends on the relative efficiency of the
estimators and on the bias. As King, Keohane, and Verba (1994, 74) have argued, applied
researchers should not base their choice of the estimator solely on unbiasedness. Point
predictions become more reliable when researchers use the more efficient estimator. The
fevd model is more efficient than the FE model since it uses more information. Rather than
just relying on the within variance, our estimator also uses the between variance to com-
pute coefficients. But it is biased.

7 Conclusion

Under specific conditions, the vector decomposition model produces more reliable esti-
mates for time-invariant and rarely changing variables in panel data with unit effects than
any alternative estimator of which we are aware of. The case for the vector decomposition
model is clear when researchers are interested in time-invariant variables. Whereas the
FE model does not compute coefficients of time-invariant variables, the vector decompo-
sition model performs better than the Hausman-Taylor model, pooled OLS, and the RE
model.

The case for the vector decomposition model is less straightforward when at least one
regressor is not strictly time invariant, but shows some variation across time. Nevertheless,
under many conditions the vector decomposition technique produces more reliable esti-
mates. These conditions are: first, and most importantly, the between variation needs to be
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larger than the within variation and second, the higher the correlation between the rarely
changing variable and the unit effects, the worse the vector decomposition model performs
relative to the FE model and the higher the b/w ratio needs to be to render fevd more reliable.

From our Monte Carlo results, we can derive the following rules that may inform the
applied researcher’s selection of an estimator on a more general level: estimation by
pooled-OLS or RE models is only appropriate if unit effects do not exist or if the Hausman
test suggests that existing unit effects are uncorrelated with the regressors. If either of these
conditions is violated, the FE model and the vector decomposition model compute more
reliable estimates for time-varying variables. Among these two models, the FE model
performs best if the within variance of all regressors of interest is sufficiently large in
comparison to their between variance. Otherwise, the efficiency of the fevd model
becomes more important than the unbiasedness of the FE model.
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