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This paper is concerned with the asymptotic spreading of competition diffusion systems, with

the purpose of formulating the propagation modes of a co-invasion–coexistence process of

two competitors. Using the comparison principle for competitive systems, some results on

asymptotic spreading are obtained. Our conclusions imply that the interspecific competitions

slow the invasion of one species and decrease the population densities in the coexistence

domain. Therefore, the interspecific competitions play a negative role in the evolution of

competitive communities.
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1 Introduction

Due to the limits on resources, e.g. light and water, competitive behaviour is inevitable in

nature. In the evolution of populations, both interspecific and intraspecific competitions

are universal, and there are many mathematical models describing these phenomena,

such as the Lotka–Volterra [15, 31, 32] and Gilpin–Ayala competition systems [14]. The

Lotka-Volterra competition diffusion system of two species takes the form⎧⎪⎪⎨⎪⎪⎩
∂u(x, t)

∂t
= d1∆u(x, t) + r1u(x, t) [1 − u(x, t) − b1v(x, t)] ,

∂v(x, t)

∂t
= d2∆v(x, t) + r2v(x, t) [1 − v(x, t) − b2u(x, t)] ,

(1.1)

where x ∈ Ω ⊂ �n, t > 0 and all the parameters are non-negative, and u(x, t) and v(x, t)

can be thought of as the population densities at time t at location x of two competitors. It

is clear that (0, 0) is a trivial equilibrium, and (1,0) and (0,1) are two spatially homogeneous

equilibria of (1.1). Moreover, if b1, b2 ∈ [0, 1) or b1, b2 ∈ (1,∞), then (1.1) has a spatially

homogeneous steady state K = (k1, k2) defined by

K =

(
1 − b1

1 − b1b2
,

1 − b2

1 − b1b2

)
.

In particular, if b1, b2 ∈ [0, 1), then K is a locally stable equilibrium of the corresponding

kinetic system of (1.1).
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When Ω is a bounded domain in �n and (1.1) is equipped with different boundary

and initial value conditions, its dynamical properties have been widely studied (see [35,

38, 40]). If Ω = �, then one important issue is the propagation mode, e.g. [1, 8, 13,

17–19, 21–23, 25, 43, 46, 48]. In particular, the travelling wave solutions and asymptotic

spreading, which describe interspecific exclusive phenomena (see [16]) and model the

behaviour of a resident and an invading species in population dynamics, have been

well investigated [13, 24, 48]. It should be noted that (1.1) is an essentially cooperative

system when the interspecific exclusive process is considered, since the process involves

the equilibrium (0, 1) or (1, 0), and the results in [48] for the cooperative evolutionary

systems can be applied to (1.1) by combining the invariant region with a change of

variables (see [24]). Recently, Huang and Han [19] proved that b1, b2 describing the

interspecific competitions could affect the minimal wave speed of exclusive travelling

wave solutions. Biologically, many historical records reflect the interspecific exclusive

process between the resident and the invader, such as the competition between grey and

red squirrels in United Kingdom (see [33]), we also refer to [39, Chapter 6] for some

examples.

Other than the exclusive phenomena in competitive communities, there is evidence

of a co-invasion–coexistence process of several competitors, modelling the expansion

of geographic range of several plants in North America after the last ice age (16,000

years ago), we refer to [9] and [39, Chapter 7] for some records. Mathematically, (0, 0)

and (k1, k2) are involved when the co-invasion–coexistence process of (1.1) is studied.

Such a co-invasion–coexistence process is totally different from an exclusive one from

the viewpoint of monotone dynamical systems. More precisely, if we use the change of

variables in [24] to obtain a formally cooperative system in the sense of standard partial

order in �2, then the new interesting steady states, (1, 0) and (1 − k1, k2), are not ordered

(regarding the importance of comparability of steady states in the theory of monotone

semi-flows, see [40]). Recently, some investigators established the existence of travelling

wave solutions of (1.1) connecting (0, 0) with (k1, k2), which indicates that there is a

transition zone moving from the steady state with no species to the steady state with the

coexistence of all competitive species, see [1, 7, 20, 25, 26, 34, 43]. Due to the special form

and asymptotic boundary conditions of travelling wave solutions in [1, 25, 27, 34, 43], it is

clear that these travelling wave solutions represent the spatial invasion process from one

unbounded domain to another.

If we model the simultaneous invasion of two competitors from a bounded domain

into an unbounded domain (such as the examples in [39, Chapter 7]), then we must

study the asymptotic spreading of (1.1) when the initial values have compact support.

Similar to the study of travelling wave solutions, the methods for monotone semi-flows

cannot be applied when the co-invasion–coexistence problem is concerned. Before the

mathematical discussion, we first show some possible phenomena from the viewpoint

of ecology. Motivated by experimental/statistical records about the role of interspecific

competition (for example, see [5, 6] and [39, Chapter 7]), we intuitively believe that the

interspecific competition (namely, b1 > 0 and b2 > 0) can slow the asymptotic spreading

of one species compared with the case that the interspecific competition vanishes (namely,

b1 = b2 = 0). We also conjecture that the population densities on the coexistence domain

will be smaller than with vanishing interspecific competition, here coexistence means that
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the population densities of both species are bounded below by a small positive constant.

In this paper, we shall first address these conjectures for (1.1).

In what follows, motivated by Lin et al. [28] but based on some significantly different

estimates and techniques, we first establish some results on the asymptotic spreading for

(1.1). These are proved by using the comparison principles appealing to the competition

systems. In addition, we also study the possible generalisation of the corresponding delayed

version of system (1.1) and more general competition diffusion systems which at least

contain the Gilpin–Ayala type nonlinearity [14]. Our results also confirm our conjectures

for these competition systems, namely, the interspecific competition may play a negative

role in the evolution of competitive communities. For the corresponding delayed system

of (1.1), we find that the bounded delays appearing in the interspecific competition terms

have less effect on the asymptotic spreading speed of the species with the stronger ability

to spread.

The rest of this paper is organised as follows. In Section 2, we give some notation and

the main results for (1.1). To prove these results, some preliminaries are listed in Section 3.

Section 4 is concerned with the proof of the main results. In the last section, we study the

asymptotic spreading of some generalisations of competition system (1.1).

2 Main results

In this section, we shall state our main results for (1.1). For convenience, we first give

some notation. Define C by

C = {u(x)|u(x) : � → �2 is uniformly continuous and bounded}

equipped with the compact open topology. We also introduce the standard supremum

norm | · | such that C is a complete metric space. Moreover, if a � b ∈ �2, then

C[a,b] = {(u, v) : (u, v) ∈ C and a � (u(x), v(x)) � b for all x ∈ �}.

In order to formulate the asymptotic spreading of two competitors (u(x, t), v(x, t))

described by (1.1), we investigate the following initial value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u(x, t)

∂t
= d1∆u(x, t) + r1u(x, t) [1 − u(x, t) − b1v(x, t)] ,

∂v(x, t)

∂t
= d2∆v(x, t) + r2v(x, t) [1 − v(x, t) − b2u(x, t)] ,

(u(x, 0), v(x, 0)) = (u(x), v(x)) ∈ C[0,1],

(2.1)

in which (x, t) ∈ � × (0,+∞).

Theorem 2.1 Assume that b1, b2 ∈ [0, 1) satisfy

d1r1(1 − b1) > d2r2. (2.2)

Define positive constants as follows

c1 = 2
√
d1r1, c2 = 2

√
d2r2, c3 = 2

√
d2r2(1 − b2), c4 = 2

√
d2r2(1 − b2(1 − b1)).
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If u(x), v(x) have non-empty compact supports, then the solution (u(x, t), v(x, t)) of (2.1) is

well defined for all (x, t) ∈ � × (0,+∞) and satisfies the following:

(i) For any given ε > 0, limt→∞ sup|x|>(c1+ε)t u(x, t) = limt→∞ sup|x|>(c2+ε)t v(x, t) = 0;

(ii) for any given ε ∈ (0, c1), lim inf t→∞ inf |x|<(c1−ε)t u(x, t) � 1 − b1;

(iii) for any given ε > 0, limt→∞ sup|x|>(c4+ε)t v(x, t) = 0 if c1 > c2 + c4;

(iv) for any given ε ∈ (0, c1−c2
2

), we have

lim inf
t→∞

inf
(c2+ε)t<|x|<(c1−ε)t

u(x, t) = lim sup
t→∞

sup
(c2+ε)t<|x|<(c1−ε)t

u(x, t) = 1;

(v) for any given ε ∈ (0, c3), we have

lim inf
t→∞

inf
|x|<(c3−ε)t

(u(x, t), v(x, t)) = lim sup
t→∞

sup
|x|<(c3−ε)t

(u(x, t), v(x, t)) = (k1, k2).

To better understand the effect of interspecific competition, we also recall some well-

known conclusions on the following classical Fisher equation⎧⎨⎩
∂z(x, t)

∂t
= d∆z(x, t) + rz(x, t) [1 − z(x, t)] ,

z(x, 0) = z(x)
(2.3)

with 0 � z(x) � 1, and z(x) is a uniformly continuous function with non-empty compact

support. By [2–4, 26, 44], the following result holds.

Lemma 2.2 Assume that z(x, t) is defined by (2.3). Then

lim
t→∞

inf
|x|<(2

√
dr−ε)t

z(x, t) = lim
t→∞

sup
|x|<(2

√
dr−ε)t

z(x, t) = 1, lim
t→∞

sup
|x|>(2

√
dr+ε)t

z(x, t) = 0

for any given ε ∈ (0, 2
√
dr).

Remark 2.3 Theorem 2.1 and Lemma 2.2 imply that the interspecific competition does

not slow the asymptotic spreading of u(x, t) (see items (i) and (ii)), and the ‘invasion

frontier’ of u(x, t) seems to be ahead of the influence of v(x, t) (see item (iv)). On the other

hand, items (iii) and (v) of Theorem 2.1 indicate that the interspecific competition does

slow the asymptotic spreading of v and reduce the population densities of u and v on

the coexistence domain. Moreover, item (v) tells us that the eventual invasions of both

competitors are successful, which is a co-invasion–coexistence process of two competitors.

These results partially confirm our conjectures on the role of interspecific competitions.

Moreover, since the travelling wave solutions of (1.1) have been widely studied, we

also give the following illustrations on Theorem 2.1 from the viewpoint of minimal wave

speeds of travelling wave solutions. These speeds are often equal to the asymptotic speeds

of spreading in many examples [2–4, 10, 22, 24, 26, 44, 48].
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Remark 2.4 Theorem 2.1 and Lemma 2.2 show that u leaves v behind after a long time

and its invasion front is similar to that of single species described by the Fisher equation.

Therefore, it is easy to understand the invasion speed of u is 2
√
d1r1, which is the minimal

wave speed of invasion travelling wave solutions of (1.1) with b1 = 0. At the same time,

after a long time, v must invade the region already occupied by u. Note that u has a

positive bound from the below on the region, then the invasion speed of v is less than

2
√
d2r2 since v encounters obstruction from u. But u(x, t) � 1 for all (x, t) ∈ � × (0,∞),

so the asymptotic speed of spreading of v is no less than 2
√
d2r2(1 − b2), which is the

possible minimal wave speed of travelling wave solutions connecting (1, 0) with (k1, k2)

(see [24]). To better understand the problem, we also refer to [12] for the description of

dynamics of solutions on bounded domains by travelling wave solutions, since only a

bounded domain is in fact occupied by u and v at any fixed t.

3 Preliminaries

In this section, the initial value problem (2.1) will be analysed by the theory of reaction–

diffusion systems [11, 35, 42, 50], abstract functional differential equations [29, 30, 37] and

the operator semi-groups [36]. Denote C+ as

C+ = {u : u ∈ C and u(x) � 0 for all x ∈ �}.

Let β = 2(r1 + r2) and define{
[F1(u, v)](x, t) = βu(x, t) + r1u(x, t) [1 − u(x, t) − b1v(x, t)] ,

[F2(u, v)](x, t) = βv(x, t) + r2v(x, t) [1 − v(x, t) − b2u(x, t)]

for (u(x, t), v(x, t)) ∈ C[0,1] with t > 0. Then F1(F2) is monotone increasing in u (v) while

decreasing in v (u).

For any given (u(x), v(x)) ∈ C and t > 0, define T (t) = (T1(t), T2(t)) : C → C by⎧⎪⎪⎪⎨⎪⎪⎪⎩
T1(t)u(x) =

e−βt
√

4πd1t

∫ ∞

−∞
e

− (x−y)2
4d1t u(y)dy,

T2(t)v(x) =
e−βt

√
4πd2t

∫ ∞

−∞
e

− (x−y)2
4d2t v(y)dy.

(3.1)

Then T (t) : C → C is an analytic semi-group [36, 42] for any t � 0, and T (t) is also a

positive semi-group in the sense that T (t) : C+ → C+ for all t � 0.

Lemma 3.1 Assume that (u(x), v(x)) ∈ C[0,1] holds. Then (2.1) has a unique classical solution

(u(x, t), v(x, t)) such that

(u(x, t), v(x, t)) ∈ C[0,1] for all t � 0.

Furthermore, (u(x, t), v(x, t)) also takes the form as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(x, t) = T1(t)u(x) +

∫ t

0

T1(t− s)[F1(u, v)](x, s)ds,

v(x, t) = T2(t)v(x) +

∫ t

0

T2(t− s)[F2(u, v)](x, s)ds.

(3.2)
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Lemma 3.1 is clear by [29, 36, 42, 50], so here we omit the proof.

Definition 3.2 Assume that (u(x, t), v(x, t)), (u(x, t), v(x, t)) ∈ C+ for t ∈ [0, t′). If

u(x, t), v(x, t), u(x, t), v(x, t) are differentiable in t ∈ (0, t′) and twice differentiable in x ∈ �
such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
� d1∆u(x, t) + r1u(x, t) [1 − u(x, t) − b1v(x, t)] ,

∂v(x, t)

∂t
� d2∆v(x, t) + r2v(x, t) [1 − v(x, t) − b2u(x, t)] ,

∂u(x, t)

∂t
� d1∆u(x, t) + r1u(x, t) [1 − u(x, t) − b1v(x, t)] ,

∂v(x, t)

∂t
� d2∆v(x, t) + r2v(x, t) [1 − v(x, t) − b2u(x, t)] ,

(u(x, 0), v(x, 0)) � (u(x), v(x)) � (u(x, 0), v(x, 0))

(3.3)

for all x ∈ � and t ∈ (0, t′), then (u(x, t), v(x, t)) and (u(x, t), v(x, t)) are a pair of upper and

lower solutions of (2.1).

By the technique of upper and lower solutions and the theory of reaction–diffusion

equations (see [11, 29, 30, 35, 42, 50]), we have the following comparison principle.

Lemma 3.3 Assume that (u(x, t), v(x, t)) and (u(x, t), v(x, t)) are a pair of upper and lower

solutions of (2.1) with x ∈ �, t ∈ [0, t′).

(i) (u(x, 0), v(x, 0)) � (u(x, 0), v(x, 0)) holds for all x ∈ � implies that

(u(x, t), v(x, t)) � (u(x, t), v(x, t)), x ∈ �, t ∈ [0, t′).

(ii) The unique solution of (2.1) satisfies

(u(x, t), v(x, t)) � (u(x, t), v(x, t)) � (u(x, t), v(x, t)), x ∈ �, t ∈ [0, t′).

(iii) If (u1(x, t), v1(x, t)) and (u1(x, t), v1(x, t)) are another pair of upper and lower solutions

of (2.1) with x ∈ �, t ∈ [0, t′), then (i)-(ii) hold if we replace (u(x, t), v(x, t)) and

(u(x, t), v(x, t)) by

(min{u(x, t), u1(x, t)},min{v(x, t), v1(x, t)})

and

(max{u(x, t), u1(x, t)},max{v(x, t), v1(x, t)}),
respectively.

It is difficult to construct functions satisfying the smooth conditions in Definition 3.2.

Therefore, we introduce the following weaker definition of super- and sub-solutions of

(3.2).
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Definition 3.4 Assume that (u(x, t), v(x, t)), (u(x, t), v(x, t)) ∈ C[0,1] for t ∈ [0, t′) and are

continuous for t in the sense of | · |. If⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) � T1(t− s)u(x, s) +

∫ t

s

T1(t− θ)[F1(u, v)](x, θ)dθ,

v(x, t) � T2(t− s)v(x, s) +

∫ t

s

T2(t− θ)[F2(u, v)](x, θ)dθ,

u(x, t) � T1(t− s)u(x, s) +

∫ t

s

T1(t− θ)[F1(u, v)](x, θ)dθ,

v(x, t) � T2(t− s)v(x, s) +

∫ t

s

T2(t− θ)[F2(u, v)](x, θ)dθ

(3.4)

for any 0 � s � t < t′, then (u(x, t), v(x, t)) and (u(x, t), v(x, t)) are a pair of super- and

sub-solutions of (3.1).

Due to the positivity of T (t), we have the following comparison principle.

Lemma 3.5 Assume that (u(x, t), v(x, t)) and (u(x, t), v(x, t)) are a pair of super- and sub-

solutions of (3.2) for t ∈ [0, t′), respectively. Then

(u(x, t), v(x, t)) � (u(x, t), v(x, t)) � (u(x, t), v(x, t))

for x ∈ � and t ∈ [0, t′), in which (u(x, t), v(x, t)) is defined by (2.1) or (3.2).

Before ending this section, we also give the following remark on the verification of

super- and sub-solutions.

Remark 3.6 If some of u, v, u and v, e.g. u is differentiable such that

∂u(x, t)

∂t
� d1∆u(x, t) + r1u(x, t) [1 − u(x, t) − b1v(x, t)] , x ∈ �, t ∈ (0, T ),

then the positivity of T (t) implies that

u(x, t) � T1(t− s)u(x, s) +

∫ t

s

T1(t− θ)[F1(u, v)](x, θ)dθ

for any 0 � s � t < T , x ∈ � (see [29, 41]).

4 Proof of Theorem 2.1

In this section, we shall prove Theorem 2.1 step by step, throughout which the conditions

of Theorem 2.1 are assumed to be satisfied.

Lemma 4.1 Assume that ε > 0 is given. Then

lim
t→∞

sup
|x|>(c1+ε)t

u(x, t) = lim
t→∞

sup
|x|>(c2+ε)t

v(x, t) = 0.
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Proof Let u(x, t), v(x, t) be defined as follows⎧⎨⎩
∂u(x, t)

∂t
= d1∆u(x, t) + r1u(x, t) [1 − u(x, t)] ,

u(x, 0) = u(x),

⎧⎨⎩
∂v(x, t)

∂t
= d2∆v(x, t) + r2v(x, t) [1 − v(x, t)] ,

v(x, 0) = v(x).

Then u(x, t), v(x, t) are well defined for (x, t) ∈ � × (0,∞). By Lemma 2.2, we obtain

lim
t→∞

sup
|x|>(c1+ε)t

u(x, t) = lim
t→∞

sup
|x|>(c2+ε)t

v(x, t) = 0

for any ε > 0.

Take u(x, t) = v(x, t) = 0. Then Lemma 3.1 implies that (u(x, t), v(x, t)) and (u(x, t), v(x, t))

are a pair of upper and lower solutions of (2.1). Using Lemma 3.3, we have verified what

we wanted.

At the same time, we also show another proof by constructing super- and sub-solutions.

Let λ1 =
√
r1/d1, λ2 =

√
r2/d2 and

U(x, t) = min{eλ1(x+2
√
d1r1t+x1), eλ1(−x+2

√
d1r1t+x1), 1},

V (x, t) = min{eλ2(x+2
√
d2r2t+x2), eλ2(−x+2

√
d2r2t+x2), 1}

with large x1, x2 such that

U(x, 0) � u(x), V (x, 0) � v(x) for all x ∈ �.

Then it is easy to show that (U(x, t), V (x, t)) and (u(x, t), v(x, t)) are a pair of super- and

sub-solutions of (2.1). By Lemma 3.5, the proof is complete. �

Lemma 4.2 For any ε < c5 = 2
√
d1r1(1 − b1), lim inf t→∞ inf |x|<(c5−ε)t u(x, t) � 1 − b1.

Proof Note that v(x, t) � 1 for any (x, t) ∈ � × [0,∞). Then

∂u(x, t)

∂t
� d1∆u(x, t) + r1u(x, t) [1 − b1 − u(x, t)] (4.1)

for any (x, t) ∈ �× (0,∞). Since Definition 3.2 and Lemma 3.3 remain true if b1 = b2 = 0,

then Lemma 2.2 implies lim inf t→∞ inf |x|<(c5−ε)t u(x, t) � 1−b1. The proof is complete. �

Lemma 4.3 For any given ε ∈ (0, c1), lim inf t→∞ inf |x|<(c1−ε)t u(x, t) > 0.

Proof From Lemmas 4.1 and 4.2, for any ε′ > 0, we can fix T1 > 0 large enough such

that

(i) sup2|x|<(c2+c5)t{v(x, t)/u(x, t)} < 2/(1 − b1);

(ii) sup2|x|�(2c2+ε)t v(x, t) < ε′.
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In particular, let ε′ > 0 be small such that

2
√
d1r1(1 − b1ε′) > c1 − ε.

Then we have

∂u(x, t)

∂t
� d1∆u(x, t) + r1u(x, t)

[
1 − b1ε

′ − (3 − b1)u(x, t)/(1 − b1)
]

for all t > T1 and x ∈ �. Using Lemma 2.2, we complete the proof. �

Using the comparison principle, the following result of (2.3) is clear.

Lemma 4.4 Let δ > 0, κ > 0 be fixed constants and z(x, t) be a solution of (2.3). Assume

that z(x) > κ for x satisfying |x − x0| � δ with some x0 ∈ �. Then for any ε > 0, there

exists T = T (ε) such that z(x0, t) > 1 − ε, t > T .

Using the lemma, we can further establish the following estimate.

Lemma 4.5 For any given ε ∈ (0, c1), lim inf t→∞ inf |x|<(c1−ε)t u(x, t) � 1 − b1.

Proof Let 2ε = (1 − b1)/(3 − b1). Then there exists T2 > 1 such that

inf
|x|�(c1−ε/4)t

u(x, t) > ε, t � T2

by the proof of Lemma 4.3. In particular, we can choose T2 > 1 large enough for the

following.

Let δ ∈ (0, 1 − b1) be a constant. If |x| � (c1 − ε/2)T2, then there exists T3 > 0 such

that

inf
|x|�(c1−ε/2)T2

u(x, t) � 1 − b1 − δ, t > T2 + T3 (4.2)

by Lemma 4.4. For each t > T2, u(x, t) > ε holds on a neighbourhood of x = (c1 − ε/2)t,

since the radius of the neighbourhood is larger than εt/4 > ε/4 for all t > T2, then

Lemma 4.4 further indicates that

u((c1 − ε/2)t, t+ T4) � 1 − b1 − δ, t > T2 (4.3)

for some T4 > 0. Let (c1 − ε
2
)t = (c1 − ε)s, then t → ∞ iff s → ∞ and

t =
c1 − ε

c1 − ε
2

s.

Then (4.3) implies that

u

(
(c1 − ε)s,

c1 − ε

c1 − ε
2

s+ T4

)
= u

(
(c1 − ε)s, s+ T4 − εs

2c1 − ε

)
� 1 − b1 − δ, t > T2. (4.4)
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Let T2 (independent of T4) be large enough (if necessary, we choose T2 again) such that

4T4 <
εT2

2c1 − ε
, T4 − εT2

2c1 − ε
< −T4.

Applying (4.3) and (4.4), we obtain

inf
|x|=(c1−ε)t

u(x, t) � 1 − b1 − δ, t > T2. (4.5)

Similar to the verification of (4.5) and using (4.2), we have

inf
|x|�(c1−ε)t

u(x, t) � 1 − b1 − δ

for large t. Due to the arbitrary choice of δ, the proof is complete. �

Lemma 4.6 For any given ε > 0, limt→∞ sup|x|>(c4+ε)t v(x, t) = 0 if c1 > c2 + c4.

Proof It suffices to prove the result if 4ε ∈ (0, c5 − c4). Let δ > 0 be such that(
c4 +

ε

2

)2

= 4d2r2(1 − b2(1 − b1 − δ)).

Lemma 4.5 also indicates that there exist T5 > 0, N > 0 such that

(a) inf |x|<(c1− ε
4 )t u(x, t) � 1 − b1 − δ/2, t > T5;

(b) (c1 − c2 − c4 − ε)T5 > N − (c1 − c2 − c4);

(c) r2b2δ
2

∫ N

−N e
− y2

4d2s e−λ4ydy � (r2 + β)
(∫ ∞

N
+

∫ −N
−∞

)
e

− y2
4d2s e−λ4ydy, s ∈ (0, 1].

Define continuous functions

u(x, t) = 1, u(x, t) = w(x, t), v(x, t) = 0,

in which w(x, t) is given by⎧⎨⎩
∂w(x, t)

∂t
= d1∆w(x, t) + r1w(x, t)

[
1 − w(x, t) − b1V (x, t)

]
,

w(x, 0) = u(x)

with V (x, t) defined in the proof of Lemma 4.1. From Lemmas 4.1–4.5, we see that w(x, t)

satisfies the inequality (a) if T5 > 0 is large.

Let λ3 and λ4 be fixed such that

λ3 =
c2

2d2
(= λ2) , λ4 =

c4 + ε
2

2d2
.

Construct a continuous function

v(x, t) = min
{
eλ3(±x+c2t)+t3 , eλ4(±x+(c4+ ε

2 )t)+t3 , 1
}

for t3 > 0.
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We first prove that (u, v) and (u, v) are a pair of super- and sub-solutions of (1.1) if

t ∈ [T5, T5 + 1]. Clearly, for each t, c2 > c4 implies that

v(x, t) = eλ3(x+c2t)+t3 as − x → ∞.

Let t3 > 0 be large. Then, by Remark 3.6 and the definition of V (x, t), it is clear that

u, u, v satisfy (3.4), and it suffices to prove the inequality for v in Definition 3.4.

Set

E(x, t) = T2(t− s)v(x, s) +

∫ t

s

T2(t− θ) [βv(x, θ) + r2v(x, θ) [1 − v(x, θ) − b2u(x, θ)]] dθ.

Then we only need to prove that

v(x, t) � E(x, t) (4.6)

if T5 � s � t � T5 + 1, and it is clear when v(x, t) = 1. In fact, if v(x, t) = 1, then

0 � v(y, θ) � 1, u(y, θ) � 0, y ∈ �, θ ∈ [s, t]

such that

E(x, t) �T2(t− s)v(x, s) + β

∫ t

s

T2(t− θ)v(x, θ)dθ

� e−β(t−s) + (1 − e−β(t−s))

= 1 = v(x, t).

We now prove (4.6) for v(x, t) = eλ3(x+c2t)+t3 and for v(x, t) = eλ4(x+(c4+ ε
2 )t)+t3 .

If v(x, t) = eλ3(x+c2t)+t3 , then the positivity of u and v implies that

E(x, t)<T2(t− s)v(x, s) +

∫ t

s

T2(t− θ) [βv(x, θ) + r2v(x, θ)] dθ

<
e−β(t−s)

√
4πd2(t− s)

∫
�
e− y2

4d(t−s) eλ3(x−y+c2s)+t3dy

+

∫ t

s

(β + r2)e
−β(t−θ)

√
4πd2(t− θ)

∫
�
e− y2

4d(t−θ) eλ3(x−y+c2θ)+t3dydθ

= eλ3(x+c2t)+t3 .

If v(x, t) = eλ4(x+(c4+ ε
2 )t)+t3 , then

λ4

(
x+

(
c4 +

ε

2

)
t
)
< λ3(x+ c2t).

According to the definitions of λ3 and λ4, we also have

−x < (c2 + c4 + ε/2)t < (c1 − ε/2)t,

which further implies that (a) holds.
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Since v > 0, we also have

E(x, t) �
e−β(t−s)

√
4πd2(t− s)

∫
�
e

− y2
4d2(t−s) v(x− y, s) dy

+

∫ t

s

e−β(t−θ)
√

4πd2(t− θ)

∫
�
e

− y2
4d2(t−θ) [βv(x− y, θ)

+ r2v(x− y, θ) (1 − b2u(x− y, θ))] dydθ.

From (b), we see that for each x with v(x, t) = eλ4(x+(c4 + ε
2 )t)+ t3 and t ∈ [T5, T5 + 1],

w(y, s) � 1 − b1 − δ/2, y ∈ [x−N, x + N], s ∈ [T5, T5 + 1].

Therefore, (a) and (b) indicate that

E(x, t) �
e−β(t−s)

√
4πd2(t− s)

∫
�
e

− y2
4d2(t−s) eλ4(x+(c4 + ε

2 )t)+ t3 dy

+

∫ t

s

e−β(t−θ)
√

4πd2(t− θ)

∫ N

−N
e

− y2
4d2(t−θ)

⎡⎣βeλ4

(
x−y+

(
c4 +

ε

2

)
θ

)
+ t3

+ r2e
λ4

(
x−y+

(
c4 +

ε

2

)
θ

)
+ t3

(1 − b2w(x− y, θ))

⎤⎦ dydθ
+

∫ t

s

(r2 + β)e−β(t−θ)
√

4πd2(t− θ)

∫ ∞

N

e
− y2

4d2(t−θ) eλ4(x−y+(c4 + ε
2 )θ)+ t3dydθ

+

∫ t

s

(r2 + β)e−β(t−θ)
√

4πd2(t− θ)

∫ −N

−∞
e

− y2
4d2(t−θ) eλ4(x−y+(c4 + ε

2 )θ)+ t3dydθ

�
e−β(t−s)

√
4πd2(t− s)

∫
�
e

− y2
4d2(t−s) eλ4(x−y+(c4 + ε

2 )s)+ t3dy

+

∫ t

s

e−β(t−θ)
√

4πd2(t− θ)

∫ N

−N
e

− y2
4d2(t−θ)

[
βeλ4(x−y+(c4 + ε

2 )θ)+ t3

+ r2e
λ4(x−y+(c4 + ε

2 )θ)+ t3

(
1 − b2

(
1 − b1 − δ

2

))]
dydθ

+

∫ t

s

(r2 + β)e−β(t−θ)
√

4πd2(t− θ)

∫ ∞

N

e
− y2

4d2(t−θ) eλ4(x−y+(c4 + ε
2 )θ)+ t3dydθ

+

∫ t

s

(r2 + β)e−β(t−θ)
√

4πd2(t− θ)

∫ −N

−∞
e

− y2
4d2(t−θ) eλ4(x−y+(c4 + ε

2 )θ)+ t3dydθ

=
e−β(t−s)

√
4πd2(t− s)

∫
�
e

− y2
4d2(t−s) eλ4(x−y+(c4 + ε

2 )s)+ t3 dy

+

∫ t

s

(β + r2 (1 − b2(1 − b1 − δ))) e−β(t−θ)
√

4πd2(t− θ)

∫ N

−N
e

− y2
4d2(t−θ) eλ4(x−y+(c4 + ε

2 )θ)+ t3dydθ
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− r2b2δ

2

∫ t

s

e−β(t−θ)
√

4πd2(t− θ)

∫ N

−N
e

− y2
4d2(t−θ) eλ4(x−y+(c4 + ε

2 )θ)+ t3 dydθ

+

∫ t

s

(r2 + β)e−β(t−θ)
√

4πd2(t− θ)

∫ ∞

N

e
− y2

4d2(t−θ) eλ4(x−y+(c4 + ε
2 )θ)+ t3dydθ

+

∫ t

s

(r2 + β)e−β(t−θ)
√

4πd2(t− θ)

∫ −N

−∞
e

− y2
4d2(t−θ) eλ4(x−y+(c4 + ε

2 )θ)+ t3dydθ.

Since

e−β(t−s)
√

4πd2(t− s)

∫
�
e

− y2
4d2(t−s) eλ4(x−y+(c4 + ε

2 )s)+ t3dy

+

∫ t

s

(β + r2 (1 − b2(1 − b1 − δ))) e−β(t−θ)
√

4πd2(t− θ)

∫ N

−N
e

− y2
4d2(t−θ) eλ4(x−y+(c4 + ε

2 )θ)+ t3dydθ

�
e−β(t−s)

√
4πd2(t− s)

∫
�
e

− y2
4d2(t−s) eλ4(x−y+(c4 + ε

2 )s)+ t3dy

+

∫ t

s

(β + r2 (1 − b2(1 − b1 − δ))) e−β(t−θ)
√

4πd2(t− θ)

∫
�
e

− y2
4d2(t−θ) eλ4(x−y+(c4 + ε

2 )θ)+ t3dydθ

= eλ4(x+(c3 + ε
4 )t)+ t3 ,

then (4.6) is true if

r2b2δ

2

∫ t

s

e−β(t−θ)
√

4πd2(t− θ)

∫ N

−N
e

− y2
4d2(t−θ) eλ4(x−y+(c4 + ε

2 )θ)+ t3dydθ

�

∫ t

s

(r2 + β)e−β(t−θ)
√

4πd2(t− θ)

∫ ∞

N

e
− y2

4d2(t−θ) eλ4(x−y+(c4 + ε
2 )θ)+ t3dydθ

+

∫ t

s

(r2 + β)e−β(t−θ)
√

4πd2(t− θ)

∫ −N

−∞
e

− y2
4d2(t−θ) eλ4(x−y+(c4 + ε

2 )θ)+ t3dydθ

and it suffices to prove that

r2b2δ

2

∫ N

−N
e

− y2
4d2s e−λ4ydy � (r2 + β)

(∫ ∞

N

+

∫ −N

−∞

)
e

− y2
4d2s e−λ4ydy (4.7)

for s ∈ [0, 1]. From (c), we obtain (4.7) and complete the proof of (4.6) if t ∈ [T5, T5 + 1].

By the comparison principle (Lemma 3.5), we obtain

(u(x, t), v(x, t)) � (u(x, t), v(x, t)) � (u(x, t), v(x, t))

for x ∈ � and t ∈ [T5, T5 + 1].

Similarly, we can prove that

(u(x, t), v(x, t)) � (u(x, t), v(x, t)) � (u(x, t), v(x, t))

for t ∈ [T5 + k, T5 + 1 + k] with k ∈ �. The proof is complete. �
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For the ‘frontier’ of u(x, t), we formulate it as follows.

Lemma 4.7 For any given ε ∈ (0, c1−c2
2

), limt→∞,(c2+ε)t<|x|<(c1−ε)t u(x, t) = 1.

Proof By Lemma 4.3, there exists u∗ > 0 such that

lim inf
t→∞

inf
(c2+

ε
2 )t<|x|<(c1− ε

2 )t
u(x, t) = u∗ > 0, lim sup

t→∞
sup

(c2+
ε
2 )t<|x|

v(x, t) = 0. (4.8)

Let {εk}∞
k=1 be a sequence with

ε

2
= ε1 < ε2 < · · · , lim

k→∞
εk = ε.

Define {uk∗}∞
k=1 by

lim inf
t→∞

inf
(c2+εk)t<|x|<(c1−εk)t

u(x, t) = uk∗ � u∗.

Then it is easy to see that 1 � uk∗ � uk−1
∗ � u∗, k = 2, 3, . . . , which further implies that

there exists 1 � u∗ � u∗ > 0 such that limk→∞ u
k
∗ = u∗ with

u∗ � lim inf
t→∞

inf
(c2+ε)t<|x|<(c1−ε)t

u(x, t).

By (4.8) and the standard definition of lim inf, (3.2) indicates that

uk∗ �
βuk−1

∗ + r1u
k−1
∗ (1 − uk−1

∗ )

β
. (4.9)

In fact, let κ > 0 be a constant such that 2κ ∈ (0, u∗), then there exist T > 0 and N > 0

such that ∫ T

0

∫ N

−N

1√
4πds

e− y2

4ds dyds > 1 − κ.

Moreover, the definition of lim inf also indicates that for each k ∈ �, there exists tkn
satisfying limn→∞ t

k
n = ∞ such that

u(xkn, t
k
n) � uk∗ + κ

with

(c2 + εk)t
k
n < |xkn| < (c1 − εk)t

k
n.

At the same time, the monotonicity of εk implies that

inf
(c2+εk−1)t<|x|<(c1−εk−1)t

u(x, t) � uk−1
∗ − κ

and

sup
(c2+εk−1)t<|x|<(c1−εk−1)t

v(x, t) � κ

if t ∈ [tkn − T , tkn] and tkn is large. Moreover, if tkn is large, then

(εk − εk−1)(t
k
n − T ) > N.
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Let n → ∞, then the monotonicity of F1 indicates that

uk∗ + κ �
β(uk−1

∗ − κ) + (1 − κ)(uk−1
∗ − κ)(1 − (uk−1

∗ − κ) − b1κ)

β
.

Due to the arbitrariness of κ, we obtain (4.9).

Let k → ∞, then (4.9) implies that u∗ � 1. In view of u(x, t) � 1, it is clear that u∗ = 1.

The proof is complete. �

Lemma 4.8 For any given ε ∈ (0, c3), limt→∞ u(x, t) = k1, limt→∞ v(x, t) = k2 with |x| <
(c3 − ε)t.

Proof Similar to the proof of Lemma 4.2, it is obvious that

lim inf
t→∞

inf
|x|<(c3− ε

2 )t
v(x, t) > 0.

Then there exist u+ � u− > 0, v+ � v− > 0 such that

lim inf
t→∞

inf
|x|<(c3− ε

2 )t
u(x, t) = u−, lim inf

t→∞
inf

|x|<(c3− ε
2 )t
v(x, t) = v−,

lim sup
t→∞

sup
|x|<(c3− ε

2 )t

u(x, t) = u+, lim sup
t→∞

sup
|x|<(c3− ε

2 )t

v(x, t) = v+.

By a technique similar to that in the proof of Lemma 4.7 and the definitions of lim inf

and lim sup, we obtain

lim inf
t→∞

inf
|x|<(c3−ε)t

u(x, t) � k1, 0 < lim sup
t→∞

sup
|x|<(c3−ε)t

u(x, t) � k1,

lim inf
t→∞

inf
|x|<(c3−ε)t

v(x, t) � k2, 0 < lim sup
t→∞

sup
|x|<(c3−ε)t

v(x, t) � k2,

and the result is clear. The proof is complete. �

According to the proof of Lemma 4.8, the following result is also evident.

Corollary 4.9 Assume that c � c3 such that

lim inf
t→∞

inf
|x|<(c−ε)t

u(x, t) > 0, lim inf
t→∞

inf
|x|<(c−ε)t

v(x, t) > 0

for any given ε ∈ (0, c). Then

lim inf
t→∞

inf
|x|<(c−ε)t

u(x, t) = lim sup
t→∞

sup
|x|<(c−ε)t

u(x, t) = k1,

lim inf
t→∞

inf
|x|<(c−ε)t

v(x, t) = lim sup
t→∞

sup
|x|<(c−ε)t

v(x, t) = k2.

From these results, we can complete the proof of Theorem 2.1.
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5 Generalisations

In this section, we shall show the asymptotic spreading of a delayed version of system

(1.1) and a more general competition diffusion system.

5.1 A delayed system

Consider the following initial value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂p(x, t)

∂t
= d1∆p(x, t) + r1p(x, t) [1 − p(x, t) − b1q(x, t− τ1)] ,

∂q(x, t)

∂t
= d2∆q(x, t) + r2q(x, t) [1 − q(x, t) − b2p(x, t− τ2)] ,

(p(x, s), q(x, s)) = (φ(x, s), ψ(x, s)) ∈ C[0,1], s ∈ [−τ, 0],

(5.1)

in which x ∈ �, t > 0, τ = max{τ1, τ2} and (φ,ψ) ∈ C([−τ, 0], C[0,1]). For the initial value

problem (5.1), there are many results on the existence of mild solutions and we refer to

[29, 30, 37, 41, 45, 49]. The asymptotic spreading of p and q is formulated as follows.

Theorem 5.1 Assume that 0 � τ1, τ2 < ∞ and di, ri, bi, i = 1, 2, satisfy the assumptions in

Theorem 2.1. Then the mild solution (p(x, t), q(x, t)) of (5.1) is well defined and unique for

all x ∈ �, t > 0. In particular, if φ(x, s), ψ(x, s) admit non-empty compact supports for all

s ∈ [−τ, 0], then the results of Theorem 2.1 remain true when we replace (u(x, t), v(x, t)) by

(p(x, t), q(x, t)), x ∈ �, t > 0.

Although the discussion of Theorem 5.1 is more complex than that of Theorem 2.1

due to the choice of the phase space, the comparison principle of (5.1) is similar to that

of (2.1) and essentially the combination of the theory of abstract functional differential

equations (see [29]) with the monotone dynamical systems (see [40]); see also [25, 30, 41,

47] for some related topics. Therefore, the proof of Theorem 5.1 is omitted here.

Remark 5.2 Comparing Theorem 2.1 with Theorem 5.1, we see that the delays in the

interaction terms do not affect the asymptotic spreading of the species with stronger

ability to spread. Note that the asymptotic spreading is an index describing the long-term

behaviour of the system and the comparison principle of (5.1) is similar to that of (2.1),

so Theorem 5.1 is obvious from Theorem 2.1 and limt→∞
τ1
t

= limt→∞
τ2
t

= 0. It is well

known that the asymptotic speeds of spreading equal to the minimal wave speeds of

travelling wave solutions in many models [26, 44, 48], and we refer to [25] for the role of

inter-specific delays in the travelling wave solutions.

5.2 General competition systems

For the competitive diffusive systems defined on �, one important result regarding

travelling wave solutions was established by Tang and Fife [43]. More precisely, they
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considered the travelling wave solutions of the following system:⎧⎪⎪⎨⎪⎪⎩
∂u(x, t)

∂t
= d1∆u(x, t) + u (x, t)f1(u(x, t), v(x, t)),

∂v(x, t)

∂t
= d2∆v(x, t) + v (x, t)f2(u(x, t), v(x, t)),

(5.2)

and proved the existence of monotone travelling wave solutions connecting (0, 0) with its

positive equilibrium. To state their results, we first give some assumptions on (5.2).

There exist û > 0, v̂ > 0 such that f1(û, v̂) = f2(û, v̂) = 0.

(ii) Let f11 = ∂f1(u,v)
∂u

∣∣∣
(u,v)=(û,̂v)

, f12 = ∂f1(u,v)
∂v

∣∣∣
(u,v)=(û,̂v)

, f21 = ∂f2(u,v)
∂u

∣∣∣
(u,v)=(û,̂v)

, f22 =

∂f2(u,v)
∂v

∣∣∣
(u,v)=(û,̂v)

, then f11f22 > f12f21.

(iii) f11 < 0, f22 < 0 and f12 � 0, f21 � 0.

(iv) If u ∈ (0, û), v ∈ (0, v̂), then 0 < f1(u, v) < r1, 0 < f2(u, v) < r2, here r1 = f1(0, 0), r2 =

f2(0, 0).

Theorem 5.3 ( [43]). For each c � max{2
√
d1r1, 2

√
d2r2}, (5.2) has a travelling wave solution

u(x, t) = φ(x+ ct), v(x, t) = ψ(x+ ct)

such that (φ(ξ), ψ(ξ)) is monotone for ξ ∈ � and satisfies

lim
ξ→−∞

(φ(ξ), ψ(ξ)) = (0, 0), lim
ξ→∞

(φ(ξ), ψ(ξ)) = (û, v̂).

Because (5.2) is a competition system, we further assume that

(v) there exist u � û, v � v̂ such that f1(u, 0) = f2(0, v) = 0 and f1(u, 0) > 0, f2(0, v) > 0

if u ∈ (0, u), v ∈ (0, v);

(vi) ∂f1(u,v)
∂u

� 0, ∂f1(u,v)
∂v

� 0, ∂f2(u,v)
∂u

� 0, ∂f2(u,v)
∂v

� 0 for all u ∈ [0, u], v ∈ [0, v];

(vii) there exists u ∈ (0, û), v ∈ (0, v̂) such that f1(u, v) = f2(u, v) = 0 and f1(u, v) >

0, f2(u, v) > 0, u ∈ (0, u), v ∈ (0, v).

(viii) If x � x > 0 and y � y > 0 satisfy

f1(x, y) � 0, f1(x, y) � 0, f2(x, y) � 0, f2(x, y) � 0,

then x = x = û, y = y = v̂.

Remark 5.4 Let f1 = 1 − u − b1v
α1 , f2 = 1 − v − b1u

α2 . Then the corresponding kinetic

system of (5.2) is of special the Gilpin–Ayala type [14]. Clearly, if b1, b2 ∈ [0, 1) are small

and α1, α2 ∈ [1,∞) hold, then (5.2) satisfies (i)–(viii).

To consider the asymptotic spreading of (5.2), we further suppose that

u(x, 0) = u0(x), v(x, 0) = v0(x). (5.3)
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Then our main result in this section is presented as follows.

Theorem 5.5 Assume that (i)–(viii) hold and

d1f1(0, v) > d2r2. (5.4)

We further suppose that u(x), v(x) have non-empty compact supports, and u(x, t), v(x, t) are

given by (5.2) and (5.3) respectively. Define constants

c1 = 2
√
d1r1, c2 = 2

√
d2r2, c3 = 2

√
d2f2(u, 0), c4 = 2

√
d2f2(u, 0).

Then u(x, t), v(x, t) are well defined for all x ∈ �, t > 0, and satisfy items (i)–(v) of Theorem

2.1.

The proof of Theorem 5.5 is similar to that of Theorem 2.1, so we omit it here.

6 Conclusions

In this paper, we have studied the long-time behaviour of several competitive systems.

These results model the co-invasion of two competitors. The co-invasion is not a cooperat-

ive process so that the well-known results established for monotone semi-flows cannot be

applied. Using the comparison principle for competitive systems, we give some estimates

of asymptotic spreading. Our results imply that the inter-specific competition can reduce

the invasion speed of one species and two invaders may have different invasion speeds.

In particular, our results are independent of the sizes of the supports of the initial

values. Very likely the asymptotic spreading depends on such sizes if (2.2) or (5.4) is

removed. Moreover, we only give upper and lower bounds of spreading speed for v(x, t)

in Theorems 2.1 and 5.5. To obtain more precise results on v(x, t), further investigations

are needed.

Furthermore, Tang and Fife [43] proved the existence of monotone travelling wave

solutions and conjectured the existence of non-monotone travelling wave solutions. Due

to the desynchronized propagation speeds of two competitors formulated by Theorem 5.5,

their conjecture seems to be true and we shall consider it in forthcoming papers.

Acknowledgements

The authors would like to thank the anonymous referees and the handling editor for

their careful reading and valuable comments, which significantly improved our original

manuscript. The first author is indebted to Professor Shigui Ruan for his guidance and

Dr. Yuan He for her helpful suggestions. The research was supported by NSF of China

(11031003, 11101094), RFDPHE (20090211120009).

References

[1] Ahmad, S., Lazer, A. C. & Tineo, A. (2008) Traveling waves for a system of equations.

Nonlinear Anal. 68(12), 3909–3912.

https://doi.org/10.1017/S0956792512000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000198


Asymptotic spreading of competition diffusion systems 687

[2] Aronson, D. G. (1977) The asymptotic speed of propagation of a simple epidemic. In: W.E.

Fitzgibbon & H. F. Walker (editors), Nonlinear Diffusion, Pitman, London, pp. 1–23.

[3] Aronson, D. G. & Weinberger, H. F. (1975) Nonlinear diffusion in population genetics,

combustion, and nerve pulse propagation. In: J. A. Goldstein (editor), Partial Differential

Equations and Related Topics), Lecture Notes in Mathematics, Vol. 446, Springer, Berlin,

Germany, pp. 5–49.

[4] Aronson, D. G. & Weinberger, H. F. (1978) Multidimensional nonlinear diffusion arising in

population dynamics. Adv. Math. 30(1), 33–76.

[5] Bengtsson, J. (1989) Interspecific competition increases local extinction rate in a metapopu-

lation system. Nature 340, 713–715.

[6] Bleasdale, J. K. A. (1956) Interspecific competition in higher plants. Nature 178, 150–151.

[7] Chesson, P. (2000) General theory of competitive coexistence in spatially-varying environments.

Theor. Popul. Biol. 58, 211–237.

[8] Conley, C. & Gardner, R. (1984) An application of the generalized Morse index to travelling

wave solutions of a competitive reaction diffusion model. Indiana Univ. Math. J. 33(3),

319–343.

[9] Davis, M. B. (1981) Quaternary history and stability of forest communities. In: D.C. West,

H. H. Shugart & D. B. Botkin (editors), Forest Succession: Concepts and Applications,

Springer-Verlag, New York, pp. 132–153.

[10] Diekmann, O. (1979) Run for your life. A note on the asymptotic speed of propagation of an

epidemic. J. Differ. Equ. 33(1), 58–73.

[11] Fife, P. C. & Tang, M. (1981) Comparison principles for reaction–diffusion systems: Irregular

comparison functions and applications to questions of stability and speed of propagation of

disturbances. J. Differ. Equ. 40(2), 168–185.

[12] Fusco, G., Hale, J. K. & Xun, J. (1996) Traveling waves as limits of solutions on bounded

domain. SIAM J. Math. Anal. 27(6), 1544–1558.

[13] Gardner, S. A. (1982) Existence and stability of traveling wave solutions of competition

model: A degree theoretical approach. J. Differ. Equ. 44(3), 343–364.

[14] Gilpin, M. & Ayala, F. (1973) Global models of growth and competition. Proc. Nat. Acad.

Sci. USA 70, 3590–3593.

[15] Goel, N. S., Maitra, S. C. & Montrol, E. W. (1971) On the Volterra and other nonlinear

models of interacting populations. Revs. Mod. Phys. 43, 231–276.

[16] Hardin, G. (1960) The competitive exclusion principle. Science 131, 1292–1297.

[17] Hosono, Y. (1995) Travelling waves for a diffusive Lotka-Volterra competition model II. A

geometric approach. Forma 10(3), 235–257.

[18] Hosono, Y. (2003) Traveling waves for a diffusive Lotka-Volterra competition model I. Singular

perturbations. Discrete Contin. Dyn. Syst. Ser. B 3(1), 79–95.

[19] Huang, W. & Han, M. (2011) Non-linear determinacy of minimum wave speed for a Lotka-

Volterra competition model. J. Differ. Equ. 251(6), 1549–1561.

[20] Huston, M. A. & DeAngelis, D. L. (1994) Competition and coexistence: The effects of

resource transport and supply rates. Am. Nat. 144, 954–977.

[21] Kanel, J. I. & Zhou, L. (1996) Existence of wave front solutions and estimates of wave speed

for a competition-diffusion system. Nonlinear Anal. 27(5), 579–587.

[22] Kan-on, Y. (1995) Parameter dependence of propagation speed of traveling waves for

competition-diffusion equations. SIAM J. Math. Anal. 26(2), 340–363.

[23] Kan-on, Y. & Fang, Q. (1996) Stability of monotone travelling waves for competition-diffusion

equations. Japan J. Indust. Appl. Math. 13(2), 343–349.

https://doi.org/10.1017/S0956792512000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000198


688 G. Lin and W.-T. Li

[24] Lewis, M. A., Li, B. & Weinberger, H. F. (2002) Spreading speed and linear determinacy for

two-species competition models. J. Math. Biol. 45(3), 219–233.

[25] Li, W.-T., Lin, G. & Ruan, S. (2006) Existence of travelling wave solutions in delayed reaction

diffusion systems with applications to diffusion-competition systems. Nonlinearity 19(6),

1253–1273.

[26] Liang, X. & Zhao, X. (2007) Asymptotic speeds of spread and traveling waves for monotone

semi-flows with applications. Comm. Pure Appl. Math. 60(1), 1–40.

[27] Lin, G., Li, W.-T. & Ma, M. (2010) Traveling wave solutions in delayed reaction diffusion

systems with applications to multi-species models. Discrete Contin. Dyn. Syst. Ser. B 13(3),

393–414.

[28] Lin, G., Li, W.-T. & Ruan, S. (2011) Spreading speeds and traveling waves in competitive

recursion systems. J. Math. Biol. 62(2), 165–201.

[29] Martin, R.-H. & Smith, H. L. (1990) Abstract functional differential equations and reaction–

diffusion systems. Trans. Am. Math. Soc. 321(1), 1–44.

[30] Martin, R. H. & Smith, H. L. (1991) Reaction–diffusion systems with the time delay:

Monotonicity, invariance, comparison and convergence. J. Reine. Angew. Math. 413, 1–35.

[31] May, R. M. (1973) Stability and Complexity in Model Ecosystems, Princeton University Press,

Princeton, NJ.

[32] Murray, J. D. (1993) Mathematical Biology, Springer, New York, xiv+767 pp.

[33] Okubo, A., Maini, P. K., Williamson, M. H. & Murray, J. D. (1989) On the spatial spread

of the grey squirrel in Britain. Proc. R. Soc. Lond. B 238, 113–125.

[34] Pan, S. (2009) Traveling wave solutions in delayed diffusion systems via a cross iteration

scheme. Nonlinear Anal. Real World Appl. 10(5), 2807–2818.

[35] Pao, C. V. (1992) Nonlinear Parabolic and Elliptic Equations, Plenum, New York, xvi+777 pp.

[36] Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equa-

tions. Springer-Verlag, New York, viii+279 pp.

[37] Ruan, S. & Wu, J. (1994) Reaction-diffusion systems with infinite delay. Canad. Appl. Math.

Quart. 2, 485–550.

[38] Ruan, S. & Zhao, X. (1999) Persistence and extinction in two species reaction-diffusion systems

with delays. J. Differ. Equ. 156(1), 71–92.

[39] Shigesada, N. & Kawasaki, K. (1997) Biological Invasions: Theory and Practice, Oxford

University Press, Oxford, UK, xiii+205 pp.

[40] Smith, H. L. (1995) Monotone Dynamical Systems: An Introduction to the Theory of Competitive

and Cooperative Systems, AMS, Providence, RI, x+174 pp.

[41] Smith, H. L. & Zhao, X. (2000) Global asymptotic stability of travelling waves in delayed

reaction-diffusion equations. SIAM J. Math. Anal. 31(3), 514–534.

[42] Smoller, J. (1994) Shock Waves and Reaction Diffusion Equations, Springer-Verlag, New York,

xxi+581 pp.

[43] Tang, M. M. & Fife, P. (1980) Propagating fronts for competing species equations with

diffusion. Arch. Ration. Mech. Anal. 73(1), 69–77.

[44] Thieme, H. R. & Zhao, X. (2003) Asymptotic speeds of spread and traveling waves for integral

equations and delayed reaction diffusion models. J. Differ. Equ. 195(2), 430–470.

[45] Travis, C. C. & Webb, G. F. (1974) Existence and stability for partial functional differential

equations. Trans. Am. Math. Soc. 200, 395–418.

[46] Volpert, A. I., Volpert, V. A. & Volpert, V. A. (1994) Traveling Wave Solutions of Parabolic

Systems (Translations of Mathematical Monographs, 140), AMS, Providence, RI, xii+448

pp.

https://doi.org/10.1017/S0956792512000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000198


Asymptotic spreading of competition diffusion systems 689

[47] Wang, Z.-C., Li, W.-T. & Ruan, S. (2008) Travelling fronts in monostable equations with

nonlocal delayed effects. J. Dyn. Differ. Equ. 20(3), 573–603.

[48] Weinberger, H. F., Lewis, M. A. & Li, B. (2002) Analysis of linear determinacy for spread in

cooperative models. J. Math. Biol. 45(3), 183–218.

[49] Wu, J. (1996) Theory and Applications of Partial Functional Differential Equations, Springer-

Verlag, New York, x+429 pp.

[50] Ye, Q., Li, Z., Wang, M. & Wu, Y. (2011) Introduction to Reaction Diffusion Equations, Science

Press, Beijing, China, xvii+450 pp.

https://doi.org/10.1017/S0956792512000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000198

