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Introduction

Recall that a module S over a ring Λ is said to be stably free when S ⊕Λa ∼= Λb for some
positive integers a, b. We say that Λ has stably free cancellation (SFC) when any stably
free Λ-module is free. Elementary duality considerations show that this property is left–
right symmetric. We show that Artinian rings have the SFC property. More generally,
we study the extent to which the SFC property holds for the rings

Ln(A) = A[t1, t−1
1 , . . . , tn, t−1

n ]

of Laurent polynomials in n variables t1 . . . , tn with coefficients in an Artinian ring A.
Here we do not assume that A is commutative but we do require that the variables ti
commute both among themselves and with the coefficients in A. When A is Artinian the
Jacobson radical rad(A) is nilpotent [9, p. 81] and the quotient A/rad(A) is isomorphic
to a product of matrix rings:

A/rad(A) ∼= Md1(D1) × · · · × Mdm(Dm), (∗)

where D1, . . . , Dm are division rings and d1, . . . , dm are positive integers. The Artinian
ring A is said to satisfy the Eichler condition (see [11, pp. 174–175]) when, in the decom-
position (∗), Di is commutative whenever di = 1. We strengthen this condition as follows:
say that A is strongly Eichler when in (∗) each division algebra Di is commutative. We
then have the following.

Theorem I. If the Artinian ring A is strongly Eichler, then Ln(A) has the SFC
property for all n � 1.
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There is a corresponding property that has strong stability implications for automor-
phisms of free modules. A ring Λ is weakly Euclidean∗ (see [6, Chapter 1]) when, for all
d � 2, any X ∈ GLd(Λ) can be written as a product

X = E1 · · · · · En · Δd(λ),

where each Ei is an elementary transvection and Δd(λ) is an elementary diagonal matrix
with λ ∈ Λ∗. Here Λ∗ denotes the group of invertible elements in the ring Λ. We say that
the Artinian ring A is very strongly Eichler when in the decomposition (∗) each Di is
commutative and, in addition, each di � 2.

Theorem II. If the Artinian ring A is very strongly Eichler, then Ln(A) is weakly
Euclidean for all n � 1.

Both Theorem I and Theorem II would seem to be best possible. In relation to The-
orem I, a result of Ojanguran and Sridharan [8] shows that, for n � 2, Ln(D) fails to
have the SFC property whenever the division ring D is non-commutative. Regarding
Theorem II, when n � 2 the so-called Cohn matrix (see [2, p. 26])

(
1 + t1t2 −t22

t21 1 − t1t2

)
∈ GL2(L2(F ))

fails to decompose as a product of elementary matrices over any field F . A direct proof
of this result may be found on p. 54 of Lam’s book [7]. When n = 1 we nevertheless
obtain the following useful result.

Theorem III. If the ring A is Artinian, then L1(A) is weakly Euclidean; furthermore,
if A also satisfies the Eichler condition, then L1(A) has the SFC property.

Finite rings are Artinian and strongly Eichler; thus we have the following.

Theorem IV. If the ring A is finite, then

(i) Ln(A) has the SFC property for all n � 1; and, moreover,

(ii) L1(A) is weakly Euclidean.

The results proved here all continue to hold if the rings Ln(A) are replaced by the
standard polynomial rings Pm(A) = A[s1, . . . , sm] or even by rings of mixed type
A[s1, . . . , sm, t1, t

−1
1 , . . . , tn, t−1

n ]. However, as rings of the form Ln(A) occur naturally
as group rings F [Φ × Cn

∞] when Φ is finite, the construction Ln(A) seems more relevant
to applications in non-simply connected homotopy theory (see [6, Chapter 11]).

∗ The terminology arises from the classical theorem of Smith [10], which we may state as saying that
an integral domain with a Euclidean algorithm is weakly Euclidean.
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1. The weak Euclidean property for L1(A)

Given a ring Λ and an integer d � 2, there is a canonical Λ-basis {ε(d)(r, s)}1�r,s�d for
the ring of d × d matrices Md(Λ) given by

ε(d)(r, s)tu = δrtδsu;

that is, ε(d)(r, s) is the d × d matrix with 1 in the (r, s)th position and 0 elsewhere. By
an elementary matrix of type I in Md(Λ) we mean one of the form

E(r, s; λ) = Id + λε(d)(r, s) (r �= s, λ ∈ Λ).

By an elementary matrix of type II in Md(Λ) we mean one of the form

Δd(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 · · · 0 0
0 1 · · · 0 0

. . .
. . .

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(λ ∈ Λ∗).

Formally, we have Δd(λ) = Id + (λ − 1)ε(d)(1, 1), where λ ∈ Λ∗. We say that Λ is weakly
Euclidean when for d � 2 each invertible matrix X ∈ GLd(Λ) can be written in the form

X = E · Δd(λ),

where E is a product of elementary matrices of type I over Λ and λ ∈ Λ∗. A ring
homomorphism ϕ : A → B has the lifting property for units when the induced map
φ∗ : A∗ → B∗ is surjective. We say ϕ has the strong lifting property for units∗ when, in
addition, the following holds for α ∈ A:

α ∈ A∗ ⇐⇒ ϕ(α) ∈ B∗.

It is straightforward to see the following.

Proposition 1.1. Let ϕ : A → B be a surjective ring homomorphism; if Ker(ϕ) is
nilpotent, then ϕ has the strong lifting property for units.

Elsewhere [6, Proposition 2.43, p. 21] we have shown the following.

Proposition 1.2. Let ϕ : A → B be a surjective ring homomorphism where B is
weakly Euclidean; if ϕ has the strong lifting property for units, then A is also weakly
Euclidean.

∗ The referee pointed out that the strong lifting property for ϕ may be restated as saying that ϕ has
the lifting property and is a local morphism in the sense of Camps and Dicks [1].
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Thus we have the following.

Proposition 1.3. Let ϕ : A → B be a surjective ring homomorphism with nilpotent
kernel; if B is weakly Euclidean, then A is also weakly Euclidean.

Proposition 1.4. Let D1, . . . , Dm be (possibly non-commutative) division rings; then
Md1(D1[t, t−1]) × · · · × Mdm

(Dm[t, t−1]) is weakly Euclidean for any positive integers
d1, . . . , dm.

Proof. If Di is a division ring, then Di[t, t−1] is a (possibly non-commutative) integral
domain that admits a Euclidean algorithm (see [3]). It is now straightforward to see that
matrix rings Mdi

(Di[t, t−1]) are also weakly Euclidean (see [6, p. 22]). The required
conclusion now follows as the class of weakly Euclidean rings is closed under finite direct
products. �

Theorem 1.5. Let A be an Artinian ring; then A[t, t−1] is weakly Euclidean.

Proof. The radical rad(A) of the Artinian ring A is nilpotent (see [9, p. 81]). Conse-
quently, rad(A)[t, t−1] is a nilpotent ideal in A[t, t−1]. Moreover,

A/rad(A) ∼= Md1(D1) × · · · × Mdm(Dm)

for some division rings D1, . . . , Dm so that

A[t, t−1]/rad(A)[t, t−1] ∼= Md1(D1[t, t−1]) × · · · × Mdm(Dm[t, t−1]).

The desired conclusion now follows from Remark 1.3 and Proposition 1.4. �

2. Suslin’s theorem and proof of Theorem II

We shall use the following theorem of Suslin [7,12].

Theorem 2.1. Let F be a field and let k � 3; then any X ∈ GLk(Ln(F )) can be
written in the form

X = E1 · · ·Em · Δk(λ),

where λ ∈ Ln(F )∗ and each Ei ∈ GLk(Ln(F )) is an elementary matrix of type I.

We note that the unit group Ln(F )∗ consists simply of elements of the form α · tei
i ,

where α ∈ F ∗ and ei is an integer [6, Appendix C].
Fixing a ring Λ and an integer q � 2, we study elementary matrices over the rings

Ω = Md(Mq(Λ)). Write
E(i, j)kl = δikδjlIq,

where Iq is the identity matrix in Mq(Λ); then {E(i, j)}1�i,j�d is a basis for Md(Mq(Λ))
over Mq(Λ). When Mq(Λ) is considered as the base ring, we write • for a matrix product
over Mq(Λ). Elementary matrices of type I in GLd(Mq(Λ)) then take the form

Ē(i, j; Z) = Ĩ + Z • E(i, j),
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where Ĩ denotes the identity matrix in Md(Mq(Λ)) and Z ∈ Mq(Λ). Likewise, elementary
matrices of type II in GLd(Mq(Λ)) take the form

Δd(Z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Z 0 · · · 0 0
0 1 · · · 0 0

. . .
. . .

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where Z ∈ GLq(Λ) = Mq(Λ)∗. In the special case where Z ∈ GLq(Λ) is itself an elemen-
tary matrix of type II over Λ,

Z = Δq(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 · · · 0 0
0 1 · · · 0 0

. . .
. . .

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with λ ∈ Λ∗, we write Δ̄d,q(λ) = Δd(Δq(λ)) ∈ GLd(Mq(Λ)).
When d � 2 there is a mapping, ‘block decomposition’, ν : Mdq(Λ) → Md(Mq(Λ))

defined as follows: if X = (xrs)1�r,s�dq ∈ Mdq(Λ) and 1 � i, j � d, then

ν(X) = (X(i, j))1�i,j�d,

where X(i, j) ∈ Mq(Λ) is given by X(i, j)kl = xq(i−1)+k,q(j−1)+l; moreover, we have the
following.

Proposition 2.2. For any ring Λ, ν : Mdq(Λ) → Md(Mq(Λ)) is a ring isomorphism.

To record the relationship between the various elementary matrices under block decom-
position we first observe that there are unique functions

υ : {1, . . . , dq} → {1, . . . , d}, ρ : {1, . . . , dq} → {1, . . . , q}

defined by the requirement t + q = qυ(t) + ρ(t) for 1 � t � dq. It is straightforward to
verify that

ν(ε(dq)(r, s)) = ε(q)(ρ(r), ρ(s)) • E(υ(r), υ(s)). (2.1)

The inverse relation is perhaps clearer: namely,

ν−1(ε(q)(a, b) • E(i, j)) = ε(dq)(q(i − 1) + a, q(j − 1) + b). (2.2)

From (2.1) we note that

ν(E(r, s; λ)) = Ē(υ(r), υ(s); λε(ρ(r), ρ(s))) (λ ∈ Λ). (2.3)

Likewise, we have
ν(Δdq(λ)) = Δ̄d,q(λ) (λ ∈ Λ∗). (2.4)

We first consider the rings Ln(F ) = F [t1, t−1
1 , . . . , tn, t−1

n ], where F is a field.
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Theorem 2.3. Let d, q � 1 be integers such that dq � 3. If X ∈ GLd(Mq(Ln(F ))),
then X can be expressed as a product

X = Ē1 • · · · • Ēm • Δ̄d,q(δ),

where Ē1, . . . , Ēm ∈ GLd(Mq(Ln(F ))) are elementary of type I and δ ∈ Ln(F )∗.

Proof. Put Λ = Ln(F ). If X ∈ GLd(Mq(Λ)), put X̂ = ν−1(X) ∈ GLdq(Λ). By
Suslin’s theorem, X̂ can be expressed as a product

X̂ = E1 · · ·Em · Δ(λ),

where λ ∈ Ln(F )∗ and each Ei ∈ GLdq(Ln(F )) is an elementary matrix of type I. Thus

ν(X̂) = ν(E1) • · · · • ν(Em) • ν(Δ(λ))

so that, writing Ēi = ν(Ei) we have X = Ē1 • · · · • Ēm • Δ̄d,q(δ). �

Corollary 2.4. If F is a field, then Mq(Ln(F )) is weakly Euclidean for each q � 2.

The weak Euclidean property is preserved under finite direct products. Moreover, the
construction Ln commutes with both direct products and with the functor Λ 
→ Mq(Λ);
hence we have the following.

Corollary 2.5. Ln[Mq1(F1) × · · · × Mqm
(Fm)] is weakly Euclidean whenever F1, . . . ,

Fm are fields and q1, . . . , qm are integers greater than or equal to 2.

Theorem 2.6. If the Artinian ring A is very strongly Eichler, then Ln(A) is weakly
Euclidean for n � 2.

Proof. Write A/rad(A) ∼= Mq1(F1) × · · · × Mqm
(Fm) for some fields F1, . . . ,Fm and

integers q1, . . . , qm � 2. Then Ln(rad(A)) is a nilpotent ideal in Ln(A) and

Ln(A)/Ln(rad(A)) ∼= Ln[Mq1(F1) × · · · × Mqm(Fm)].

The desired conclusion now follows from Remark 1.3 and Corollary 2.5. �

Theorem II is now the conjunction of Theorem 1.5 and Theorem 2.6.

3. Proof of Theorems I, III and IV

The following is a straightforward deduction from Nakayama’s lemma (see [6, pp. 170–
171]).

Proposition 3.1. Let ϕ : Λ → Ω be a surjective ring homomorphism such that Ker(ϕ)
is nilpotent; if Ω satisfies SFC, then so too does Λ.
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Suppose that A is an Artinian ring such that

A/rad(A) ∼= Md1(D1) × · · · × Mdm(Dm),

where D1, . . . , Dm are division rings. We shall apply Proposition 3.1 in the case when
Λ = Ln(A), Ω = Ln(A)/Ln(rad(A)) and ϕ is the natural mapping. Then

Ω ∼= Md1(Ln(D1)) × · · · × Mdm(Ln(Dm)).

We showed in [5] that Ω has the SFC property provided each Di is commutative; that
is, provided A is strongly Eichler. Thus from Proposition 3.1 we obtain the following.

Proposition 3.2. If the ring A is Artinian and strongly Eichler, then Ln(A) has the
SFC property.

As we observed in the introduction, Ojanguran and Sridharan proved in [8] that Ln(D)
fails the SFC property whenever n � 2 and the division ring D is non-commutative.
However, in the case n = 1 one may show that L1(D) = D[t, t−1] has SFC regardless
of whether the division ring D is commutative or not. Indeed, in that case, D[t, t−1] is
projective free (see [4] or [5, Proposition 2.9]). The SFC property is now preserved under
finite direct products and passage to matrix rings [6, pp. 171–173]. Thus Md1(L1(D1))×
· · · × Mdm

(L1(Dm)) has the SFC property. From Proposition 3.1 we get the following.

Proposition 3.3. If the ring A is Artinian, then L1(A) has the SFC property.

The conjunction of Proposition 3.2 and Proposition 3.3 is Theorem I of the introduc-
tion.

Any finite ring A is trivially Artinian so that A/rad(A) ∼= Md1(D1) × · · · ×Mdm(Dm),
where D1, . . . , Dm are finite division rings. However, a celebrated theorem of Wedderburn
(see [13, p. 1]) now shows that each Di is commutative; that is, we have the following.

Corollary 3.4. Any finite ring is Artinian and strongly Eichler.

Thus from Theorem 1.5, Proposition 3.2 and Remark 3.4 we have the following.

Corollary 3.5. Let A be a finite ring; then

(i) Ln(A) has the SFC property for all n � 1;

(ii) L1(A) is weakly Euclidean.

We may regard the coefficient ring A as a degenerate case A = L0(A). Thus, sup-
pose that A is Artinian and write A/rad(A) ∼= Md1(D1) × · · · × Mdm(Dm), where
D1, . . . , Dm are division rings. Then each Md1(D1) is weakly Euclidean and has the SFC
property. As both these properties are closed under finite direct products, A/rad(A) is
weakly Euclidean and has the SFC property. However, rad(A) is nilpotent so that, from
Remark 1.3 and Proposition 3.1, we conclude the following, which should be well known
but is difficult to locate explicitly in the literature.

Corollary 3.6. Any Artinian ring is weakly Euclidean and has the SFC property.
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