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In this paper we study the problem concerning stability and asymptotic behaviours
of solutions for a degenerate Landau–Lifshitz equation in micromagnetics involving
only the non-local magnetostatic energy. Due to the lack of derivative estimates, we
do not have the compactness needed for strong convergence and the natural
convergence is weak* convergence. By formulating the problem in a new framework
of differential inclusions, we show that the Cauchy problems for such an equation are
not stable under the weak* convergence of initial data. For the asymptotic
behaviours of weak solutions, we establish an estimate on the weak* ω-limit sets that
is valid for all initial data satisfying the saturation condition.

1. Introduction

The Landau–Lifshitz theory of micromagnetics is a well-known theory for the equi-
librium states or evolution of the magnetization of ferromagnetic materials under
the formulation of a total energy that contains several competing energy contri-
butions; we refer the reader to [3, 16, 17] and references therein for comprehensive
expositions and further developments of such a theory.

In this paper, we study a special dynamic Landau–Lifshitz equation that models
the evolution of the magnetization of a ferromagnetic material under only the mag-
netostatic energy contribution. Specifically, we study the stability and asymptotic
behaviours of solutions to the Cauchy problem

∂tM = γM × HM +
αγ

|M |M × (M × HM ),

M(x, 0) = M0(x), x ∈ Ω, t > 0,

⎫⎬
⎭ (1.1)

where M = M(x, t) ∈ R
3 is the magnetization field vector of a ferromagnetic

material occupying a bounded open set Ω ⊂ R
3, a × b stands for the cross product

of vectors a and b in R
3, γ < 0 is the electron gyromagnetic ratio, α > 0 is

the Landau–Lifshitz phenomenological damping parameter and HM is the non-
local magnetostatic field induced by M on the whole of R

3 through the Maxwell
equation

curlHM = 0, div(HM + MχΩ) = 0 in R
3. (1.2)
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Equation (1.1) can be written as an equivalent Landau–Lifshitz–Gilbert equation

∂tM = γ(1 + α2)M × HM +
α

|M |M × ∂tM (1.3)

with a new electron gyromagnetic ratio and a rate-dependent damping.
The part of the energy corresponding to (1.1) is the non-local magnetostatic

energy defined by

I(M) = 1
2

∫
R3

|HM |2 dx = −1
2

∫
Ω

M · HM dx, (1.4)

where the second equation follows from the Maxwell equation (1.2).
Most existing studies on Landau–Lifshitz equations have focused on problems

with the so-called exchange energy [2, 4, 5, 16, 20]; such a problem is considered
regular in the sense that derivative estimates and hence certain compactness results
are available to the problem so that standard methods (for example, the Galerkin
method) can be applied.

The reasons that we consider the no-exchange energy models are as follows: (1) in
static energy minimization, the no-exchange energy model gives a good approxima-
tion for large ferromagnetic bodies, as studied in [8,11,19]; (2) in studying Landau–
Lifshitz–Maxwell systems of electro-magnetics, the no-exchange energy models of
Landau–Lifshitz equations turn out to be the quasi-stationary limit when the elec-
tric permittivity tends to zero, as justified in [9, 12, 13]; (3) for certain boundary-
value problems, the no-exchange energy model is the singular limit of the Landau–
Lifshitz equations as the exchange constant tends to zero, as studied in [5].

The Landau–Lifshitz equation (1.1) becomes degenerate in the sense that no
suitable compactness is available due to the lack of derivative estimates that would
play an important role in the study of stability and asymptotics of solutions [4,
13,14]. Our study of the special model (1.1) should be considered as a first step in
understanding the effects of degeneracy on the stability and asymptotics for general
no-exchange energy models.

Existence and certain stability for degenerate no-exchange energy models of
micromagnetics have been established by different methods in [5,9,12,13]. For exam-
ple, following the method of [15], a strong stability has been proved in [9], which
asserts that, given any T, R > 0, if initial data M1

0 , M2
0 satisfy ‖Mk

0 ‖L∞ � R
(k = 1, 2) and are sufficiently close in L2(Ω), then the solutions M1(x, t), M2(x, t)
to (1.1) will satisfy, for some 0 < ρ < 1, C > 0 depending on T , R,

sup
0�t�T

‖M2(·, t) − M1(·, t)‖L2(Ω) � C‖M2
0 − M1

0 ‖ρ
L2(Ω).

Consequently, the solutions M j(x, t) of (1.1) with initial data satisfying M j
0 → M0

in L2(Ω; R3) and ‖M j
0‖L∞(Ω) � R must converge to the solution M(x, t) of (1.1)

with initial datum M0.
However, for bounded initial data, due to the lack of derivative bounds, the

natural convergence of solutions is weak* convergence. In this paper, we show that
such a stability result fails under the weak* convergence of initial data.

https://doi.org/10.1017/S0308210513001406 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001406


On a degenerate Landau–Lifshitz equation 659

Theorem 1.1. There exist initial data M j
0

∗
⇀ M̄ in L∞(Ω; R3) such that the

solutions M j(x, t) to (1.1) with initial data M j
0 weakly* converge to a limit M(x, t)

that is not the solution of (1.1) with initial datum M̄ .

This result is obtained as a byproduct of studying the stationary solutions for
Cauchy problem (1.1):

M × HM = 0 almost everywhere (a.e.) Ω. (1.5)

We say that M̄ is a non-trivial weak* limit of stationary solutions if M̄ is a
(sequential) weak* limit of stationary solutions and satisfies M̄ × HM̄ �= 0 on Ω.
Any non-trivial weak* limit will provide an example for theorem 1.1. For example,
suppose that there exists a sequence {M j

0} satisfying (1.5) such that M j
0

∗
⇀ M̄ but

M̄ ×HM̄ �= 0 on Ω. Then the function M j(x, t) ≡ M j
0 (x) solves the Cauchy prob-

lem (1.1) with initial datum M j
0 and satisfies M j(x, t) ∗

⇀ M(x, t) with M(x, t) ≡
M̄(x). Clearly, M(x, t) is not the solution to (1.1) with initial datum M̄ .

The existence of non-trivial weak* limits is proved in § 3 by a special construction
using ellipsoid domains (see theorem 3.3). It should be pointed out that special sta-
tionary solutions M of (1.5) defined by the linear equation HM = 0 (equivalently
div(MχΩ) = 0) or HM = −MχΩ (equivalently curl(MχΩ) = 0) would never
produce a non-trivial weak* limit because any weak* limit of such solutions must
also satisfy the same linear equation; the existence of non-trivial weak* limits must
be a consequence of the nonlinear nature of condition (1.5).

Another purpose of this paper is to study the asymptotic behaviours as t → ∞ of
solutions M(x, t) to (1.1) for initial data M0 ∈ L∞(Ω; R3). Due to the absence of
exchange energy or electric field, only the L∞-bound is available and the methods
for asymptotics used in [4, 13,14] do not apply in our case. Hence, the weak* limit
points of the orbits along t → ∞ are the natural object of study. We introduce the
(sequential) strong and weak* ω-limit sets of solution M(x, t) as follows:

ω(M0) = {M̄ : ∃tj ↑ ∞, ‖M(·, tj) − M̄‖L2(Ω) → 0}, (1.6)

ω∗(M0) = {M̃ : ∃tj ↑ ∞, M(·, tj)
∗
⇀ M̃ in L∞(Ω; R3)}. (1.7)

Although not required for studying the Cauchy problem (1.1), the magnetization
field M(x, t) is usually assumed to be saturated ; that is, the length |M(x, t)| is
constant over Ω ×R

+. Such a saturation assumption is part of the Landau–Lifshitz
theory of ferromagnetism when the temperature is below a certain critical value
[3, 16, 17]. One of the important features of the Landau–Lifshitz equations is that
the saturation condition is preserved by the solution flows. In the case of our special
Cauchy problem (1.1), this is valid for weak solutions: if |M0(x)| = C, a constant,
on Ω, then the weak solution M(x, t) of (1.1) satisfies |M(x, t)| = C on Ω for all
t > 0; see [9].

By rescaling, we focus on the solutions of (1.1) satisfying the saturation condition
|M(x, t)| = 1 on Ω×R

+. The saturated stationary solutions are then characterized
by the set

E(Ω) = {M ∈ L∞(Ω; R3) : |M | = 1, M × HM = 0 a.e. Ω}. (1.8)
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This set E(Ω) has been studied in [21]. In particular, the weak* closure of the set
E(Ω) has been shown to be contained in the set

F(Ω) = {M ∈ L∞(Ω; R3) : |M |2 + 2|M × HM | � 1 a.e. Ω}. (1.9)

It is not known whether or not the weak* closure of E(Ω) is exactly equal to the
set F(Ω).

As for the ω-limit sets ω(M0) and ω∗(M0) defined above, we have the following
partial result.

Theorem 1.2. Suppose that |M0(x)| = 1 on Ω. Then

∅ �= ω∗(M0) ⊆ F(Ω), ω∗(M0) ∩ E(Ω) = ω(M0). (1.10)

The proof of this theorem is given in § 4. The main idea relies on the global-in-
time energy estimate for the solution M = M(x, t),∫ ∞

0
‖Mt‖2

L2(Ω) dt = C

∫ ∞

0
‖M × HM‖2

L2(Ω) dt < ∞,

that is, Mt ∈ L2((0, ∞); L2(Ω; R3)). However, this estimate is not sufficient to
guarantee the strong convergence of M(·, t) as t → ∞; it would suffice for such a
strong convergence if one could obtain Mt ∈ L1((0, ∞); L2(Ω; R3)) (see [14]).

Finally, we point out in passing that, if there exists an ω∗-limit point M̃ in
ω∗(M0) that does not satisfy (1.5), then one could obtain another counter-example
for theorem 1.1 as follows. Suppose that M(x, tj)

∗
⇀ M̃(x) as tj ↑ ∞ and define

M j(x, t) = M(x, t + tj). Then M j(x, t) solves (1.1) with initial datum M j
0 (x) =

M(x, tj)
∗
⇀ M̃(x). From the proof of theorem 1.2 (see (4.1)), M j(x, t) ∗

⇀M(x, t) ≡
M̃(x), which is not the solution of (1.1) with initial datum M̃ .

2. Helmholtz decompositions and differential inclusions

In this section we discuss some auxiliary results and set up our study in a new
framework of the calculus of variations. Some of the results are only provided in a
way that is sufficient for the purpose of this paper.

In what follows, let Ω be a bounded open set in R
3 and let Ωc = R

3 \ Ω̄.
Denote by M

m×n the space of m × n real matrixes. Let Γ (x) = 1/4π|x| be the
fundamental solution for the Laplace equation on R

3. Note that, for all x ∈ R
3,

Γ (x − y) ∈ Lq(Ω, dy) for all 1 � q < 3.
Given any function M ∈ Lp(Ω; Rm) with p > 3/2, the Newton potential FΩ

M =
FM of M on Ω is well defined as a regular integral by

FM (x) =
∫

Ω

M(y)Γ (x − y) dy =
1
4π

∫
Ω

M(y)
|x − y| dy (x ∈ R

3). (2.1)

By partial differential equations theory [10], FM (x) satisfies −ΔFM = MχΩ in
the sense of distributions on R

3; hence, a standard regularity estimate shows that
FM ∈ W 2,p

loc (R3; Rm). Moreover, since Ω is bounded, one has ∂xiFM ∈ W 1,p(R3; Rm)
for all i = 1, 2, 3.

We have the following regularity result, which uses some ideas from the proof
of [5, lemma 4.1].
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Lemma 2.1. Let D ⊆ Ω ⊂⊂ B, where D and B are bounded domains with smooth
boundaries. Assume that m ∈ W 1,p(D) for some p > 1 and M = mχD. Then
FM = FΩ

M ∈ W 3,p(D) ∩ W 3,p(B \ D̄).

Proof. Obviously, FM = FΩ
M = FD

m . Since m ∈ W 1,p(D) and p > 1, by the Sobolev
embedding theorem, it follows that m ∈ Lp∗

(D) for some p∗ > 3/2, and hence FM ∈
W 2,p∗

loc (R3). The equation −ΔFM = mχD holds a.e. on R
3. Given k ∈ {1, 2, 3}, let

ψ = ∂xk
FM . We claim that

ψ ∈ W 2,p(D) ∩ W 2,p(B \ D̄), (2.2)

which proves the lemma. Note that ψ ∈ W 1,p∗

loc (R3) is a weak solution to the equation
−Δψ = ∂xk

(mχD) on R
3; that is,

∫
R3

∇ψ · ∇ζ = −
∫

D

mζxk

for all test functions ζ ∈ C∞
0 (R3). Since m ∈ W 1,p(D), using integration by parts,

this weak form of the equation can be written as
∫

R3
∇ψ · ∇ζ dx =

∫
D

mxk
ζ dx −

∫
∂D

mνkζ dS, (2.3)

where ν = (ν1, ν2, ν3) denotes the outer unit normal on ∂D. This implies that ψ is
harmonic on Dc; hence, ψ|∂B is smooth. Also note that mνk ∈ W 1−1/p,p(∂D). By
the Sobolev trace theorem [1], for any bounded smooth domain G, the trace map
T : W 2,p(G) → W 2−1/p,p(∂G)×W 1−1/p,p(∂G) defined by Tu = (u|∂G, (∂u/∂ν)|∂G)
is onto. Therefore, one can find a function φ2 ∈ W 2,p(B \ D̄) such that

φ2|∂B = ψ|∂B ,
∂φ2

∂ν

∣∣∣
∂D

= mνk. (2.4)

Once φ2 is chosen, by the trace theorem again, one finds a function φ1 ∈ W 2,p(D)
such that

φ1|∂D = φ2|∂D,
∂φ1

∂ν

∣∣∣
∂D

= 0. (2.5)

Define the function φ on B by φ = ψ − φ1χD − φ2χB\D̄. Then φ ∈ W 1,p
0 (B) with

∇φ = ∇ψ − (∇φ1)χD − (∇φ2)χB\D̄. Let h = (mxk
+Δφ1)χD +(Δφ2)χB\D̄. Then,

h ∈ Lp(B). We now verify that the equation −Δφ = h is satisfied in the sense of
distributions on B. Given any ζ ∈ C∞

0 (B), we have
∫

B

∇φ · ∇ζ =
∫

B

∇ψ · ∇ζ −
∫

D

∇φ1 · ∇ζ −
∫

B\D̄

∇φ2 · ∇ζ

= I1 + I2 + I3.

By (2.3) and (2.4), the term I1 is given by

I1 =
∫

D

mxk
ζ dx −

∫
∂D

∂φ2

∂ν
ζ dS.
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By (2.5) and Green’s identity, one can write terms I2 and I3 as

I2 =
∫

D

Δφ1ζ dx, I3 =
∫

B\D̄

Δφ2ζ dx +
∫

∂D

∂φ2

∂ν
ζ dS.

Therefore,

I1 + I2 + I3 =
∫

D

(mxk
+ Δφ1)ζ dx +

∫
B\D̄

Δφ2ζ dx =
∫

B

hζ dx.

Hence,
∫

B
∇φ · ∇ζ dx =

∫
B

hζ dx holds for all ζ ∈ C∞
0 (B). This shows that φ ∈

W 1,p
0 (B) is the weak solution to the Dirichlet problem −Δφ = h in B, φ|∂B = 0.

Hence, by the standard elliptic estimate [10], φ ∈ W 2,p(B). Therefore, we obtain
that ψ|D = φ + φ1 ∈ W 2,p(D) and ψ|B\D̄ = φ + φ2 ∈ W 2,p(B \ D̄), as claimed
in (2.2). This completes the proof.

Now assume that M ∈ L∞(Ω; R3). In this case, ∇FM ∈ W 1,p(R3; M3×3) for all
p > 3/2. Moreover, one has the identity

ΔFM = ∇(div FM ) − curl(curlFM ) = −MχΩ a.e. R
3.

Define UM = (uM ,vM ) : R
3 → R

4, where

uM = − div FM , vM = curlFM . (2.6)

Then UM ∈ W 1,p(R3; R4) for all p > 3/2 and verifies the Helmholtz decompositions
for MχΩ :

MχΩ = ∇uM + curlvM a.e. R
3. (2.7)

Therefore, the non-local field HM defined in (1.2) is given by

HM = −∇uM ∈ Lp(R3; R3) ∀p > 3/2.

In what follows, we identify the gradient matrix ∇UM =
(∇uM

∇vM

)
∈ M

4×3.
Let δ : M

3×3 → R
3 be the linear map such that

δ(∇v(x)) = curlv(x) for all v ∈ C∞(R3; R3).

For ξ ∈ M
4×3, write ξ =

(
a
B

)
with a ∈ R

3, B ∈ M
3×3. The function UM defined

above always satisfies a linear partial differential inclusion on the exterior domain
Ωc:

∇UM (x) ∈ L =
{(

a

B

)
: a + δ(B) = 0

}
, x ∈ Ωc. (2.8)

Related to the sets E(Ω) and F(Ω) defined above, we introduce the following
subsets of M

4×3:

K =
{(

a

B

)
: a × δ(B) = 0, |a + δ(B)| = 1

}
, (2.9)

S =
{(

a

B

)
: |a + δ(B)|2 + 2|a × δ(B)| � 1

}
. (2.10)

One easily verifies the following characterization of sets E(Ω) and F(Ω).
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Lemma 2.2. Let M ∈ L∞(Ω; R3). Then, M ∈ E(Ω) (or F(Ω), respectively) if and
only if ∇UM (x) ∈ K (or S, respectively) a.e. on Ω.

Conversely, we can construct functions in E(Ω) using solutions to certain partial
differential inclusions.

Lemma 2.3. Let U = (u, v) ∈ W 1,2(R3; R4) satisfy the non-homogeneous partial
differential inclusion

∇U(x) ∈ K(x) ≡ χΩ(x)K + χΩc(x)L a.e. on R
3. (2.11)

Then the function M = ∇u + curlv defined on Ω belongs to E(Ω).

Proof. Since U satisfies inclusion (2.11), it easily follows that |M(x)| = 1 on Ω and
MχΩ = ∇u + curlv a.e. on R

3. Hence, HM = −∇u on R
3, so, again by (2.11),

M × HM = ∇u × curlv = 0 on Ω. This proves M ∈ E(Ω).

We remark that for the function M defined in the lemma it always holds that
uM = u, but vM may not be v because the inclusion (2.11) and function M remain
unchanged if we replace v by v + ∇ψ for any ψ ∈ W 2,2

0 (R3).
The set S defined above can be written as S = {ξ ∈ M

4×3 : f(ξ) � 1}, where f
is defined by

f(ξ) = |a + δ(B)|2 + 2|a × δ(B)|. (2.12)

It was proved in [21] that the function f is quasi-convex on M
4×3 in the sense of

Morrey [18] (see [6] for a systematic study). In fact, this can also be proved by
writing f(ξ) = f1(ξ) + f2(ξ), where

f1(ξ) = |a|2 + |δ(B)|2 + 2|a × δ(B)|, f2(ξ) = 2a · δ(B),

and noting that f1 is convex and f2 is null-Lagrangian; see [6].
The following result is a consequence of the quasi-convexity of the function f(ξ)

(see also [21, theorem 1.1]).

Lemma 2.4. Let Mj
∗
⇀ M in L∞(Ω; R3) as j → ∞. If

lim
j→∞

∫
Ω

(|1 − |Mj |2| + 2|Mj × HMj |) dx = 0, (2.13)

then M ∈ F(Ω). In particular, the weak* closure of E(Ω) is contained in F(Ω).

Proof. We present a slightly simpler proof than the one given in [21]. Let g(ξ) =
(f(ξ) − 1)+ and Φ(ξ) = |1 − |a + δ(B)|2| + 2|a × δ(B)| on M

4×3. Then g is quasi-
convex in the sense of Morrey. Note that Φ(ξ) � f(ξ) − 1, and hence Φ(ξ) � g(ξ).
Moreover, for all M ∈ L∞(Ω; R3), |1−|M |2|+2|M ×HM | = Φ(∇UM (x)). Hence,
condition (2.13) implies that

lim
j→∞

∫
Ω

g(∇UMj (x)) dx � lim
j→∞

∫
Ω

Φ(∇UMj (x)) dx = 0. (2.14)

From Mj
∗
⇀ M in L∞(Ω; R3), it follows that UMj

⇀ UM in W 1,p(R3; R4) for
all p > 3/2. Since g is quasi-convex and 0 � g(ξ) � C(|ξ|2 + 1), the functional

https://doi.org/10.1017/S0308210513001406 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001406


664 B. Yan

G(U) =
∫

Ω
g(∇U(x)) dx is weakly lower semi-continuous on W 1,2(Ω; R4) (see, for

example, [6]). Therefore, (2.14) implies that g(∇UM (x)) = 0, and hence ∇UM (x) ∈
S a.e. on Ω. By lemma 2.2, M ∈ F(Ω).

To study the interior inclusion ∇U(x) ∈ K on Ω, given any Q > 0, consider the
open bounded set

AQ = {ξ ∈ M
4×3 : |ξ| < Q, f(ξ) < 1}. (2.15)

The computations of [21, theorem 3.1] showed that for each ξ ∈ AQ there exist
two matrixes ξ± ∈ K with rank(ξ+ − ξ−) � 1 and a number t ∈ (0, 1) such that

ξ = λξ− + (1 − λ)ξ+, |ξ±| � C(Q + 1),

where C is a constant independent of Q and ξ. With this constant C, we define a
compact subset of K by

KQ = {ξ ∈ K : |ξ| � C(Q + 1)}. (2.16)

We have the following existence result; see [21, theorem 4.1] for the proof and
further references.

Lemma 2.5. For each ξ ∈ AQ, ε > 0 and bounded open set Ω, there exists W ∈
ξx + W 1,∞

0 (Ω; R4) such that ∇W (x) ∈ KQ a.e. Ω, ‖W − ξx‖L∞(Ω) < ε.

3. Existence of non-trivial weak* limits of E(Ω): proof of theorem 1.1

In this section, we aim to show that the set E(Ω) always has non-trivial weak*
limits. Once this is proved, the proof of theorem 1.1 will follow, as described in the
introduction.

We proceed with a general result concerning certain weak* limits of E(Ω). The
following result generalizes the similar result of [21, theorem 6.3] for the cases of
constants m and ellipsoidal domains D = Ω.

Theorem 3.1. Let D ⊆ Ω be a domain with smooth boundary and also let m ∈
W 1,p(D; R3) for some p > 3. If M = mχD ∈ F(Ω), then M is in the weak*
closure of E(Ω).

Proof. First of all, assume that we have proved that

∀0 < σ < 1, Mσ = σM is in the weak* closure of E(Ω). (3.1)

Since the weak* topology of the unit ball of L∞(Ω; R3) is metrizable, there exists a
metric ρ on the unit ball of L∞(Ω; R3) such that a sequence {Nj} with ‖Nj‖L∞ � 1
converges weakly* to N in L∞(Ω; R3) if and only if ρ(Nj , N) → 0. Hence, by (3.1),
for each 0 < σ < 1 there exists a sequence {Nσ

j } in E(Ω) such that ρ(Nσ
j ,Mσ) → 0

as j → ∞. Clearly, ρ(Mσ,M) → 0 as σ → 1−. Therefore, by a diagonalization
method, there exists a sequence {Mk} in E(Ω) such that ρ(Mk,M) → 0 as k → ∞;
this shows that M is in the weak* closure of E(Ω).

We now prove (3.1). Note that HMσ = σHM , and hence

|Mσ|2 + 2|Mσ × HMσ | = σ2(|M |2 + 2|M × HM |) � σ2 < 1.
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Therefore, replacing M by σM , we may assume that the given function M = mχD

satisfies, for some 0 < ε < 1,

|M |2 + 2|M × HM | � 1 − ε a.e. Ω. (3.2)

Since M = mχD and m ∈ W 1,p(D; R3) with p > 3, by lemma 2.1,

UM ∈ W 2,p(D; R4) ∩ W 2,p(B \ D̄; R4),

where B is any bounded smooth domain containing Ω̄. Therefore, by the Sobolev
embedding, UM ∈ C1,α(D̄±; R4), where D+ = D, D− = Ω \ D̄ and α = 1 − 3/p ∈
(0, 1). This implies that UM is a piecewise C1,α-function on Ω̄. Hence, ∇UM ∈
L∞(Ω). Assume that ‖∇UM‖L∞(Ω) < Q for some Q > 0. Consider the open set

A = {ξ ∈ M
4×3 : |ξ| < Q, f(ξ) < 1 − ε/2},

where f is defined by (2.12). By (3.2), it follows that f(∇UM (x)) � 1−ε < 1−ε/2
a.e. on Ω. Hence,

∇UM (x) ∈ A on D̄+ ∪ D̄−. (3.3)

Note that the open set A is contained in the open set AQ defined by (2.15). Since
UM ∈ C1(D̄±; R4), from condition (3.3) and using an approximation result for C1

functions (see [7, corollary 10.15]), it follows that there exist sequences of functions
{A±

k } in W 1,∞(D±; R4), with A±
k being piecewise affine on D±, satisfying the

following conditions: for all k = 1, 2, . . . ,

A±
k = UM on ∂D±,

∇A±
k (x) ∈ A a.e. x ∈ D±,

‖A±
k − UM‖W 1,∞(D±;R4) < 1/k.

⎫⎪⎬
⎪⎭ (3.4)

Write A±
k =

∑∞
j=1(ξ

±
k,jx + b±

k,j)χΩ±
k,j

, where {Ω±
k,j} are disjoint open sets covering

D± up to a null set, ξ±
k,j ∈ A ⊂ AQ, and b±

k,j ∈ R
4 are constants. Since ξ±

k,j ∈ AQ, by
lemma 2.5, there exists W±

k,j ∈ (ξ±
k,jx + b±

k,j) + W 1,∞
0 (Ω±

k,j ; R
4) with the property

∇W±
k,j(x) ∈ KQ a.e. Ω±

k,j , ‖W±
k,j − (ξ±

k,jx + b±
k,j)‖L∞(Ω±

k,j)
< 1/k. (3.5)

Finally, define the function Uk ∈ W 1,2(R3; R4) by

Uk =
∞∑

j=1

W+
k,jχΩ+

k,j
+

∞∑
j=1

W−
k,jχΩ−

k,j
+ UMχΩc .

Let Uk = (uk,vk) and define Mk(x) = ∇uk(x) + curlvk(x) a.e. x ∈ Ω. By (3.5),
∇Uk(x) ∈ KQ ⊂ K a.e. on Ω and ∇Uk(x) = ∇UM (x) ∈ L a.e. on Ωc. Hence,
by lemma 2.3, Mk ∈ E(Ω). Moreover, by (3.4) and (3.5), one has Uk

∗
⇀ UM in

W 1,∞(Ω; R4). Hence, Mk
∗
⇀ M in L∞(Ω; R3). This proves that M is in the weak*

closure of E(Ω).

Corollary 3.2. Let D ⊆ Ω be a domain with smooth boundary and also let m ∈
W 1,p(D; R3) for some p > 3. Then σmχD is in the weak* closure of E(Ω) for all
sufficiently small constants σ.
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Proof. Let M = mχD. From the proof of the theorem, it follows that ∇UM ∈
L∞(Ω), and hence HM ∈ L∞(Ω). As in the proof of the theorem, for Mσ =
σM = σmχD,

|Mσ|2 + 2|Mσ × HMσ
| = σ2(|M |2 + 2|M × HM |) � σ2L,

where L > 0 is a constant depending on the L∞(Ω)-norms of m and HM . There-
fore, Mσ = σmχD ∈ F(Ω) as long as |σ| � L−1/2. Hence, by the previous theorem,
Mσ = σmχD is in the weak* closure of E(Ω) for all |σ| � L−1/2.

The following result establishes the existence of non-trivial weak* limits of E(Ω)
and thus provides a proof of theorem 1.1.

Theorem 3.3. Let D be any non-spherical ellipsoid in Ω. Then there is a constant
vector m ∈ R

3 such that M = mχD is in the weak* closure of E(Ω) but M×HM �=
0 on D.

Proof. Let m ∈ R
3 and M = mχD. Then the Newton potential F Ω

M = FM of M
on Ω defined by (2.1) is the same as the Newton potential FD

m of m on D. Hence, the
magnetostatic field HΩ

M = HM defined by (1.2) is the same as the corresponding
field HD

m defined by (1.2) with M , Ω replaced by m, D. From the well-known
results in potential theory for ellipsoid domains (see, for example, [19, 21] and the
references therein),

HM (x) = HD
m(x) = −Λm on D,

where Λ is a symmetric positive-definite matrix, called the demagnetization matrix
for the ellipsoid D. Moreover, Λ = λI, with I the identity matrix in M

3×3, if
and only if D is a ball. Therefore, since D is not a ball, Λ has a non-eigenvector
m̄ ∈ R

3 \{0}. Hence, m̄×Λm̄ �= 0. By corollary 3.2, the function M = σm̄χD will
be a weak* limit of E(Ω) if σ �= 0 is a sufficiently small constant. Such a weak* limit
also satisfies M × HM = −σ2(m̄ × Λm̄) �= 0 on D. This completes the proof.

4. Asymptotic behaviours for (1.1): proof of theorem 1.2

In what follows, we assume that M0 ∈ L∞(Ω; R3) satisfies |M0(x)| = 1 on Ω. Let
M(x, t) be the solution to (1.1) with initial datum M0. The ω-limit sets ω(M0)
and ω∗(M0) are defined as in the introduction.

We start with the following useful lemma.

Lemma 4.1. For all sequences tn, sn → ∞ such that 0 < sn < tn and {tn − sn} is
bounded, it follows that

lim
n→∞

‖M(·, tn) − M(·, sn)‖L2(Ω) = 0. (4.1)

Proof. By (1.1), it follows that |Mt| = |γ|(1+α2)1/2|M×HM |. So Hölder’s inequal-
ity yields that, for all 0 < s < t,

‖M(·, t) − M(·, s)‖2
L2(Ω) � (t − s)

∫ t

s

∫
Ω

γ2(1 + α2)|M × HM |2 dxdτ. (4.2)

Furthermore, (d/dt)(|M |2) = 2M · Mt = 0, and hence |M |2 is time-independent.
Since |M0(x)| = 1 on Ω, it follows that |M(x, t)| = 1 on x ∈ Ω for all t � 0.
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Let ϕ(t) = I(M(·, t)), where I is the magnetostatic energy defined by (1.4).
Then ϕ(t) = − 1

2

∫
Ω

M(x, t) · HM(x,t) dx, and hence

ϕ′(t) = −1
2

∫
Ω

(Mt · HM + M · HMt
) dx = −

∫
Ω

Mt · HM dx, (4.3)

where we have used the fact that (HM )t = HMt
and∫

Ω

P · HN dx =
∫

Ω

N · HP dx ∀P ,N ∈ L2(Ω; R3),

which follows readily from the definition (1.2) of HM . Therefore, by (1.1) and (4.3),
using the identity M × (M × HM ) = (M · HM )M − |M |2HM , it follows that

ϕ′(t) =
∫

Ω

αγ

|M | |M × HM |2 dx =
∫

Ω

αγ|M × HM |2 dx.

From this, we have that ϕ is continuous in t > 0 and

ϕ(t) = ϕ(0) + αγ

∫ t

0

∫
Ω

|M × HM |2 dxds ∀t > 0. (4.4)

Since the constant αγ < 0, ϕ is bounded and non-increasing on (0, ∞). Hence,
limt→∞ ϕ(t) exists and is finite. Let β = |γ|(1 + α2)/α > 0. From (4.2) and (4.4),
one obtains that, for all 0 < s < t,

‖M(·, t) − M(·, s)‖2
L2(Ω) � β(t − s)|ϕ(t) − ϕ(s)|, (4.5)

from which (4.1) follows. Furthermore, by (4.5), M(·, t) is continuous on t > 0 in
L2(Ω) and so is M × HM . Hence, by (4.4) we also have that ϕ is differentiable on
t > 0.

Finally, we are able to complete the proof of theorem 1.2.

Proof of theorem 1.2. Since |M(x, t)| = 1 on x ∈ Ω for all t > 0, it easily follows
that ω∗(M0) �= ∅.

We now prove ω∗(M0) ⊆ F(Ω). Let M̃ ∈ ω∗(M0) and assume that M(·, tj)
∗
⇀

M̃ in L∞(Ω; R3), where tj → ∞. Let ϕ(t) = I(M(·, t)) be the function defined
above. Since ϕ is differentiable on (tj − 1, tj), let sj ∈ (tj − 1, tj) be such that
ϕ′(sj) = ϕ(tj) − ϕ(tj − 1) → 0. Note that

ϕ′(sj) =
∫

Ω

αγ|Mj × HMj |2 dx with Mj = M(·, sj).

Since αγ < 0, it follows that Mj × HMj
→ 0 in L2(Ω), so (2.13) is satisfied.

By (4.1), Mj
∗
⇀ M̃ in L∞(Ω; R3), so, by lemma 2.4, M̃ ∈ F(Ω), which proves

ω∗(M0) ⊆ F(Ω).
If, in addition, |M̃(x)| = 1 on Ω, then ‖M(·, tj)‖L2(Ω) = ‖M̃‖L2(Ω) = |Ω|1/2,

and hence M(·, tj) → M̃ in L2(Ω; R3), so M̃ ∈ ω(M0), which establishes that
ω∗(M0) ∩ E(Ω) ⊆ ω(M0).

To prove the reverse inclusion ω(M0) ⊆ ω∗(M0)∩E(Ω), since, clearly, ω(M0) ⊆
ω∗(M0), it suffices to show ω(M0) ⊆ E(Ω). This can be proved in a similar way to
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above. For example, let M̄ ∈ ω(M0) and M(·, tj) → M̄ in L2(Ω), where tj → ∞.
As above, let sj ∈ (tj − 1, tj) be such that ϕ′(sj) = ϕ(tj) − ϕ(tj − 1) → 0 with
Mj × HMj

→ 0 in L2(Ω), where Mj = M(·, sj). By (4.1), Mj → M̄ in L2(Ω),
and hence HMj

→ HM̄ in L2(R3; R3). Therefore, M̄ × HM̄ = 0 on Ω. Also,
from the strong convergence, |M̄(x)| = 1 on Ω. Hence, M̄ ∈ E(Ω), establishing
ω(M0) ⊆ E(Ω).

This completes the proof of theorem 1.2.
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