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Abstract

The stopping power of warm dense matter (WDM) is estimated by means of the individual contributions of free electrons
and bound electrons existing in this special kind of matter, located between classical and degenerate plasmas. For free
electrons, the dielectric formalism, well described in our studies, is used to estimate the free electron stopping power.
For bound electrons, the mean excitation energy of ions is used. Excitation energies are obtained through atomic
calculations of the whole atom or, shell by shell in order to estimate their stopping power. Influence of temperature and
density is analyzed in case of an impinging projectile. This influence becomes important for low projectile velocities
and is negligible for high ones. Using free and bound electron analysis, the stopping power of an extended WDM is
inferred from a dynamical calculation of energy transferred from the projectile to the plasma, where the stopping range
is calculated. Finally, this theoretical framework is used to study a typical plasma density profile of a WDM heated by
lasers.
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1. INTRODUCTION

In the last decades, the interaction of ion beams with plasmas
has been widely studied for light and heavy ions (Ziegler,
1999; Zwicknagel et al., 1999). For the last ones, the
charge state of the projectile has to be taken into account,
and several experiments have been performed in order to an-
alyze the evolution of its charge inside the plasma and the
energy loss of ions (Hoffmann et al., 1990; Gardes et al.,
1992; Couillaud et al., 1994; Chabot et al., 1995; Jacoby
et al., 1995). In the case of protons, it is not necessary to
study the charge state; the stopping power depends only on
medium characteristics. Energy loss of proton beams in plas-
mas has been measured during the last years (Golubev et al.,
1998; Mintsev et al., 1999; Golubev et al., 2001; Shibata
et al., 2001) covering proton kinetic energies from 350 keV
to 6 MeV and electron densities from 1017 to 1019 cm−3.
During last years, laser-accelerated protons have been es-

tablished as a new technique that allows to obtain proton
beams with energies from several to tens of MeV. Compared
with classical electromagnetic accelerators method, the laser-
driven method has specific advantages, which are related to

the acceleration process at ultrafast timescale and at relativis-
tic intensity. These proton and ion beams have an ultralow
longitudinal and transversal emittance, are emitted from a
small source at ultra-short temporal duration, and have an
energy distribution from several to tens of MeV (Daido
et al., 2012). Target normal sheath acceleration (TNSA) is
one commonly used method to accelerated protons and
ions using high power laser pulses. Here the plasma, created
from a thin target using a laser pulse, has a non-neutral area,
near the expansion front, called plasma sheath. In this region
the gradient of the electrostatic field causes the acceleration
of electrons, protons, and ions, well described in this
model (Macchi et al., 2013).
Laser accelerated protons can be utilized as probes in fast

dynamical phenomena investigating plasma density and elec-
tromagnetic fields space- and time- resolved. The proton
beam is deflected by electric and magnetic fields, while stop-
ping and scattering effects are due to plasma density (Bor-
ghesi et al., 2002; Mackinnon et al., 2004). Using the
“proton streak deflectometry” technique, time resolution
and spatial geometry in one dimension is resolved together
in order to show the ultrafast and transient field front associ-
ated with the TNSA starting regime where electromagnetic
effects come into play (Sokollik et al., 2008; Abicht et al.,
2014).
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Laser generated proton beams are applied to heat up solid
density matter via isochoric heating and to create warm dense
matter (WDM) states, that is, matter at 1–10 times solid den-
sity and temperatures up to 100 eV. Using a close distance to
the protons source and the proton pulse duration in the range
of picoseconds causes an isochoric target heating in time-
scale shorter than the hydrodynamic plasma expansion time-
scale (Patel et al., 2003; Dyer et al., 2008). Thus the Equation
of State (EOS) of WDM can be studied in this temporal
window (Mancic et al., 2010; Pelka et al., 2010).
The stopping power of a plasma can be studied in two

cases. The first one uses a fully ionized plasma, when the
ions have been stripped off all their electrons moving freely
in the plasma. In this case, many dielectric functions (DFs)
and methods have been developed (Lindhard, 1954;
Mermin, 1970; Peter & Meyer-ter-Vehn, 1991; Barriga-
Carrasco, 2010). The second one deals with a partially
ionized plasma, where the ions remain with some of their
electrons. In such a plasma the electron stopping consists
of two parts: One is due to free electrons being estimated
with the same methods as the fully ionized plasma and the
second one is due to bound electrons that contribute to the
plasma stopping power with excitation and/or ionization
electron processes (Garbet et al., 1987).
For the first case, the random phase approximation (RPA)

DF is used. This way the effect of the incident charged par-
ticle as a perturbation is considered and energy transfer to
target is proportional to the square of its charge. The linear
response theory is usually applicable for high-velocity pro-
jectiles and in the weak coupling of an electron gas. Then
the slowing down of impinging ions is simplified to a treat-
ment of the properties of the medium only, and a linear de-
scription of these properties may be then applied
(Barriga-Carrasco, 2010; Barriga-Carrasco & Casas, 2013).
Using the dielectric formalism, analytical formulas with
few parameters for classical plasmas have been proposed
(Peter & Meyer-ter-Vehn, 1991). These expressions work
well for classical plasmas, that is high temperatures and
low densities but give inaccurate results for degenerated plas-
mas (low temperatures and high densities). Other interpola-
tion formulas have been proposed for plasmas of any
degeneracy by means of coefficients (Maynard and Deutsch,
1985). The use of many mathematical integrals in the calcu-
lation results in a complex calculation of these DFs, as shown
in the next section. To join a fast calculation of analytical for-
mulas with the accuracy of a full DF that works with plasmas
of all degeneracies, for example RPA, an alternative method
uses interpolation from a complete database of stopping
power of a wide range of plasma parameters (Barriga-
Carrasco, 2013).
In the case of bound electron stopping power, mean exci-

tation energies of atoms or ions, I, can be obtained with sev-
eral methods such as Hartree–Fock, oscillator strength, local
plasma approximation, or atomic potentials in an indepen-
dent particle model (Lindhard & Scharff, 1953; Garbet
et al., 1987; Casas et al., 2013). In the first two methods,

I is obtained for every atomic shell, where for the two last
methods, I is a global quantity for the whole atom or ion.

There is a great interest to study the influence of stopping
power of a plasma density profile in a real case when the
plasma is created from interaction of a laser pulse with a
thin target and a plasma gradient is modified by the laser pre-
pulse. Instead of a constant plasma density distribution, there
will be an extended distribution with plasma density gradi-
ents. In this case an analytical formula that represents this
density profile is used in order to study the interaction of
the main pulse with the plasma and the energy loss of
proton beam (Andreev et al., 2009).

In the following Section 2, stopping power expressions
and formulas for free and bound electrons will be given. Af-
terwards, in Section 3, it will be explained how the energy
loss and the stopping range of the passing ion beam through
the plasma is obtained. Then this method is used to study the
influence of the plasma density profile concerning energy
loss, and temperature distribution in WDM. Finally, these re-
sults will be discussed in Section 4.

2. THEORETICAL METHODS

2.1. Free Electron Stopping

In the classical work of Peter and Meyer-ter-Vehn (1991), an
analytic approximation of stopping power of free electrons
for arbitrary projectile velocities is deduced inside the theo-
retical framework of Vlasov linear theory of stopping
power. There, the plasma parameter

Z = Zeff
neλ

3
D

, (1)

where Zeff is the projectile effective charge, ne is the electron
density and λD is the Debye length. This parameter separates
in two regions the plasma by means of their degeneracy, for
classical plasmas is Z< 1, while for degenerate plasmas
is Z≥ 1. In the study of quantum plasmas, other degeneracy
parameter (Arista & Brandt, 1984) is used:

D = EF

kBT
, (2)

where EF is the Fermi energy. Plasma degenerates for D≫ 1
and non-degenerates forD≪ 1. The two regions for both pa-
rameters are represented in a density-temperature map
showed in Figure 1.

For Z< 1, an analytic formula was proposed by Peter and
Meyer-ter-Vehn (1991):
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where

G(vp) = erf
vp��
2
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, (4)

H(vp) = − v3p
3

���
2π
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ln vp

exp − v2p
2

( )
+ v4p

v4p + 12
. (5)

Here, vp is projectile velocity, e is electron charge, ωp is
plasma frequency, T is temperature, kB is Boltzmann cons-
tant, and kmax a cut-off parameter that is chosen between clas-
sical and quantum limits (Arista & Brandt, 1984).

kmaxCl =
m v2p + 2kBT/m
( )

Zeff| |e2
kmaxQu = 2mvp

h−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(6)

The equations from (3)–(6) have been simplified by Volpe
et al. (2011) for the case of protons (Zeff= 1), where is
given the stopping power as a function of energy instead of
velocity for proton case. Equation (3) is used for pure
classical plasmas. However, for intermediate degeneration
or quantum plasmas, it is necessary to perform calculations
using the integration of the DF given in this work.
The study of stopping power for plasmas of all degeneracy

degrees can be performed using the RPA DF, which consists
of considering the effect of the incident particle as a pertur-
bation, so that the energy loss was proportional to the square
of its charge. Then slowing-down was simplified to a treat-
ment of the properties of the medium only, and a linear de-
scription of these properties may then be applied.

This DF is developed in terms of the wave number k and of
the frequency ω provided by a consistent quantum mechani-
cal analysis. The RPA analysis yields to the expression
(Lindhard, 1954):

εRPA(k, ω) = 1+ 1
π2k2

∫
d3k′

f (�k + �k
′) − f (�k ′)

ω+ iυ− (E�k+�k
′ − E�k

′ ) , (7)

where E�k = k2/2. The temperature dependence is included
through the Fermi–Dirac function

f (�k) = 1
1+ exp[β(Ek − μ)] (8)

being β= 1/kBT and μ the chemical potential of the plasma.
In this part of the analysis we assume the absence of colli-
sions so that the collision frequency tends to zero, υ→ 0.
Analytic RPA DF for plasmas at any degeneracy can be

obtained directly from Eq. (7) (Gouedard & Deutsch,
1978; Arista & Brandt, 1984)

εRPA(k,ω) = 1+ 1
4z3π kF

[g(u+ z) − g(u− z)], (9)

where g(x) corresponds to

g(x) =
∫∞
0

ydy

exp(Dy2 − βμ) + 1
ln

x+ y

x− y

( )
(10)

u= ω/kvF and z= k/2kF are the common dimensionless
variables (Lindhard, 1954). D= EFβ is the degeneracy
parameter and vF = kF = �����

2EF
√

is Fermi velocity in a.u.
Finally, electronic stopping of free plasma electrons will

be calculated in the dielectric formalism as

Sp(vp) = 2Z2
eff

πv2p

∫∞
0

dk
k

∫kv
0
dωω Im

−1
εRPA(k, ω)

[ ]
(a.u.) (11)

The calculation of the integrals in Eq. (11) could be difficult
and computationally slow in some cases. A fast accurate
method is to make an interpolation from a database (Barriga-
Carrasco, 2013). In Figure 2, we can see the stopping power
calculated from Eqs (3) and (11) for the same plasma condi-
tions. Both stoppings are similar to each other.
Stopping power dependence on temperature and electron

density as function of projectile velocity is observed for low-
medium velocities and vanishes for high velocities. In this
last case, stopping power is a function approximately linear
of electron density.
In order to illustrate these effects, we choose a region of

classical plasmas to compare Eqs (3) and (11), because a
complete study for all degeneracy is off the limits of this
work.
The stopping power rises when the electron density grows,

but not linearly. There are two dependencies in Eq. (3). One
is linear, because ωp =

������
4πne

√
, and the other one is

Fig. 1. Temperature-density diagram divided in two regions by the blue line,
and dashed dark green. Proton projectiles are considered. Upper zone is clas-
sical plasma region while lower one is the degenerate region. The red box
delimited the warm dense matter (WDM) conditions.
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logarithmic due to ln(kmaxλD). When all the parameters
remain constant except density, the Eq. (3) can be expressed
as a density function:

Sp(ne) = ne Kα ln 1/
���
ne

√( )+ Kβ

[ ]
(12)

The consequence of Eq. (12) is that stopping power increases
less than the growth of density, as seen in Figure 3, where it is
showed the stopping power ratios for different densities from
1.1019 to 1.1022 e−/cm3. All of them are divided for the stop-
ping corresponding to 1.1019 e−/cm3 (Sp0) and plotted as a
function of proton energy in MeV. For high velocities and

small densities variations inside the plasma, we can consid-
erer stopping power as quasilinear function of density.

In the case of temperature, if we calculate the stopping
ratio for many temperatures with constant density of
1.1019 e−/cm3 by means of the stopping for a temperature
of 50 eV (Sp0), the exponentials in Eqs (3)–(5) show a
decay exponential behavior with an asymptotic limit equal
to 1, as it is shown in Figure 4. We can approximate this be-
havior with the exponential expression, where R0 is equal to
unity:

RSp = R0 + ae−vp/b (13)

Due to these results the stopping power calculations for slow
projectiles in heterogeneous plasmas with high gradients in
temperature and density will be very sensible to the theoret-
ical methods used to estimate it (Gericke & Schlanges,
2003).

On the other hand for high velocities projectiles, we can
approximate the stopping power as linear function of density.

2.2. Bound Electron Stopping

The stopping power of a cold gas or a plasma for an ion has
been calculated many times by the well-known Bethe formu-
la (Bethe, 1930):

Sp = Zeffeωp

vp

[ ]2
ln

2mvp
I

[ ]
, (14)

where I is the mean excitation energy, which averages all the
exchanged energy in excitation and/or ionization processes
between a swift charged particle and target bound electrons.
I can be easily calculated for every neutral atom as a function
of atomic number Z, I= 10.3Z (eV) (Garbet et al., 1987). For

Fig. 3. Ratio of stoppings for different densities as a function of proton
energy. The reference stopping is corresponding to 1.1019 e−/cm3.
Dashed lines: Estimated using RPA. Dotted lines: Calculated by means of
analytical formula.

Fig. 4. Ratio of stoppings for different temperatures as a function of proton
energy. The reference stopping is corresponding to 50 eV. Dashed lines: Es-
timated using RPA. Dotted lines: Calculated by means of analytical formula.

Fig. 2. Stopping power as a function of the projectile energy (protons). Blue
dashed line calculated by Eq. (3). Read dotted line estimated by interpolation
of RPA stopping database. Green dash-dotted line direct calculation of RPA
DF by Eq. (12).
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ions, I can be obtained solving Poisson’s equation of atomic
electron density (Garbet et al., 1987) using analytic atomic po-
tentials with the independent particle model (Green et al.,
1969). I, K, and r2 are estimated using this method as:

I2 = Z4

N3

H2

6d3
[1− (N/6Z)(1+ (1/2H))]

F(α) , (15)

K = Z3

N3

H

2d
Z − N

1
6
+ 1

12H

( )[ ]
, (16)

r2 = 6d2

H
F(α), (17)

where Z is the atomic number of the ion and N is its quantity of
bound electrons. H= dγN n, where n and γ are chosen as 0.4
and 1.0, respectively, and d is tabulated for Z values from 2 to
103. K is the kinetic electron energy and r2 is the mean square
radius. Finally, α= 1− (1/H ), and

F(α) =
∑∞
n=0

αn

(n+ 1)2; 0 ≤ α ≤ 1

However, the Bethe formula cannot fit well the stopping power
at low velocities due to logarithm in Eq. (14) gives a negative
value when its argument is <1, that is 2mv2p/I

( )
<1. One

way to avoid this is to substitute the logarithm by a set of for-
mulas for high and low velocities interpolated for an intermedi-
ate value (Barriga-Carrasco & Maynard, 2005):

Lb(vp) =
LH(vp) = ln

2v2p
I

− 2K
v2p

for vp > vint

LB(vp) =
αv3p

1+ Gv2p
for vp ≤ vint

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(18)

where

vint =
�����������
3K + 1.5I

√
. (19)

Then, stopping power of bound electrons can be calculated by
means of (14) and (18):

Spb(vp) = Z2
eff4πnat
v2p

Lb(vp) (20)

K and I can be calculated for the whole plasma ions using Eqs
(15) and (16). However, this is a rough approximation, because
for a swift charge it is more difficult to ionize the inner electrons
than the outer ones. A more detailed calculation can be per-
formed by estimation shell by shell of K and I using a
Hartree–Fock method (Barriga-Carrasco & Casas, 2013;
Casas et al., 2013), obtaining a better fit to low projectile
velocities.
In Eq. (20), stopping power is not a function of tempera-

ture and shows a lineal dependence with density. But, it is

only valid for plasmas whose ions are not affected by the en-
vironment, that is that density and temperature can change
population and energies of its atomic levels. In these cases,
we must take into account these effects, as lowering potential
(Stewart & Pyatt, 1966) where I is reduced by the Coulomb
potential of surrounding ions.
In Figure 5 we can see the stopping power calculation

using Garbet expressions of K and I for the whole atom,
and Hartree–Fock method for theses quantities shell by
shell in the same aluminum plasma for proton projectiles.

2.3. Total Stopping Power

When an ion beam passes through partially ionized plasma,
the stopping power of this medium is estimated by the addi-
tion of stopping of bound electrons of plasma atoms to the
stopping of free plasma electrons.
In this kind of plasmas the influence of temperature and

density is as follows: When the temperature rises, the stop-
ping power decreases. On the other hand, when temperature
lowers, stopping power increases. This parameter affects
mainly to free electrons stopping power. For bound electrons
the influence is due to electron level changes, at high temper-
atures. There is a nonlinear dependence with density, mainly
for free electrons. Bound electrons stopping power is a linear
function of density, except when there are changes in elec-
tron configuration, at high densities.
The dependence with ionization, q, is due to the phenom-

enon called Enhanced Plasma Stopping (Couillaud et al.,
1994): When q rises, the stopping power also increases.
The reason is the increasing of free electrons density in
plasma. It is important mainly at low projectile velocities.
For low q, bound electrons stopping power is important for
medium-high projectile velocities.

Fig. 5. Stopping power of bound electrons as function of proton energy.
Two different sets of K and I for the aluminum ion plasma are used in the
calculation of stopping power using Eq. (15) (Bethe) and (21) (Barriga-
Carrasco & Maynard).
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In the next section, it will be explained how the energy loss
and Bragg peak is calculated from the total stopping power.

3. CALCULATIONS AND RESULTS

3.1. Homogeneous WDM

A proton beam loses its energy in a material by means of a
continuous and dynamical process: When it initially collides
with energy Epi, is slowed down by means a force, the stop-
ping power, which is a function of proton energy. Its energy
decreases, and an equal energy quantity is transferred to the
medium. Then the stopping power changes and the proton
beam lose a different energy. This process continues until
the proton beam traverses all the material or is completely
stopped inside.
The easy way to estimate energy losses of a proton beam

consists to divide the path inside the plasma into segments
connected by nodes where the energy loss is recalculated
in each one. In order to do this, we follow the next scheme:

1. Read the input data, where the proton energy is the first
column and stopping power the second one.

2. The initial stopping power, Spi, is obtained by means of
an interpolation made between the two nearest stopping
values of the input.

3. Estimate the energy loss using this expression:

ELi = SpiΔx, (21)

where Δx is the step length that we use to calculate the
stopping power inside the plasma.

4. We obtain the new proton beam energy and we contin-
ue reevaluating the energy loss in each step, until the
proton beam goes outside the plasma or is totally
stopped inside.

In Figures 6 and 7 we show, the influence of density and tem-
perature in the range of Bragg peak for homogeneous WDM.
A proton beam with an initial energy of 1.5 MeV, passes
through a thick partially ionized plasma until is totally
stopped.
In the case of density variation, the position of Bragg peak

shows a quasilinear dependence on density. In the other case,
when density remains constant and temperature is changed,
Bragg peak moves its position due to the effects of tempera-
ture for low projectile velocities.

3.2. Heterogeneous WDM

Using Eqs (3) or (11), and (20), it is possible to evaluate the
target density profile effects in stopping power calculations
for two different density distributions: Rectangular shape
with a constant density and the piecewise approximation of
a trapezium shape with a density profile given by (Andreev

et al., 2009):

ni(z) = 2ni max

1+ exp[(2xθ(x)/lr) − (2xθ(−x)/lfr)] . (22)

The Eq. (22) is the density distribution obtained when a
laser prepulse, with an intensity of 1011 W/cm2 and a dura-
tion of 1 ns, hit a thin target with a thickness of 1 μm or less.
Here x= z− 0.5lf and θ(x) is a step function. The scale
lengths lfr at the front side (in respect to the laser pulse direc-
tion), and lr at the rear side, are obtained from the initial target
thickness, lf, lfr, and lr are expressed in microns. For a solid
aluminum target, nimax= 6.1022 cm−3.

Fig. 6. Bragg peak position as function of density. Depth where proton
beam is totally stopped: Black dash-dotted line: 0.182 cm. Blue dashed
line: 0.0217 cm. Red dotted line: 0.00281 cm.

Fig. 7. Bragg peak position as function of temperature. Depth where proton
beam is totally stopped: Black dash-dotted line: 0.182 cm. Blue dashed line:
0.166 cm. Red dotted line: 0.1655 cm.
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We will study a proton beam passing through these plas-
mas with different densities and lengths, but same superficial
densities due to rectangular and piecewise profiles conserve
the particle quantity. If the stopping was a linear function
of density, it would imply that in both cases proton beam
must lose the same energy. But, it was showed in Eq. (12)
and Figure 3 that is not linear, although for small differences
like here, the stopping power has a quasi-linear dependence
on density and for this reason the final proton beam energy
is slightly different for both cases. These density profiles
and its corresponding energy losses are showed in Figure 8.

3.3. Application on WDM Heating

It is possible to estimate the final temperature of the piece-
wise plasma profile when a proton bunch passes through it.
We suppose a proton beam, made up of 1011 protons, impacts
in a circular area of 50 μm of diameter with an energy of
1.5 MeV. From an initial temperature of 5 eV, the plasma
is heated until 25 eV, approximately, with a temperature dis-
tribution given by the corresponding piecewise density pro-
files. This approximation was obtained using an ideal

thermodynamic EOS. We can observe in Figure 9, how the
plasma is heated for a proton beam that travels from left to
right. In the right part of the plasma, the heating is higher
than in the left one, although the density is lower in this
area. The reason is that the proton beam has been stopped
in the first part, losing its energy and increasing the stopping
power as we can see in Figure 7, allowing the bunch to de-
posit more energy in plasma. Due to plasma density is low
in this part, there is more energy to distribute to the ions
and consequently a higher temperature is achieved.

4. CONCLUSIONS

Two methods have been discussed for the calculation of free
electron stopping. The first one uses analytical formulas de-
veloped from the linear Vlasov theory and gives fast and ac-
curate results, but only for classical plasmas. The second one
is based on the interpolation of a DF valid for plasmas of all
degeneracies. Both give very similar results for classical plas-
mas, but the second one can be also used in stopping power
calculations of WDM. Using both methods, the dependence
of stopping power with density and temperature in a specific
range of classical plasmas has been studied.
Stopping power has been expressed as quasilinear function

of density. For this reason the calculations of energy loss give
different values for low projectile velocities in the cases of
different plasma density profiles. In case of temperature de-
pendencies the stopping power dependence on projectile ve-
locity has been proved important for low velocities and
negligible at high velocities, where stopping power graphs
tend to be the same value.
For bound electron stopping, two methods have been

checked. First, K and I have been deduced for the entire
plasma ions by means of expressions obtained by Garbet
et al. from analytical atomic potentials and solved in the in-
dependent particle model. Second, the quantities K and I are

Fig. 8. The target density profiles (top) and its corresponding energy loss
functions (bottom). The final energy was 1.409 MeV for the rectangular pro-
file and 1.401 MeV for the piecewise profile.

Fig. 9. Red short dot line represents the plasma temperature after the heating
by proton beam. Dark solid line is the piecewise profile density that approx-
imates Eq. (23). Initial plasma conditions are the same as Fig. 8.
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estimated in every atomic shell using a Hartree–Fock
method. Both quantities are used in an interpolation that di-
vides the stopping power graph in two parts. These are the
low velocity stopping power with a realistic behavior in the
proximities of zero, and at medium-high velocities asymptot-
ically the Bethe formula result is approximated. The Har-
tree–Fock method results in more accurate energies for low
Z elements, although Garbet et al. expressions are useful
for medium-high Z elements.
WDM has been analyzed for homogenous and heteroge-

neous cases. For the first one, the stopping range and the po-
sition of Bragg peak has been estimated by means of an
iterative method that estimates dynamically the energy loss
of the projectile inside the plasma. It has been found that
the dependency on density and temperature is the same as
in the previous section: This holds for density. Also the
Bragg peak position has shown a quasilinear dependence
on density. In regard to the temperature the Bragg peak posi-
tion has changed for low proton energies.
For the heterogeneous case, a WDM density profile, given

by an analytical expression, has been studied. A continuous
profile of density has been approximated using a rectangular
profile and a piecewise function, conserving the particle
quantity. A slightly difference in the energy losses by the
proton has been found due to the quasilinear effect of density
in stopping power. Finally, using the same piecewise profile,
the plasma heating until WDM conditions has been estimated
as function of density profile and stopping power. An overall
heating of 20 eV has been obtained, but with small differenc-
es due to plasma density profile, projectile velocity, and stop-
ping power.
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