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Abstract. We study double ergodic averages with respect to two general commuting
transformations and establish a sharp quantitative result on their convergence in the norm.
We approach the problem via real harmonic analysis, using recently developed methods for
bounding multilinear singular integrals with certain entangled structure. A byproduct of
our proof is a bound for a two-dimensional bilinear square function related to the so-called
triangular Hilbert transform.

1. Introduction
Many problems in ergodic theory are related to the convergence of certain averages along
the orbits with respect to one or several transformations. Let (X, F , µ) be a σ -finite
measure space and let S : X→ X be a measure-preserving transformation, i.e. for any E ∈
F we have S−1 E ∈ F and µ(S−1 E)= µ(E). The most classical result in this direction is
von Neumann’s mean ergodic theorem [33], which guarantees convergence of the single
ergodic averages

Mn f (x) :=
1
n

n−1∑
i=0

f (Si x) (1.1)

in the L2(X) norm for any f ∈ L2(X). Classical proofs of this fact do not provide any
information on the rate of this convergence. With the aid of the spectral theorem, Jones,
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Ostrovskii, and Rosenblatt [20] have observed the quantitative variant of this result in the
form of the norm-variation estimate

m∑
j=1

‖Mn j f − Mn j−1 f ‖2L2(X) ≤ C ‖ f ‖2L2(X) (1.2)

for any positive integers n0 < n1 < · · ·< nm and with an absolute finite constant C . The
work of Bourgain [8] prequels (1.2) and his pointwise variation estimates imply the same
inequality albeit with the power 2 replaced by an arbitrary % > 2. Calderón’s transference
principle, a version of which we discuss in §5, reduces (1.2) to studying operators in
harmonic analysis that are well understood by now.

Multiple ergodic averages were motivated by the work of Furstenberg and others
[16–18] connecting ergodic theory with arithmetic combinatorics. In this paper we
are concerned with the bilinear case. Let S, T : X→ X be two measure-µ-preserving
transformations such that ST = T S. For any two complex-valued measurable functions
f , g on X and any positive integer n, one can define the double ergodic average Mn( f, g)
as a function on X given by

Mn( f, g)(x) :=
1
n

n−1∑
i=0

f (Si x)g(T i x) (1.3)

for each x ∈ X . It is a classical result by Conze and Lesigne [10] that for any two functions
f, g ∈ L∞(X) on a probability space the sequence of averages (Mn( f, g))∞n=1 converges
in the L2 norm. Standard density arguments combined with log-convexity of Lp norms
extend this result to functions f ∈ Lp1(X), g ∈ Lp2(X), with convergence in the Lp norm,
as long as the exponents satisfy p <∞ and 1/p ≥ 1/p1 + 1/p2. However, no explicitly
quantitative variant of this fact for completely general commuting transformations S, T
exists in the literature and this is the topic of the present paper.

Our main result is the following estimate for the averages (1.3).

THEOREM 1. There is a finite constant C such that for any σ -finite measure space
(X, F , µ), any two commuting measure-preserving transformations S, T on that space,
and all functions f, g ∈ L4(X), we have

m∑
j=1

‖Mn j ( f, g)− Mn j−1( f, g)‖2L2(X) ≤ C ‖ f ‖2L4(X)‖g‖
2
L4(X) (1.4)

for each choice of positive integers m and n0 < n1 < · · ·< nm .

Such quantitative estimate for multiple ergodic averages was stated as an open problem
by Avigad and Rute in the closing section of [3], after the question had already circulated
in the community for a while. A result analogous to Theorem 1 was previously established
by the second author in [24], but only for a simplified model, where the actions of Z are
replaced by actions of infinite powers Aω of a fixed finite abelian group A, and which
avoided challenges we address in this paper.

Unlike for (1.2), Calderón’s transference of (1.4) leads to a non-classical problem in
harmonic analysis, whose solution is the main point of our paper. We do not know of a
martingale approach to (1.4), even for particular cases of indices n j . This is in contrast
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with the powerful martingale techniques for handling the single ergodic averages (1.1);
compare with [3, 8, 21].

The techniques of this paper do not immediately generalize to the multiple variants
of (1.3), i.e. to the analogous ergodic averages with respect to several commuting
transformations. However, such averages are also known to converge in the norm, as
was first shown by Tao [36], with a different proof given by Austin [2]. More generally,
norm convergence of multiple averages was established by Walsh [39] in the case when
the transformations generate a nilpotent group.

Almost everywhere (a.e.) convergence of the averages (1.3) is a longstanding
open problem. In the single average case (1.1), almost everywhere convergence is
Birkhoff’s classical pointwise ergodic theorem [6], with quantitative estimates discussed
in Bourgain [8] and Jones et al [19]. For two transformations S, T the task simplifies
if T is assumed to be a power of S, for instance S is invertible and T = S−1. It was
successfully studied by the analytic approach and an almost everywhere convergence
result was established by Bourgain [9]. Subsequently, a pointwise variation estimate was
established by Do, Oberlin and Palsson [12]. The result from [12] also implies a variant
of our Theorem 1 with exponent % > 2 in the special case T = S−1. For further partial
progress on a.e. convergence for general commuting transformations, we refer to the
preprint by Donoso and Sun [13] and references therein. In [13] the a.e. convergence
is verified under the additional assumption that (X, F , µ, S, T ) forms a so-called distal
system, i.e. a certain iterated topological extension of the trivial system.

Recall that the number of ε-jumps or ε-fluctuations of a sequence (an)
∞

n=1 in a Banach
space B, in our case L2(X), is defined as the supremum of the set of integers J for which
there exist indices

m1 < n1 ≤ m2 < n2 ≤ · · · ≤ m J < n J

such that ‖an j − am j ‖B ≥ ε for j = 1, 2, . . . , J . A direct consequence of our main
theorem is that for all functions f, g of norm one in L4(X) the number of ε-jumps of the
averages (1.3) is at most Cε−2. In particular, the number of ε-jumps is finite for each ε > 0,
which implies norm convergence, i.e. it reproves the result by Conze and Lesigne [10]. It
follows further that for any ε > 0 the sequence (Mn( f, g))∞n=1 can be covered by at most
Cε−2

+ 1 balls of radius ε in the Hilbert space L2(X). Such a result is sometimes called a
uniform bound for the metric entropy. It was shown by Bourgain [7] that a.e. convergence
of certain sequences of functions, including the single ergodic averages (1.1), necessarily
implies the uniform bound on their metric entropy. In that light Theorem 1 can also be
thought of as a partial progress towards the conjecture on a.e. convergence of (1.3), even
though the bilinear analogue of [7] does not appear in the literature.

Our main inequality may be reformulated as

‖Mn( f, g)‖V%n (N,Lp(X)) ≤ C1/2
‖ f ‖Lp1 (X)‖g‖Lp2 (X),

with % = p = 2 and p1 = p2 = 4, where for 1≤ % <∞ the %-variation of a Banach-space-
valued function a : U→ B with U ⊆ R is defined as

‖a‖V%(U ,B) := ‖a(t)‖V%t (U ,B) := sup
m∈N∪{0}

t0,t1,...,tm∈U
t0<t1<···<tm

( m∑
j=1

‖a(t j )− a(t j−1)‖
%

B

)1/%

.
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If (X, F , µ) is a probability space, then for any f, g ∈ L∞(X), 1≤ p <∞, and % ≥
max{p, 2}, we have

‖Mn( f, g)‖V%n (N,Lp(X)) ≤ C p,% ‖ f ‖L∞(X)‖g‖L∞(X)

for some finite constant C p,% depending only on p and %. In order to see this, by the
monotonicity of Lp norms on a probability space in the case p < 2, we can use

‖Mn j ( f, g)− Mn j−1( f, g)‖Lp(X) ≤ ‖Mn j ( f, g)− Mn j−1( f, g)‖L2(X)

and by their log-convexity for p > 2 we have

‖Mn j ( f, g)− Mn j−1( f, g)‖Lp(X)

≤ (2‖ f ‖L∞(X)‖g‖L∞(X))1−2/p
‖Mn j ( f, g)− Mn j−1( f, g)‖2/p

L2(X).

We then apply (1.4) and for that purpose in the latter case we need 2%/p ≥ 2.
The variation exponent 2 in Theorem 1 is the best possible one. To see this, it suffices to

consider the special case | f | = |g| and S = T and notice that this special case is tantamount
to estimate (1.2), where the exponent 2 is well known to be sharp. The range of exponents
p1, p2, p, % in the above discussion is likely not exhausted as the analogous work [24] in
the simplified setting suggests.

This paper, while self contained, builds on a technique for bounding multilinear and
multiscale singular integral operators gradually developed by the authors in [14, 15, 22–
26]. We consider the present application to quantitative norm convergence for double
ergodic averages a milestone in these efforts. A notable difference from the almost
everywhere result by Do, Oberlin, and Palsson [12] is that we do not use wave-packet
analysis or time–frequency analysis, as these tools are not well adapted to our problem.

The technique we use resembles energy methods in partial differential equations. The
main ingredients are integration by parts, positivity arguments, and the Cauchy–Schwarz
inequality. The idea is to set up a partial integration scheme to produce positive terms,
similar to energies, and then use upper bounds on a sum of positive terms to control each
term individually. Unlike for most energy arguments in partial differential equations, here
the partial integration happens in the scale parameter, which is typical for the singular
integral theory. The structural complexity of the problem requires us to iterate these steps,
with the Cauchy–Schwarz inequality used in between to reduce the complexity of the
expressions.

Let us elaborate more on the harmonic analysis part of the paper. For a one-dimensional
integrable function ϕ and two-dimensional functions F, G ∈ L4(R2), for t > 0, and for
(x, y) ∈ R2, we introduce the bilinear averages

Aϕt (F, G)(x, y) :=
∫
R

F(x + s, y)G(x, y + s) t−1ϕ(t−1s) ds.

Theorem 1 will be a consequence of the following bilinear estimate, where ϕ = 1[0,1) is
the characteristic function of the interval [0, 1).

THEOREM 2. There exists a finite constant C such that for any F, G ∈ L4(R2) we have∥∥A
1[0,1)
t (F, G)

∥∥
V2

t ((0,∞),L2(R2))
≤ C ‖F‖L4(R2)‖G‖L4(R2).
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By invariance of the left-hand side under rescaling in t and by superposition, the
theorem implies an inequality independent of the choice of positive numbers t0 < · · ·< tm :

m∑
j=1

‖Aϕt j
(F, G)− Aϕt j−1

(F, G)‖2L2(R2)
≤ C2

ϕ ‖F‖
2
L4(R2)

‖G‖2L4(R2)
, (1.5)

where
ϕ(s)=

∫
(−∞,0)

1[α,0)(s)
dµ(α)
−α

+

∫
(0,∞)

1[0,α)(s)
dµ(α)
α

for some finite complex Radon measure µ on (−∞, 0) ∪ (0,∞). In particular, we get
(1.5) for compactly supported functions ϕ of bounded variation and the constant Cϕ is
then a universal multiple of the total mass of the measure µ. Moreover, by choosing
dµ(α)=−αϕ′(α) dα, we can recover an arbitrary Schwartz function ϕ and in that case
the constant Cϕ in (1.5) is a multiple of

∫
R |sϕ

′(s)| ds.
In the proof of Theorem 2 we gradually consider various classes of functions ϕ and

carefully control Cϕ for these classes. Indeed, we begin by showing that (1.5) holds for
an arbitrary Schwartz function. However, we will actually need to apply the theorem with
ϕ = 1[0,1), and this case is more subtle and requires more precise decay conditions in the
auxiliary estimates. Prior to our paper, inequality (1.5) was not known even for a single
non-zero function ϕ.

Analytic reformulation of the aforementioned open problem on the a.e. convergence
of the averages (1.3) would require a strengthening of Theorem 2 involving pointwise
variation of the bilinear averages on R2. Even though our techniques are not sufficient for
controlling the latter quantity in its full generality, we can still establish an estimate for the
so-called ‘short pointwise variation’. The following corollary is not really a consequence
of Theorem 2, but rather a byproduct of Lemma 9 below and the discussion in §2.3.
We formulate it here to emphasize that our short variation argument does not distinguish
between pointwise and norm variations.

COROLLARY 3. For any Schwartz function ϕ there exists a finite constant Cϕ such that
for any F, G ∈ L4(R2) we have( ∞∑

i=−∞

∥∥‖Aϕt (F, G)(x, y)‖V2
t ([2i ,2i+1],C)

∥∥2
L2
(x,y)(R2)

)1/2

≤ Cϕ‖F‖L4(R2)‖G‖L4(R2).

While deriving Theorem 1 from Theorem 2, the following discrete estimate will appear
along the way. It is also worth stating as a separate corollary due to its elegant formulation.
For any two double sequences F̃, G̃ : Z2

→ R, for n ∈ N, and for (k, l) ∈ Z2, we define
the discrete averages Ãn by

Ãn(F̃, G̃)(k, l) :=
1
n

n−1∑
i=0

F̃(k + i, l) G̃(k, l + i). (1.6)

COROLLARY 4. There exists a finite constant C such that for any F̃, G̃ ∈ `4(Z2) we have∥∥ Ãn(F̃, G̃)
∥∥

V2
n(N,`2(Z2))

≤ C ‖F̃‖`4(Z2)‖G̃‖`4(Z2).
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Inequality (1.5), even for Schwartz functions ϕ, is already new in the special case t j =

2 j . In this case we set ψ(s) := ϕ(s)− 2ϕ(2s) and define the square function

S(F, G)(x, y) :=
(∑

j∈Z

∣∣∣∣ ∫
R

F(x + s, y)G(x, y + s)2− jψ(2− j s) ds
∣∣∣∣2)1/2

.

A simple limiting argument as m→∞ in (1.5) yields the following corollary.

COROLLARY 5. For any F, G ∈ L4(R2) we have

‖S(F, G)‖L2(R2) ≤ Cψ‖F‖L4(R2)‖G‖L4(R2),

with a finite constant Cψ depending on ψ alone.

Indeed, square function estimates of this type are a stepping stone towards the proof of
Theorem 2; for example compare with Proposition 7 stated in §2.

In contrast with Corollary 5, no bounds are known for the corresponding bilinear
singular integral

T (F, G)(x, y) := p.v.
∫
R

F(x + s, y)G(x, y + s)
ds
s
,

which was introduced in [11] and later named the triangular Hilbert transform. Only
partial results in this direction exist; see [27] for a particular case when one of the functions
takes a special form. Moreover, Zorin-Kranich showed in [41], building on the approach
of Tao [37], that the truncations to m consecutive scales,

Tm(F, G)(x, y) :=
m∑

j=1

∫
R

F(x + s, y)G(x, y + s)2− jψ(2− j s) ds,

have norms from Lp1(R2)× Lp2(R2) to Lp(R2) that grow like o(m) as m→∞, for
any fixed choice of exponents 1< p, p1, p2 <∞ such that 1/p = 1/p1 + 1/p2. Using
Corollary 5 and the Cauchy–Schwarz inequality, we improve this growth to O(m1/2) for
p = 2, p1 = p2 = 4, and then the interpolation with the trivial estimates coming from
Hölder’s inequality gives the growth O(m1−ε) for general exponents p, p1, p2 as before
and for some ε > 0 depending on them.

Furthermore, for given f, g ∈ L4(R), let us take

F(x, y) := f (x − y)R−1/4ϑ(R−1 y), G(x, y) := g(x − y)R−1/4ϑ(R−1x),

where R > 0 and ϑ is a smooth compactly supported non-negative function on R that is
constantly 1 on the interval [−1, 1]. By substituting z = x − y, observing that∫ R

−R

∫ R

−R

∣∣∣∣ ∫
R

F(x + s, y)G(x, y + s)2− jψ(2− j s) ds
∣∣∣∣2 dx dy

≥

∫ R

−R

∣∣∣∣ ∫
R

f (z + s)g(z − s)2− jψ(2− j s) ds
∣∣∣∣2 dz,

applying Corollary 5, and letting R→∞, we recover the L4(R)× L4(R)→ L2(R)
estimate for the one-dimensional bilinear square function

S̃( f, g)(x) :=
(∑

j∈Z

∣∣∣∣ ∫
R

f (x + s)g(x − s)2− jψ(2− j s) ds
∣∣∣∣2)1/2

.
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The only previously known proof of an Lp bound for S̃ employs wave-packet analysis,
i.e. it uses Khintchine’s inequality to reduce to an average of a family of bilinear singular
integrals parametrized by random signs and then recognizes these operators in the proof of
boundedness of the bilinear Hilbert transform [29, 30].

Somewhat related, there is an open problem stated in the introductory section of the
paper by Bernicot [4] to show Lp bounds for the bilinear square function

S�( f, g)(x) :=
(∑
ω∈�

∣∣∣∣ ∫
R

f (x + s)g(x − s)q1ω(s) ds
∣∣∣∣2)1/2

for an arbitrary collection of disjoint intervals �, which would be a bilinear variant of the
well-known result by Rubio de Francia [35]. Here q1ω denotes the inverse Fourier transform
of 1ω. Bernicot [4] has verified this conjecture for a particular case of equidistant intervals
of the same length, such as �= {[ j, j + 1) : j ∈ Z}. The problem becomes simpler if
we replace 1ω with a smooth bump function adapted to ω, as was already observed by
Lacey [28] in the case of the intervals [ j, j + 1); see also [5, 32, 34]. The above bilinear
square function S̃ is associated with smooth truncations of the lacunary intervals �=
{[2 j , 2 j+1) : j ∈ Z}.

This paper is organized as follows: In §2 we begin the proof of Theorem 2 by splitting
the jumps into the ‘long ones’ (i.e. those corresponding to the scales t j that are dyadic
numbers 2k , k ∈ Z) discussed in Lemma 8 and the ‘short ones’ (i.e. those corresponding
to t j from a fixed interval [2k, 2k+1

]) discussed in Lemmas 9 and 10. Propositions 6 and 7
are the key results here. Their proofs are postponed to §§3 and 4 and these two sections
contain the main novelties of our approach. Finally, the somewhat standard transition from
Theorem 2 to Corollary 4 and then to Theorem 1 is presented in detail in §5.

2. Averages on R2, long and short variations
In this section we split Theorem 2 into long and short variation estimates and show how to
deduce these from Propositions 6 and 7 below.

For two non-negative quantities A and B we write A . B if there exists a constant C > 0
such that A ≤ C B. When we want to emphasize dependence of the constant on some
parameters p, q, . . . , we denote them in the subscript, i.e. we write.p,q,.... Occasionally
we may omit writing down parameters that are understood. We write A ∼ B if both A . B
and B . A are satisfied.

For a function ϕ on Rd and t > 0, we set ϕt (x) := t−dϕ(t−1x). Consequently, Aϕt =
Aϕt

1 . By S(Rd), we denote the class of all Schwartz functions on Rd , while the word
‘smooth’ will always mean C∞. The Fourier transform of an integrable function ϕ on Rd

is defined as
ϕ̂(ξ) :=

∫
Rd
ϕ(x)e−2π i x ·ξ dx,

so the Fourier inversion formula takes the form

ϕ(x)=
∫
Rd
ϕ̂(ξ)e2π i x ·ξ dξ,

whenever ϕ, ϕ̂ ∈ L1(Rd). Derivatives of a single-variable function ϕ will be denoted ϕ′,
ϕ′′, etc or Dϕ, D2ϕ, etc, while we write ∂nϕ for the partial derivatives. Let us remark that
we reserve the notation ϕ(n) for the upper indices.
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Now we can formulate the two propositions that will be the key ingredients in the proof
of Theorem 2. Their own proofs will be postponed to the subsequent sections.

PROPOSITION 6. Let λ > 1 and let ϑ, ϕ ∈ S(R) be such that

|ϑ(s)| ≤ (1+ |s|)−λ, |ϕ(s)| ≤ (1+ |s|)−λ

for all s ∈ R. Moreover, assume that ϑ̂ is supported in [−2−4, 2−4
], while ϕ̂ is supported

in [−1, 1] and constant on [−2−2, 2−2
]. Then for any m ∈ N, k0, . . . , km ∈ Z, and for

any real-valued F, G ∈ S(R2) normalized by

‖F‖L4(R2) = ‖G‖L4(R2) = 1, (2.1)

we have ∣∣∣∣ m∑
j=1

∫
R4

F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)

× ϑ2k j (u)(ϕ2k j − ϕ2k j−1 )(v) dx dy du dv
∣∣∣∣.λ 1. (2.2)

PROPOSITION 7. Let λ > 1 and let 8 ∈ S(R2) be such that

|8(u, v)| ≤ (1+ |u + v|)−λ(1+ |u − v|)−2λ (2.3)

for all u, v ∈ R. Moreover, assume that 8̂ is supported in ([−2,−2−5
] ∪ [2−5, 2])2. Then

for any real-valued F, G ∈ S(R2) normalized as in (2.1) and for any N ∈ N we have∣∣∣∣ N∑
j=−N

∫
R4

F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)82 j (u, v) dx dy du dv
∣∣∣∣.λ 1.

(2.4)

Note that for ν = 3λ, the estimate

|8(u, v)| ≤ (1+ |u|)−λ/2(1+ |v|)−λ/2(1+ |u − v|)−ν (2.5)

implies (2.3) within an absolute constant. Moreover, (2.3) implies (2.5) with ν = λ,
modulo a constant. We will pass between the two formulations in the subsequent sections.

We also remark that the bump functions in (2.2) do not satisfy any estimates of the type
(2.3) within an absolute constant, since there is no control on k j − k j−1. However, the
form in Proposition 6 has better cancellation properties than the one in Proposition 7. The
support of its multiplier symbol does not intersect the antidiagonal η =−ξ , which is the
key property we need in the proof.

In the rest of this section we concentrate on deducing Theorem 2 from these
propositions. Throughout the text, χ will denote a fixed smooth frequency cutoff. More
precisely, we fix a function χ such that its Fourier transform χ̂ is smooth, even, non-
negative, supported in [−1, 1], constantly equal to 1 on [−2−1, 2−1

], and monotone on
[2−1, 1]. Moreover, we can achieve that χ̂ is the square of some non-negative smooth
function. Any constants are allowed to depend on χ and this dependence will not be
mentioned explicitly.

https://doi.org/10.1017/etds.2017.48 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.48


666 P. Durcik et al

2.1. Long variation. The following lemma is derived from Propositions 6 and 7.

LEMMA 8. Let φ ∈ S(R) and assume that for some λ > 1 and constants C0, C1 one has

|φ ∗ χ24(s)| ≤ C0(1+ |s|)−λ, |φ(s)| ≤ C1(1+ |s|)−λ (2.6)

for all s ∈ R, and that for some λ > 1 and a constant C2 one has

|φ(u)φ(v)| ≤ C2(1+ |u + v|)−λ(1+ |u − v|)−2λ (2.7)

for all u, v ∈ R. Moreover, assume that φ̂ is supported in [−1, 1] and constant on
[−2−2, 2−2

]. If F, G ∈ L4(R2) are normalized by (2.1), then

‖Aφ2k (F, G)‖V2
k (Z,L2(R2)) .λ C1/2

0 C1/2
1 + C1/2

2 . (2.8)

Observe that if φ̂ vanishes on [−2−2, 2−2
], then the first estimate in (2.6) holds with

C0 = 0. In this case Lemma 8 yields

‖Aφ2k (F, G)‖V2
k (Z,L2(R2)) .λ C1/2

2 . (2.9)

Proof of Lemma 8. Standard limiting arguments reduce the estimate (2.8) for each fixed
choice of the integers k0 < · · ·< km to the case of Schwartz functions F and G. By
splitting into real and imaginary parts and using Minkowski’s inequality, we may assume
that F , G, and φ take only real values.

Fix integers k0 < k1 < · · ·< km and denote

V (F, G) :=
m∑

j=1

∥∥Aφ
2k j
(F, G)− Aφ

2k j−1
(F, G)

∥∥2
L2(R2)

.

Expanding the L2 norm gives

V (F, G)=
m∑

j=1

∫
R4

F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)

× (φ2k j − φ2k j−1 )(u)(φ2k j − φ2k j−1 )(v) dx dy du dv.

We have the identity

(φ2k j − φ2k j−1 )(u)(φ2k j − φ2k j−1 )(v)=
(
φ2k j−1 (u)φ2k j−1 (v)− φ2k j (u)φ2k j (v)

)
+ φ2k j (u)(φ2k j − φ2k j−1 )(v)

+ (φ2k j − φ2k j−1 )(u)φ2k j (v). (2.10)

Summing (2.10) over 1≤ j ≤ m, the first term on the right-hand side telescopes into

φ2k0 (u)φ2k0 (v)− φ2km (u)φ2km (v).

Applying Hölder’s inequality in (x, y) for the exponents (4, 4, 4, 4) and using that (2.7)
implies

∫
R2 |φ(u)φ(v)| du dv .λ C2, we obtain∣∣∣∣ ∫

R4
F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)

× (φ2k0 (u)φ2k0 (v)− φ2km (u)φ2km (v)) dx dy du dv
∣∣∣∣.λ C2‖F‖2L4(R2)

‖G‖2L4(R2)
= C2.

(2.11)
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By symmetry of the second and the third terms on the right-hand side of (2.10), it then
suffices to bound

3(F, G) :=
m∑

j=1

∫
R4

F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)

× φ2k j (u)(φ2k j − φ2k j−1 )(v) dx dy du dv.

Now we localize the multiplier symbol associated with this form. Let ω be defined
by ω := χ2−1 − χ24 . Note that ω̂ is supported in [−2,−2−5

] ∪ [2−5, 2] and that χ̂24 + ω̂

equals 1 on [−1, 1], and in particular also on the support of φ̂. Then we can write

φ = φ ∗ χ24 + φ ∗ ω.

Using this decomposition, we split 3=3χ24 +3ω, where, for a function ρ, the form 3ρ

is defined by

3ρ(F, G) :=
m∑

j=1

∫
R4

F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)

× (φ ∗ ρ)2k j (u)(φ2k j − φ2k j−1 )(v) dx dy du dv.

By the assumptions (2.6) on φ, Proposition 6 gives

|3χ24 (F, G)|.λ C0C1. (2.12)

Rewrite 3ω by separating the functions in u and v as

3ω(F, G)=
m∑

j=1

∫
R2

( ∫
R

F(x + u, y)G(x, y + u)(φ ∗ ω)2k j (u) du
)

×

( ∫
R

F(x + v, y)G(x, y + v)(φ2k j − φ2k j−1 )(v) dv
)

dx dy.

Applying the Cauchy–Schwarz inequality in x , y, and j gives

|3ω(F, G)| ≤ 3̃ω(F, G)1/2V (F, G)1/2, (2.13)

where for a function ρ we have set

3̃ρ(F, G) :=
m∑

j=1

∫
R2

( ∫
R

F(x + u, y)G(x, y + u)(φ ∗ ρ)2k j (u) du
)2

dx dy.

Note that, up to increasing the quantity 3̃ω(F, G) by adding non-negative terms, we may
assume that k j = j and that the summation is taken over all integers j from a sufficiently
large interval [−N , N ]. Expanding the square in 3̃ω(F, G), we can write this form as

m∑
j=1

∫
R4

F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)

× (φ ∗ ω)2k j (u)(φ ∗ ω)2k j (v) dx dy du dv.

By the assumption (2.7), Proposition 7 implies that

3̃ω(F, G).λ C2. (2.14)

Inequalities (2.11), (2.12), (2.13), and (2.14) together give a bootstrapping estimate

V (F, G).λ C2 + C0C1 + C1/2
2 V (F, G)1/2.

This shows that V (F, G).λ C0C1 + C2 and hence proves (2.8). �
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2.2. Short variation. The following two closely related lemmas are derived from
Proposition 7.

LEMMA 9. Let φ ∈ S(R) and assume that for some λ > 1 and a constant C3 one has∣∣∣∣ ∫ 2

1
t∂t (φt (u))t∂t (φt (v))

dt
t

∣∣∣∣≤ C3(1+ |u + v|)−λ(1+ |u − v|)−2λ (2.15)

for all u, v ∈ R. Moreover, assume that φ̂ is supported in [−1, 1] and constant on
[−2−4, 2−4

]. If F, G ∈ L4(R2) are normalized by (2.1), then for each N ∈ N one has( N∑
i=−N

∥∥‖Aφt (F, G)(x, y)‖V2
t ([2i ,2i+1],C)

∥∥2
L2
(x,y)(R2)

)1/2

.λ C1/2
3 , (2.16)

with the implicit constant independent of N .

LEMMA 10. Let φ, F, G be as in the previous lemma. If in addition for some λ > 1 and a
constant C2 the function φ satisfies (2.7) for all u, v ∈ R and if φ̂ vanishes on [−2−4, 2−4

],
then for each N ∈ N we have the estimate( N∑

i=−N

∥∥‖Aφt (F, G)(x, y)‖V2
t ([2i ,2i+1],C)

∥∥2
L2
(x,y)(R2)

)1/2

.λ C1/4
2 C1/4

3 , (2.17)

with the implicit constant independent of N .

Observe that Lemmas 9 and 10 actually establish pointwise short variation estimates.
Since we clearly have

‖Aφt (F, G)‖V2
t ([2i ,2i+1],L2(R2)) ≤

∥∥‖Aφt (F, G)(x, y)‖V2
t ([2i ,2i+1],C)

∥∥
L2
(x,y)(R2)

,

these in turn also imply the corresponding norm-variation estimates.

Proof of Lemma 9. As in the proof of Lemma 8, we may assume that F , G ∈ S(R2) and
that F , G, and φ are real valued.

Denote ψ(s) := (sφ(s))′, so that one has ψt (s)=−t∂t (φt (s)). By Lemma 13 (in the
Appendix A) applied with a(t)= Aφt (F, G)(x, y) for each fixed (x, y), we have

sup
2i≤t0<···<tm≤2i+1

m∑
j=1

|Aφt j
(F, G)(x, y)− Aφt j−1

(F, G)(x, y)|2

≤

∫ 2

1

(
Aψ2i t (F, G)(x, y)

)2 dt
t
.

Indeed, this follows from Aψt (F, G)=−t∂t (A
φ
t (F, G)) and by rescaling in t . Integrating

in x, y and summing over −N ≤ i ≤ N yields

N∑
i=−N

∥∥‖Aφt (F, G)(x, y)‖V2
t ([2i ,2i+1],C)

∥∥2
L2
(x,y)(R2)

≤

N∑
i=−N

∫
R2

∫ 2

1

(
Aψ2i t (F, G)(x, y)

)2 dt
t

dx dy.
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Expanding the square on the right-hand side, in order to finish the proof of Lemma 9 we
need to bound

N∑
i=−N

∫
R4

F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)

×

( ∫ 2

1
ψ2i t (u)ψ2i t (v)

dt
t

)
dx dy du dv. (2.18)

Observe that ψ̂(ξ)=−ξ φ̂′(ξ) is supported in [−1,−2−4
] ∪ [2−4, 1], so

8(u, v) :=
∫ 2

1
ψt (u)ψt (v)

dt
t

has its frequency support in ([−1,−2−5
] ∪ [2−5, 1])2, and recall that we assume (2.15).

Proposition 7 implies boundedness of (2.18) within an absolute constant times C3, which
yields (2.16). �

Proof of Lemma 10. Let all the notation and the assumptions be as in the proof of the
previous lemma. By Lemma 13 and the Cauchy–Schwarz inequality in x, y, and i , we
deduce that

N∑
i=−N

∥∥‖Aφt (F, G)(x, y)‖V2
t ([2i ,2i+1],C)

∥∥2
L2
(x,y)(R2)

.
∏

ρ∈{φ,ψ}

( N∑
i=−N

∫
R2

∫ 2

1

(
Aρ2i t (F, G)(x, y)

)2 dt
t

dx dy
)1/2

.

By the support assumptions on φ, (2.7), and (2.15), Proposition 7 applied twice gives that
the right-hand side is no greater than an absolute constant times C1/2

2 C1/2
3 , which in turn

implies (2.17). �

Finally, we are ready to deduce Theorem 2 from these lemmas. The first step is to show
the estimate (1.5) for a general Schwartz function ϕ.

2.3. Deriving Theorem 2 for a Schwartz function ϕ. Let F, G ∈ S(R2) be normalized
by (2.1). If ϕ ∈ S(R) is such that ϕ̂ is supported in [−1, 1] and constant on [−2−2, 2−2

],
then Lemmas 8 and 9 combined with the standard separation into long and short jumps
imply that ∥∥Aϕt (F, G)

∥∥
V2

t ((0,∞),L2(R2))
.λ C1/2

0 C1/2
1 + C1/2

2 + C1/2
3 .ϕ 1. (2.19)

The details can be found for instance in [12] or [21]. Note that the constants Ci depend
only on some Schwartz norm of ϕ of a sufficiently large degree. This gives (1.5) in the
particular case.

Now we show (2.19) for a general Schwartz function ϕ. Take ϕ ∈ S(R) and denote
θ := χ − χ2. Observe that θ̂ is supported in [−1,−2−2

] ∪ [2−2, 1] and that∑
k∈Z

θ̂ (2kξ)= 1 (2.20)
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for all 0 6= ξ ∈ R. Then we can write

ϕ = cχ + (ϕ − cχ)= cχ +
∑
k∈Z
(ϕ − cχ) ∗ θ2k , (2.21)

where the number c is chosen such that ϕ̂(0)− cχ̂(0)= 0, i.e. c = ϕ̂(0). Note that the
series in (2.21) converges pointwise (in any summation order) since ϕ − cχ and θ are
Schwartz and θ has mean zero.

We proceed by bounding norm variation of bilinear averages corresponding to the
individual terms in the expansion (2.21). For the part associated with cχ , boundedness
follows from (2.19) since χ is Schwartz and χ̂ is constant near the origin:

‖Acχ
t (F, G)‖V2

t ((0,∞),L2(R2)) . 1. (2.22)

For the part associated with (ϕ − cχ) ∗ θ2k , we show that the function ϑ = ϑ (k) defined
by

ϑ := (ϕ − cχ)2−k ∗ θ

satisfies the estimate ∥∥Aϑt (F, G)
∥∥

V2
t ((0,∞),L2(R2))

. 2−|k| (2.23)

for any k ∈ Z. By scaling invariance of the left-hand side of (2.23) the same estimate
remains to hold for ϑ2k = (ϕ − cχ) ∗ θ2k , i.e. for each term in the series expansion (2.21).
Then, from (2.21), (2.22), (2.23), Minkowski’s inequality, and Fatou’s lemma, we obtain

‖Aϕt (F, G)‖V2
t ((0,∞),L2(R2)) . 1+

∑
k∈Z

2−|k| . 1,

which finishes the proof.
In order to verify (2.23), observe that ϑ̂ is supported in [−1,−2−2

] ∪ [2−2, 1], so in
particular it is constant on [−2−2, 2−2

]. Since ϕ̂ − cχ̂ vanishes at zero, we have |ϕ̂(ξ)−
cχ̂(ξ)|.ϕ min{|ξ |, |ξ |−1

} and, hence, by ϑ̂(ξ)= (ϕ̂ − cχ̂)(2−kξ)θ̂(ξ) and the product
rule, ∥∥|ξ |αDβ ϑ̂(ξ)

∥∥
L∞ξ (R)

.α,β 2−|k|

for any α, β ≥ 0. Therefore, 2|k|ϑ satisfies (2.6), (2.7), and (2.15) with the constants
independent of k. The estimate (2.23) then follows from (2.19) applied with ϕ = 2|k|ϑ
and by homogeneity.

Let us remark that the same arguments also establish Corollary 3. We simply use
Lemma 9, this time to get a short pointwise variation estimate in the same particular case
of ϕ, and then perform decomposition (2.21) of a general Schwartz function.

2.4. Deriving Theorem 2 for ϕ = 1[0,1). Once again we can work with Schwartz
functions F and G only. Let F, G ∈ S(R2) be normalized by (2.1) and let χ, θ be as
in the previous subsection. We have

1[0,1) = 1[0,1) ∗ χ +
−1∑

k=−∞

1[0,1) ∗ θ2k . (2.24)
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By the Plancherel identity, the series in (2.24) converges in the L2 norm. However, the
same series also converges a.e., which follows from the weak L2 boundedness of the
maximally truncated convolution-type singular integrals. Alternatively, we can pass to
an a.e. convergent subsequence of partial sums, as taking the limit over a subsequence is
enough for our intended application.

By the discussion in §2.3, we obtain∥∥A
1[0,1)∗χ
t (F, G)

∥∥
V2

t ((0,∞),L2(R2))
. 1. (2.25)

Now we concentrate on the individual terms in (2.24) for negative values of k. By θ̃ , we
denote the primitive of θ , i.e. θ̃ (s) :=

∫ s
−∞

θ(u) du. Observe that, since θ has integral
zero, its primitive θ̃ decays rapidly. The arguments from the previous subsection give

‖Aθ̃t (F, G)‖V2
t ((0,∞),L2(R2)) . 1. (2.26)

By scaling invariance of the left-hand side, (2.26) also holds with θ̃ replaced by θ̃2k . We
will show that for each k < 0 and for the function ϑ = ϑ (k) defined by

ϑ(s) := 2k θ̃ (s − 2−k)

we have the variational inequality

‖Aϑt (F, G)‖V2
t ((0,∞),L2(R2)) . 2k/8. (2.27)

Once this is shown, by scaling invariance of the left-hand side, the estimate (2.27) remains
to hold with ϑ replaced by ϑ2k . Then we need to observe that

1[0,1) ∗ θ2k = 2k θ̃2k − ϑ2k .

From (2.24), (2.25), (2.26), (2.27), Minkowski’s inequality, and Fatou’s lemma, we finally
obtain

‖A
1[0,1)
t (F, G)‖V2

t ((0,∞),L2(R2)) . 1+
∑

k≤−1

(2k
+ 2k/8). 1.

In order to see (2.27), note that the Fourier support of ϑ is contained in [−1,−2−2
] ∪

[2−2, 1]. For any λ > 0, ν > 0, and k < 0, we claim that

|ϑ(u)ϑ(v)|.λ,ν 2k(2−λ)(1+ |u|)−λ/2(1+ |v|)−λ/2(1+ |u − v|)−ν, (2.28)∣∣∣∣ ∫ 2

1
t∂t (ϑt (u))t∂t (ϑt (v))

dt
t

∣∣∣∣.λ,ν 2k(1−λ)(1+ |u|)−λ/2(1+ |v|)−λ/2(1+ |u − v|)−ν .

(2.29)

We have already commented on how bounds of this form with ν = 3λ transform into
bounds (2.7) and (2.15). Once these two estimates are verified, the separation into short
and long jumps together with (2.9) and Lemma 10, which require (2.28) and (2.29) to hold
with λ > 1, give ∥∥Aϑt (F, G)

∥∥
V2

t ((0,∞),L2(R2))
.λ C1/2

2 + C1/4
2 C1/4

3

with C2 ∼ 2k(2−λ) and C3 ∼ 2k(1−λ). Choosing λ= 5/4, we obtain (2.27).
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Proof of (2.28). By the rapid decay of θ̃ , we have

|θ̃ (u − 2−k)θ̃(v − 2−k)| .λ,ν (1+ |u − 2−k
|)−λ/2−ν(1+ |v − 2−k

|)−λ/2−ν

≤ (1+ |u − 2−k
|)−λ/2(1+ |v − 2−k

|)−λ/2(1+ |u − v|)−ν,

where we used |u − v| ≤ |u − 2−k
| + |v − 2−k

|. From

(1+ |u − 2−k
|)−λ/2 ≤ (1+ |u|)−λ/2(1+ 2−k)λ/2 .λ (1+ |u|)−λ/22−kλ/2,

we then conclude (2.28). �

Proof of (2.29). Observe that

−t∂t (ϑt (s))= ϑt (s)+ (sϑ ′(s))t .

Thus, t∂t (ϑt (u))t∂t (ϑt (v)) consist of four terms. We will show (2.29) corresponding to
(sϑ ′(s))t , that is,∣∣∣∣ ∫ 2

1
(uϑ ′(u))t (vϑ ′(v))t

dt
t

∣∣∣∣.λ,ν 2k(1−λ)(1+ |u|)−λ/2(1+ |v|)−λ/2(1+ |u − v|)−ν .

(2.30)
The analogous inequalities corresponding to the other terms are treated in the same manner.
To see (2.30), we first observe that

(sϑ ′(s))t = (s2kθ(s − 2−k))t = st−12kθt (s − t2−k)

and bound |θt (s)|.λ,ν (1+ |s|)−λ/2−ν−1 using t ∈ [1, 2]. Then we estimate∣∣∣∣ ∫ 2

1
uθt (u − t2−k)vθt (v − t2−k)

dt
t3

∣∣∣∣
.λ,ν |uv|

∫ 2

1

(
(1+ |u − t2−k

|)(1+ |v − t2−k
|)
)−λ/2−ν−1 dt .

By the triangle inequality |u − v| ≤ |u − t2−k
| + |v − t2−k

| and the Cauchy–Schwarz
inequality in t , this is bounded by

(1+ |u − v|)−ν |u|
( ∫ 2

1
(1+ |u − t2−k

|)−λ−2 dt
)1/2

|v|

( ∫ 2

1
(1+ |v − t2−k

|)−λ−2 dt
)1/2

.

Now, if |u| ≤ 2−k+2, then we estimate

(1+ |u|)λ/2|u|
( ∫ 2

1
(1+ |u − t2−k

|)−λ−2 dt
)1/2

≤ (1+ |u|)λ/2+1
( ∫

∞

−∞

(1+ |u − t2−k
|)−λ−2 dt

)1/2

.λ 2k/2(1+ |u|)λ/2+1 .λ 2k(−1−λ)/2,

where the second inequality follows by integrating in t . If |u| ≥ 2−k+2, then we have
|u − t2−k

| ≥ |u|/2 and hence

(1+ |u|)λ/2|u|
( ∫ 2

1
(1+ |u − t2−k

|)−λ−2 dt
)1/2

.λ (1+ |u|)λ/2+1(1+ |u|)−λ/2−1
= 1≤ 2k(−1−λ)/2.

The same estimates hold for the terms with v. After multiplication by 22k and division by
(1+ |u|)λ/2(1+ |v|)λ/2, this shows (2.30). �
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3. Proof of Proposition 6
Let us rewrite the form (2.2) from Proposition 6 in a more convenient way. Denote ψ :=
ϕ − ϕ2. Then we have the telescoping identity

ϕ2k j−1 − ϕ2k j =

k j−1∑
l=k j−1

ψ2l . (3.1)

We insert (3.1) into (2.2) and substitute

x ′ = x + y + u, y′ = x + y + v,

F̃(y, x ′) := F(x ′ − y, y), G̃(x, x ′) := G(x, x ′ − x).

Note that we still have ‖F̃‖L4(R2) = ‖G̃‖L4(R2) = 1. Omitting the tildes for notational
simplicity, it then suffices to show the inequality∣∣∣∣ m∑

j=1

k j−1∑
l=k j−1

∫
R4

F(y, x ′)G(x, x ′)F(y, y′)G(x, y′)

× ϑ2k j (x
′
− x − y)ψ2l (y′ − x − y) dx dy dx ′ dy′

∣∣∣∣. 1.

First, we would like to write the kernel as a superposition of elementary tensors in the
four variables x, y, x ′, y′. Using the Fourier inversion formula, we write

ϑ2k j (x
′
− x − y)ψ2l (y′ − x − y)=

∫
R2
ϑ̂(2k j ξ)ψ̂(2lη)e2π iξ(x ′−x−y)e2π iη(y′−x−y) dξ dη.

Since ϕ̂ is supported in [−1, 1] and constant on [−2−2, 2−2
], the function ψ̂ is supported

in [−1,−2−3
] ∪ [2−3, 1]. If 2k j ξ ∈ supp(ϑ̂) and 2lη ∈ supp(ψ̂), then

2l(ξ + η)= 2l−k j 2k j ξ + 2lη ∈ [−2,−2−4
] ∪ [2−4, 2].

Let χ be as before, which guarantees that there exists a smooth non-negative even function
ω̂, being the Fourier transform of some ω ∈ S(R), satisfying

ω̂(ξ)2 = χ̂(2−2ξ)− χ̂(24ξ).

The function ω̂ is supported in [−22,−2−5
] ∪ [2−5, 22

] and equal to 1 on the set
[−2,−2−4

] ∪ [2−4, 2]. For each (ξ, η) ∈ R2, we have

ϑ̂(2k j ξ)ψ̂(2lη)= ϑ̂(2k j ξ)ψ̂(2lη)ω̂(2l(ξ + η))2 (3.2)

and hence

ϑ2k j (x
′
− x − y)ψ2l (y′ − x − y)

=

∫
R2
ϑ̂(2k j ξ)e2π i x ′ξ ψ̂(2lη)e2π iy′ηω̂(2l(−ξ − η))

× e2π i x(−ξ−η)ω̂(2l(−ξ − η))e2π iy(−ξ−η) dξ dη.

The last expression can be viewed as the integral of the Fourier transform of the function

H(x1, x2, x3, x4) := ϑ2k j (x1 + x ′)ψ2l (x2 + y′)ω2l (x3 + x)ω2l (x4 + y)
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over the hyperplane
{(ξ, η,−ξ − η,−ξ − η) : ξ, η ∈ R}.

It equals the integral of H itself over the perpendicular hyperplane

{(p + q, p + q, p, q) : p, q ∈ R}.

Therefore, ϑ2k j (x ′ − x − y)ψ2l (y′ − x − y) can be written as∫
R2
ϑ2k j (x

′
− p − q)ψ2l (y′ − p − q)ω2l (x − p)ω2l (y − q) dp dq

and the object we need to bound is

m∑
j=1

k j−1∑
l=k j−1

∫
R6

F(y, x ′)G(x, x ′)F(y, y′)G(x, y′)ϑ2k j (x
′
− p − q)

× ψ2l (y′ − p − q)ω2l (x − p)ω2l (y − q) dx dy dx ′ dy′ dp dq. (3.3)

In order to estimate this form, we adapt the arguments from [24] to the Euclidean
setting. First we apply the Cauchy–Schwarz inequality, which will reduce the complexity
of the form. To preserve the mean zero property of ω, we rewrite (3.3) as

m∑
j=1

k j−1∑
l=k j−1

∫
R4

( ∫
R

F(y, x ′)F(y, y′)ω2l (y − q) dy
)

×

( ∫
R

G(x, x ′)G(x, y′)ω2l (x − p) dx
)

× ϑ2k j (x
′
− p − q)ψ2l (y′ − p − q) dx ′ dy′ dp dq.

Taking absolute values, using the triangle inequality, and applying the Cauchy–Schwarz
inequality in the variables x ′, y′, p, q , and t , we bound this expression by

0(F)1/20(G)1/2, (3.4)

where we have denoted

0(F) :=
m∑

j=1

k j−1∑
l=k j−1

∫
R4

( ∫
R

F(y, x ′)F(y, y′)ω2l (y − q) dy
)2

× |ϑ |2k j (x
′
− p)|ψ |2l (y′ − p) dx ′ dy′ dp dq.

Here the two appearances of the function ω have been separated, which allowed us to
change variables p→ p − q in the last expression. Integrating in p, using l ≤ k j and the
normalization of ϑ and ϕ, we get∫

R
|ϑ |2k j (x

′
− p)|ψ |2l (y′ − p) dp .λ 2−k j (1+ 2−k j |x ′ − y′|)−λ. (3.5)

This fact can be shown along the lines of [38, Lemma 2.1]. For completeness and to keep
track of the constants, we now give a detailed proof.

If |x ′ − y′| ≤ 2k j+1/(λ− 1), then we can bound the left-hand side of (3.5) by

‖ϑ2k j ‖L∞(R)‖ψ2l‖L1(R) .λ ‖ϑ‖L∞(R)‖ψ‖L1(R)2
−k j (1+ 2−k j |x ′ − y′|)−λ.
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If |x ′ − y′| ≥ 2k j+1/(λ− 1), then let us denote by c the mid point of x ′ and y′. Without
loss of generality, we may assume that x ′ < c < y′. We split the integral as

∫
R =∫ c

−∞
+
∫
∞

c and estimate it by

‖ϑ‖L1(R)2
−l(1+ 2−l

|y′ − c|)−λ + 2−k j (1+ 2−k j |x ′ − c|)−λ‖ψ‖L1(R). (3.6)

Since |x ′ − c| = |y′ − c| = |x ′ − y′|/2, l ≤ k j ,

2−l−1
|x ′ − y′| ≥ 2−k j−1

|x ′ − y′| ≥ (λ− 1)−1,

and the function s 7→ s(1+ s)−λ is decreasing on the interval [(λ− 1)−1,∞), the
expression (3.6) is at most

(‖ϑ‖L1(R) + ‖ψ‖L1(R))2
−k j (1+ 2−k j−1

|x ′ − y′|)−λ.

It remains to note that ‖ϑ‖L∞(R) ≤ 1, ‖ϑ‖L1(R) .λ 1, and ‖ψ‖L1(R) .λ 1, which shows
the claim.

Our inequality did not preserve the tensor structure in the variables x ′ and y′, which will
be needed later in (3.13). For that purpose, we further estimate (3.5) by a superposition of
Gaussians as was done in [14]. Denote

g(s) := e−πs2
and σ(s) :=

∫
∞

1
gα(s)α−λ dα, (3.7)

where gα(s)= α−1g(α−1s), as before. Observe that σ(0)= λ−1 and the change of
variables β = |s|/α gives

lim
|s|→∞

|s|λσ(s)=
∫
∞

0
βλ−1e−πβ

2
dβ ∈ (0,∞),

so σ(s) is comparable to |s|−λ for large |s|. Therefore, using

(1+ |s|)−λ .λ σ(s), (3.8)

we can dominate the right-hand side of (3.5) up to a positive constant by σ2k j (x ′ − y′).
This in turn controls

0(F).λ

∫
∞

1

( m∑
j=1

k j−1∑
l=k j−1

∫
R5

F(y, x ′)F(x, x ′)F(y, y′)F(x, y′)

× g
α2k j (x

′
− y′)ω2l (x − q)ω2l (y − q) dx dy dx ′ dy′ dq

)
α−λ dα. (3.9)

Integrating in q, summing in l, and using ω̂(ξ)2 =
∑3

i=−2(χ̂(2
iξ)− χ̂(2i+1ξ)), we obtain

k j−1∑
l=k j−1

∫
R
ω2l (x − q)ω2l (y − q) dq =

3∑
i=−2

(χ2k j−1+i − χ2k j+i )(x − y).

Inserting this into (3.9), the integrand in α can be rewritten as
3∑

i=−2

m∑
j=1

∫
R4

F(y, x ′)F(x, x ′)F(y, y′)F(x, y′)

× g
α2k j (x

′
− y′)(χ2k j−1+i − χ2k j+i )(x − y) dx dy dx ′ dy′.
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It suffices to prove an estimate uniform in α for each summand corresponding to a fixed i
and then integrate in α and sum over −2≤ i ≤ 3. For two functions ρ̃, ρ ∈ S(R), define

2ρ̃,ρ(F) :=
m∑

j=1

∫
R4

F(y, x ′)F(x, x ′)F(y, y′)F(x, y′)

× ρ̃2k j (x
′
− y′)(ρ2k j−1 − ρ2k j )(x − y) dx dy dx ′ dy′.

The needed estimate is a direct consequence of the following lemma applied with ρ = χ2i .

LEMMA 11. For any real-valued F ∈ S(R2), real-valued ρ ∈ S(R), and α ∈ (0,∞), we
have

2gα,ρ(F).ρ ‖F‖
4
L4(R2)

, (3.10)

where g(s)= e−πs2
.

Proof of Lemma 11. Once again we normalize F as in (2.1). The first step is an application
of the telescoping identity. If we denote

2̃ρ̃,ρ(F) :=
m∑

j=1

∫
R4

F(y, x ′)F(x, x ′)F(y, y′)F(x, y′)

× (ρ̃2k j−1 − ρ̃2k j )(x
′
− y′)ρ2k j−1 (x − y) dx dy dx ′ dy′

and for t > 0 define the single-scale quantity

4ρ̃,ρ,t (F) :=
∫
R4

F(y, x ′)F(x, x ′)F(y, y′)F(x, y′)ρ̃t (x ′ − y′)ρt (x − y) dx dy dx ′ dy′,

then we have

2ρ̃,ρ(F)+ 2̃ρ̃,ρ(F)=4ρ̃,ρ,2k0 (F)−4ρ̃,ρ,2km (F), (3.11)

4ρ̃,ρ,t (F)≤ ‖ρ̃‖L1(R)‖ρ‖L1(R). (3.12)

The identity (3.11) follows from summation by parts: all intermediate terms cancel. To
see (3.12), we substitute u = x ′ − y′, v = x − y, rewrite 4ρ̃,ρ,t (F) as∫
R2

(∫
R2

F(x − v, x ′)F(x, x ′)F(x − v, x ′ − u)F(x, x ′ − u) dx dx ′
)
ρ̃t (u)ρt (v) du dv,

and apply Hölder’s inequality in (x, x ′) for the exponents (4, 4, 4, 4).
In order to show (3.10), we first use (3.11), which gives

2gα,ρ(F)=4gα,ρ,2k0 (F)−4gα,ρ,2km (F)− 2̃gα,ρ(F)

and hence applying (3.12) we get

|2gα,ρ(F)| ≤ |4gα,ρ,2k0 (F)| + |4gα,ρ,2km (F)| + |2̃gα,ρ(F)|.ρ 1+
∣∣2̃gα,ρ(F)

∣∣.
Therefore, it remains to estimate |2̃gα,ρ(F)|.

By the fundamental theorem of calculus, we rewrite 2̃gα,ρ(F) as

2̃gα,ρ(F)=
m∑

j=1

∫ 2k j

2k j−1

∫
R4

F(y, x ′)F(x, x ′)F(y, y′)F(x, y′)

× (−t∂t (gαt (x ′ − y′)))ρ2k j−1 (x − y) dx dy dx ′ dy′
dt
t
.
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For h(s) :=
√

2/πg′(
√

2s), we have −t∂t (ĝαt (ξ))= |ĥαt (ξ)|
2 and hence

−t∂t (gαt (x ′ − y′))=
∫
R

hαt (x ′ − p)hαt (y′ − p) dp. (3.13)

By this identity and the symmetry of 2̃gα,ρ , which results from four repetitions of the
function F , we can express 2̃gα,ρ(F) as

m∑
j=1

∫ 2k j

2k j−1

∫
R3

( ∫
R

F(y, x ′)F(x, x ′)hαt (x ′ − p) dx ′
)2

ρ2k j−1 (x − y) dx dy dp
dt
t
.

(3.14)
Observe that the square in (3.14) is automatically non-negative, but the function ρ is not
non-negative in general. To obtain positivity and an elementary tensor structure in x and y
as in (3.13), we dominate |ρ|. σ by applying (3.8) as before, where σ is the superposition
of the Gaussians (3.7). This implies that∣∣2̃gα,ρ(F)

∣∣.ρ ∫ ∞
1

2̃gα,gβ (F)β
−λ dβ.

We apply the telescoping identity (3.11) once more to get

2̃gα,gβ (F)=4gα,gβ ,2k0 (F)−4gα,gβ ,2km (F)−2gα,gβ (F).

Now that we have reduced to Gaussian functions only, we have non-negativity of both
2gα,gβ (F) and 2̃gα,gβ (F). This can be seen by the fundamental theorem of calculus and
the equality (3.13), which allow us to write 2gα,gβ (F) and 2̃gα,gβ (F) in the same way as
we did with the form in (3.14). Therefore, by (3.12) once again,

2̃gα,gβ (F)≤4gα,gβ ,2k0 (F)−4gα,gβ ,2km (F)≤ 2‖g‖2L1(R) . 1.

This finishes the proof of Lemma 11. �

4. Proof of Proposition 7
We would like to decompose the kernel of the form appearing on the left-hand side of
(2.4) into elementary tensors analogous to those from §3. Then we could bound this form
by the Cauchy–Schwarz inequality and iterations of the telescoping identity and positivity
arguments. However, the multiplier support now intersects the axis η =−ξ , so a desired
decomposition is not readily available.

To overcome this issue, the idea is to transfer to the multiplier with the symbol (4.8)
below, which is homogeneous, i.e. constant on the rays through the origin, symmetric
with respect to η =−ξ , and smooth away from that axis. Since the form with a constant
multiplier is trivially bounded, we can then subtract the constant on η =−ξ from that
homogeneous multiplier. This leaves us with a function vanishing on η =−ξ up to a
certain positive order. By a bi-parameter lacunary decomposition with respect to the axes
η = ξ and η =−ξ we reduce to the consideration of certain angular regions to which the
arguments analogous to those from §3 may be applied. Due to the vanishing along η =−ξ ,
we are able to sum over all such regions.

We start with a lemma which considers multiplier symbols supported away from the
axis η =−ξ . It will be applied several times in the proof of Proposition 7.
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LEMMA 12. Let λ > 1, t > 0 and let 8 ∈ S(R2) be such that

|8(u, v)| ≤ (1+ |u + v|)−λt (1+ t |u − v|)−λ

for all u, v ∈ R. Moreover, assume that 2−2
≤ |ξ + η| ≤ 1 for all (ξ, η) in the support of

8̂. Then for any real-valued F, G ∈ S(R2) normalized as in (2.1) and for any N ∈ N we
have (2.4).

Proof of Lemma 12. Our aim is to reduce Lemma 12 to Lemma 11 from the previous
section. Let χ and ω be the functions as in §3. Then ω̂(ξ + η) equals 1 on {ξ + η :
(ξ, η) ∈ supp(8̂)}, so for each (ξ, η) ∈ R2 we can write

8̂(ξ, η)= 8̂(ξ, η)ω̂(ξ + η)2,

similarly as in (3.2). Choosing the same substitution as in §3 and performing the analogous
steps from (3.2) to (3.4) with k j and l being replaced by j , it remains to estimate an
analogous quantity to 0(F),

N∑
j=−N

∫
R6

F(y, x ′)F(x, x ′)F(y, y′)F(x, y′)

× |8|2 j (x ′ − p, y′ − p)ω2 j (x − q)ω2 j (y − q) dx dy dx ′ dy′ dp dq.

Using the decay assumption on 8, we obtain∫
R
|8|(x ′ − p, y′ − p) dp ≤

∫
R

t (1+ t |x ′ − y′|)−λ(1+ |x ′ + y′ − 2p|)−λ dp

.λ t (1+ t |x ′ − y′|)−λ.

Estimating the right-hand side as in (3.8) by the superposition σ defined in (3.7) and
proceeding as we did with (3.9), it then suffices to bound

N∑
j=−N

∫
R4

F(y, x ′)F(x, x ′)F(y, y′)F(x, y′)gαt2 j (x ′ − y′)

× (χ2 j+i − χ2 j+i+1)(x − y) dx dy dx ′ dy′

uniformly in α, t ∈ (0,∞) and for each fixed −2≤ i ≤ 3. Such an estimate follows from
the particular case of Lemma 11 when ρ = χ2i+1 and k j = j . �

Now we are ready to proceed with the proof of Proposition 7. We can assume that
1< λ < 2, as the claim only becomes stronger as λ decreases to 1. Recall that the form
from Proposition 7 is associated with the kernel

K (u, v) :=
N∑

j=−N

82 j (u, v).

Let θ be χ − χ2, so that θ̂ partitions the unity as in (2.20). Then
∫
∞

0 θ̂ (tτ)(dt/t) is the
same constant for all 0 6= τ ∈ R and up to that constant K̂ (ξ, η) equals∫

∞

0
K̂ (ξ, η)θ̂(t |(ξ, η)|)

dt
t
=

∫
∞

0
K̂ (t)(t (ξ, η))

dt
t

(4.1)
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for all (ξ, η) 6= (0, 0), where K (t) is defined via its Fourier transform as

K̂ (t)(ξ, η) := K̂ (t−1(ξ, η))θ̂(|(ξ, η)|).

Observe that the support of K̂ (t)(ξ, η) lies in the intersection of the annulus 2−2
≤

|(ξ, η)| ≤ 1 with the quadruple cone 2−6
≤ |η/ξ | ≤ 26, which in turn is contained in the

Cartesian product
([−1,−2−9

] ∪ [2−9, 1])2. (4.2)

Let ϑ be such that ϑ̂ is a smooth non-negative even function supported in [−2,−2−10
] ∪

[2−10, 2] and such that (ξ, η) 7→ ϑ̂(ξ)ϑ̂(η) equals 1 on the set (4.2) and thus also on the
support of each K̂ (t). Then

K̂ (t)(ξ, η)= K̂ (t)(ξ, η)ϑ̂(ξ)ϑ̂(η),

which implies that

K (t)(u, v)=
∫
R2

K (t)(a, b)ϑ(u − a)ϑ(v − b) da db. (4.3)

Using (4.1) and (4.3), the form from Proposition 7 can be rewritten as∫
R2

∫
∞

0
K (t)(a, b)

∫
R4

F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)

× ϑt (u − ta)ϑt (v − tb) dx dy du dv
dt
t

da db. (4.4)

Observe that for κ ∈ S(R2) defined by κ̂(ξ, η)= θ̂ (|(ξ, η)|) we have

K (t)(a, b)=
N∑

j=−N

∫
R2
82 j /t (a − x, b − y)κ(x, y) dx dy

and by the support conditions on 8̂ and κ̂ the sum is taken only over−N ≤ j ≤ N that also
satisfy 2−7 < 2 j/t < 27. Thus, there are at most 14 non-zero summands for each fixed t
and 2 j/t ∼ 1 holds for each of them. From the assumption (2.3) transformed into (2.5)
and the rapid decay of κ , it follows that∣∣K (t)(a, b)

∣∣.λ ∫
R2
(1+ |a − x |)−λ/2(1+ |b − y|)−λ/2

× (1+ |a − x − b + y|)−λ|κ(x, y)| dx dy

.λ (1+ |a|)−λ/2(1+ |b|)−λ/2(1+ |a − b|)−λ.

Taking absolute values in (4.4) and denoting

I (x, y, a, t) :=
∫
R

F(x + s, y)G(x, y + s)ϑt (s − ta) ds,

we can now bound (4.4) by∫
R2
(1+ |a|)−λ/2(1+ |b|)−λ/2(1+ |a − b|)−λ

×

∫
∞

0

∫
R2
|I (x, y, a, t)I (x, y, b, t)| dx dy

dt
t

da db.
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Next, we apply the Cauchy–Schwarz inequality in x, y and t , which gives∫
R2
(1+ |a − b|)−λ(1+ |a|)−λ/2

( ∫
∞

0

∫
R2

I (x, y, a, t)2 dx dy
dt
t

)1/2

× (1+ |b|)−λ/2
( ∫

∞

0

∫
R2

I (x, y, b, t)2 dx dy
dt
t

)1/2

da db. (4.5)

If we denote

J (a) := (1+ |a|)−λ/2
( ∫

∞

0

∫
R2

I (x, y, a, t)2 dx dy
dt
t

)1/2

,

the expression (4.5) can be rewritten as∫
R

( ∫
R
(1+ |a − b|)−λ J (a) da

)
J (b) db.

Applying the Cauchy–Schwarz inequality in b, we obtain( ∫
R

( ∫
R
(1+ |a − b|)−λ J (a) da

)2

db
)1/2( ∫

R
J (b)2 db

)1/2

. (4.6)

Note that the integral in a is the convolution of J with s 7→ (1+ |s|)−λ. By Young’s
convolution inequality from L1(R)× L2(R) to L2(R), the expression (4.6) is bounded by
a constant multiple of

‖J‖2L2(R) ≤

∫
R
(1+ a2)−λ/2

∫
∞

0

∫
R2

I (x, y, a, t)2 dx dy
dt
t

da.

Expanding I , this equals∫
R
(1+ a2)−λ/2

∫
∞

0

∫
R4

F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)

× ϑt (u − ta)ϑt (v − ta) dx dy du dv
dt
t

da. (4.7)

Observe that this form is associated with the multiplier symbol

M(ξ, η) :=
∫
∞

0
ϑ̂(tξ)ϑ̂(tη)ρ̂(t (ξ + η))

dt
t
, (4.8)

where we have denoted
ρ(s) := (1+ s2)−λ/2. (4.9)

Note that the function ρ̂ is even and hence M(ξ, η)= M(−η,−ξ). Moreover, M is
constant on any line through the origin and in particular M(ξ,−ξ)= M(1,−1) for any
0 6= ξ ∈ R. Now we write

M(ξ, η)= M(1,−1)+
(
M(ξ, η)− M(1,−1)

)
and split the form (4.7) into the two corresponding parts. The part associated with the
constant multiplier yields M(1,−1) times∫

R4
F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)δ(0,0)(u, v) dx dy du dv

=

∫
R4

F(x, y)2G(x, y)2 dx dy ≤ ‖F‖2L4(R2)
‖G‖2L4(R2)

= 1,
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where δ(0,0) denotes the Dirac measure concentrated at the origin. Thus, our remaining
task is to estimate the form associated with the symbol M0 := M − M(1,−1).

For each (ξ, η) ∈ R2
\ {(ξ, η) : ξ = η or ξ =−η}, we decompose

M0(ξ, η)=
∑
k∈Z

∑
j∈Z

M0(ξ, η)θ̂(2 j+k(ξ − η))θ̂(2 j (ξ + η)). (4.10)

If we denote
m(k)(ξ, η) := M0(ξ, η)θ̂(2k(ξ − η))θ̂(ξ + η)

and

m(ξ, η) :=
∑
k≥0

m(k)(ξ, η)= M0(ξ, η)

(∑
k≥0

θ̂ (2k(ξ − η))

)
θ̂ (ξ + η),

and split the summation in (4.10) over the regions k ≥ 0 and k < 0, we obtain

M0(ξ, η)=
∑
k∈Z

∑
j∈Z

m(k)(2 j (ξ, η))=
∑
j∈Z

m(2 j (ξ, η))+
∑
k<0

∑
j∈Z

m(k)(2 j (ξ, η)).

Here we used that M0(ξ, η)= M0(2 j (ξ, η)) by homogeneity.
First we treat the form associated with the multiplier symbol∑

j∈Z
m(2 j (ξ, η)). (4.11)

Observe that m is compactly supported in the strip 2−2
≤ |ξ + η| ≤ 1. Moreover, we have

|qm(u, v)|.λ (1+ |u + v|)−λ(1+ |u − v|)−2. (4.12)

Indeed, this estimate can be seen by bounding the inverse Fourier transform of

(ξ, η) 7→ m(ξ, η)+ M(1,−1)φ(ξ, η), (4.13)

where we have set

φ(ξ, η) :=

(∑
k≥0

θ̂ (2k(ξ − η))

)
θ̂ (ξ + η).

Therefore, the inverse Fourier transform of (4.13) is nothing but

(u, v) 7→
∫
R

∫
∞

0
ρ(a)ϑt (u − ta)ϑt (v − ta)

dt
t

da

convolved with the Schwartz function qφ and by the support localization of φ we may
assume that t ranges over a fixed bounded subinterval of (0,∞). It remains to observe that∣∣∣∣ ∫

R
ρ(a)ϑt (u − ta)ϑt (v − ta) da

∣∣∣∣
.ϑ,λ (1+ |u − v|)−2

∫
R
ρ(a)(1+ |u + v − 2a|)−2λ da

.λ (1+ |u − v|)−2(1+ |u + v|)−λ,

which in turn implies (4.12). Boundedness of the form associated with (4.11) now follows
from Lemma 12 applied with 8= qm and by letting N →∞.
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It remains to consider the form associated with the symbol∑
k<0

∑
j∈Z

m(k)(2 j (ξ, η)). (4.14)

Note that m(k) is supported in the strip 2−2
≤ |ξ + η| ≤ 1 for each k. To estimate the form

associated with (4.14), it now suffices to show that for each k < 0 we have

|
}m(k)(u, v)|.λ 2k(λ−1)(1+ |u + v|)−22−k(1+ 2−k

|u − v|)−2, (4.15)

with the implicit constant independent of k. Once we have that, boundedness of the form
associated with the symbol in (4.14) for a fixed k follows from Lemma 12 applied with

8=
}m(k) and by letting N →∞. In the end it remains to sum the geometric series:∑

k<0 2k(λ−1) .λ 1.
The estimate (4.15) will be deduced by integration by parts in the Fourier expansion

of m(k) once we verify the necessary symbol estimates. At this point we switch to the
frequency coordinates ξ − η and ξ + η, which are better suited for our problem. First, we
claim that for any 0≤ n ≤ 2, |α| ∼ 1, and 0< |β| ≤ 1, we have∣∣∂β∂n

α

(
M0(α + β, β − α)

)∣∣.λ |β|λ−2,
∣∣∂2
β∂

n
α

(
M0(α + β, β − α)

)∣∣.λ |β|λ−3. (4.16)

For now let us assume that the estimates in (4.16) hold. For 0≤ n ≤ 2, define

µ(n)(α, β) := ∂n
α

(
M0(α + β, β − α)

)
and note that µ(n)(α, 0)= 0. Therefore, for any |α| ∼ 1, 0< |β| ≤ 1, and 0≤ n ≤ 2, the
first estimate in (4.16) implies that∣∣∂n

α

(
M0(α + β, β − α)

)∣∣= ∣∣∣∣ ∫ β

0
∂2µ

(n)(α, γ ) dγ
∣∣∣∣.λ |β|λ−1. (4.17)

The estimates (4.16) and (4.17) together imply that for any 0≤ l, n ≤ 2 one has∣∣∂ l
β∂

n
α

(
M0(α + 2kβ, 2kβ − α)θ̂(2α)θ̂(2β)

)∣∣.λ 2k(λ−1),

which is by the homogeneity of M0 equivalent to∣∣∂ l
β∂

n
α

(
m(k)(2−kα + β, β − 2−kα)

)∣∣.λ 2k(λ−1). (4.18)

We proceed by verifying (4.15). Let us write

uξ + vη = 2−k(u − v)2k−1(ξ − η)+ (u + v)2−1(ξ + η).

Changing variables (α, β)= (2k−1(ξ − η), 2−1(ξ + η)) gives

}m(k)(u, v)=
∫
R2

m(k)(ξ, η)e2π i(uξ+vη) dξ dη

= 2−k+1
∫
R2

m(k)(2−kα + β, β − 2−kα)e2π i(2−k (u−v)α+(u+v)β) dα dβ.

If |u − v| ≤ 2k and |u + v| ≤ 1, then we bound

|
}m(k)(u, v)|. 2−k

‖m(k)
‖L∞(R2) .λ 2k(λ−1)2−k,
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which implies (4.15) in this case. Here we used (4.18) to control the L∞ norm and
observed that{

(α, β) : m(k)(2−kα + β, β − 2−kα) 6= 0
}
⊆ ([−2−1,−2−3

] ∪ [2−3, 2−1
])2. (4.19)

Now assume that |u − v| ≥ 2k and |u + v| ≥ 1. Integrating by parts, we bound |}m(k)(u, v)|
by a constant multiple of

2−k(2−k
|u − v|)−2

|u + v|−2
∣∣∣∣ ∫

R2
∂2
β∂

2
α(m

(k)(2−kα + β, β − 2−kα))

× e2π i(2−k (u−v)α+(u+v)β) dα dβ
∣∣∣∣.

Together with (4.18) and (4.19), this shows (4.15) in the present case. If |u − v| ≥ 2k and
|u + v| ≤ 1, or vice versa, we simply combine the arguments from both of the discussed
cases.

It remains to show (4.16) and for that we need

|ρ̂′(ξ)|.λ |ξ |
λ−2, |ρ̂′′(ξ)|.λ |ξ |

λ−3 (4.20)

for |ξ | ≤ 1, where ρ is our very particular choice of function (4.9). The following formulae
that hold for ξ > 0 can be found using [40] or [1]:

ρ̂(ξ)= 2πλ/2ξ (λ−1)/2K(1−λ)/2(2πξ)/0(λ/2),
ρ̂′(ξ)=−4π1+λ/2ξ (λ−1)/2K(λ−3)/2(2πξ)/0(λ/2),

ρ̂′′(ξ)= 4π1+λ/2ξ (λ−3)/2(2πξK(λ−5)/2(2πξ)−K(λ−3)/2(2πξ)
)
/0(λ/2),

where Kα is the modified Bessel function of the second kind, given for α 6∈ Z and z > 0
by the series

Kα(z)=
π

2 sin(απ)

( ∞∑
n=0

1
n!0(n − α + 1)

(
z
2

)2n−α

−

∞∑
n=0

1
n!0(n + α + 1)

(
z
2

)2n+α)
.

From this expansion, we read off the asymptotic behaviors in a neighborhood of 0:

|Kα(z)| ∼α zmin{α,−α}, |ρ̂′(ξ)| ∼λ |ξ |
λ−2, |ρ̂′′(ξ)| ∼λ |ξ |

λ−3,

which establish (4.20). Alternatively, to obtain these estimates one could decompose ρ̂
into the Littlewood–Paley pieces and argue by scaling. Finally, differentiation of M(α +
β, β − α) using (4.20) and the product rule gives (4.16).

5. Ergodic averages, deriving Theorem 1 from Theorem 2
Take m ∈ N and arbitrary positive integers n0 < n1 < · · ·< nm . For F, G ∈ L4(R2),
denote At (F, G) := A

1[0,1)
t (F, G), so that

At (F, G)(x, y)=
1
t

∫
[0,t)

F(x + s, y)G(x, y + s) ds

=
1
t

∫
[x+y,x+y+t)

F(u − y, y)G(x, u − x) du. (5.1)
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Applying Theorem 2 to the scales t j = n j and arbitrary functions F , G ∈ L4(R2)

normalized as in (2.1) gives

m∑
j=1

‖An j (F, G)− An j−1(F, G)‖2L2(R2)
. 1. (5.2)

Now we transfer the obtained estimate from R2 to Z2. Recall the definition (1.6) of the
averages Ãn and observe that they can be rewritten as

Ãn(F̃, G̃)(k, l)=
1
n

∑
i∈Z

k+l≤i≤k+l+n−1

F̃(i − l, l) G̃(k, i − k). (5.3)

Pick arbitrary F̃, G̃ ∈ `4(Z2) normalized by ‖F̃‖`4(Z2) = ‖G̃‖`4(Z2) = 1. Define the
functions F , G : R2

→ R as

F(x, y) :=
∑
i,l∈Z

F̃(i − l, l) 1[i,i+1)(x + y) 1[l,l+1)(y),

G(x, y) :=
∑

i,k∈Z
G̃(k, i − k) 1[k,k+1)(x) 1[i,i+1)(x + y).

Note that F and G are constant on certain skew parallelograms of area 1 and ‖F‖L4(R2) =

‖G‖L4(R2) = 1 as well. Splitting the integral (5.1) into the pieces over i ≤ u < i + 1, we
get

An(F, G)(k + α, l + β)=
1
n

∑
i∈Z

ai F̃(i − l, l)G̃(k, i − k) (5.4)

for any k, l ∈ Z, α, β ∈ [0, 1), where we have denoted

ai =
∣∣[i, i + 1) ∩ [k + l + α + β, k + l + α + β + n)

∣∣.
Observe that

ai = 1 when k + l + 2≤ i ≤ k + l + n − 1,
ai = 0 when i ≤ k + l − 1 or i ≥ k + l + n + 2,

ai ∈ [0, 1] otherwise.

Comparing (5.4) with (5.3), it immediately follows that∣∣An(F, G)(k + α, l + β)− Ãn(F̃, G̃)(k, l)
∣∣≤ 1

n

∑
i∈{0,1,n,n+1}

∣∣F̃(k + i, l)G̃(k, l + i)
∣∣,

so for any n ∈ N we get∥∥An(F, G)(k + α, l + β)− Ãn(F̃, G̃)(k, l)
∥∥
`2
(k,l)(Z2)

≤
4
n
.

Observe that this estimate is uniform in α, β ∈ [0, 1). Consequently,∣∣‖An j (F, G)(k + α, l + β)− An j−1(F, G)(k + α, l + β)‖`2
(k,l)(Z2)

− ‖ Ãn j (F̃, G̃)− Ãn j−1(F̃, G̃)‖`2(Z2)

∣∣≤ 8
n j−1

,
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so, taking the L2([0, 1)2) norm in (α, β),∣∣‖An j (F, G)− An j−1(F, G)‖L2(R2) − ‖ Ãn j (F̃, G̃)− Ãn j−1(F̃, G̃)‖`2(Z2)

∣∣≤ 8
n j−1

.

Combining this with (5.2) and using
∑m

j=1 n−2
j−1 ≤

∑
∞

n=1 n−2 . 1, we conclude that
m∑

j=1

∥∥ Ãn j (F̃, G̃)− Ãn j−1(F̃, G̃)
∥∥2
`2(Z2)

. 1.

If we multiply the right-hand side by ‖F̃‖2
`4(Z2)
‖G̃‖2

`4(Z2)
, then by homogeneity the

inequality remains to hold for arbitrary F̃, G̃ and this establishes Corollary 4.
Finally, we transfer to the measure-preserving system (X, F , µ, S, T ). Let f, g ∈

L4(X) be normalized by ‖ f ‖L4(X) = ‖g‖L4(X) = 1. Take a point x ∈ X and fix a positive
integer N ≥ nm . The function F̃x,N : Z2

→ R defined by

F̃x,N (k, l) :=

{
f (Sk T l x) if 0≤ k, l ≤ 2N − 1,

0 otherwise,

and analogously defined G̃x,N keep track of the values of f and g along the forward
trajectory of x . Observe that for integers 0≤ k, l < N and 0< n ≤ N , we have

Mn( f, g)(Sk T l x)=
1
n

n−1∑
i=0

f (Sk+i T l x)g(Sk T l+i x)= Ãn
(
F̃x,N , G̃x,N

)
(k, l),

where we used ST = T S and the definition (1.6). The fact that S and T are measure
preserving enables us to write

‖Mn j ( f, g)− Mn j−1( f, g)‖2L2(X)

=

∫
X

∣∣Mn j ( f, g)(x)− Mn j−1( f, g)(x)
∣∣2 dµ(x)

=
1

N 2

∫
X

N−1∑
k,l=0

∣∣Mn j ( f, g)(Sk T l x)− Mn j−1( f, g)(Sk T l x)
∣∣2 dµ(x)

≤
1

N 2

∫
X

∥∥ Ãn j (F̃x,N , G̃x,N )− Ãn j−1(F̃x,N , G̃x,N )
∥∥2
`2(Z2)

dµ(x)

for each 1≤ j ≤ m. A similar computation as above gives

1= ‖ f ‖4L4(X) =
1

4N 2

∫
X

2N−1∑
k,l=0

| f (Sk T l x)|4 dµ(x)=
1

4N 2

∫
X
‖F̃x,N‖

4
`4(Z2)

dµ(x).

Taking F̃ = F̃x,N , G̃ = G̃x,N in Corollary 4 gives
m∑

j=1

∥∥ Ãn j (F̃x,N , G̃x,N )− Ãn j−1(F̃x,N , G̃x,N )
∥∥2
`2(Z2)

. ‖F̃x,N‖
4
`4(Z2)

+ ‖G̃x,N‖
4
`4(Z2)

.

Integrating this inequality in x over X and dividing by N 2 yields
m∑

j=1

‖Mn j ( f, g)− Mn j−1( f, g)‖2L2(X) . 1

for any n0 < n1 < · · ·< nm . This completes the proof of Theorem 1.
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A. Appendix
The following inequality (A.1) is taken from [21]; we reproduce a proof for the
convenience of the reader. An alternative inequality serving the same purpose appears
in [31].

LEMMA 13. If a : [2i , 2i+1
] → R is a continuously differentiable function, then

sup
2i≤t0<···<tm≤2i+1

m∑
j=1

|a(t j )− a(t j−1)|
2

. ‖a(t)‖L2
t ((2i ,2i+1),dt/t)‖ta

′(t)‖L2
t ((2i ,2i+1),dt/t), (A.1)

sup
2i≤t0<···<tm≤2i+1

m∑
j=1

|a(t j )− a(t j−1)|
2
≤ ‖ta′(t)‖2

L2
t ((2i ,2i+1),dt/t)

. (A.2)

Proof of Lemma 13. To obtain (A.1), we first show that for any 2i
≤ t0 < · · ·< tm ≤ 2i+1

and each index 1≤ j ≤ m one has

|a(t j )− a(t j−1)|
2 . ‖a(t)‖L2

t ((t j−1,t j ),dt/t)‖ta
′(t)‖L2

t ((t j−1,t j ),dt/t). (A.3)

It suffices to prove this under the assumptions that a is non-negative and absolutely
continuous. Indeed, in general we then split a = a+ − a−, where a+ =max(a, 0) and
a− =−min(a, 0). Note that a+ and a− satisfy the required properties and that

‖a+(t)‖L2
t ((t j−1,t j ),dt/t) ≤ ‖a(t)‖L2

t ((t j−1,t j ),dt/t),

‖ta′+(t)‖L2
t ((t j−1,t j ),dt/t) ≤ ‖ta

′(t)‖L2
t ((t j−1,t j ),dt/t)

and analogously for a−, a′−. Using the triangle inequality and applying (A.3) to a+ and
a−, we obtain the inequality for any real-valued absolutely continuous function a.

Let us assume that a is as claimed above. Then

|a(t j )− a(t j−1)|
2
≤
∣∣a(t j )

2
− a(t j−1)

2∣∣
≤

∣∣∣∣ ∫ t j

t j−1

t (a(t)2)′
dt
t

∣∣∣∣= ∣∣∣∣ ∫ t j

t j−1

2a(t)ta′(t)
dt
t

∣∣∣∣.
Applying the Cauchy–Schwarz inequality in t , we bound this up to a constant by( ∫ t j

t j−1

a(t)2
dt
t

)1/2( ∫ t j

t j−1

(ta′(t))2
dt
t

)1/2

,
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which shows (A.3). Summing over j and applying the Cauchy–Schwarz inequality, we
obtain

m∑
j=1

|a(t j )− a(t j−1)|
2

.

( m∑
j=1

‖a(t)‖2
L2

t ((t j−1,t j ),dt/t)

)1/2( m∑
j=1

‖ta′(t)‖2
L2

t ((t j−1,t j ),dt/t)

)1/2

≤ ‖a(t)‖L2
t ((2i ,2i+1),dt/t)‖ta

′(t)‖L2
t ((2i ,2i+1),dt/t)

for any 2i
≤ t0 < · · ·< tm ≤ 2i+1, which establishes (A.1).

To see (A.2), we estimate

|a(t j )− a(t j−1)|
2
=

∣∣∣∣ ∫ t j

t j−1

ta′(t)
dt
t

∣∣∣∣2
≤ (t j − t j−1)

∫ t j

t j−1

(ta′(t))2
dt
t2 ≤ 2i

∫ t j

t j−1

(ta′(t))2
dt
t2 .

The first inequality follows from the Cauchy–Schwarz inequality in t , while for the second
inequality we used the crude bound t j − t j−1 ≤ 2i . Thus,

m∑
j=1

|a(t j )− a(t j−1)|
2
≤ 2i

∫ 2i+1

2i
(ta′(t))2

dt
t2 ≤

∫ 2i+1

2i
(ta′(t))2

dt
t
,

which gives (A.2). �
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