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This paper is devoted to an experimental investigation of the distributed receptivity
of a laminar swept-wing boundary layer to unsteady freestream vortices with
streamwise orientation of the vorticity vector. The experiments were performed on a
model of a swept wing with a sweep angle of 25° at fully controlled disturbance
conditions with freestream vortices generated by a special disturbance source. It
is found that the unsteady streamwise vortices are able to provide very efficient
excitation of cross-flow instability modes without requiring the presence of any
surface non-uniformities. The developed experimental approach is shown to allow
us to perform a detailed quantitative investigation of the mechanism of distributed
excitation of unsteady boundary-layer disturbances due to scattering of freestream
vortices on natural base-flow non-uniformity. This mechanism has been studied
experimentally in detail. Part 1 of the present investigation (Borodulin et al., J. Fluid
Mech., vol. 908, 2021, Al4) was devoted to the description of the experimental
approach and the base-flow structure, the method of excitation of fully controlled
streamwise-elongated freestream vortices, the results of measurements of structure of
these vortices and the experimental evidence of high efficiency of the distributed vortex
receptivity mechanism under study. Meanwhile, the present paper (Part 2) is devoted to:
(a) theoretical background and definition of the distributed receptivity coefficients and
(b) obtaining experimental quantitative characteristics of the distributed vortex receptivity
including values of the corresponding receptivity coefficients for their three different
definitions as functions of the disturbance frequency, spanwise wavenumber and wave
propagation angle.
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1. Introduction

A detailed introduction, including a description of the motivation of the present work,

has been given in Part 1 of the present study (see Borodulin ef al. 2021). The present paper
(Part 2) is devoted to very deep processing and analysis of the experimental data. Several
stages of this rather complicated analysis are briefly described in the abstract.
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The experiments discussed in the present two-part paper were carried out in as early as
2002 within the framework of a research contract between the Khristianovich Institute
of Theoretical and Applied Mechanics (ITAM) SB RAS and the Boeing Operations
International, Inc., but were only previously published in technical reports (Kachanov
et al. 2002a,b) and, very briefly, in the proceedings of a conference (Borodulin, Ivanov
& Kachanov 2010a,b).

The experiments were conducted in a low-turbulence subsonic wind tunnel T-324
of ITAM. Two sets of measurements were performed simultaneously in a swept-wing
boundary layer, which was simulated on a swept flat plate having elliptic leading edge:
(1) the distributed receptivity (DR) experiments and (ii) the stability (S) experiments.
The chordwise pressure gradient was induced by a contoured wall bump (uniform in
the spanwise direction) mounted on the test-section ceiling just above the swept plate.
Both the plate and the bump had the same sweep angle x = 25°. The experimental
model was equipped with two contoured sidewalls in order to diminish the influence
of the wind-tunnel test-section walls and to provide better satisfaction of the sweep
condition. The freestream turbulence level (in the frequency range higher than 1 Hz) was
approximately 0.06 % under the present experimental conditions. All main measurements
were carried out by means of the hot-wire anemometer.

The characteristics of the three-dimensional mean flow field over the present
experimental model were measured in detail in both the potential flow and the boundary
layer using, in particular, V-shaped hot-wire probes. These measurements were carried out
in previous experiments. The results of these measurements were described by Borodulin
et al. (2013, 2016). Additional information about the mean flow characteristics observed
under the conditions of the present set of measurements was presented by Borodulin et al.
(2021).

The main coordinate systems used in the present experiments are as follows. The (x, z)
system is connected to the incident flow-velocity direction (upstream of the model) with
the mean velocity vector C, parallel to the x-axis. The x’-axis is directed along the chord
and starts at the leading edge of the model. The 7'-axis is parallel to the leading edge. The
(x*, %) coordinate system is local, such that the x*-axis is directed along the local mean
velocity vector C, of the potential flow near the external edge of the boundary layer. It is
also convenient to use an additional axis x., which is parallel to the x-axis but always has
its origin on the swept-plate leading edge, as well as an additional axis z., which is similar
to the z'-axis but always has its origin at the model centreline, that is, at z = 0.

2. Methods of experimental determination of DR functions
2.1. Analytical solutions used for approximation of cross-flow-wave behaviour

Note, first, that during the DR analysis described below in § 2, the x" coordinate is counted
(for simplicity) from the first measured section at x" = 438.2 mm, that is, x’ is regarded to
be equal to zero at this first point.

Similar to experiments by Wiirz et al. (2002) and Borodulin et al. (2006, 2007), let us
consider the distributed generation of cross-flow (CF) waves in a swept-wing boundary
layer by three-dimensional (in general) freestream vortices, which are periodic in time and
represent a kind of three-dimensional vortex street. Both the CF wave and the vortex street
have a certain fixed real frequency w = 27tf and a certain fixed real spanwise wavenumber
B’. It is convenient to present the perturbation of the streamwise velocity component,


https://doi.org/10.1017/jfm.2020.847

https://doi.org/10.1017/jfm.2020.847 Published online by Cambridge University Press

Distributed vortex receptivity of a swept wing. Part 2 908 A15-3

associated with the generated CF wave, as
iy, 7,0 =B, y)exp[i (7 — ot)], 2.1)

where BY(x’, y) is the complex-valued CF wave amplitude. (All complex functions are
marked here with overbars, as vectors.) Similarly, the perturbation of the streamwise
velocity component, associated with the freestream vortex street, is convenient to present
as

it,(x', y, 2, 1) = B,(x', y)exp [i (B'7 — wt)], (2.2)

where B, (x', y) is the complex-valued freestream vortex amplitude.

Total change of the velocity perturbation, associated with boundary-layer disturbance
du?(x', v, 7, t) excited within an infinitely small interval dx’ of the chordwise coordinate
(around the x’ position) is

i (X', ym, 7, 1) = ditg (', Y, 2 1) 4 dit (X', i, 2, 1), (2.3)

where du;(x', y,., 7, 1) is a portion of the change that occurred due to the boundary-layer
instability (i.e. owing to the evolution of the previously generated boundary-layer
disturbance), du,(x', y,,, 7, t) is a portion of change due to the DR (i.e. an additionally
generated portion of the boundary-layer disturbance) and y,, is a certain wall-normal
distance, which corresponds to the maximum amplitude of the boundary-layer disturbance
with frequency f and spanwise wavenumber S’ (y,,, of course, depends, in general, also on
the x" coordinate). For functions dit;(x', y,,, 7, t) and du,(x', y,,, 7', 1), we have

it (x', Y 7 1) = i@ (XYt (X', Y, 2, 1) dx’ = i@’ (x)B(x', y,) expli(B'z — wt)] dx’,
(2.4)
where
&' (x") = ol (x') + iai(x)) (2.5)
is the complex-valued streamwise wavenumber of the excited CF instability modes (i.e.
the eigenvalues of the corresponding linear stability problem) and

dit, (X', Y, 7 0) = i, (X', ¥, 7, 1) |y=s G(x') dx’
= B,(x, y) |y=5 expli(B'7 — )]G (x") dx’, (2.6)

where ¢ is the boundary-layer thickness and (_?ff (x") is the complex-valued distributed
vortex receptivity function. Equation (2.6) can be regarded as one of possible definitions
of this function.

Substitution of (2.4) and (2.6) into (2.3) gives us the main equation, which connects all
three complex-valued functions (the boundary-layer wave amplitude, the freestream vortex
amplitude and the receptivity function):

dBd(x/a ym)
dx’
This equation describes streamwise evolution of the boundary-layer disturbances excited

in a distributed way by freestream vortices.
Equation (2.7) can be also regarded as another possible definition of the distributed

o . . p= d
vortex receptivity function G (x’).

=ia' (VB (X', ym) + By (x', ) |y=s GL(x). 2.7)
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It is important to note here that the evolutionary equation (2.7) is a result of a significant
simplification of the mechanism of distributed excitation of the CF instability waves,
which (i) ignores the disturbance-source near-field, (i) assumes that the CF modes are
excited in the boundary layer directly by the freestream vortices and (iii) assumes that
the base-flow non-parallelism does not change dramatically the DR mechanism under
study. However, such simplification seems to be reasonable because every newly excited
portion of the boundary-layer disturbances is rather weak and does not perturb strongly
either the previously excited CF waves or the bounded disturbances associated with
the freestream vortices present at the boundary-layer edge. The application of such an
evolutionary equation performed in several previous studies, as well as in the present
work, for approximation of the experimentally observed disturbance fields corroborates
the correctness of such simplification and its applicability to extracting the receptivity
coefficients from the experimental data. The procedure of such extraction is the only goal
of application of (2.7) in the DR experiments. This equation is not intended for solving
theoretical problems.

Let us assume now that we know from experiment all functions included in (2.7) except
for the receptivity function G¢(x"), which has to be found. The latter can be expressed
explicitly in the following way:

L{B'(x', yn)}

- : 2.8
By (X', y) ly=s 29

Gl(x') =

where

d
L=——id'(x"), (2.9)
dx’

is a linear operator. Equations (2.8) and (2.9) can be also regarded as a definition of the
DR function (_;ff(x’). It is seen that the most significant difference between the localised
receptivity function (which could be defined in a hypothetical case of a localised vortex
positioned permanently at the fixed streamwise coordinate x”)

. B(X', y,)

G,(x) = ———, 2.10
AR NERSTN 210

and the DR function (2.8) is the presence of operator L, which indicates that the
DR is essentially a local, differential boundary-layer characteristic, which describes a
derivative of the disturbance amplitude, that is, the growth of CF waves additional to
the linear-stability growth, whereas the usual, localised receptivity is responsible for the
generation of a certain amplitude of the CF wave occurring in the point x’.

To find the DR coefficients in experiment, the method of approximation of streamwise
distributions of measured normal-mode amplitudes and phases by analytical solutions
was used. For two-dimensional boundary layers, this method is described and used by
Borodulin et al. (2006, 2007).

Keeping in mind that the wall-normal coordinates are fixed (as shown in (2.7)), let us
assume now that &’(x") = «/ + i«; = const. and B, (x") = B, expli(a,x" + ¢,,)], where
By, o and ¢,, are constants, and G¢(x') = G¢, expli(a,x’ + A%,)], where G¢,, &, and
A¢  are constants. This can be close to reality if the chordwise range of main receptivity
measurements is not very long. In this case (2.7) has rather simple analytical solutions.
Let us find them.
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It is convenient to introduce, first, the following values: a,, = &, + a, and ¢g, =
A+ ¢y,. Let us also introduce a resonance detuning of the complex-valued streamwise
wavenumbers as 0’ = o, +io/ = a,, —a'. The solutions of (2.7) are different in the
non-resonant (6" # 0) and resonant (6" = 0) cases. In the non-resonant case the solution
is

- G?
Bd(x/) = Blo eXp[i(&/x/ + d)lu)] + -

io’

vo

expli(@'x” + ¢gu0)] exp(ic’x’). (2.11)

Here the first term on the right-hand side is a ‘pure’ CF mode developing in the absence
of freestream vortices, whereas the second term is a bounded (forced) mode associated
with the distributed excitation of the boundary-layer disturbances. Note that (2.11) remains
valid when o/ = 0 (the resonance of streamwise wavenumbers) or o/ = 0 separately.
Meanwhile, when ¢’ = 0 (i.e. o, = o/ = 0) we have the true resonant case, the solution
for which is

B'(x') = By expli(@x" + ¢))] + Gy, Buo expli(@'x’ + i) 1’

vo

= (B + G* B,,x") exp(ia'x"), (2.12)

where BY, G¢, and B,, are complex-valued initial amplitudes of the boundary-layer
disturbance, of the receptivity function and of the freestream vortex, respectively. In
this resonant solution, the pure CF mode and the bounded (forced) mode become
indistinguishable and the excited disturbance growth corresponds to the exponential
growth (as that of the pure CF mode) but with linearly growing ‘initial’ magnitude.
Equation (2.12) indicates that even if the pure CF mode attenuates downstream, the
mechanism of the resonant distributed vortex receptivity is able to lead to its amplification
in a certain initial range of the chordwise coordinate. This behaviour is similar to
the ‘transient’ growth observed in bypass transition scenarios, but in the present case
this transient growth is associated exclusively with the distributed vortex receptivity
mechanism. Note also that the N-factor methods of transition prediction cannot be applied
(directly) in this case.
Let us assume now that

G'(x') = G, = G exp(i1?) (2.13)

is independent of the streamwise coordinate, that is, G¢  and A%, are constants. This
assumption is reasonable if the chordwise range of the main receptivity measurements
is very short. In this case, the general solution of (2.7) is simplified and instead of (2.11)
we have

- S G! B, o
B(x") = By, expli(@'x’ + ¢1,)] + — = expli@,x + $po)], (2.14)

where the resonance detuning of the complex-valued streamwise wavenumbers is also
simplified now as 0’ = &, — &', By, and B,, are complex-valued initial amplitudes of the
boundary-layer disturbance and the freestream vortex, respectively. This solution is valid
for non-resonant cases, when ¢’ = 0. Our measurements have shown that ¢’ becomes
very rarely close to zero in all studied cases under the assumption of constancy of the DR
coefficients (2.13). Note also that solution (2.14) remains valid when either o, = 0 (the
resonance of real streamwise wavenumbers) or o = 0 separately.
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2.2. Procedures of approximation and obtaining the DR coefficients

The analytical solutions (2.11), (2.12) and (2.14) were used for approximation of
experimental data during the procedure of obtaining the DR coefficients (see § 3).

In both the non-resonant and resonant cases the approximation was realised in ‘MS
Excel’ files using the MS Excel Solver. The solver minimised the root-mean-square

deviation of the distance between the measured (fop(x’)) and approximated (szr(x’))

values of complex-valued boundary-layer disturbance amplitudes in a complex plane. This
deviation was calculated as

8B4 (x')?
3BI(x)

ABY =

rel —

: (2.15)

where a double overbar means averaging for all points measured at various x’ coordinates
and

nd ’ nd /
Bexp(‘x ) + Bapr('x )

2

nd ’ nd ’
Bexp(x ) — Bapr(x )

(SBd " —
(x) 5

(2.16a,b)

, 8Bi(x) =

Note that despite AB?, representing a relative root-mean-square deviation, it is
normalised by averaging in space disturbance amplitude rather than by amplitude in every
particular spatial point. Therefore, the deviation minimised by the solver was, in fact,
absolute. This was made with the purpose of diminishing the influence of small-amplitude

points (where the experimental error was relatively large) on the approximation result.

2.3. Notions of production function and efficiency function

To better understand the DR mechanism, let us consider its efficiency depending on
properties of the freestream vortices and of the excited CF waves.

As was mentioned in § 5.3 of Part 1 (Borodulin ef al. 2021), as well as in other studies
(see, e.g., Wiirz et al. 2002; Borodulin et al. 2006, 2007), some rather significant spatial
beatings of spectral amplitudes and phases are observed in several spanwise-wavenumber
ranges indicating to the presence of the distributed generation of instability waves. The
beatings have spatial period

27 27

g, () + o, () — )] oGN]

Ax,(x") = (2.17)

In the case when the amplitudes of the DR function G‘U’ (x") = const. (i.e. a;i = 0), the
amplitude of the freestream vortex B, (x") = const. (i.e.); = 0) and the amplitude of the
excited CF wave B(x") = const. (i.e.o; = 0), the CF wave excited at the position x’ will
be completely cancelled by the CF wave excited at the position x" + Ax, /2. The CF wave
excited at x" 4+ Ax,/2 has the phase that is shifted by 7 with respect to the phase of the
CF wave excited in the point x’, whereas the amplitude of the newly excited portion is
the same in this case. Therefore, the real averaged efficiency (the sense of this term is
explained in the following) of the DR mechanism would be equal to zero when all three
amplitude functions are constant (independently of the value of the DR coefficient G¥). Let
us assume now that we still have o), = 0 and «; = 0, but the receptivity amplitude function
decreases with x’ (i.e. a;i > 0). In this case the CF wave excited at the position x” will be
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cancelled only partially by the CF wave excited at the position x” + Ax; /2. The remaining
difference AB?(x’) represents a CF wave, which is really excited by the distributed vortex
receptivity mechanism integrally within one half of the period of beatings. This newly
excited portion of CF wave can be characterised by a certain DR efficiency function A(x")
which is introduced in the following.

Under assumption that &, &, and & are independent of x’ within the half-period of
beatings Ax;/2, it is not difficult to show that the change of the CF wave amplitude
dB‘i appearing at step dx’ owing to joint action of the DR mechanism and the instability
mechanism can be expressed as

dBY = By (x') |y=5 GL(x") {exp (i’ Ax') +exp[i (@, + @) Ax,/2]} dx' = P, dx,
(2.18)
where the newly introduced function

P, = P,e'@ (2.19)

is a kind of a production function, which characterises the efficiency of the DR mechanism
in the sense described previously. This function can also be written in one of the following
forms

Py =B,(x'+ Ax,/2)Gl(x" + Ax,/2) [e™ — 1]exp {i [, Ax} /2 + ¢, (x)) + 20 (x)]}

(2:20)
for A > 0 and
Py =B,(x' 4+ Ax,/2)GI(x" + Ax,/2) [1 — e™]
x exp {i[¢y(x" + Ax,/2) + 20(x" + Ax,/2)]} (2.21)
for A < 0. Here
a)+ () — (a) /
_ (et @)@ g (2.22)
lorg, (X7) + ey, (x) — e, (x| o]

is the efficiency function mentioned previously.

Equations (2.20), (2.21) clearly show the physical sense of the efficiency function A.
The efficiency of the CF wave production by means of the distributed vortex receptivity
mechanism depends essentially on the sign of function A. If A = 0, then P, = 0 and the
production is absent. This means that the portion of CF wave generated in the point x" (and
amplified downstream due to the linear instability mechanism) is completely cancelled in
the point x’ + Ax; /2 by another portion, which is newly generated in the vicinity of the
point x" + Ax; /2.

If the efficiency function is positive (A > 0, (2.20)) the newly produced (at the point
x"+ Ax,/2) portion of the CF wave cancels the previous portion (produced at the
point x’) only partially. The remaining CF wave characterises an integral production of
the instability wave within the distance Ax,/2. The phase of the remaining portion of
disturbance [a,Ax, /2 + ¢, (x) + /l‘,f (x")] corresponds to the phase of the CF wave excited
in the point x" (i.e. to the phase [¢,(x") + A%(x")]), which has been increased by the
value of @/ Ax" according to the linear stability behaviour. Thus, the resulting disturbance
observed in the boundary layer at A > 0 propagates downstream with the CF wave speed
and represents the eigendisturbance of the boundary layer.
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FIGURE 1. Example of downstream evolution of amplitude (a) and phase (b) parts of
spanwise-wavenumber spectra of distributedly excited boundary-layer disturbances measured at
U/U, = 0.6 at frequency f = 24.59 Hz. DR experiment.

The situation is very different if the efficiency function is negative (A < 0, (2.21)).
The newly produced portion of the CF wave cancels completely the previous portion and
generates, in addition, a new CF wave. The phase of the remaining portion of disturbance
[ (x" + Ax,/2) + /l‘vi(x’ + Ax;,/2)] corresponds to the phase of the CF wave excited
anew in the point x’ 4+ Ax;/2. This phase is equal, in fact, to the freestream vortex
phase ¢,(x’ + Ax}/2) (modified by the receptivity function phase 1%(x' + Ax;/2)). In
case when the receptivity phase ¢ is independent of x’ the disturbance observed in the
boundary layer at A < 0 propagates downstream with the freestream vortex speed. This is
a bounded disturbance rather than the eigendisturbance of the boundary layer. In fact, the
CF wave production is absent in this case.

3. Downstream evolution of disturbance spectra
3.1. Evolution of boundary-layer disturbance spectra in DR and S experiments

The spanwise-wavenumber spectra shown in figures 1(a,b) and 2(a,b) represent two
examples of the results of spatial Fourier decomposition of spanwise distributions of
disturbance amplitudes and phases obtained in the boundary layer in DR experiments (i.e.
for CF waves excited by freestream vortices in a distributed way) and in S experiments
(i.e. for pure CF waves excited by the point source) for one of studied frequencies (f =
24.59 Hz). Each figure shows spectral amplitudes (panels a) and phases (panels b) for all
11 studied chordwise positions in the range x" = 438.2-619.6 mm (x, = 483.5-683.5 mm
with step of 20 mm). (The spectral phases here (as well as in figure 3) correspond to a
non-Cartesian (x., z,)-coordinate system, that is, they are calculated for the position of the
Z-coordinate origin on the x-axis (i.e. at z = 0).)

The normalisation of the spectral amplitudes B corresponds to the Fourier integral taken
from the measured amplitudes A as a percentage (without 1/(27) in front of the integral)
with dimensional dz’ (in millimetres), that is, not normalised by the local boundary-layer
displacement thickness, which is close to 1 mm and increases slowly downstream; see
figure 8 in Part 1 (Borodulin er al. 2021). Note, however, that the spectral amplitude
normalisation does not affect the DR coefficients because this normalisation is the same
for the spectra of the freestream vortices (B,) and for those of the excited instability waves
(BY), as in the present study (see (2.8)).
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FIGURE 2. Example of downstream evolution of amplitude (a) and phase (b) parts of
spanwise-wavenumber spectra of pure CF waves excited by a point source. Here U/U, = 0.6,

f =24.59 Hz. S experiment.
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FIGURE 3. Example of downstream evolution of amplitude (@) and phase (b) parts of
spanwise-wavenumber spectra of freestream vortices measured at y = §. Here f = 24.59 Hz.
DR experiment.

The spectra of the boundary-layer perturbations distributedly excited in DR experiments
(figure 1) are qualitatively similar. The amplitude spectra display four main maxima,
two located at negative spanwise wavenumbers, one at 8’ = 0 (the quasi-two-dimensional
mode) and one (or two sometimes) at positive spanwise wavenumbers in a range that is
close to the most amplified CF instability modes. As was mentioned in § 5.3 of Part 1
(Borodulin et al. 2021), some rather significant spatial beatings of spectral amplitudes and
phases are observed in several spanwise-wavenumber ranges indicating the presence of
the distributed generation of CF waves. However, in the range of small negative spanwise
wavenumbers (around B8/ = —0.1 to —0.2 rad mm™") the spectral amplitudes depend very
weakly on the chordwise coordinate (if any) despite these modes attenuating rapidly for
pure CF waves measured in the S experiment (see figure 2a). As shown in the following,
this range corresponds to a resonant distributed excitation of CF waves (see §§ 3.3 and 4).

The spectra of pure CF waves obtained in the S experiment for various chordwise
locations (such as those shown in figure 2) look rather simpler to each other. The CF modes
with negative spanwise wavenumbers attenuate mainly, whereas those with the spanwise
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wavenumbers around 0.5 rad mm~' display weak amplification (excluding one of two first
spatial points, as discussed in § 3.3).

The spectra obtained in DR and S experiments at two other studied frequencies (f =
34.88 and 44.78 Hz) are qualitatively similar to those shown in figures 1 and 2 and just
described previously.

3.2. Spanwise-wavenumber spectra of freestream vortices at y = § (DR experiments)

Figure 3 shows an example of a set of the spanwise-wavenumber spectra obtained at y = §
from the spanwise distributions of amplitudes and phases of the streamwise component of
velocity fluctuations in the freestream vortex at one of studied frequencies (f = 24.59 Hz).
The amplitude spectra (figure 3a) are shown on a logarithmic scale due to the presence of a
very large spectral component with 8’ = 0 associated with a quasi-two-dimensional vortex
produced in the flow by a uniform part of the vibrating wire.

The amplitude spectra (figure 3a) obtained for a fixed frequency but at different
chordwise positions do not display any strong streamwise evolution in contrast to the
corresponding spectra obtained for the boundary-layer perturbations in the DR (figure 1a)
and S (figure 2a) experiments. This feature indicates a nearly neutral streamwise
behaviour of the vortex amplitudes at the boundary-layer edge, that can be explained
by the competition between the vortex decay and movement of its centre towards the
boundary-layer edge as seen in figure 16 in Part 1 (Borodulin ez al. 2021).

The phase spectra (figure 3b) look relatively smooth in the whole studied
spanwise-wavenumber range, excluding the vicinity of the quasi-two-dimensional mode
with B8’ = 0. This observation is consistent with significantly different orientation
of vorticity vectors for essentially three-dimensional and for quasi-two-dimensional
freestream vortices (see Borodulin ef al. (2021), and § 3.3 of the current paper).

The spectra of freestream vortices obtained in DR experiments for two other studied
frequencies (f = 34.88 and 44.78 Hz) are qualitatively similar to those shown in figure 3.

3.3. Increments and dispersion characteristics of pure CF waves and freestream
vortices: possibility of resonant distributed excitation of CF modes

The most important characteristics of downstream development of pure CF
waves (S experiment) and freestream vortices (DR experiment), obtained after
spanwise-wavenumber Fourier decomposition, are presented in figures 4—6 versus the
spanwise wavenumber ' for all three studied frequencies. Panels (a) show the disturbance
increments —c«; (S experiment) and —a,; (freestream vortices in the DR experiment)
in the x’ direction; panels (b) display the streamwise wavenumbers o« (S experiment)
and o, (freestream vortices in the DR experiment) in the x* direction; panels (c)
present the disturbance phase velocities C%/Uepean = (0/))/Uppean (S experiment) and
Ch./Ueean = (0/,) /Uemean (freestream vortices in the DR experiment) in the x*
direction (where U,,... is the averaged boundary-layer edge velocity in the studied
range of the streamwise coordinate, that is very close to U, at x. = 583.5 mm); finally,
panels (d) show the disturbance propagation angles 6* = tan~!(8*/a¥) (S experiment)
and 07 = tan~!(B*/ o) (freestream vortices in the DR experiment).

The spatial increments and the streamwise wavenumbers were obtained in the following
way. The streamwise distributions of the spectral amplitudes (normalised by local
boundary-layer edge velocity) were approximated by exponents with the help of the
least-squares fit method, whereas the corresponding distributions of spectral phases were
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FIGURE 4. Comparison of the most important characteristics of downstream development
of pure CF waves (S experiment) and freestream vortices (DR experiment), obtained after
spanwise-wavenumber Fourier decomposition: (a) increments, (b) streamwise wavenumbers,
(c) phase velocities and (d) wave-propagation angles. Here f = 24.59 Hz.

approximated by straight lines. Note, that in most cases, the approximations looked very
well indicating that the deviations from the exponential behaviour of spectral amplitudes
and from the linear behaviour of spectral phases were rather weak in the studied range
of the chordwise coordinate. However, when performing this procedure for pure CF wave
(S experiment), the first spatial point (or first two points) were usually omitted because
these points were too close to the point source and the spectral amplitudes decayed in this
region very quickly owing to the influence of the disturbance source near-field and/or of
an admixture of rapidly attenuating Tollmien—Schlichting (TS) waves, which were also
excited by the source.
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FIGURE 5. Comparison of the most important characteristics of downstream development
of pure CF waves (S experiment) and freestream vortices (DR experiment), obtained after
spanwise-wavenumber Fourier decomposition: (a) increments, (b) streamwise wavenumbers,
(c) phase velocities and (d) wave-propagation angles. Here f = 34.88 Hz.

The increments presented in figures 4(a), 5(a) and 6(a) display a rather typical
behaviour of the normal CF waves, similar to that observed previously by Gaponenko,
Ivanov & Kachanov (1995a,b) at rather similar experimental conditions (at a somewhat
lower freestream speed). At the lowest studied frequency (f = 24.59 Hz) the increments
—a; of pure CF modes are positive in the spanwise wavenumber range p' =~
0.21-0.8 rad mm~"'. This range narrows when the frequency increases and is reduced to
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FIGURE 6. Comparison of the most important characteristics of downstream development
of pure CF waves (S experiment) and freestream vortices (DR experiment), obtained after
spanwise-wavenumber Fourier decomposition: (a) increments, (b) streamwise wavenumbers,
(c) phase velocities and (d) wave-propagation angles. Here f = 44.78 Hz.

B’ ~ 0.25-0.65 rad mm~"' at the highest studied frequency (f = 44.78 Hz). All other CF
modes decay downstream. The fastest attenuation is observed for quasi-two-dimensional
modes (with B’ around zero) and for very large negative values of the spanwise
wavenumbers. The attenuation rates increase usually with frequency.

The freestream vortex increments —c,, (measured at the boundary-layer edge) oscillate
with 8’ around zero. At some spanwise wavenumbers they are negative, at others they
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are positive. Their values depend also on the frequency excluding mode with 8 = 0 (i.e.
the quasi-two-dimensional vortex produced by the uniform part of the vibrating wire), the
increment of which is equal to zero almost exactly at all frequencies.

Figures 4(b), 5(b) and 6(b) show the dispersion functions for CF modes «f(8', f) and
for freestream vortices o, (8, f). The CF mode curves are again rather similar to those
found in previous experiments. The streamwise wavenumbers o increase with 8’ for all
frequencies and approach the axis o’ = 0 at negative values of the spanwise wavenumber.
At the lowest studied frequency (figure 4b), «’ oscillate around zero at B’ < —0.3
approximately. The dispersion curves for freestream vortices display, in contrast, nearly
constant streamwise wavenumber o, (8', f), the average of which value depends, however,
on frequency. The sense of this value is clarified in figures 4(c), 5(c) and 6(c) where
the streamwise velocities are shown. The freestream vortices propagate downstream, on
average, with the freestream speed independently of frequency. This result is consistent
with the physical sense. Note, however, that the streamwise wavenumbers and phase speeds
of different spectral modes are somewhat different. This fact is probably conditioned by the
rather complicated spatial shapes of the excited three-dimensional vortices, which change
downstream and by the varying displacement of the vortex spectral components in the
wall-normal direction when moving downstream.

The dispersion curves presented in figures 4(b,c), 5(b,c) and 6(b,c) demonstrate
the possibility of the resonant distributed excitation of CF waves by freestream
vortices. Indeed, the resonance of wavenumbers appears in the distributed vortex
receptivity problem when for a given value of the spanwise wavenumber ' = g/,
the streamwise-wavenumber detuning is o/(B,,) = oy, (B),) — (B, = a (B, +
o, (Bl,,) — (B, =0 (see §2.1). Under the assumption that the DR phase 1¢(x') is
constant (i.e. a,, = 0), the resonance of wavenumbers is observed when o, (f,,) =
a.(B.,,). This relationship is equivalent to o, (B.,,) = a’(B.,,) and means just coincidence
of the wavevectors of pure CF modes and freestream vortex modes in the point of crossing
the corresponding dispersion curves (leading, in particular, to C; (B.,,) = C:(B,,,) and
0x(B,,,) = 0*(B.,,)). Figures 4(b,c), 5(b,c) and 6(b,c) show that such crossing is really
observed for all frequencies studied. This happens in a narrow range of negative
spanwise wavenumbers B’ ~ f ; the value of B, decreases with frequency and is equal
approximately to —0.18, —0.24 and —0.29 rad mm™! for frequencies f = 24.59, 34.88 and
44.78 Hz, respectively.

Note, that the non-resonant solutions (2.11) and (2.14) remain valid for the resonance
of wavenumbers described previously if the increment detuning o7 (B,,,) = o, (B,) —
o (Bro) = ay(B,) + ay(Bl,) — «(B,,) #0. However, if o/(B,,,) is also equal to zero,
these solutions do not work and only the resonant solution (2.12) can be used for
approximation of the experimental data. Under the assumption that the complex-valued
DR amplitude Gg’ (x") is constant (i.e.aéi = oz;,r = 0), the true resonance (i.e. the resonance
of complex-valued wavenumbers) can be observed only when o (8,,) = a’(B,,) and
simultaneously «;(8.,,) = o (B.,,). This condition is not satisfied exactly in the present
experiments although a tendency to its satisfaction is observed in a range of small negative
spanwise wavenumbers g’ (see figures 4a,b—6a,b).

Meanwhile, under the assumption that the DR amplitudes and phases are variable
in the chordwise direction (i.e. when a,; #0 and/or a,, #0), the satisfaction of the
true resonance condition (6" = 0) can be checked only after obtaining the experimental
receptivity functions because the values of aigr(,B’) and aig[(ﬂ/) are unknown at the present

stage of the data processing. Therefore, sometimes (in some suspected cases) we also used
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FIGURE 7. Example of the evolution of characteristics of a distributedly excited CF mode
with f = 24.59 Hz, g/ = +0.668 rad mm~! in DR experiments and their approximations by
non-resonant analytical solution (2.14) in comparison with the evolution of a pure CF mode
extracted from the results of DR measurements by means of approximation. Approximation is
made for case Gf)’(x/ ) = const.

the approximation of our experimental data by the resonant analytical solution (2.12). This
point is discussed in § 4.2.

The disturbance propagation angles presented in figures 4(d), 5(d) and 6(d) show that
almost all investigating perturbations (both inside and outside the boundary layer) have
very large inclination angles of their wavevectors to the x*-axis, which exceed mainly the
absolute values of 80° (excluding several points around g’ = 0). At 8’ > B/, the absolute
values of the freestream vortex propagation angles 6 are greater than those of the CF
wave propagation angles 6*, whereas at 8’ < g/, they are lower, although the difference

res
between these two angles is rather small.

4. Distributed vortex receptivity functions
4.1. Examples of the approximation of experimental data by analytical solutions

4.1.1. Approximation for constant receptivity coefficients

Several examples of results of approximation of distributions B¢(x,) measured in DR
experiments by non-resonant analytical solution (2.14) are given in figures 7-10 for
frequency f = 24.59 Hz for four different values of the spanwise wavenumber 8': +0.668,
+0.314, —0.157 and —0.471 rad mm~"', respectively. (Note that figures 7-10, as well as
figures 11-16, correspond to the results obtained in a non-Cartesian coordinate system
(x¢, z.) because of its convenience for illustration, although the final approximations
have been performed in the Cartesian coordinate system (x’, 7). This circumstance
influences only the spectral phases.) Panels (a) show the results of the approximation of
experimental trajectories in the plane of complex-valued amplitudes (BY, BY) (where the
x. coordinate plays the role of a variable parameter), whereas panels (b,c) demonstrate
the corresponding results of approximation for streamwise distributions of spectral
amplitudes B(x.) and phases ¢(x.), respectively. Closed (red) circles in all panels
show the measured values, while open (white) circles display the approximated values,
which correspond to the analytical solution (2.14). Panels (b) and (c¢) contain, in
addition, the streamwise distributions of amplitudes and phases, respectively, of pure CF
waves extracted from the DR experimental distributions by means of the approximation
procedure (the first terms in general solutions (2.11) and (2.14)).
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FIGURE 8. Example of the evolution of characteristics of a distributedly excited CF mode
with f = 24.59 Hz, B’ = +0.314 rad mm~! in DR experiments and their approximations by
non-resonant analytical solution (2.14) in comparison with the evolution of a pure CF mode
extracted from the results of DR measurements by means of approximation. Approximation is
made for case Gg(x’ ) = const.
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FIGURE 9. Example of the evolution of characteristics of a distributedly excited CF mode
with f = 24.59 Hz, p’ = —0.157 rad mm~' in DR experiments and their approximations by
non-resonant analytical solution (2.14) in comparison with the evolution of a pure CF mode
extracted from the results of DR measurements by means of approximation. Approximation is
made for case G%(x’) = const.
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FIGURE 10. Example of the evolution of characteristics of a distributedly excited CF mode
with f = 24.59 Hz, p’ = —0.471 rad mm~' in DR experiments and their approximations by
non-resonant analytical solution (2.14) in comparison with the evolution of a pure CF mode
extracted from the results of DR measurements by means of approximation. Approximation is
made for case C_;‘If(x’ ) = const.
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FIGURE 11. Example of the evolution of characteristics of a distributedly excited CF mode
with f = 24.59 Hz, B’ = +0.668 rad mm~! in DR experiments and their approximations by
non-resonant analytical solution (2.11) in comparison with the evolution of a pure CF mode
extracted from the results of DR measurements by means of approximation. Approximation is
made for case G‘vl(x’ ) # const.
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FIGURE 12. Example of the evolution of characteristics of a distributedly excited CF mode
with f = 24.59 Hz, g’ = +0.314 rad mm~! in DR experiments and their approximations by
non-resonant analytical solution (2.11) in comparison with the evolution of a pure CF mode
extracted from the results of DR measurements by means of approximation. Approximation is
made for case (_;‘If(x’ ) # const.
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FIGURE 13. Example of the evolution of characteristics of a distributedly excited CF mode
with f = 24.59 Hz, p’ = —0.157 rad mm~' in DR experiments and their approximations by
non-resonant analytical solution (2.11) in comparison with the evolution of a pure CF mode
extracted from the results of DR measurements by means of approximation. Approximation is
made for case Gg(x’) # const.
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FIGURE 14. Example of the evolution of characteristics of a distributedly excited CF mode
with f = 24.59 Hz, p’ = —0.471 rad mm~' in DR experiments and their approximations by
non-resonant analytical solution (2.11) in comparison with the evolution of a pure CF mode
extracted from the results of DR measurements by means of approximation. Approximation is
made for case C_;‘If(x’ ) # const.

(a) 5 (5% mm) (b) , (©)
— b; (Yomm) —---e--- Exp. 10 360
’ —— Appr. B (% mm) | o Exp. ¢(deg) | Exp.
0.8 —o— Appr. —o— Appr.
E . 10! —x— CF-wave —x— CF-wave
0,
% . B¢ (% mm) 180

-6 —0.8 0.8 116  10°
—0.8
1

0! 0
450 500 550 600 650 700 450 500 550 600 650 700
x, (mm) x, (mm)

—
[

FIGURE 15. Example of the evolution of characteristics of a distributedly excited CF mode with
f =24.59 Hz, / = —0.157 rad mm~! in DR experiments and their approximations by resonant
analytical solution (2.12) in comparison with the evolution of a pure CF mode extracted from
the results of DR measurements by means of approximation. Approximation is made for case
fo (x) # const.
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FIGURE 16. Example of the evolution of characteristics of a distributedly excited CF mode with
f =24.59 Hz, p’ = —0.471 rad mm~! in DR experiments and their approximations by resonant
analytical solution (2.12) in comparison with the evolution of a pure CF mode extracted from
the results of DR measurements by means of approximation. Approximation is made for case
G4(x") # const.
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The case B’ = —0.157 rad mm™! (figure 9) is very special, it is close to the resonance
of the streamwise wavenumbers with o/ = 0 (see figure 4b) and, simultaneously, to the
true resonance when o] = 0 (see figure 4a). Figure 9(b) shows that in this case, the initial
amplitude of the extracted CF wave seems to be predicted poorly, as does the initial phase
(figure 9¢). This is a sign that the approximation by the non-resonant solution with constant
receptivity coefficient does not work sufficiently well at 8/ = —0.157 rad mm~".

4.1.2. Approximation for variable receptivity coefficients

The results presented in figures 11-14 correspond to those shown in figures 7—-10 (again
for frequency f = 24.59 Hz) but in the present case the approximations of the measured
distributions are performed by a more general non-resonant analytical solution (2.11),
which assumes the possibility of variation of the receptivity amplitude and phase with
the chordwise coordinate. The approximation accuracy is better in all cases presented in
figures 11-14 compared with those shown in figures 7-10. Therefore, one can assume
that this approximation should give, in general, more accurate values of the receptivity
amplitudes and phases. Note, however, that the influence of the experimental error on the
result increases in the case of variable receptivity coefficients as well, that is, the method
becomes more sensitive to the experimental error compared with the case of constant
receptivity coefficients.

Despite the better accuracy of approximation reached in the present case (with variable
C_;ff (x.)), the initial amplitudes and phases of the extracted CF wave are predicted poorly
for the two shown negative values of the spanwise wavenumber with g’ = —0.157 and
—0.471 rad mm™" (figures 13b,c and 14b,c). The amplitude at B/ = —0.157 rad mm™'
seems to be underestimated (figure 130), in contrast to the G‘lf (x") = const. case (figure 9b)
where it was overestimated, whereas at 8’ = —0.471 rad mm~' (figure 14b) it is strongly

overestimated (by one order of magnitude), in contrast to the (_?‘j (x’) = const. case
(figure 10b) where it was predicted reasonably well. Similar problems are seen for the
initial CF wave phases (figures 13c and 14c¢). This is a sign that the approximation by
the non-resonant solution with variable receptivity coefficient does not work properly at
B’ = —0.157 and —0.471 rad mm~".

4.1.3. Approximation in resonant points

Figures 15 and 16 show two examples of approximation of experimental distributions
performed by means of the resonant analytical solution (2.12) at frequency f = 24.59 Hz
for spanwise wavenumbers B’ = —0.157 and —0.471 rad mm™!, respectively. The main
results of this resonant approximation look a bit worse for ' = —0.157 rad mm™'
(figure 15) than those obtained for the non-resonant case with variable ij (x.) (figure 13).
However, the initial amplitude and phase of the extracted CF mode are now very
realistic (figures 15b,¢) in contrast to the two non-resonant approximations (figures 9b,c
and 13b,c). A similar, very striking, difference is observed at 8’ = —0.471 rad Innr1
between the resonant case (figures 16b,c) and the non-resonant case for variable G‘j (x0)
(figures 14b,c¢).

Thus, summarising the discussion presented in §§4.1.1-4.1.3, one can conclude that
all three methods of data processing provide reasonably good approximation of the
experimental distributions but have to be applied selectively for different values of the
spanwise wavenumber (at each fixed disturbance frequency) in order to obtain values of
all searching parameters with the best accuracy.
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FIGURE 18. Initial amplitudes (a) and initial phases (b) of variable DR coefficients for
f =24.59 Hz.

4.2. Receptivity coefficients

The results of obtaining characteristics of the distributed vortex receptivity, based on the
streamwise component of the freestream vortices (measured at the boundary-layer edge),
are presented for frequency 24.59 Hz in figures 17-24 versus the spanwise wavenumber
for cases of both constant and variable receptivity coefficients (functions). All values
shown in these figures correspond to the (x’, 7’)-coordinate system. Only those points
are presented in these spectra, which were obtained with a reasonably good accuracy of
approximation corresponding to values of the dispersion (2.15) less than 0.2 (except for
figures 22a, displaying the dispersion functions for all cases, and for the distributions for
GY(x") = const. approximation shown in figures 21a,b and 22b, which are independent of
the approximation results).

The receptivity amplitudes and phases obtained by means of three different kinds of
approximation are shown in figures 17(a,b). The results obtained under assumption of
variable receptivity coefficients (both in the non-resonant and resonant case) are presented

in these figures by their mean values (G?, . and A9 ) averaged in the chordwise
range of the measurements. The corresponding initial (i.e. at x’ = 438.2 mm) receptivity

amplitudes and phases (G?, and A9 ) are shown in figures 18(a,b), respectively, whereas

the receptivity-function increments (—ag,[) and chordwise wavenumbers (aér) are shown in
figures 19(a,b).
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FIGURE 20. ‘Initial’ (at x, = 483.5 mm) amplitudes (a) and phases (b) of excited CF waves
evaluated by means of approximations for variable receptivity coefficients for f = 24.59 Hz.
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FIGURE 21. Resonant detunings of chordwise increments (a) and wavenumbers (b) for DR at
f =24.59 Hz.

The receptivity functions presented in figures 17(a,b) display a rather complicated
dependence on the spanwise wavenumber, especially the amplitudes. At g’ < 0, the
receptivity amplitude distributions (figure 17a) have three maxima with phase jumps (close
to 180°) between them in points of the amplitude minima (figure 17b). At small positive
values of B’ (approximately between points +0.04 and +0.25 rad mm™"), the accuracy
of the approximation is the lowest (see figure 22) because of very small amplitudes of
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spectra of excited CF modes measured directly and obtained from approximations for f =
24.59 Hz.
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the boundary-layer perturbations measured in DR experiment (see figure 1a). Therefore,
these points are absent in all figures. At 8’ > +0.25 there are three receptivity-amplitude
maxima (figure 17a) with very small (if any) phase shifts between them (figure 17b).

The receptivity phase displays a very fast decrease with absolute value of the spanwise
wavenumber at 8 < 0 and a rather weak decrease (with subsequent flattening) at 8’ > 0
(figure 17b). The mean values of the receptivity amplitudes (figure 17a) obtained under
the assumption of variable G?(x’) are rather similar, in general, to the amplitudes found
under the assumption of its independence of the x’ coordinate, especially in the ranges of
the best accuracy of approximation (cf. figure 22a). The receptivity phases are practically
the same in these two cases (figure 17b). The lowest receptivity amplitude (very close to
zero) is observed for quasi-two-dimensional mode (with 8’ = 0). The receptivity there is
lower than the maximum by a factor of 16. This result is consistent with the conclusion
drawn in Part 1 (Borodulin et al. 2021) that the DR to streamwise aligned vortices is much
stronger than to those with the spanwise orientation of the vorticity vector.

In the case of variable G?(x’), the receptivity increments —a,, (figure 19a) characterise
the receptivity amplitude variation (growth or decay) in the chordwise direction. In
the ranges of the best accuracy (at B/~ —0.5 to —0.1 rad mm~! and B’ ~ +0.3 to
+0.7 rad mm™!, see figure 22a), they are mainly negative or close to zero. This
result is consistent with the physical sense because the receptivity has to decrease
slowly downstream due to thickening of the boundary layer. The receptivity coefficient
streamwise wavenumbers o, characterise the chordwise variation of the phase delay
between the freestream vortices and the excited CF waves. They are mainly negative
at B’ < 0 (and decrease with absolute value of 8’) and mainly close to zero (constant
receptivity phase) at 8’ > 0.

The results of extraction of pure CF modes, the first terms in general solutions (2.11)
and (2.14), are presented in figures 20(a,b). The initial (i.e. at x" = 438.2 mm) amplitudes
By, and phases ¢, of these modes are shown there versus the spanwise wavenumber. (The
corresponding increments and the streamwise wavenumbers of these modes are presented
in figures 4a,b.) The shape of the amplitude spectra (figure 20a) looks qualitatively
similar to that of the spectra directly measured in the boundary layer and presented
in figure la. This is especially true in the range of positive spanwise wavenumbers.
However, there are several important differences. First, the amplitude spectra extracted
by means of the analytical approximations (figures 20a,b) do not have the large peak
for the quasi-two-dimensional mode (at 8° = 0) observed in directly measured spectra
(figure 1a). In the case of a variable receptivity function, this peak is especially small. This
result corresponds to a very low receptivity to the quasi-two-dimensional mode indicated
previously (see figure 17a) and means that the disturbance observed in the boundary layer
at this wavenumber represents mainly the bounded (forced) perturbation rather than the
CF wave. Second, the height of the peak near 8/ ~ —0.2 rad mm~! is much larger in
figure 20(a) compared with that in figure 1(a) in the two non-resonant approximations

(with both constant and variable G‘j (x)). The heights of two other peaks (near 8’ ~ —0.45
and —0.8 rad mm™") are also very much larger in the non-resonant approximation with
variable G‘lf (x") (figure 20a) compared with those observed in figure 1(a). For example,
the amplitude of the peak at B’ &~ —0.45 rad mm~! obtained in the case with variable
receptivity coefficient is greater than that measured directly in the flow by a factor of
approximately 17. This discrepancy (which was also discussed in §4.1) indicates that
the result of the approximations by the non-resonance solutions is not satisfactory in the
vicinities of these peaks.
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It was also found that the convergence of the approximation procedure is worse in
the vicinity of the peaks discussed previously and the result of the approximation is
more highly dependent on the initial values of the varying parameters. (In all cases
the result with the smallest dispersion (2.15) had been finally selected.) Despite the
spectra of the approximation accuracy (figure 22a) does not display any singularities
in the vicinity of these peaks, the non-realistic amplitudes of them and the problems
with the approximation indicate approaching the resonance discussed in § 3.2. Indeed,
the spectra of the real (o)) and imaginary (—o/) parts of the resonance detuning
parameter o’ presented in figures 21(a) and 21(b), respectively, show that in the vicinity
of B/~ —0.2 rad mm~', the two quantities are close to zero both in the cases of
constant and variable receptivity function. At the position of another peak (around B’ ~
—0.45 rad mm™"), the approximation for the case fo (x") = const. is made at non-zero
o’ (which is just equal to @, — &' in this case and is independent of the result of the
approximation) and, accordingly, the height of this peak in figure 21(a) is rather close to
that directly measured (see figure 1a). However, in the case of the approximation with
variable G(x’), the values of both o/ and —o/ are very close to zero in three regions: near
B ~ —0.8, —0.45 and —0.2 rad mm~! (figures 21a,b). In these regions, the resonance
again leads to the appearance of non-realistically large peaks seen in figure 20(a).

The third set of data presented in figures 17, 20 and 23 show the results of approximation
by the resonant solution (2.12). This approximation was made only in the range of negative
spanwise wavenumbers, where the detuning parameter ¢’ is more or less close to zero
or can be close to zero (see figure 21a,b). The approximation by the resonant solution
does not change very much the receptivity amplitudes and phases (figure 17) in those
points where the approximation dispersion is smaller than, or close to, that reached in the
non-resonant case (see figure 22). The same is true for the initial receptivity amplitudes
and phases (figure 18) and for the receptivity-coefficient increments and streamwise
wavenumbers (figure 19). The most dramatic changes are observed in the spectra of
initial amplitudes (figure 20a) and phases (figure 20b) of the CF wave extracted from the
boundary-layer perturbations. Indeed, the large-amplitude peaks, found around g’ ~ —0.8,
—0.45 and —0.2 rad mm~! in cases of application of the non-resonant approximations,
disappear and the amplitudes in the vicinity of these peaks become realistic (figure 20a)
and very close to those measured directly in the boundary layer (see figure 1a).

Let us finally consider the efficiency function A (2.22). In the present case this function
has a clear physical sense only in the range of positive spanwise wavenumbers, where
the excitation is far from the resonance itself (when ¢’ = 0) and from the resonance
of wavenumbers (when o/ = 0) (see figure 21). The spanwise-wavenumber distributions
of this function are presented in figure 22(b) for cases of non-resonant approximations
with constant and variable receptivity coefficients. In the case of constant-G9(x’)
approximation, the value of A is independent of the result of approximation and depends
only on characteristics of the pure CF modes and the freestream vortices. In this case
A is positive only around 8’ &~ 0.2 and close to zero or negative for other values of the
spanwise wavenumber. This means that the efficiency of the distributed excitation of
the most amplified CF waves (around 8’ ~ 0.4-0.75 rad mm™") is close to zero (in the
absence of any surface non-uniformities) in a sense that a portion of disturbance excited at
x" = x{ is completely cancelled by another portion excited at x’ = x| + 7/|o/| (see § 2.3).
However, in the case of Variable—G‘;' (x") approximation, the values of A are positive in
a broad range of spanwise wavenumbers at 8/ > 0.3 rad mm~'. (In this case A depends
on the results of approximation.) Rather similar results are obtained for two other studied
frequencies (f = 34.88 and 44.78 Hz). In particular, the efficiency function A is found to
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be always positive in the range of spanwise wavenumbers 8’ =~ 0.45-0.75 rad mm™' in all
cases of variable-G?(x’) approximations.

The summarised main results, obtained for frequency f = 24.59 Hz, are presented in
figures 23 and 24 for the receptivity coefficients and for the initial spectrum of extracted
CF waves, respectively. The points shown in these figures correspond mainly to those
with the lowest values of dispersion (2.15) among all three kinds of approximations
used. Note that at all frequencies, the approximations performed for constant receptivity
coefficients gave always higher dispersion than those carried out for variable GY(x’)
(either the non-resonant or resonant ones). For several points shown in figures 23 and
24, the resonant solutions with a bit higher dispersion have been chosen when they
gave a better reconstruction of the CF wave initial spectrum but close values of the
receptivity amplitudes and phases. The resonant points are marked with black symbols.
Grey points (one in every plot) indicate a wavenumber, at which the results obtained for the
resonant and non-resonant approximations have been averaged. The receptivity amplitudes
G4 ..(B) and phases A9 (B') are compared in figure 23(a) with those determined for
two other frequencies (f = 34.88 and 44.78 Hz), whereas the initial spectrum of the
extracted CF wave (B,(8’) and ¢,(8’)) is compared in figure 24 with the spectrum of
boundary-layer perturbations (Bﬁf (B’) and d)j (B')) measured directly in the experiment (i.e.
with the first spectrum shown in figure 1). (Recall that for the resonant points, the values
of B,(8’) and ¢,(B") do not exist and they are replaced by equivalent, in this case, values
of Bj (B') and d)(‘f (B’) obtained from the resonant approximations.)

Figure 24 shows that, in contrast to figure 20, the initial CF wave spectrum, extracted
mainly by means of the least dispersion approximations (including the resonant ones),
is very similar to that measured directly. These two spectra should not coincide with
each other, but their closeness indicates the successfulness of application of the used
approximation procedure.

All results presented in this section for frequency of 24.59 Hz and discussed previously
turned out to be qualitatively very similar to those obtained for two other frequencies
studied: f = 34.88 and 44.78 Hz. Therefore, we skip the description for these frequencies

except for the DR functions presented in figure 23.

4.3. General analysis of experimentally obtained DR characteristics

Thus, the distributed vortex receptivity functions are obtained and the CF waves are
extracted from the boundary-layer perturbations. Several issues appear in connection with
these experimental results. These issues are concentrated around the main question: ‘How
can we explain the behaviour and properties of the receptivity coefficients obtained and of
the CF waves observed?’

4.3.1. Beatings of receptivity functions

One of the most intricate questions is associated with the cause of such complicated
dependencies of the receptivity amplitudes and phases on the spanwise wavenumber,
observed in all studied cases. This cause is not clear at present. It is definitely clear
that the spanwise-wavenumber beatings of the receptivity amplitudes and phases do not
appear due to experimental error. It is also difficult to believe that such complicated
behaviour corresponds to the physics of the DR. (Nature usually ‘prefers’ nice and
simple distributions.) A possible explanation of the observed complicated behaviour
is as follows. One can assume that the definition of the distributed vortex receptivity
function based on the streamwise component of the freestream vortices, measured at the
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boundary-layer edge, is not optimal and does not correspond properly to the physics of the
receptivity mechanism under study.

There are several other possible definitions of the DR coefficients, which can be
based, for instance, on v- or w-components of velocity fluctuations in the freestream
vortices measured at the boundary-layer edge. Alternatively, a certain combination of the
disturbance velocity vector components (such as one of the vorticity vector components)
could play the predominant role in the CF wave distributed excitation. Moreover, we
can assume that some the other parts of the freestream vortices located farther from
the boundary-layer edge could also play an important role in the CF wave distributed
excitation. These questions remain unanswered at present and need a theoretical analysis,
which cannot be performed in our experimental group. However, we have carried out
special measurements and analysis in order to estimate the DR characteristics based on
the assumption about a predominant role of either the v- or w-component of velocity
fluctuations in the freestream vortices measured at the boundary-layer edge. The obtained
results did not look better than those discussed previously obtained based on the
u-component of the freestream vortices.

It is also necessary to note here that there is no correlation between the receptivity
amplitude spectra and the presence (or absence) of the receptivity resonances; neither for
the true spectra (when o, = g; = 0) or the resonances of streamwise wavenumbers (when
o, = 0 but 0; #0). Thus, the receptivity amplitude beatings cannot be explained by the
presence of the resonances. This observation correlates with the physical sense because
the DR coefficient is an essentially local (in the x” direction) characteristic of the flow (see
the definition given by (2.8) and (2.9)), whereas the resonance occurs only in a range of the
streamwise coordinate. In other words, the DR coefficients characterise the efficiency of
local excitation in every spatial point, whereas the resonance provides a phase coordination
of the CF waves excited at different chordwise locations.

4.3.2. Frequency dependence of receptivity functions

Let us analyse now the frequency dependence of the DR amplitudes and phases. Owing
to the complicated spanwise-wavenumber beatings of the receptivity amplitudes, observed
for all studied frequencies, the frequency distributions for different fixed values of the
spanwise wavenumber are very complicated as well and do not show any clear tendencies.
Therefore, we analyse the receptivity-amplitude frequency distributions using several
kinds of averaging along the spanwise-wavenumber axis. The results are presented in
figure 25(a).

The quasi-two-dimensional mode (with 8” = 0) is unique and averaging has not been
performed for it. Despite the receptivity amplitudes being very low for this mode,
they increase with frequency monotonously in an almost linear way (with a growth
rate remaining, however, very low). In contrast, the receptivity amplitudes averaged for
all positive spanwise wavenumbers (8’ > 0) decrease with frequency. They drop quite
significantly in the range between 24.59 and 34.88 Hz and decrease much less at the
next step (between 34.88 and 44.78 Hz). The receptivity amplitudes averaged in the
range of large negative spanwise wavenumbers —0.86 < 8’ < —0.51 rad mm~' (with
values of |B’| greater then those of the two main peaks) display growth at the first
frequency step but decay at the second one. Meanwhile, the averaging performed in the
range —0.51 < B’ < 0 rad mm~!, which includes the two large receptivity peaks, shows a
monotonous, almost linear decay. Almost the same result is observed when the averaging
is made for all measured values of the spanwise wavenumber (except for 8’ = 0).
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FIGURE 25. Estimated frequency dependencies of distributed vortex receptivity amplitudes (a)
and phases (b) averaged in several spanwise-wavenumber ranges.

In addition, the frequency dependence of heights of two main receptivity-amplitude
peaks, located around B’ &~ 0.15 and 0.38 rad mm™!, is also presented in figure 25(a).
These distributions show a weak decay of the receptivity with frequency. Thus, we can
conclude that, in general, the distributed vortex receptivity amplitudes depend very weakly
on frequency with a tendency to their reduction. Note that this result is quite different
from the previous result obtained for the three-dimensional localised surface-vibration
receptivity by Gaponenko et al. (2002) for almost the same swept-wing boundary layer,
where the receptivity was enhanced with frequency very significantly (in a linear way). In
two other experiments devoted to the localised vortex receptivity of the same swept-wing
boundary layer due to scattering of freestream vortices on surface roughness (Borodulin
et al. 2013) and on surface vibrations (Borodulin et al. 2016), the receptivity amplitudes
always grow with frequency. In the former case, this was a quasi-linear growth with
frequency of freestream vortices f,,, = fcr, Whereas in the latter case this was either
quasi-linear growth with frequency of the excited CF modes fcr, or a quasi-exponential
growth with frequency of surface vibrations f;,, and with the coefficient k = fi,,/f,or
characterising the degree of non-stationarity of the surface non-uniformity.

The corresponding frequency distributions of the DR phases are presented in
figure 25(b). The averaging was performed in the same spanwise-wavenumber ranges as
for the receptivity amplitudes. It is seen that the receptivity phases increase with frequency
in all spanwise-wavenumber ranges except for 8 > 0, where they remain almost constant
(with a slight tendency to decrease). The latter behaviour is similar to that found by
Gaponenko et al. (2002) for the three-dimensional localised surface-vibration receptivity
(in the whole rage of the spanwise wavenumbers), whereas the former is different but
similar to that found in another experiment devoted to the localised receptivity due to
scattering of freestream vortices on surface roughness (Borodulin et al. 2013). Note also
that the behaviour of the distributed vortex receptivity phases in the range of negative
spanwise wavenumbers is almost the same as that found for the quasi-two-dimensional
mode (8 = 0).
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4.3.3. Causes of excitation of CF waves with negative and positive B’

The physical nature of the most powerful perturbations observed in the
swept-wing boundary layer at negative spanwise wavenumbers (around 8’ &~ —0.25 and
—0.5 rad mm™! (see, e.g., figures la and 24a) has become clear after the data processing
performed in the present work. Note, first, that the receptivity amplitude maxima do not
coincide with these peaks in all studied cases and, hence, cannot be explained by a larger
receptivity at the wavenumbers corresponding to these peaks. The analysis has shown that
these large peaks correspond to CF waves resonantly excited by the distributed vortex
receptivity mechanism found in the present experiments. Despite the corresponding pure
CF modes attenuate downstream, the presence of the resonant DR mechanism forces them
to be amplified starting from rather small values of the chordwise coordinates (upstream
the region of main measurements, i.e. at x’ < 438.2 mm). To provide this amplification the
resonance of the streamwise wavenumbers (o, = 0) is enough, that is, the equality o/ = 0,
required additionally for the true (full) resonance, is not necessary.

It is important to note that the regular linear stability theory enables, in fact, the
description of the disturbance amplitude behaviour in the ranges of the spanwise
wavenumbers where the resonant excitation of the CF waves occurs (see, e.g., figure 150).
Thus, the CF wave growth in these ranges is governed by the mechanism of the resonant
distributed vortex receptivity rather than by the linear stability mechanism. From the
physical viewpoint, the growth of the CF waves in these 8’ ranges (always with negative
spanwise wavenumbers) is similar, in a certain sense, to the ‘transient growth’ observed
in bypass transition scenarios at high turbulence levels, because the boundary-layer
disturbances appear due to the direct influence of the freestream vortices. However, in
the present case this growth is not transient (at least when either o’ or o/ is exactly equal
to zero), not ‘non-modal’ and, consequently, it is not necessary to attract the ‘lift-up’ effect
to explain this growth.

The physical nature of the boundary-layer disturbances observed at positive spanwise
wavenumbers is significantly different. Indeed, the resonant DR is absent in this range
(in the case of the absence of any significant surface roughness). As was shown in
§ 2.3, the non-resonant distributed excitation of CF waves can be efficient (on a smooth
surface) only if the efficiency function A = o//|o/| is positive. In this case, the distributed
generation can occur due to: (i) a weak natural streamwise non-uniformity of the
boundary layer (which can lead to —a;, < 0), (ii) a weak streamwise non-uniformity of
the freestream vortices (which can have an increment —«;; < 0, i.e. to decay) and/or
(iii) the boundary-layer instability (i.e. when —a; > 0). The experimental results discussed
in §4 have shown that —«/; ~ 0, on average, in the present case. Meanwhile, the
receptivity amplitudes decay usually (in the case of variable (_}ﬂ (x")) in the range of positive
spanwise wavenumbers B’ (i.e. —a,; < 0 mainly) and the pure CF waves mainly grow
downstream (i.e. —«, > 0) in the range §’ ~ 0.3-0.7 rad mm~'. These circumstances
lead to small but mainly positive values of the efficiency function A (and, similarly, to
positive values of o] = a; + a;; — ;) observed in a broad range of positive spanwise
wavenumbers, indicating that the CF wave excitation is efficient. Thus, one can conclude
that the CF waves with positive spanwise wavenumbers appear in the boundary layer
mainly due to the non-resonant distributed vortex receptivity mechanism. At the present
experimental conditions, this mechanism is much less efficient than the resonant one and,
therefore, the amplitudes of the extracted CF waves are much lower here compared with
those observed at negative spanwise wavenumbers near the resonant points.
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4.3.4. Possible role of distributed surface roughness in excitation of CF waves

Let us now discuss the role of the distributed surface roughness in the CF wave
generation due to the distributed vortex receptivity. In the case of the resonant excitation
of CF modes occurred in the range of 8’ < O this role seems to be very minor. A
low-amplitude distributed roughness is able only to provide a streamwise modulation of
the receptivity process, to destroy locally (a little bit) the resonant phase relationships
between the newly and previously excited CF waves but it cannot accelerate the resonant
CF wave excitation occurring on a smooth surface. Therefore, one can expect that the
roughness barely influences the transition position when it is initiated by the resonantly
amplified CF modes with negative spanwise wavenumbers.

A completely different situation is observed in the range of positive spanwise
wavenumbers. The non-resonant distributed CF wave excitation is rather weak there. The
roughness is able to intensify it significantly by means of ‘conversion’ of the non-resonant
distributed excitation to the resonant one (see, e.g., Borodulin et al. (2004, 2006), for the
cases of distributed excitation of TS waves by freestream vortices in a two-dimensional
boundary layer). This conversion can be provided by the surface roughness with the
resonant streamwise wavenumbers o (B8') = o/(B’), where 2m/o/(B’) is the period of
spatial beatings of the excited boundary-layer perturbations in the streamwise direction.
The values of resonant detunings of the streamwise wavenumbers o/ (8’) have been found
experimentally in the present work for every studied frequency for cases of constant and
variable receptivity coefficients (see, e.g., §4.2 and figure 21b). For positive spanwise
wavenumbers between +0.3 and +0.7 rad mm~' values of o/(8’) vary from 0.02 to
0.06 rad mm~"! and correspond to the chordwise periods of the most dangerous, resonant
roughness between approximately 300 and 100 mm. These large-scale surface disturbances
correspond to surface waviness rather than to surface roughness. Smaller scales of the
waviness could promote excitation of only linearly stable CF modes, which have very
large spanwise wavenumbers (greater than approximately 0.8 rad mm~!), whereas the
longer scales of the roughness could help in the excitation of CF modes with either very
small spanwise wavenumbers (which also always attenuate downstream) or with negative,
non-resonant spanwise wavenumbers; but this excitation can hardly be stronger than the
resonant excitation on smooth surface discussed previously.

4.3.5. Distributed vortex receptivity and transition prediction methods

The predominant influence of the resonant DR on the CF mode growth in the range of
negative spanwise wavenumbers must be taken into account when designing the transition
prediction methods based on the linear stability theory and the linear receptivity theory.
It is possible, in principle, that the perturbations amplified by the resonant distributed
vortex receptivity mechanism could be able to lead to transition (if their amplitudes
reach a nonlinear threshold). In this case the transition can not be predicted by either the
N-factor method or the variable N-factor method because in such a case (hypothetical, at
present) the resonant distributed vortex receptivity mechanism plays the predominant role
and this mechanism must be incorporated into the transition prediction approach, which
aims to take into account the influence of the freestream turbulence on the swept-wing
laminar—turbulent transition. In the case of a smooth surface, a generalised advanced
method of prediction of transition initiated by travelling CF waves seems to have to include
two criteria of transition working in parallel and based on ideas of: (i) the distributed
linear receptivity with the linear stability (as in the variable N-factor method); and
(i1) the resonant DR (which incorporates the effects of linear stability). The first scenario
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leads to the variable N-factor approach with a slight modification, which would take into
account the spatial beatings of the boundary-layer disturbances, which can be significant
if the disturbance amplitude reaches a nonlinear threshold of secondary instability at one
of amplitude peaks of the beatings. Meanwhile, the second scenario leads to an amplitude
method of transition prediction, because: (i) the disturbance growth is not described in
this case by the linear stability theory; and (ii) the transition can occur even if the initial
CF wave amplitude (at branch I) is equal to zero. Such an advanced (combined) transition
prediction method is absent at present.

5. Summary and concluding remarks

Thus, the data obtained in the S and DR experiments described in Part 1 (Borodulin
et al. 2021) and devoted to the distributed vortex receptivity of a swept-wing boundary
layer, have been deeply processed and discussed in the present paper (Part 2).

The following most important work has been performed. A detailed procedure
of obtaining the distributed vortex receptivity coefficients (functions), based on
approximation of the experimental data by non-resonant and resonant analytical solutions
of the evolutionary equation, has been developed and applied.

The spatial Fourier decomposition of disturbance distributions, obtained for all kinds of
disturbances has been performed. The downstream evolution of the spanwise-wavenumber
spectral amplitudes and phases has been obtained for three kinds of perturbations: (i)
the freestream vortices at the boundary-layer edge (DR experiments); (ii) the CF modes
excited by them in a distributed way (DR experiments); and (iii) pure CF waves excited by
a point source in the absence of the freestream vortices (S experiments).

Based on the analysis of spectral mode dispersion characteristics for freestream vortices
(DR experiment) and for pure CF waves (S experiment), as well as on investigation of
kinematic conditions, the possibility of a direct resonant distributed generation of CF
waves by essentially three-dimensional freestream vortices (on smooth surface) has been
found.

The distributed vortex receptivity characteristics have been found in Fourier space as
functions of the spanwise-wavenumber and frequency. The receptivity characteristics have
been obtained in both non-resonant and resonant cases under the assumptions that the
receptivity is: (i) independent of the streamwise coordinate (in the studied range) and
(i1) variable. All results have been analysed and compared.

In the case of constant receptivity coefficients (in the streamwise direction) the obtained
receptivity characteristics include: (i) the receptivity amplitudes and phases; (ii) the initial
amplitudes and phases of the upstream excited CF waves extracted from boundary-layer
perturbations; (iii) the receptivity resonance detuning functions ¢'(’), which include the
chordwise periods of beatings |0/ ()|, associated with the resonant period of surface
roughness; and (iv) the efficiency functions A(B’). In the case of variable receptivity
coefficients, the obtained receptivity characteristics include: (i) the initial receptivity
amplitudes and phases; (ii) the average (in the streamwise range of measurements)
receptivity amplitudes and phases; (iii) the receptivity-function increments and streamwise
wavenumbers; (iv) the initial amplitudes and phases of the excited upstream CF waves
extracted from boundary-layer perturbations; (v) the receptivity resonance detuning
functions ¢'(f’), which include the chordwise periods of beatings |o/(8)| associated
with the resonant period of surface roughness; and (vi) the efficiency functions

A(B).
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The following most important results have been obtained.

®

(i)

(iii)

(iv)

(v)

(Vi)

(vii)

It has been found that the CF waves, which are predominant in the
spanwise-wavenumber spectrum, have negative spanwise wavenumbers (i.e.
propagate in the CF direction) and are excited basically due to the resonant
distributed vortex receptivity mechanism. The increments of these CF waves do not
correspond to the linear stability theory and the CF waves can be present in the
boundary layer even if their initial amplitudes (at branch I of the neutral stability
curve) are equal to zero. Meanwhile, the CF waves, which are the most amplified
by the linear instability mechanism and have positive spanwise wavenumbers (i.e.
propagate upstream of the CF), are excited due to the corresponding non-resonant
distributed vortex receptivity mechanism and, therefore, their amplitudes are weaker
usually compared with the resonantly generated CF waves.

A comparison of three different definitions of the distributed vortex receptivity
function has shown that the definition based of the u-velocity component of the
freestream vortex disturbance (measured at the boundary-layer edge) gives the most
reasonable results, especially for negative spanwise wavenumbers compared with
the definitions based on the v- and w-velocity components.

The vortex receptivity amplitudes (averaged in the studied chordwise range)
turned out to have a very complicated (peaky) dependence on the spanwise
wavenumber (especially at negative spanwise wavenumbers). The receptivity
amplitudes, averaged in several spanwise-wavenumber ranges, display their very
weak dependence on the vortex frequency with a tendency of a reduction.

It has been found that the receptivity to quasi-two-dimensional freestream vortices
(with B’ =0, i.e. with predominance of the spanwise vorticity) is very much
(many times) weaker than that to the essentially three-dimensional vortices (with
predominance of the streamwise vorticity). This fact has been observed for all
studied frequencies.

The vortex receptivity phases have been found to decrease quickly with absolute
value of the spanwise wavenumber at B’ < O and remain almost constant at
B’ > 0 for all studied frequencies. The receptivity phases, averaged in several
spanwise-wavenumber ranges, display their growth with the vortex frequency at
negative and zero spanwise wavenumbers and have approximately neutral behaviour
at positive spanwise wavenumbers.

The case of variable (in the chordwise direction) receptivity coefficients seems
to correspond better to the DR mechanism under study because it provides a
better accuracy of the experimental data approximation. The receptivity amplitudes
decreases mainly downstream with increments —o; ~ —0.005 to —0.01 mm-™!
(which seem to be weakly dependent on the frequency) excluding small absolute
values of the spanwise wavenumber (approximately at |8’| < 0.3 rad mm~') where
the increments are mainly close to zero. The receptivity phases decrease mainly
downstream at negative spanwise wavenumbers below —0.3 rad mm™!, increase
at positive spanwise wavenumbers for frequency f = 34.88 Hz and remain mainly
constant for other spanwise wavenumbers and frequencies.

In the range of positive spanwise wavenumbers, the detuning parameter of the
wavenumber resonance o is always far from zero and negative, providing the spatial
beatings of the boundary-layer perturbations distributedly excited by freestream
vortices. The period of beatings is equal to 2m/|o/|, depends weakly on the
frequency and increases with 8’. The values of the efficiency function A obtained
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(viii)

experimentally have shown that the non-resonant excitation is mainly efficient
(A > 0) in the range of B’ ~ 0.45-0.75 rad mm~!.

The periods of spatial beatings obtained experimentally provide us with the
chordwise scales of the resonant surface roughness, which is able to ‘convert’
the non-resonant distributed excitation of CF waves into the resonant one. This
conversion is especially important for the range of positive spanwise wavenumbers
(including the range of the CF waves, which are the most amplified by the linear
instability mechanism), where the distributed excitation occurred on the smooth
surface is the non-resonant one.

Summarising the results of the measurements and analysis, the following most
important conclusions can be drawn.

(@)

(b)

()

(d)

The swept-wing boundary layer is much more distributedly receptive to essentially
three-dimensional (i.e. streamwise elongated) vortices (in which the streamwise
vorticity dominates) compared with quasi-two-dimensional vortices (with almost
spanwise orientation of vorticity vectors).

In contrast to the acoustic receptivity and the vortex receptivity of two-dimensional
boundary layers, the distributed vortex receptivity of low-speed (incompressible)
swept-wing boundary layers can be resonant even in the absence of any significant
base-flow and surface non-uniformities.

The largest amplitudes of the CF waves generated by the DR mechanism can
be reached at negative spanwise wavenumbers (owing to the presence of the
streamwise-wavenumber resonance), that is, for the waves, which are not the most
amplified by the linear CF instability mechanism. The variable N-factor method
of transition prediction cannot be applied in this case and an amplitude method of
transition prediction has to be developed instead, which would be based on both
linear stability and linear DR approaches.

The small-amplitude distributed surface waviness seems to be unimportant for the
distributed excitation of CF waves by freestream vortices in the range of negative
spanwise wavenumbers (i.e. for waves propagated in the CF direction) owing to
the strong resonant character of this excitation. However, such waviness seems to
have a significant influence on the non-resonant distributed excitation, observed
in the range of the CF waves most amplified by the linear-instability mechanism
(propagated upstream the CF). It would be very desirable to check the correctness
of this important conclusion in special experiments with application of controlled
distributed surface waviness.
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