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A new temporal vortex tracking algorithm allows the first long-term temporal observation
of the lives of the intense vorticity structures (IVS). The algorithm is applied to direct
numerical simulations of statistically stationary isotropic turbulence, with Taylor-based
Reynolds numbers in the range 54 � Reλ � 239. In the highest Reynolds number case,
the continuous time tracking of millions of ‘worms’ is achieved for more than seven
integral time scales and close to 200 Kolmogorov time scales. Within an integral scale
volume, more than 66 structures exist, and approximately 20 new structures are created
per Kolmogorov time. More than 80 % of the structures live a solitary ‘life’ without any
visible interaction with the other structures, while approximately 15 % break into new
structures. Less than 2 % of the structures merge with others to form new vortices. A
‘population model’ is developed to estimate the numbers of existing vortices for very long
simulated times, and it is observed that the birth rate density of these structures slowly
increases with the Reynolds number. The survival functions of the IVS lives exhibit an
exponential distribution, with some structures living for more than 35 Kolmogorov time
scales (more than four integral time scales). The mean lifetime of the IVS scales with
the mean turnover time scale of the worms, defined by their radii and tangential velocity,
attaining ≈ 6.5 turnover time scales at high Reynolds numbers.

Key words: homogeneous turbulence, isotropic turbulence, turbulence theory

1. Introduction
From the collection of coherent structures inhabiting turbulent flows the structures
commonly called ‘vortices’ stand out because of their large coherence and relatively simple
dynamics, when compared to other structures (Green 1995). Their importance is explained
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by their role in the transfers of mass, momentum and energy that take place in turbulent
flows. These structures are often loosely defined as regions of concentrated vorticity and
low pressure, with a lifetime that is usually considered to be large compared with the
average characteristic time scale of the flow (Davidson 2015).

A subclass of these structures consists of the so-called intense vorticity structures (IVS)
or ‘worms’ that constitute the smallest-scale eddies that can be found in a turbulent flow.
They have often been defined as the structures having a vorticity magnitude that is above
a certain threshold. Here, the threshold is set by the flow points with the highest vorticity
magnitude that occupy 1 % of the total flow volume (following Jiménez et al. (1993) and
Jiménez & Wray (1998)). The worms are tubular structures with diameter Divs ≈ 10 η,
where η is the Kolmogorov microscale. Their characteristic tangential velocity is Uivs ≈
u′, and their maximum vorticity magnitude is of the order of ωivs ∼ ω′ Re1/2

λ , where
ω′ and u′ are the root-mean-square vorticity and velocity, respectively (Jiménez et al.
1993; Jiménez & Wray 1998), while their length scales with the Kolmogorov microscale
(Livs ∼ η) as Livs ≈ 60 η (Ghira, Elsinga & da Silva 2022). (Throughout this paper, we use
the symbol ‘∼’ to imply scaling between two quantities even if this does not necessarily
imply that they are of the same order.) It is noteworthy that direct numerical simulations
(DNS) carried out at higher Reynolds numbers than previously available, with Taylor-
based Reynolds numbers Reλ = 1100, have again confirmed visually that intense vorticity
is organised into vortex tubes (Ishihara et al. 2007; Buaria et al. 2019, 2020).

It has been reported that the kinetic energy content and the total viscous dissipation
included in the core of these structures are both negligible (Jiménez et al. 1993;
Jiménez & Wray 1998); however, the most intense dissipation events within the flow
field happen when two (or more) of these structures come close (Ganapathisubramani,
Lakshminarasimhan & Clemens 2008), and their study is motivated by flow problems as
diverse as turbulent entrainment (da Silva, dos Reis & Pereira 2011), internal intermittency
(Ishihara et al. 2007), mixing (Kida & Miura 1998) and cloud physics (Shaw 2003).

The IVS have been investigated mainly in homogeneous isotropic turbulence (HIT)
through the use of DNS (e.g. Siggia 1981; Kerr 1985; She, Jackson & Orszag 1991;
Vincent & Meneguzzi 1991, 1994; Ruetsch & Maxey 1991; Jiménez et al. 1993; Jiménez
& Wray 1998; Ghira et al. 2022), and also in experimental studies (e.g. Villermaux,
Sixou & Gagne 1995; Cadot, Douady & Couder 1995; Ganapathisubramani et al. 2008;
Aligolzadeh, Holzner & Dawson 2023). Other flow cases include also mixing layers
(Tanahashi, Iwase & Miyauchi 2001), channel flows (Kang, Tanahashi & Miyauchi 2008)
and jets (Ganapathisubramani et al. 2008; da Silva et al. 2011), where the IVS have
been shown to display similar characteristics, even when analysed using slightly different
methods (see Ghira et al. (2022) and references therein).

In spite of the large number of works devoted to the investigation of the geometrical
and dynamical characteristics of IVS, surprisingly few studies addressed the lifetime of
these structures. It has been assumed for many years that the lifetime of the ‘worms’ is
‘long’, and it has often been implied that their lifetime is of the order of the integral time
scale of the flow (Jiménez et al. 1993). The long lifetimes appear consistent with the fact
that the cores of the IVS are well described by the steady Burgers vortex model. However,
few, if any, reliable direct measurements of this lifetime have been made up to now. The
difficulty is linked to the need to save for subsequent analysis many massive instantaneous
velocity fields from DNS, and because of other technical difficulties in experimental
studies.

1007 A62-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

62
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.62


Journal of Fluid Mechanics

Douady, Couder & Brachet (1991) used cavitation in a liquid seeded with bubbles to
investigate the regions of low pressure in the turbulent flow generated between two rotating
disks. By tracking the regions of low pressure, which are strongly correlated with regions
of intense vorticity magnitude, they were able to follow some vorticity structures. They
observed that these structures are for the large part short-lived and display a high degree
of temporal and spatial intermittency, and that the observed filaments exist only during
one large-scale turnover time.

Villermaux et al. (1995) measured the lifetime of vortices generated in a water tank
by oscillating disks at Taylor-based Reynolds numbers in the range 170 � Reλ � 300.
They report the lifetime to be about one-quarter of the integral time scale. However, they
mention that their structures are very long filaments, with the size of the integral scale
of motion, and that they are relatively few, with approximately one single structure per
integral-scale cube volume. This suggests that these structures are much longer than the
typical ‘worms’ described in DNS of isotropic turbulence (Ghira et al. 2022).

To the authors’ knowledge, the only systematic attempt at measuring the lifetime of the
eddy structures in DNS was carried out by Biferale, Scagliarini & Toschi (2010) using
isotropic turbulence with Taylor-based Reynolds number in the range 65 � Reλ � 185.
They use an indirect procedure based on following light particles trapped inside vortex
filaments, and the estimates for individual lives are obtained by studying the moment of
inertia of bunches of particles. Their structures are defined by a vorticity threshold equal to
5ω′, which is slightly higher than the value typically used to detect the IVS in other studies.
The probability density functions of the vortex filament lifetimes exhibit an exponential
distribution, with decay rates equal to 17τη and 25τη for the DNS with Reλ = 65 and
Reλ = 185, respectively, with lifetime events as long as one integral scale having been
observed for the largest Reynolds number case (≈ 50τη). However, a definitive estimation
of the lifetimes of the intense vortices at high Reynolds numbers could not be obtained,
because of the difficulty in tracking lifetimes for a relatively long period of time.

Despite these studies, it is clear that a rigorous temporal analysis of the life events and
lifetimes of the IVS structures is still lacking. The difficulty arises because of (i) the
difficulty of accurately following a large number of eddies (e.g. hundreds of thousands
or millions of structures), and (ii) the difficulty in doing this for very long simulated times
(at least several integral time scales).

In the present work, thanks to a new temporal vortex tracking algorithm, we are able to
follow for the first time a very large number of IVS at sufficiently high Reynolds numbers,
thereby presenting the first systematic and rigorous study of the lifetimes of the IVS. The
algorithm is able not only to determine the lifetime of each individual structure, from their
‘births’ to their ‘deaths’, but also to detail its life events, such as numbers of splitting and
merging events with other structures. Thus the new temporal tracking algorithm permits us
not only to determine the individual (and mean) lifetimes of the IVS, but also to investigate
the impacts of these splitting and merging events on these statistics. Another important
ingredient of the present work is the use of advanced statistical tools to estimate lifetimes
in other areas of science and medicine. The results are obtained in DNS of HIT, but they
are easily extended to other flow types, since the characteristics of the IVS are known to
be virtually the same in many different flows.

This paper is organised as follows. The next section (§ 2) describes the DNS used in
the present work, and § 3 describes the temporal tracking algorithm used to assess the
temporal evolution of IVS lives. Section 4 describes the main results, focusing on (i) the
mean lifetime of the IVS, (ii) the number and generation rates of the IVS, and (iii) the
statistics and relevance of the splitting and merging events of these structures. The work
ends in § 5 with an overview of the main results and conclusions.
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N 3 Reλ ν u′ λ L11 ε η kmaxη N f τη τL t f /τL t f /τη

1283 54 0.0370 2.90 0.68 1.48 10.01 0.0474 2.0 1400 0.061 0.51 6.70 56.0
2563 91 0.0145 2.99 0.44 1.34 10.07 0.0235 2.0 2550 0.038 0.45 6.02 71.3
5123 143 0.0057 2.95 0.28 1.28 9.83 0.0117 2.0 6707 0.024 0.43 7.42 132.9
7683 189 0.0034 2.98 0.22 1.31 9.74 0.0080 2.0 9999 0.019 0.44 6.75 156.3
10243 239 0.0023 3.04 0.18 1.30 9.72 0.0059 2.0 12501 0.015 0.43 6.58 188.6

2563 54 0.0145 2.31 0.34 0.76 10.03 0.0235 2.0 2550 0.038 0.33 10.03 86.38

Table 1. Physical and computational parameters of the DNS: number of collocation points (N 3); Taylor-
based Reynolds number (Reλ); kinematic viscosity (ν); root mean square of the velocity fluctuations (u′ =√

u′2); Taylor microscale (λ); longitudinal integral scale (L11); viscous dissipation rate (ε); Kolmogorov
microscale (η); maximum effective wavenumber normalised by the Kolmogorov microscale (kmaxη); number
of instantaneous fields analysed (N f ); Kolmogorov time scale (τη); integral time scale (τL = L11/u′); final
simulation time normalised by the integral time scale (t f /τL ); final simulation time normalised by the
Kolmogorov time scale (t f /τη). The last row corresponds to the DNS where the forcing is centred at kp = 4
(instead of kp = 2).

2. The DNS of forced isotropic turbulence
A total of five DNS of statistically stationary (forced) HIT were carried out in the present
work. The DNS employ the code described in Ghira et al. (2022), which is an in-house
Navier–Stokes solver using classical pseudo-spectral methods for spatial discretisation,
and a three-stage, third-order Runge–Kutta scheme for temporal advancement. The
simulations are carried out in a triple periodic domain of sizes 2π × 2π × 2π using
N 3 collocation points. Table 1 lists all the physical and computational parameters of the
simulations.

The number of collocation points in the simulations varies within the range 1283 �
N 3 � 10243, and the Reynolds number in the range 54 � Reλ � 239, while the resolution
is always kept at kmaxη = 2.0. Statistical stationarity is obtained by imposing a power input
through the imposed forcing fi that balances the viscous dissipation rate, P = ε, where
P = fi ui is the power of the input forcing, and ε = 2ν si j si j is the viscous dissipation
rate, while si j = (∂ui/∂x j + ∂u j/∂xi )/2 is the rate-of-strain tensor. The forcing scheme
implemented here is described in Alvelius (1999), and all the simulations use the
same power of the input forcing, P = 10, where the forcing fi is imposed in the two
wavenumbers centred at kp = 2, so that the size of the computational box is always bigger
than four times the longitudinal integral scale of turbulence. One additional DNS was
carried out to assess the possible effects of the forcing on the results of the lifetime
statistics (last row in table 1). This DNS uses the same physical and computational
parameters of the DNS of N 3 = 2563, but the forcing is centred at a larger wavenumber,
kp = 4 (instead of kp = 2), and the resulting Reynolds number (Reλ = 54) is equal that
obtained with the DNS of N 3 = 1283.

Yeung, Sreenivasan & Pope (2018) investigated the resolution effects on the vorticity
and strain obtained in DNS of HIT. They concluded that the necessary resolution needed to
capture extreme events of vorticity and strain increases with the Reynolds number, and that
the typical resolutions used in many DNS of HIT (e.g. kmaxη = 1.0) may not be sufficient
to obtain some of the extreme events incurred by these variables. In the present work, all
the simulations were carried out with kmaxη = 2.0, which was observed to be sufficient to
obtain the details of the IVS at much higher Reynolds numbers than the ones used in the
present work. Indeed, as in Appendix C of Ghira et al. (2022), resolutions kmaxη = 2.0, 2.5
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Figure 1. Temporal evolutions of the kinetic energy (K ) and dissipation rate (ε) normalised by their initial
values K0 and ε0, respectively, for the time window used in the subsequent analysis. The plots represent the
cases with (a) Reλ = 54, (b) Reλ = 91, (c) Reλ = 143 and (d) Reλ = 189. (The DNS with Reλ = 239 show
similar characteristics, not shown.)

and 3.0 were shown to lead to essentially the same results for the characteristics of the IVS.
However, we cannot discount that future DNS addressing the characteristics of the IVS,
such as the present work, if carried out at much higher Reynolds numbers (e.g. Reλ ≈ 650)
as in Yeung et al. (2018), might need finer resolutions.

The analysis of the IVS is carried out in the statistically stationary phase of the
simulations. Since the wormtracker algorithm used here is active at every time step of each
simulation, the present analysis is able to process a very large number of samples/fields.
These vary in the range 1400 � N f � 12 501 for instantaneous continuous fields, which
corresponds to more than 6 integral time scales and to tens of Kolmogorov time scales
(see table 1).

Figure 1 shows the evolutions of the kinetic energy and dissipation rate normalised
by their initial values at statistically steady conditions, where the snapshots/time
steps analysed by the wormtracker are taken, and displays the typical variability
present in similar (statistically stationary) simulations of HIT. As expected, the viscous
dissipation exhibits proportionally greater variations than the kinetic energy; however, the
instantaneous value of ε never exceeds 10 % of its mean value during the simulated times.

3. Temporal tracking algorithm

3.1. Wormtracker: the IVS detection algorithm
As described in the Introduction, the IVS are defined by flow points with the highest
vorticity magnitude covering 1 % of the total flow domain. The algorithm used to detect
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and quantify these structures (‘wormtracker’) is based on the one from Jiménez et al.
(1993) and Jiménez & Wray (1998), with some improvements already described in Ghira
et al. (2022). The aspects of the wormtracker that are relevant to the present work are the
detection and automatic assignment/numbering of these structures. Other aspects of the
wormtracker, such as the computation of the associated kinematic and geometrical aspects
(e.g. the IVS tangential velocity and vortex radius) described in Ghira et al. (2022), are not
important for the present investigation.

As in Jiménez et al. (1993), Jiménez & Wray (1998) and Ghira et al. (2022), the
detection of the IVS starts with the computation of a histogram of vorticity magnitude for
each one of the instantaneous fields obtained during the course of each simulation. This
histogram (computed ‘on the fly’ for each simulation) is then used to obtain the reference
vorticity magnitude threshold ωivs corresponding to the 1 % highest vorticity magnitude
for each field. Any grid point for which the (local) vorticity magnitude ω = (ωiωi )

1/2

(where ωi is the vorticity vector) is greater than ω > ωivs is then assigned to an individual
structure. The wormtracker uses the direction of the local vorticity vector at each grid
point to build the full axis of each structure, and the procedure ends when all the IVS have
been identified, with Ns defining the total number of IVS existing at a given time. In this
process, all the IVS are numbered, starting with the structure with the strongest vorticity
(assigned as structure number 1), and ending with the structure with the smallest vorticity
(assigned as structure number Ns – this particular labelling of the IVS is not relevant
for the subsequent discussion). As in Jiménez et al. (1993), Jiménez & Wray (1998) and
Ghira et al. (2022), structures with fewer than Pax = 20 axis points are discarded from
the statistical sample. These structures are discarded also for being too small (the ratio
between their length and diameter is Livs/Divs ≈ 2.0) and for being extremely rare (Ghira
et al. 2022).

However, unlike in previous works, the wormtracker algorithm runs together with the
Navier–Stokes solver, so there is no need to store and analyse each one of the individual
instantaneous fields in subsequent post-processing, i.e. the wormtracking is done during
the actual simulation, for each time step. This proved to be an essential ingredient of the
present work, since it allows the time tracking of each one of the individual structures
during very long times, which is crucial to make a rigorous temporal analysis of the
IVS. Due to the considerable time involved in one particular step of the wormtracking
algorithm, for the DNS with N 3 = 10243 the wormtracking was active in only 1/8 of the
computational domain, i.e. in a subdomain of the simulation with (only) 5123 points. For
this reason, the total number of tracked structures in these DNS is similar to the DNS with
N 3 = 5123.

Table 2 lists some of these IVS characteristics for the simulations used in the present
work. The mean values of the radius, axis length and tangential velocity agree with the
results described in Ghira et al. (2022) and many other works. The table also shows the
mean turnover time scale of the ‘worms’ about their axis computed in two ways. For an IVS
with radius Rivs and tangential velocity Uivs the time for a single turnover is 2π Rivs/Uivs ,
so we defined the effective mean turnover time of the IVS as τe f f = Rivs/Uivs . Since
at very high Reynolds numbers the radius of the IVS scales with the Kolmogorov
time scale Rivs ∼ η, and the characteristic tangential velocity scales with the root-mean-
square velocity Uivs ∼ u′, we define the mean turnover time scale as τrot = η/u′. The
two quantities are closely related; however, in practice they are not identical, since the
scaling of the tangential velocity Uivs ∼ u′ is only observed for Reynolds numbers greater
than Reλ � 200 − 250, while the scaling Rivs ∼ η is attained at much smaller Reynolds
numbers (Ghira et al. 2022). In any case, for sufficiently high Reynolds numbers the mean
time of a single turnover (rotation) is 2π Rivs/Uivs ≈ 25(η/u′) using the present data,
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N 3 Reλ Rivs/η Livs/η Uivs/u′ Rivs/Uivs η/u′

1283 54 4.29 39.75 1.11 0.0632 0.0163
2563 91 4.28 48.70 1.25 0.0269 0.0079
5123 143 4.23 53.18 1.15 0.0146 0.0040
7683 189 4.10 54.98 1.11 0.0099 0.0027
10243 239 4.06 55.86 1.05 0.0075 0.0019

2563 54 4.23 44.83 1.13 0.0381 0.0102

Table 2. Characteristics of the IVS from all the simulations used in the present work (obtained as in Ghira
et al. 2022). Mean values are shown of: radius normalised by the Kolmogorov length scale (Rivs/η); axis
length normalised by the Kolmogorov length scale (Livs/η); tangential velocity normalised by the root mean
square velocity ( Uivs/u′ ); effective turnover time scale (τe f f = Rivs/Uivs ); turnover time scale (τrot = η/u′).
The last row corresponds to the DNS where the forcing is centred at kp = 4 (instead of kp = 2). Note that the
two last columns in the table are dimensional. They both have (the same) units of time.

and the analysis of both τrot and τe f f shows that, as expected, the typical turnover time of
IVS decreases as the Reynolds number of the simulations increases (see table 2).

3.2. Connecting individual IVS from contiguous time steps
As described above, during a given simulation, the wormtracker algorithm is applied to
the identification of the IVS for each time step of the simulation. However, the numbering
of each structure is altered between consecutive time steps, because the hierarchy in the
intensity of the IVS may change during time. In order to track each one of the IVS, an
algorithm that ‘connects’ individual structures from contiguous time steps is used, which
is now described.

The time tracking algorithm starts in a given snapshot/time step, at time ts , where
all identified structures have been assigned an index/number, with the number 1 being
assigned to the structure having the most intense vorticity point, followed by 2 for the
second most intense structure, and so on, until the last, less intense vortex axis has been
numbered (number Ns).

Next, by using a scalar field variable, we assign the same index/number to this scalar
in all mesh points within a distance of one �x (mesh spacing) from each point along the
filament in every direction. The result is a scalar variable identifying in space the position
of a filament and its representative cloud. For instance, the scalar field will display the
value 1 in all the points of the cloud surrounding the most intense axis (the axis containing
the most intense vorticity point). This choice is based on the assumption that a filament is
not expected to move away appreciably from its cloud within one time step �t due to the
Courant number restriction.

For the next snapshot, at time ts + �t , a new set of structures is identified, and a new
indexing/axis numbering takes place, again starting from the axis of the most intense
vortex structure. However, by overlapping the new structures with respect to the scalar
field of clouds from the previous snapshot, we are able to connect and refer back in time
this new indexing. In other words, we can assign a global index/numbering that identifies
unambiguously each one of the structures since its ‘birth’ to its ‘death’, and relate it to
the local indexing as described above, using all the existing/instantaneous snapshots from
a given simulation. Notice that with this algorithm, and in order to track a structure in
time, we compare clouds from the same IVS at different times, and we do not compare
clouds from different structures within the same time instant. If two IVS approach too
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Figure 2. (a) Iso-surfaces of vorticity magnitude, corresponding to the points with the 1 % strongest vorticity
magnitude (grey), together with the associated axes of the IVS. (b) Axes of the IVS as in (a), combined with
the cloud of the scalar field used to link separate instants in the simulation. Both (a) and (b) correspond to the
same time instant for the DNS of Reλ = 54.

much and ‘merge’, then this is seen in the next snapshot as a (new) single structure, and in
this process, the two previous structures are considered ‘dead’.

Figure 2(a) shows the IVS for a given instant for the smaller DNS used in the present
work. The IVS are detected by iso-surfaces of vorticity magnitude, corresponding to the
points with the 1 % strongest vorticity magnitude. The figure also shows the axis of the
individual IVS detected by the wormtracker. Notice that there are some iso-surfaces where
ω > ωtr that have no visible axis since IVS with fewer than 20 axis points are discarded
from the statistical sample. Figure 2(b) shows the same structures (same instant) covered
by the clouds of the auxiliary scalar field.

The procedure outlined above allows us to obtain spatial recognition of the positions of
the structures in subsequent time steps. Nevertheless, we still need to build some criteria
to make comparisons between consecutive time steps. We start by defining the overlap
operator Oi j , which represents (in %) for a given scalar cloud i how much of a worm
j belongs to it (where only the points belonging to some cloud are taken into account).
For instance, consider a given worm j that has n points along its filament, and suppose
that from these n axis points, a number x belong to cloud a, y belong to cloud b, and
z points do not overlap with any other existing cloud (n = x + y + z). In this case, the
matrix elements of the overlap operators Oaj and Obj are defined by Oaj = x/(n − z) and
Obj = y/(n − z), respectively. We then define complete superposition when Oi j > 90 %,
and incomplete superposition if 10 % � Oi j � 90 %, where by superposition we mean that
worm j is overlapping cloud i .

Using these definitions and metrics, we can now look for the most simple events in
the temporal evolution of a worm, namely: (i) same worm, (ii) pure splitting, (iii) pure
merging, (iv) death, and (v) birth. Same worm events occur whenever there is a complete
superposition of a cloud by one structure, implying the the continuation of the life of the
worm. A pure splitting means that a cloud has more than one structure with complete
superpositions. A pure merging happens when more than one cloud merges into one
structure with incomplete superpositions on them, and at the same time, all the clouds
involved must satisfy the same merging criteria. A death is detected if one cloud does
not have any structure overlapping. Finally, a birth occurs because a structure is not
overlapping any existing cloud. These criteria are summarised in table 3.
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Complete superposition Incomplete superposition Classification
(Oi j > 90 %) (10 % � Oi j � 90 %)

= 1 = 0 Same worm
> 1 = 0 Pure splitting
� 1 > 0 –
= 0 > 0 Pure merging (all clouds must satisfy)
= 0 = 0 Death

Table 3. Classification criteria based on the number of structures contributing to a specific range of values of
the overlap operator Oi j . This table should be interpreted with respect to each one of the existing clouds i . Note
that a cloud with given merging criteria will be considered as merged only if all the involved clouds satisfy the
same criteria.
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Figure 3. (a) Lifetime map for the simulation of Reλ = 54. Every horizontal line represents a worm that is
‘alive’. The vertical axis shows the global index/number assigned to each structure, while the horizontal axis
represents the elapsed time in time step units. The red lines show the connections among branches arising from
splitting events, while the green lines show merging events. (b) Zoom of (a) highlighting one merging event
from two structures into a single structure (green), and a split from one structure into two new structures (red).

It is important to stress that, as mentioned above, the above connectivity algorithm
allows one to build a global worm index from the local indexes obtained for each time
step/instant of the simulation. With this procedure, all statistics taken at each instant of
time can be traced back to each specific individual structure, as a time-evolving entity.
The most basic entity arising from the connectivity algorithm is the lifetime map, which
is shown in figure 3 for the simulation of Reλ = 54 (the other simulations result in similar
maps). Figure 3(a) displays the full lifetime map for this simulation, which comprises
a total of 1400 time steps, showing the history of several worms. In this map, every
horizontal line represents a worm that is ‘alive’ at some time interval, and the vertical axis
is the global index/number assigned to each structure, while the horizontal axis represents
the elapsed time in time step units. Note that the present analysis starts from the statistically
stationary state, which explains the existence of approximately 20 worms already ‘present’
at �t = 0. Figure 3(b) shows a zoom of the same map illustrating merging and splitting
events. The red lines represent one structure splitting into two new structures, while the
green lines show a merging of two structures into a single new structure. Note that a new
global index is assigned for each new branch arising from the structures that have split or
merged.
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Figure 4. (a) Zoom of the domain from the simulation of Reλ = 54, showing the first splitting for the
simulation with (a) the structure undergoing that splitting, and (b) the resulting branches. Note that in (a),
the single cloud is also shown for the respective filament. That cloud is compared with the positions occupied
by the two structures appearing in (b), thus identifying this chain of events. In (b), we now see two clouds,
one surrounding each new filament (identified by different colours). The process of cloud reconstruction takes
place at the end of each snapshot analysis for further time tracking.

The first detected splitting event for this simulation is shown in figure 4, in exactly the
two (contiguous) times when that event was recorded. There we can see (figure 4a) that
before splitting, a filament exists with the corresponding cloud. In the very next instant
(figure 4b), we see two different structures instead. The connection is made by comparing
those two structures with the cloud presented in figure 4(a). By the end of the second
time step, the scalar variable with the new cloud information is reconstructed to allow the
continuation of the analysis in the next time step.

4. Results
In this section, we use the temporal vortex tracking algorithm described above to (i)
compute the mean lifetime of the IVS, (ii) estimate the population of the IVS present
in a given simulation and (iii) study the history of the IVS in terms of their events, such as
splits and merging.

4.1. Study of the survival function of the IVS
We start the discussion of the results with the investigation of the mean lifetimes of the
IVS. In this process, we make the following assumption: branches arising from splitting or
merging events are considered as individual IVS for the purpose of time tracking the IVS.
Thus the background dynamics of the IVS, and possible interactions with other IVS, are
not taken into consideration when analysing the lifetime statistics. In § 4.4 it will be shown
that splits and mergers have a negligible effect on the observed lifetime.

The analysis is based on the concept of the survival function (SF) denoted as S(τ ),
which is used to estimate lifetimes in different areas of science, medicine and engineering
(Klein & Moeschberger 2003). If the lifetime of a structure (T ) is a continuous random
variable, then the SF is the probability of the structure having a lifetime bigger than time
τ , i.e. the SF is defined as

S(τ ) = P(T > τ) =
∫ ∞

τ

f (u) du, (4.1)
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where f (τ ) is the probability density function (PDF) of the IVS, having a lifetime equal
to τ . The cumulative distribution function (CDF) F(τ ) is defined as the probability that
the survival time is less than or equal to a specific time τ :

F(τ ) = P(T � τ) =
∫ τ

0
f (u) du, (4.2)

i.e. S(τ ) = 1 − F(τ ), since
∫ ∞

0 f (u) du = 1. We measure the lifetime of each structure by
subtracting its death time (when we can no longer follow the structure) from its birth time
(when we start detecting it).

In the present work, all the lifetime analysis is based on the Kaplan–Meier (KM)
estimator (Kaplan & Meier 1958), which is a non-parametric method used to obtain the SF
and to estimate lifetimes in different areas of science, medicine and engineering (Kaplan
& Meier 1958).

The KM estimator for the SF, denoted by Ŝ(τ ), takes the following form when applied
to the study of the lifetimes of the IVS:

Ŝ(τ ) =

⎧⎪⎨
⎪⎩

1, τ < τ1,∏
τi�τ

[
1 − di

ri

]
, τ � τ1, (4.3)

where τ1 is the smallest recorded lifetime, the τi form an ordered list containing the
lifetimes of all tracked IVS, where τi is increasing with i , di is the number of structures that
died at lifetime τi , and ri is the number of structures that are at risk of ‘dying’ at lifetime τi
(that die at lifetimes greater than or equal to τi ). Naturally, at time τ1, all the structures in
the sample are at risk, thus r1 = Ns . The actual use of this estimator is described in some
detail in an example given below.

One big advantage of this estimator is that it allows one to use all the existing samples
of IVS lifetimes. Recall that when the time tracking of the IVS is started (corresponding to
time t = 0), some of the IVS are already alive, and by the end of the simulated time, some
IVS that will ‘die’ later are still alive. It follows that if these structures are considered in a
‘classical’ procedure to estimate the mean lifetime of the IVS, then the resulting estimated
mean lifetime will be smaller than or equal to the ‘real’ one. The KM estimator allows one
to use all the available data to obtain the SF without incurring this problem. Formally,
this means that these IVS (from the start and end of the simulated time) are treated
as right-censored data, while all the other IVS lifetime measurements are considered as
fully observed (Kaplan & Meier 1958). To clarify, in the use of (4.3) with censored data,
censored structures are not classified as deaths. As an example, suppose that at lifetime
τi we have five structures (ri = 5), then one structure dies (di = 1) and one is censored
(ci = 1). Then at time τi+1, we have ri+1 = ri − di − ci = 5 − 1 − 1 = 3, where ci is the
number of censored structures, which are subtracted at stage i .

The next two figures (figures 5 and 6) show the estimated SFs obtained by applying
(4.3) to the lifetime data originated from all the DNS used in the present work, Ŝ(τ ) =
1 − F̂(τ ) = 1 − P̂(T/τη < τ/τη), where P̂(T � τ) is the estimated CDF. As expected, all
the SFs decrease as the lifetime increases. Interestingly, all the SFs are well approximated
by an exponential function, provided that the number of available samples is sufficiently
high. Appendix A compares the SF obtained with the KM estimator to that obtained
using a ‘classical’ (straightforward) approach demonstrating the advantages of the
former.

The mean lifetime of the IVS is simply the integrated SF; however, we need to address
two issues, to which we now turn our attention before carrying out this integration.
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Figure 5. Survival functions Ŝ(τ ) = 1 − F(τ ) of the worms’ lifetimes obtained through (4.3), where data for
lifetimes smaller than a given threshold value τ0 have been removed (filtered), for the DNS with (a) Reλ = 54,
(b) Reλ = 91, (c) Reλ = 143 and (d) Reλ = 189. (The DNS with Reλ = 239 show similar characteristics, not
shown.) Here, τ is the random variable describing the lifetime, and τη is the Kolmogorov time scale. In the
SF for τ0/τη = 0, all the lifetimes have been used, whereas in the other curves, lifetimes smaller than τ0/τη =
0.1, 0.2, 0.5, 1 have been eliminated from the statistical sample.

First, we need to address the effect of some of the thresholds used in the temporal time
tracking procedure. One of these is the threshold value of the considered time itself, τ . It
is plausible that data obtained for extremely small times will be ‘polluted’ by numerical
artefacts, such as, for instance, when IVS oscillate very close to the detected threshold and
can ‘appear’ and ‘disappear’ from the data for very small simulated times. We believe that
this and similar non-physical behaviours are essentially present when too small lifetimes
are considered. For that reason, we study how sensitive the lifetime distributions are to
small times by eliminating them from the data, i.e. to when low time scale cut-offs are
used. In short, we argue that representative IVS should live more than a certain time τ0, and
we investigate this effect by recomputing the CDF for our data by eliminating structures
living less than a given time τ0.

Figure 5 shows the effect of τ0 on the SFs for τ0 in the range 0 � τ0/τη � 1. In the SF
for τ0/τη = 0, no removal was done, i.e. all the lifetimes have been used. The figure shows
that using different cut-offs τ0/τη affects the SF shape; however, for each simulation, the
SF converges to virtually the same function for τ0 � 0.5τη. For example, there is virtually
no diference between the SFs for the DNS of Reλ = 143 (figure 6c) corresponding to
τ0/τη = 0.5 and τ0/τη = 1. Similar results are observed for the other cases. We therefore
proceed with our analysis by eliminating all the structures displaying lifetimes smaller than
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Figure 6. Survival functions Ŝ(τ ) = 1 − F(τ ) of the worms’ lifetimes obtained through (4.3), with different
final simulated times t f , for the DNS with (a) Reλ = 54, (b) Reλ = 91, (c) Reλ = 143 and (d) Reλ = 189.
(The DNS with Reλ = 239 show similar characteristics, not shown.) In these curves, times smaller than
τ0 = 0.5τη have been removed (filtered) following the discussion in figure 5. Here, τ is the random variable
describing the lifetime, and τL is the integral time scale (τη is the Kolmogorov time scale).

τ0/τη = 0.5, as it is likely that events lasting less than half a Kolmogorov time are affected
by artificial numerical ‘noise’ described above.

The second variable that one needs to investigate is the total time duration of the
simulations, t f . In order to investigate the effect of this variable in the results obtained,
we fix τ0/τη = 0.5 and repeat the SF estimation for different simulation times t f . Figure 6
shows the resulting SF for all the simulations carried out in this work, which can be seen as
temporal evolutions of this estimation. It is clear that as the final simulated time increases,
the SFs converge into the same curve (for each simulation), with an approximately constant
slope, where the tail of the SF extends to longer times as t f increases. An implication of
this observation is that very-long-living structures are relatively rare and are ‘seen’ only
for sufficiently large time windows. Also, for each case, there is virtually no difference
between the SFs obtained for the two biggest simulated times. For instance, for the DNS
of Reλ = 143 (figure 6c) , the curves corresponding to t f /τL = 5.8 and 7.4, are virtually
the same. This shows that the total (final) simulated time (t f /τL ≈ 6–7) is sufficient to
capture the details of the SF for each case.

Following the results from the above discussion, we now proceed with the estimation of
the mean lifetimes of the IVS by using the appropriate data for each simulation, i.e. we will
be using the data from the green curves from figures 6(a–d), which comprise the entire
simulated times for the DNS, t f /τL ≈ 6–7, and by eliminating events (lifetimes) lasting
less than τ0/τη = 0.5.
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4.2. Computing the characteristic lifetime of the IVS
Having now determined what data can be used to compute the SF (using only IVS
with lifetimes greater that τ0/τη = 0.5) and that the total simulated time is sufficient to
accurately compute these functions in each case, we now use three different methods to
compute the characteristic lifetime of a structure, which we denote by τivs . We will see that
the three methods lead to similar values of the characteristic lifetime, and that the results
allow us to establish the scaling laws associated with this quantity. In any case, whatever
the method used to estimate the SF, it is important to stress that the mean lifetime is always
given by the integration of the SF, i.e. for a continuous SF (S(τ )), we have

τivs =
∫ ∞

0
S(τ ) dτ =

∫ ∞

0
τ f (τ ) dτ, (4.4)

where the second equality stems from the definition of the SF in (4.1).
Formally, the restriction on τ0 discussed above means that the PDF f (τ ) for the lifetime

is defined as

f (τ ) =
{

0, 0 � τ < τ0,
h(τ ), τ � τ0,

(4.5)

where h(τ ) is a restricted PDF (whose CDF is F(τ ) = ∫ τ

τ0
h(t ′) dt ′), while the SF now

becomes

S(τ ) =
⎧⎨
⎩

1, 0 � τ < τ0,

1 −
∫ τ

τ0

h(t ′) dt ′, τ � τ0,
(4.6)

since the CDF and the SF are defined by P(T/τη < τ/τη) and S(τ ) = 1 − P(T/τη <

τ/τη), respectively, as before.
With these definitions, the mean lifetime of the IVS can now be estimated by

τivs =
∫ ∞

0
S(τ ) dτ = τ0 +

∫ ∞

τ0

[
1 −

∫ τ

τ0

h(t ′) dt ′
]

dτ. (4.7)

Notice that in figures 5(a–d), the displayed functions are precisely 1 − P(T/τη < τ/τη) =
1 − ∫ τ

τ0
h(t ′) dt , and the horizontal axis represents the shifted time (τ − τ0), which means

that the integral in (4.7) is simply the area enclosed by the SFs.
As remarked above, a careful analysis of figures 5 and 6 suggests that the SFs are well

approximated by an exponential function for τ � τ0:

Ŝ(τ ) = 1 − P̂(T/τη < τ/τη) ≈ e−(τ−τ0)/ζ , (4.8)

where ζ is the inverse of the decay rate associated with the SF, or the mean lifetime of the
IVS (τivs). The use of an exponential function greatly simplifies the computation of the
mean lifetime of the IVS, which is simply

τivs = τ0 +
∫ ∞

τ0

e−(τ−τ0)/ζ dτ = τ0 + ζ, (4.9)

if one considers an infinite time of recorded events.
The first (straightforward) method to estimate the mean lifetime of the IVS consists

on using the so-called restricted mean survival time (RMST) (Royston & Parmar 2013),
whereby the SF is integrated up to a specific time point τmax :

τ RM ST
ivs = τ0 +

∫ τmax

τ0

Ŝ(τ ) dτ, (4.10)
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N 3 Reλ
τ RM ST

ivs

τη

τ M L E
ivs

τη

τ Fit
ivs

τη

τ RM ST
ivs

τL

τ M L E
ivs

τL

τ Fit
ivs

τL

1283 54 4.07 4.01 4.10 0.487 0.480 0.490
2563 91 4.10 4.09 4.16 0.346 0.345 0.351
5123 143 3.77 3.76 3.90 0.210 0.210 0.218
7683 189 3.39 3.38 3.54 0.146 0.146 0.153
10243 239 3.28 3.28 3.42 0.114 0.114 0.119

2563 54 4.14 4.12 4.26 0.481 0.479 0.495

Table 4. Mean lifetimes of the IVS estimated with three different methods, normalised by the Kolmogorov
time τη and by the integral time scale τL , for all the DNS used in the present work: number of collocation
points (N 3); Taylor-microscale-based Reynolds number (Reλ); mean lifetime using the restricted mean survival
time (τ RM ST

ivs ); mean lifetime using the maximum likelihood estimator considering an exponential distribution
(τ M L E

ivs ); mean lifetime measured by fitting the KM estimate for the SF (τ Fit
ivs ). The last row corresponds to the

DNS where the forcing is centred at kp = 4 (instead of kp = 2).

where Ŝ(τ ) represents the estimated SF, and τmax is the measured lifetime for
the longest-lived structure. Specifically, this value was assigned to (τmax − τ0)/τη =
21.74, 22.52, 38.16, 37.01 for the DNS with Reλ = 54, 91, 143, 189, respectively. Using
this approach, the mean lifetime of the IVS is simply given by (4.10), where the integration
is performed until the longest detected time τmax for each one of the simulations used here.

A second method to estimate the mean lifetime of the IVS consists in using the
maximum likelihood estimator (MLE) (Klein & Moeschberger 2003). In this case, and
again by assuming that the SF is described by an exponential function (4.8), the parameter
ζ can be estimated by maximising the probability to obtain the existing/available data.
Formally, for right-censored data, the so-called likelihood function for the parameter ζ is
given by

L(ζ ) =
∏

i

f (τi )
∏

n

S(τn), (4.11)

where S(τ ) = exp[−(τ − τ0)/ζ ] is again the SF defined by the parameter ζ , and f (τ ) =
exp[−(τ − τ0)/ζ ]/ζ is the PDF of the IVS lifetimes, also assumed to follow an exponential
distribution, consistently with the assumed form of the SF (and with the observed shape of
the PDF shown in Appendix A). Notice that in (4.11), the i index runs for all fully observed
data, whereas the n index runs for all right-censored data. With the value of ζ obtained in
this way, the mean lifetime of the ‘worms’ using this estimator is τ M L E

ivs = τ0 + ζ .
Finally, the third method (Fit) consists in assuming that the SF obtained for the

simulations represented in figures 6(a) and 6(d) is defined by an exponential function, and
obtaining the parameter for each curve, namely ζ , by using the least squares regression
line. As in the other methods, the mean lifetime of the IVS is simply τ Fit

ivs = τ0 + ζ .
Table 4 displays the mean lifetime of the IVS (τivs) obtained by employing the three

methods described above. The mean lifetimes are normalised with the Kolmogorov time
(τη) and with the integral time scale (τL ). It is reassuring to see that the three different
methods lead to very similar mean lifetime values for all DNS data.

The mean lifetime is typically equal to τivs/τη ≈ 3–4 and τivs/τL ≈ 0.1–0.3. This is
much smaller than the integral time scale usually claimed as being the typical lifetime
of the IVS. Our explanation, supported in several animations, is that even though many
of these long lifetime structures do exist, as inferred from the SFs in figures 6(a–d), they
represent extreme lifetime events, which are relatively rare, even if probably these are
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the structures that we retain in our mind from movies and visualisations. Indeed, from
figures 6(a–d), one can see that some IVS have lives that are much longer than the mean,
with recorded lifetime events ≈ 15τη, ≈ 22τη, ≈ 35τη and ≈ 38τη for the DNS with Reλ =
54, 91, 143 and 189, respectively. From table 1, one can see that these extreme lifetimes
correspond to ≈ 1.8τL , ≈ 1.9τL , ≈ 2.0τL and ≈ 1.6τL , respectively. This suggests that the
extremes scale with the integral time scale τL , but not the mean.

Biferale et al. (2010) also observed extreme lifetime events of the order of the integral
time scale; however, their computed mean values were τivs/τη ≈ 17 and 25 for DNS with
Reλ = 65 and 180, respectively, which is 3–5 times higher than our values, and reveals an
opposite trend with the Reynolds number. The difference can be attributed to the indirect
procedure used in that work, which involved the clustering of light particles inside the
vortex cores. As recognised in that paper, particle clustering requires persistent vortices,
since the particles need time to move into the vortex cores. Hence their detection method
may favour long-lived structures. Also, the analysis of lifetimes from particles trapped
inside the IVS does exclude situations of IVS merging or splitting that are differentiated
in the present study. Another difference is the chosen magnitude of the threshold used to
detect the IVS. Moreover, it is unclear how the small sample size used in that work might
have affected their result, and whether care was taken to exclude lives from the start and
end of the simulations. Arguably, the present tracking method is the first rigorous attempt
at investigating this problem because of the method being ‘direct’ (the IVS are tracked in
time, not their effects) and the number of samples is very large.

Finally, from table 4 it is clear that the lifetime values show a decreasing trend with the
increase of the Reynolds number, i.e. the available data suggest that the mean lifetime of
the IVS at high Reynolds numbers does not scale with either τη or τL .

To allow a closer look at the effects of the Reynolds number on the shapes of the SFs,
figure 7 gathers all the SFs used here, for the different Reynolds numbers available in
the present work. Again, we are seeing the same SF already displayed in figures 6(a–d),
together with the DNS with Reλ = 239, where only 1/8 of the computational domain is
used to time track the IVS. This does not affect the mean lifetime of the IVS for this last
(bigger) DNS, but it may limit the amount of extreme events available in this simulation
(see Appendix C). We can see here more clearly than before that as the Reynolds number
increases, the slope of each curve – and consequently the area under the curve (which
represents the mean lifetime) – decreases. This is consistent with the results shown in
table 4. However, we also observe another interesting result, which is that the duration
(size) of the recorded lifetimes also increases with the Reynolds number. Whereas for
Reλ = 54 no single recorded IVS lives longer than τivs/τη = 25, for Reλ = 189 many IVS
live longer than τivs/τη = 35. Not only do the longest recorded lifetimes increase with
the Reynolds number, following approximate τL scaling, but also the total ‘spectrum’ of
existing lifetime events increases. This result is probably not surprising since the increase
of the Reynolds number is typically associated with an increase in the multiplicity of
length, velocity and time ‘events’ in turbulent flows, but it is nonetheless interesting to
observe it here in the context of the analysis of the lifetimes of the IVS. (This trend is not
visible in the bigger DNS probably because of the use of only 1/8 of the computational
domain.)

In order to clarify the scaling law associated with the mean lifetime of the IVS,
figure 8 shows the mean times obtained previously (τ RM ST

ivs , τ M L E
ivs , τ Fit

ivs ), represented
by symbols, normalised with the Kolmogorov time scale (τivs/τη). The data are compared
with three scaling laws involving the Kolmogorov time scale (τη), turnover time scale
(τrot ), and effective turnover time scale (τe f f ). For small and intermediate Reynolds
numbers (Reλ � 100), the results suggest that the mean lifetime of the IVS scales with
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Figure 7. Comparison between the several SFs obtained for the different Reynolds numbers available in the
present work. Each SF shown here is the reference SF used in the discussion of the lifetime already displayed in
figures 6(a–d), together with the DNS with Reλ = 239. Here, τ is the random variable describing the lifetime,
while τη is the Kolmogorov time scale.
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Figure 8. Mean lifetimes of the IVS computed with three different methods (τ RM ST
ivs , τ M L E

ivs , τ Fit
ivs ), normalised

with the Kolmogorov time scale (τivs/τη), for all the DNS used in the present work (symbols). The data points
are compared with several lines representing different scaling laws: Kolmogorov time scale (τη = (ν/ε)1/2),
turnover time scale (τrot = η/u′), and effective turnover time scale (τe f f = Rivs/Uivs ). All the scaling curves
use as reference the data point with Reλ = 143, except the curve (line) corresponding to τη scaling, which uses
the smallest Reynolds number case for clarity.

the Kolmogorov time τivs ∼ τη; however, it is clear that as the Reynolds number increases,
the mean lifetime of the ‘worms’ no longer scales with this law. Instead, the results show
that the mean lifetime of the IVS scales with the turnover time scale or with the effective
turnover time scales at higher Reynolds numbers. Notice that a slight Reynolds number
effect may still be present for the case with Reynolds number Reλ = 143−189. Indeed,
as mentioned above, Ghira et al. (2022) have shown that the asymptotic scaling law for
Uivs , which influences the effective turnover time scale, is ‘settled’ only for Taylor-based
Reynolds numbers greater than Reλ � 200. The two largest available Reynolds numbers
(Reλ = 189–239) are approximately within this region, where the results suggest that the
mean lifetime scales more closely with the effective time scale than with the rotation time
scale, i.e. τivs ∼ τe f f .

Notice that at sufficiently high Reynolds numbers, there should be no difference
between the scaling with the turnover time scale, or with the efective turnover time scale,

1007 A62-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

62
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.62


A.A. Ghira, G.E. Elsinga and C.B. da Silva

100

10–1

10–5

10–3

10–4

10–2

100

10–1

10–5

10–3

10–4

10–2

0 0 10 20 4030 50 60 70 8070 140 210 280

Reλ = 54
Reλ = 91
Reλ = 143
Reλ = 189
Reλ = 239
Reλ = 54, kp = 4

Reλ = 54
Reλ = 91
Reλ = 143
Reλ = 189
Reλ = 239

(a) (b)

(τ – τ0)/τrot (τ – τ0)/τeff

Figure 9. Comparison between the several SFs obtained for the different Reynolds numbers shown in figure 7,
normalised by (a) the turnover time scale (τrot ), and (b) the effective time scale (τe f f ). Also shown in (a) is the
SF for the DNS where the forcing is centred at kp = 4 (instead of kp = 2).

since η/u′ ∼ Rivs/Uivs . However, the separate assessment carried out here allows one to
‘isolate’ potential intermediate Reynolds number effects, and clearly show that the time
of a single turnover of IVS is the time scale defining its lifetime. An implication of this
scaling law τivs ∼ τrot (or τivs ∼ τe f f ) is that the mean lifetime of the ‘worms’ decreases
with increasing Reynolds numbers, a fact that may have implications in other areas, such
as internal intermittency. Indeed, a decreasing τivs/τη is qualitatively consistent with the
decreasing time scales associated with local regions of intense turbulence (e.g. Elsinga,
Ishihara & Hunt 2020).

Figures 9(a) and 9(b) show the SFs where the lifetime is normalised by the turnover time
scale (τrot ) and by the effective time scale (τe f f ), instead of the Kolmogorov time scale
(τη) used previously in figure 7. One can see that as the Reynolds number increases, the
SFs approach each other when τrot is used (figure 9a), but tend to colapse better when τe f f
is used (figure 9b). This observation again supports the above described scaling law for the
lifetime of the IVS, i.e. τivs ∼ τe f f . As discussed above, the higher Reynolds number cases
used here are already sufficiently high to allow the inference of this scaling law.

An anonymous Referee noted that the exponential distribution of the SFs implies a
memoryless history of the IVS. Figure 9 (as previous figures 5, 6 and 7) again shows that
all the SFs exhibit an exponential distribution for most of the range. A memoryless history
of the IVS is consistent with the classical role of the small scales in a turbulent flow. Note,
however, that this is not true for the extreme lifetime events. Indeed, the final parts of all
the SFs deviate from an exponential distribution, since the SFs decay much faster. This
suggests that extreme SF events, representing IVS living much longer than average, may
include some memory effects. It is plausible that bigger IVS might somehow be connected
to the large scales of the flow, and therefore also to the details of the forcing. Unfortunately,
we do not know at present if these extreme lifetime events are correlated with either the
size or the vorticity magnitude of the IVS. Preliminary analysis of a few movies suggests
that this might be the case; however, the dynamical aspects of the IVS deserve a detailed
and separate investigation. These movies, carried out for the smaller Reynolds number
case, show that typical IVS are born small and grow by incremental lengthening, where
two or more branches emerge connected together, in a very fast process. They typically
die in opposite fashion, when a long axis is broken into smaller-sized axes. It is not clear
at present if this scenario is dominant (for the majority of the IVS) and still valid for high
Reynolds number cases.
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N 3 Reλ
τ RM ST

ivs u′

η

τ M L E
ivs u′

η

τ Fit
ivs u′

η

τ RM ST
ivs Uivs

Rivs

τ M L E
ivs Uivs

Rivs

τ Fit
ivs Uivs

Rivs

1283 54 15.2 15.0 15.3 3.93 3.87 3.96
2563 91 19.7 19.7 20.0 5.79 5.78 5.88
5123 143 22.6 22.6 23.4 6.20 6.18 6.41
7683 189 23.9 23.8 24.9 6.51 6.49 6.79
10243 239 25.9 25.9 27.0 6.56 6.56 6.84

2563 54 15.5 15.4 15.9 4.13 4.11 4.25

Table 5. Mean lifetimes of the IVS estimated with three different methods, normalised by the turnover
time scale (τrot = η/u′) and by the ‘effective’ turnover time scale (τe f f = Rivs/Uivs ) for all the DNS used
in the present work: number of collocation points (N 3); Taylor-microscale-based Reynolds number (Reλ);
mean lifetime using the restricted mean survival time (τ RM ST

ivs ); mean lifetime using the maximum likelihood
estimator considering an exponential distribution (τ M L E

ivs ); mean lifetime measured by fitting the KM estimate
for the SF (τ Fit

ivs ). The last row corresponds to the DNS where the forcing is centred at kp = 4 (instead of
kp = 2).

Finally, figure 9(a) also shows the SF for the DNS with the forcing centred at kp = 4 to
assess the possible effects of the forcing in these extreme lifetimes events. As can be seen,
the SF for this case follows the same exponential distribution for the reference case with
kp = 2 (the SFs from the two cases overlap), showing that the forcing does not affect the
lifetimes except for the extremely rare events.

For completeness, table 5 lists the mean lifetime of the IVS normalised with both
turnover time scales for all the DNS used in the present work. It is noteworthy that
using this normalisation with the turnover time scales, the variation between the lifetime
values in the last two consecutive Reynolds numbers is very mild, and much smaller in
percentage than the variations listed in table 4, where the lifetimes were normalised with
the Kolmogorov time scales. This observation is consistent with the mean lifetime of the
IVS scaling with the turnover time scales of these structures. The results from table 5
show that the mean lifetimes for the highest Reynolds numbers attain τivs ≈ 26(η/u′)
and τivs ≈ 6.5(Rivs/Uivs), and since the perimeter of the vortex cores is 2π Rivs , on
average each structure turns only one time around its axis before being dissipated, i.e.
before its vorticity drops below the detection threshold. Finally, table 5 shows the mean
lifetime values for the DNS with different forcing (kp = 4). The values (whatever the
normalisation) are very close to those of the reference DNS (kp = 2) at the same Reynolds
number Reλ = 54, which demonstrates that modifications of the forcing location do not
affect the mean lifetime statistics.

4.3. The population of the IVS
Using the lifetime data available, it is possible to build a population model that estimates
the number of existing (‘alive’) IVS, as well as the number of ‘births’ and ‘deaths’ of
these structures for a given time in a simulation. For this purpose, we postulate that the
population model follows a simple balance equation,

dN

dt
= dNB

dt
− dND

dt
, (4.12)

where N (t) is the number of existing IVS at a given time t , NB is the accumulated number
of births (thus dNB/dt represents their birth rate) and ND is the accumulated number of

1007 A62-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

62
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.62


A.A. Ghira, G.E. Elsinga and C.B. da Silva

deaths (dND/dt is the death rate). Since the flow is statistically stationary, by assuming
that the birth rate is constant, dNB/dt = CB , and noting that the death rate can be written
using the mean lifetime as dND/dt = N/τivs , we can rewrite (4.12) as

dN

dt
= CB − N

τivs
, (4.13)

which yields the solution

N (t) = N0 e−t/τivs + CBτivs[1 − e−t/τivs ], (4.14)

where N0 = N (0) is the initial number of individuals/worms at the initial time (when the
time tracking starts). Note that the key step leading to (4.13), i.e. the death rate relation
dND/dt = N/τivs , stems from the observed exponential distribution of the lifetimes
discussed in the previous subsection. Indeed, since the probability of a structure surviving
up to time t and ‘dying’ in the interval t + dt , which is dND/N , is equal to dt/τivs , the
exponential distribution of the lifetimes naturally leads to the proposed death rate relation.

In the limit of very long simulated times t → ∞, the population (or the number) of
existing IVS tends to a constant, which is equal to

N (t → ∞) = N∞ = CBτivs . (4.15)

Thus N∞, representing the statistically stationary state, is related to the birth rate CB and
the mean lifetime determined in § 4.2. The birth rate is as yet unknown and is determined
below. Moreover, since (4.12) is equivalent to

N (t) = NB(t) − ND(t) + N0, (4.16)

the number of accumulated deaths is

ND(t) = CBt − N0 e−t/τivs − CBτivs[1 − e−t/τivs ] + N0, (4.17)

since

NB(t) = CBt (4.18)

(due to assuming a constant birth rate). Notice that statistical stationarity implies N∞ =
CBτivs = N0 and NB = ND .

In order to test this population model, we consider a time window where we track
structures that are born for times t > t0, and stop considering new structures after a time
tn , which is defined as the largest living time of all the structures still alive by the end of
the simulated time t f . In practice, this means that with this time window we eliminate (or
filter) all structures that are alive at t = t0 and at t = t f , and we also discard those structures
that are born for times later than tn . We denote by Ñ (t) and N̂ (t) the numbers of existing
structures at time t , considering all the simulated time (t0 < t < t f ) and considering only
the filtered time window (tm < t < tn), respectively, where tm is the largest living time for
structures alive at time t0.

Figure 10 shows Ñ (t) and N̂ (t) obtained for the several DNS data cases, where the black
frame represents the time interval tm < t < tn , considered in the filtering described above.
As can be seen, the filtering essentially makes Ñ (t) = N̂ (t) for tm < t < tn , and contains a
large population history, with several tens of Kolmogorov simulated times, and thus many
birth and death events, making it possible to test the population model proposed here. The
figure shows also the number of structures ‘alive’ for any given time, predicted by the
population model N (t), as discussed below.

Figure 11 shows the number of accumulated births (N̂B(t)) and deaths (N̂D(t)) obtained
directly from the simulations in the interval t0 < t < tn . As expected, both N̂B(t) and
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Figure 10. Instantaneous number of existing (‘alive’) structures for the full analysed data (Ñ (t)), and for the
filtered data (N̂ (t)), obtained directly from the several DNS data cases, compared with the prediction obtained
from the population model derived from (4.16), N (t). The black frame delimits the data from the initial (tm )
and final (tn) times where the filtered data and the actual data overlap. The curves are given for the DNS
with (a) Reλ = 54, (b) Reλ = 91, (c) Reλ = 143 and (d) Reλ = 189. (The DNS with Reλ = 239 show similar
characteristics, not illustrated.)

N̂D(t) increase with time during the simulation, with a time lag between the two quantities
where for any given time we have N̂B(t) > N̂D(t), as required by (4.16). From these DNS
curves for N̂B(t), and since NB(t) = CBt from (4.18), it is possible to estimate the slopes
CB for each simulation by using the least squares method. The normalised values of CB
for each curve are shown in the plots, e.g. for the highest Reynolds number case, we have
a birth rate of ≈ 823 new structures per Kolmogorov time (figure 11d). Finally, using
(4.17), we compute the modelled value of ND(t), where we have set N0 = N (0) = 0, since
at t = t0 no existing (‘alive’) structures are considered. These curves, predicted by the
present model, are also shown in the figure for each DNS case, and show good agreement
with the existing data, thus validating the model.

Table 6 shows the normalised birth rates obtained for each simulation CBτη, computed
as described before, together with the resulting number of existing structures in the limit
of very long simulated times, N∞. This quantity was computed using the available mean
lifetime of the structures for each case (listed in table 4) with the birth rates given here
(table 6), i.e. N∞ = CBτivs = (CBτη)τivs/τη. The temporal average of the instantaneous
number of structures alive during the simulation, obtained directly from the DNS, is
also shown (〈Ñ (t)〉) for comparison. Notice that in the DNS with Reλ = 239 only 1/8
of the computational domain is used, with 5123 grid points. Therefore, the number of time
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Figure 11. Accumulated number of births (N̂B(t)) and deaths (N̂D(t)) obtained directly from the several DNS
simulations, using data from the time window t0 < t < tn . These curves are used to compute estimates for
NB(t) and ND(t) that allow the estimation of the number N (t) of existing structures for a given time in each
simulation. The plots also show the birth rate constants CB obtained for each case, using the least squares
method. The curves are given for the DNS with (a) Reλ = 54, (b) Reλ = 91, (c) Reλ = 143 and (d) Reλ = 189.
(The DNS with Reλ = 239 show similar characteristics, not illustrated.)

tracked IVS in this simulation is closer to the DNS with Reλ = 143 than to the DNS with
Reλ = 189.

The results show that the modelled number of existing structures (N∞) agrees well with
the one recovered from the DNS data (〈Ñ (t)〉), which supports the population model.
The same conclusion can be obtained in figure 10 by comparing the number of existing
structures N (t) computed through (4.16), with the curves of Ñ (t) and N̂ (t) already
discussed. Naturally, our deterministic model is not able to predict the stochastic character
of the fluctuating DNS data, but it is noteworthy that those fluctuations occur around the
values predicted by the model, which thus represents the averaged behaviour of these
variables.

The results show also that the number of structures alive increases with the Reynolds
number, from roughly 18 structures for Reλ = 54, to more than 2700 structures for
Reλ = 189. The same is true for the birth rates and total numbers of births and deaths. For
instance, for the highest Reynolds number simulation more than 130 000 new structures
are born (and a similar number of structures die), with a total of more than 1.3 million
structures tracked, and the birth rate attains CB = 823.1 newly generated structures per
Kolmogorov time. Table 6 shows that the values of CBτη, N∞ and 〈Ñ (t)〉 for the DNS
with the different forcing (kp = 4) are much bigger than those for the reference DNS at the
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N 3 Reλ Nivs CBτη N∞ 〈Ñ (t)〉 ÑB(t f ) ÑD(t f )

1283 54 273 4.59 18 17 253 256
2563 91 2302 31.93 131 124 2203 2205
5123 143 33 684 252.42 949 918 32 893 32 860
7683 189 133 966 823.10 2785 2767 131 696 131 399
∗10243 239 48 163 283.89 930 851 47 609 47 781

2563 54 3197 35.67 147 143 3068 3063

Table 6. Population statistics for all the DNS used in the present work: number of collocation points (N 3);
Taylor-based Reynolds number (Reλ); total number of structures tracked during the simulation time window
(Nivs ); birth rate normalised by the Kolmogorov time scale (CBτη); number of structures predicted by the
population model at saturated conditions (N∞ = CBτivs ); temporal average of the instantaneous number of
structures alive during the simulation (〈Ñ (t)〉); accumulated number of births (ÑB(t f )); accumulated number
of deaths (ÑD(t f )). The last row corresponds to the DNS where the forcing is centred at kp = 4 (instead of
kp = 2). The ∗ in front of the row for the largest DNS is a reminder that, in this case, the IVS were followed in
a subdomain consisting of only 1/8 of the total box size.

same Reynolds number. However, if we take into account the larger domain size of these
new DNS (N 3 = 2563), which is 8 times bigger than the reference DNS with the same
Reynolds number (Reλ = 54), and if we multiply by 8 the values of these variables for that
DNS, then we get CBτη = 36.7, N∞ = 144 and 〈Ñ (t)〉 = 136, which are very close to the
values CBτη = 35.67, N∞ = 147 and 〈Ñ (t)〉 = 143 obtained in the DNS with the different
kp. This fact indicates that the forcing location does not affect these statistics. The values
of the other quantities involve much larger simulated time than the reference DNS, and
involve many more samples, thus cannot be compared in this form, but require a proper
normalisation that will be discussed below.

The question that arises is whether this increase in the number of structures with the
Reynolds number can be explained simply by the increasing size of the computational
domain, which increases also with the Reynolds number of our simulations. Note that the
average number of existing structures, 〈Ñ (t)〉, can be seen as a ‘density’ (of structures)
since it represents the number of existing structures in a box of volume Vbox = (2π)3

(Vbox = (2π)3/8 for the DNS with Reλ = 239). To compute the average number of
structures 〈Ñ (t)〉V living in any other given volume V , one simply needs to evaluate

〈Ñ (t)〉V = 〈Ñ (t)〉 V

Vbox
(4.19)

using the values of 〈Ñ (t)〉 in table 6. We use two different volumes: (i) a cubic volume
defined by the size of the integral scale VL = L3

11, and (ii) a volume defined by the
Kolmogorov microscale Vη = (100 η)3 (where the arbitrary constant 100 was chosen for
convenience but does not modify the conclusions). In order to see if the increase in the
number of structures with the Reynolds number can be simply explained by the increasing
size of the computational domain, table 7 shows both the average number of existing IVS
and their birth rates, normalised by a fixed amount of volume (VL and Vη) using (4.19).
When normalised by the integral scale of motion, both the number of structures and the
birth rate increase with the Reynolds number. In a cube with the size of the integral scale
VL = L3

11, more than 66 structures exist, and close to 20 new structures are created per
Kolmogorov time, for the highest Reynolds number considered in this study. However,
when the normalisation is done in a volume defined by the Kolmogorov microscale,
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these numbers are approximately constant (but not exactly, as discussed below).
Specifically, for a volume defined by Vη = (100 η)3, we have approximately 6 living
structures and a birth rate of approximately 1.7 new structures per Kolmogorov time.
An anonymous Referee remarked that if the mean lifetime of the IVS normalised by the
Kolmogorov time (τivs/τη) varies with the Reynolds number (as observed above), then this
necessarily implies that the birth rate density cannot be Reynolds-number-independent.
The arguments from the Referee are derived from (4.15) and can be summarised as follows.
From this equation, we can write

N∞ = CBτη

(
τivs

τη

)
, (4.20)

thus

N∞
(

Vη

Vbox

)
= CBτη

(
τivs

τη

) (
Vη

Vbox

)
. (4.21)

Now table 7 shows the density of the IVS N∞(Vη/Vbox ), and the density of the birth
rate CBτη(Vη/Vbox ), as functions of the Reynolds number. It is obvious that since
τivs/τη varies with the Reynolds number, it is not possible that both N∞(Vη/Vbox ) and
CBτη(Vη/Vbox ) can be Reynolds-number-independent. Indeed, the results from the new
DNS seem to show a mild Reynolds number increase of the birth rate density, that
somehow compensates for the decrease of the lifetime normalised by the Kolmogorov
time, so that the density of the IVS stays approximately constant (notice that this
quantity seems to be oscillating as the Reynolds number increases; see table 7). In other
words, N∞(Vη/Vbox ) becomes approximately Reynolds-number-independent thanks to
the increase of CBτη(Vη/Vbox ) with the Reynolds number (see table 7). This increase
of the birth rate density with the Reynolds number may be easily explained if the birth
events are associated with extreme events of the flow field, because of the well-known
increase of the intermittency with the Reynolds number that is typical of high Reynolds
turbulence. For the time being, these statements need to be taken cautiously, until similar
simulations are carried out at higher Reynolds numbers, or when the dynamics of the
‘birth’ and ‘death’ events is further investigated.

The Kolmogorov scaling for the density described above suggests another way to
observe the density of the IVS. The volume occupied by one single structure can be
estimated as Vivs = π R2

ivs Livs , and since the normalised radius and length of these
structures both scale with the Kolmogorov microscale (Ghira et al. 2022), one can write

Vivs = π

(
Rivs

η

)2 (
Livs

η

)
η3, (4.22)

where, at sufficiently high Reynolds numbers, the quantities in brackets are constants equal
to Rivs/η ≈ 4.0 and Livs/η ≈ 55, respectively, so that Vivs ∼ η3.

Using these values, the volume of a single ‘worm’ is approximately equal to Vivs ≈
2765 η3 (at high Reynolds numbers). Therefore, the average number of structures in a
given simulation can be estimated by considering the volume occupied by the IVS, which
occupy 1 % of the entire volume (2π)3/100, i.e.

N = (2π)3

100Vivs
= 2π2

25
(

Rivs

η

)2 (
Livs

η

)
η3

, (4.23)

where the bar is used to name this new estimate. Table 7 displays the values obtained for
each simulation used in the present work, where one can see that the crude estimate given
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N 3 Reλ
〈Ñ (t)〉VL

Vbox

〈Ñ (t)〉Vη

Vbox

CBτηVL

Vbox

CBτηVη

Vbox
N

1283 54 0.22 7.30 0.060 1.971 10.13
2563 91 1.20 6.49 0.310 1.671 68.20
5123 143 7.76 5.93 2.134 1.630 518.09
7683 189 25.08 5.71 7.460 1.699 1668.58
∗10243 239 65.90 6.16 20.123 1.881 4175.23

2563 54 0.25 7.46 0.062 1.862 76

Table 7. Spatially averaged population statistics for all the DNS used in the present work: number of collocation
points (N 3); Taylor-based Reynolds number (Reλ); temporal average of the instantaneous number of structures
alive at a given time per unit volume defined with the integral scale (〈Ñ (t)〉VL/Vbox ); temporal average of
the instantaneous number of structures alive at a given time per unit volume defined with the Kolmogorov
microscale (〈Ñ (t)〉Vη/Vbox ); birth rate CB per unit volume, where the volume is defined with the integral scale
(CBτηVL/Vbox ); birth rate CB per unit volume, where the volume is defined with the Kolmogorov microscale
(CBτηVη/Vbox ); average number of structures within the computational domain using the estimate defined by
(4.23) (N ). The last row corresponds to the DNS where the forcing is centred at kp = 4 (instead of kp = 2).
The ∗ in front of the row for largest DNS is a reminder that in this case, the IVS were followed in a subdomain
consisting of only 1/8 of the total box size.

by (4.23) recovers values for N that are of the same order of those for 〈Ñ (t)〉 (see table 6).
Also, it is interesting to note that when properly normalised (as in table 7), the statistics
for the DNS with different forcing (kp = 4) are virtually equal to those of the reference
DNS (kp = 2) at the same Reynolds number (Reλ = 54). This again demonstrates that
modifications of the forcing location do not affect the birth rate and the number of existing
structures. Note that the value N = 76 for this simulation is also consistent with N ≈ 10
for the first simulation in the list since the domain size of this last simulation is 8 times
bigger.

By using the definition of the non-dimensional dissipation Cε , i.e.

ε = Cε

u′3

L11
, (4.24)

where u′3 = (u′2)3/2, and u′2 is the velocity variance in the x direction, one can write
(4.23) in the equivalent form

N = 2π2

25
(

Rivs

η

)2 (
Livs

η

) (
153/4 L11

Cε

)3 Re9/2
λ = C∗ Re9/2

λ , (4.25)

where C∗ is a constant approximately equal to 1.1 × 10−7, obtained by averaging the data
from all DNS.

Figure 12 shows the comparison between the real (obtained from the DNS) number
of ‘worms’ inside the computational domain 〈Ñ (t)〉 (listed in table 6), and the estimate
described above, N (listed in table 7). The power law described above is also shown. It is
clear that the two quantities evolve in a similar way, and are reasonably well approximated
from the mentioned power law. The results and expressions from the text above are useful
for estimating the number of IVS present inside a given HIT flow region. A similar analysis
can be extended to estimate the density of ‘births’ and ‘deaths’ per unit time and volume.
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Figure 12. Mean number of ‘worms’ inside the computational domain 〈Ñ (t)〉 as obtained from the DNS
(from table 6), compared with its estimate N , from table 7. The dashed line represents the scaling law defined
in (4.25).

4.4. Splits and merger between the ‘worms’ and their statistical (ir)relevance
The lifetime maps described in § 3.2 can be used to analyse the life history of the IVS.
Specifically, the number of mergings (when two or more ‘worms’ come together) or splits
(when one ‘worm’ breaks into two or more structures), as well as the number of isolated
(solitary) structures, can be obtained from the life maps for the six simulations, such as
the one shown in figure 3 for the smallest Reynolds number. This was analysed here by
assessing all the identified structures for the duration of their life span, from ‘birth’ to
‘death’, where the merging or splitting events have been marked as instantaneous events.

Table 8 presents a summary of the main results obtained from the post-processing
of the life maps, showing the total number of tracked structures (Nivs), the number of
solitary/isolated structures (ÑI (t f )), and the number of accumulated mergings (NM(t f ))
and splits (NS(t f )), together with their corresponding fractions. The numbers of splits and
mergers increase with the Reynolds number, but represent always a very small fraction
of the total number of recorded lives. For the highest Reynolds numbers, the fractions of
isolated, merged and split structures are approximately 84 %, 2 % and 14 % of the total,
respectively. Thus the great majority of lives correspond to solitary/isolated structures
that emerge from the background vorticity and live a solitary life, dying again in the
background, without any visible interaction with the other structures. We want to stress
that the fact that we do not see many splits/mergings does not necessarily imply that the
interaction between a structure and its neighbours is negligible. Our data do not allow us
to assess the possible dynamical interactions between the IVS. Our algorithm is able to
detect only interactions that result in splits/mergings. Finally, the normalised values for
the DNS with different forcing (kp = 4) shown in the last three columns are again close to
those of the reference DNS with the smallest Reynolds number.

Figure 13 shows histograms of the numbers of branches undergone by the structures
tracked in the several simulations. In these plots, solitary/isolated structures are
represented by one (1) branch since they do not experience any merging or splitting event,
i.e. they are born and die without interactions. Structures with 3 branches could represent
structures that split into two branches and die without further interactions (pure splitting
or pure merging events will always involve the interaction between at least 3 branches).
Two branches are due to events where one of the branches lives less than t0. It is clear that
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N 3 Reλ Nivs ÑI (t f ) ÑM (t f ) ÑS(t f )
ÑI (t f )

Nivs

ÑM (t f )

Nivs

ÑS(t f )

Nivs

1283 54 273 248 1 14 0.908 0.004 0.051
2563 91 2302 1801 26 307 0.782 0.011 0.133
5123 143 33 684 25 556 630 4774 0.759 0.019 0.142
7683 189 133 966 103 034 2410 17 853 0.769 0.018 0.133
∗10243 239 48 163 37 315 810 6234 0.775 0.017 0.129

2563 54 3197 2689 42 281 0.841 0.013 0.088

Table 8. Statistics of merging and splitting events for all the DNS used in the present work: number of
collocation points (N 3); Taylor-based Reynolds number (Reλ); total number of structures tracked during the
simulation time window (Nivs ); total number of isolated or solitary (non-interacting) structures (ÑI (t f ));
accumulated number of merging events (NM (t f )); accumulated number of splitting events (NS(t f )); fraction
of isolated or solitary (non-interacting) structures (ÑI (t f )/Nivs ); fraction of merging events (NM (t f )/Nivs );
fraction of splitting events (NS(t f )/Nivs ). The last row corresponds to the DNS where the forcing is centred
at kp = 4 (instead of kp = 2). The ∗ in front of the row for largest DNS is a reminder that in this case, the IVS
were followed in a subdomain consisting of only 1/8 of the total box size.

solitary structures are by far the most frequent in all cases, in agreement with the results
in table 8, and also that the small numbers of branches are always far more common than
large numbers. However, the number of possible branches increases with the Reynolds
number. Whereas for Reλ = 54 only three branches have been detected, up to 16 branches
can be observed for Reλ = 189. Again, the increasing complexity of existing structures is
consistent with the increasing number of degrees of freedom that is characteristic of high
Reynolds numbers.

Even if the number of merging and splitting structures is much smaller than the total,
it is important to assess how the lifetime data are affected by including in the analysis
all individual branches, regardless of the way in which they appear, i.e. to consider all
the detected branches in the lifetime computation. The results show that the inclusion
of these splitting and merging events does not affect the results. For instance, for the
highest Reynolds number case, the mean lifetime of the IVS using the MLE changes from
τMLE

ivs /τη = 3.38 (table 4) to τMLE
ivs /τη = 3.26 for including in the analysis the detected

merging and splitting events, i.e. a variation of only 3.5 %. Thus we conclude that the
interaction mechanisms not only are very rare but also have a negligible impact in the
mean lifetime statistics.

Finally, Appendix B shows that the main results from this work are relatively
independent of the values chosen for the two parameters used to define the IVS.

5. Conclusions
Direct numerical simulations (DNS) of statistically stationary (forced) homogeneous
isotropic turbulence are used to temporally track IVS for long times in order to investigate
their (i) numbers, (ii) birth and death rates, (iii) interactions with other structures and (iv)
mean lifetimes.

The Taylor-based Reynolds number of the six DNS simulations used in this work varies
in the range 54 � Reλ � 239 for a number of collocation points in 1283 � N 3 � 10243,
and the resolution is always kept at kmaxη = 2.0. The number of instantaneous fields
analysed in the simulations varies in the range 1400 � N f � 12 501, with the IVS being
tracked in these instantaneous fields (for each time step), for a total simulated time that
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Figure 13. Histograms of the numbers of branches undergone by the structures tracked in the several
simulations. A solitary structure is represented by one branch since it does not experience any merging or
splitting event, i.e. is born and dies without interactions, while a structure with three branches could represent a
single structure that splits into two branches that will die with no further interactions. The histograms are given
for the DNS with (a) Reλ = 54, (b) Reλ = 91, (c) Reλ = 143 and (d) Reλ = 189. (The DNS with Reλ = 239
show similar characteristics.)

varies as 6.02 � t f /τL � 7.42 and 56 � t f /τη � 188.6. This allowed the temporal tracking
of a total of between 273 and 133 966 ‘worms’.

The investigation was made possible by the development of an efficient vortex tracking
algorithm that uses an auxiliary scalar field to connect individual structures from
contiguous time steps, and to build a ‘lifetime map’ that records the emergence (or birth)
and dissipation (or death) of each one of these structures as a function of time. These
maps also permit the investigation of the interactions between the several structures,
including the events of splitting (when one individual structure breaks into two or more
new structures) and merging (when two or more structures merge into a single structure).

The results show that the majority of the IVS (more than 80 %) live a ‘solitary’ life,
without any visible interaction with the other structures, while approximately 15 % break
(split) into new structures. Less than 2 % of the structures merge with other structures to
form new vortices. The number of ‘branches’ resulting from these interactions increases
progressively with the Reynolds number; however, the dominating life history consists of
one-branch (no interaction) structures.

A population model is developed to estimate the numbers of these structures for very
long simulated times, that agrees with the DNS results. The density of existing (‘alive’)
structures seems to be Reynolds-number-independent – thanks to a slight increase with
the Reynolds number – of the rate of generation (or ‘birth rate’) of the structures per unit
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volume. We recover a total number of structures 〈Ñ (t)〉, per Kolmogorov scale volume
Vη = (100 η)3 equal to 〈Ñ (t)〉Vη/(2π)3 ≈ 6, while the birth rate of these structures is
CBτηVη/(2π)3 ≈ 1.9 new structures per Kolmogorov scale volume and per Kolmogorov
time scale (with a very weak dependence of the Reynolds number).

The SFs of the IVS lives exhibit an exponential distribution, and a range of lifetime
values that increases with the Reynolds number. Whereas for the simulation with Reλ = 54
individual lifetimes lasting 14τη have been recorded, for Reλ = 189 there are structures
that live up to 37τη, which corresponds to more than 4τL . The mean lifetime of the IVS
normalised by the Kolmogorov microscale is τivs/τη ≈ 3–4 for the present simulations,
and scales with the mean turnover time scale of the structures Rivs/Uivs , where Rivs and
Uivs are the mean radius and mean tangential velocity of the structures. In particular,
we obtain τivs ≈ 6.5Rivs/Uivs at high Reynolds numbers, which gives a mean lifetime of
the ‘worms’ equal to approximately one turnover. The implication is that the higher the
Reynolds number, the smaller the mean lifetime of the structures. Even if relatively short,
a lifetime of 3τη to 4τη is sufficient for small-scale structures to have a notable effect on
particle dispersion (e.g. Goudar & Elsinga 2018).

It would be interesting to analyse the physical mechanisms leading to the ‘birth’ and
‘death’ of the IVS to see if these agree with the interesting mechanisms uncovered by
Verzicco, Jiménez & Orlandi (1995) and Verzicco & Jiménez (1999) using simulations
of columnar vortices subjected to several fields of unsteady axial strain. Specifically, they
have observed that the survival of the vortices depends on the interplay between axial
pressure waves acting on the vortices and the frequencies of the imposed axial strain, and
that some conditions result in vortex disintegration.

In this context, it is important to recall the recent work described in Buaria,
Pumir & Bodenschatz (2020), where it was noticed that at the core of the IVS, where
vorticity becomes very high, the local strain counteracts its further amplification (by
vortex stretching). This mechanism can probably maintain the balance between vorticity
production at the IVS cores, and the viscous diffusion (which acts mainly around the vortex
cores; Buaria et al. 2019), which is essential for their spatial-temporal coherence. Future
work will be devoted to the investigation of the ‘birth’ and ‘death’ mechanisms of the IVS,
opening the door to the possibility of controlling the IVS lifetimes.
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Appendix A: Comparing the SF using the KM estimator with a ‘classic’ PDF
approach
In this appendix, we compare the SF obtained using the KM estimator to the PDF one
would use in a ‘classical’ approach. The comparison is made using the data from the DNS
with Reλ = 143, and allows one to see the advantages of using the KM with right-censored
data. Figure 14 shows the SF for these data obtained using different methods. Here, KM-
A, KM-B and KM-C show SFs computed with the KM estimator (4.3) in three different
situations regarding the lifetimes of the IVS: with fully observed data (KM-A), by treating
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Figure 14. Comparisons between SFs for the DNS data of Reλ = 143 computed using different methods: KM-
A shows the SF computed with the Kaplan–Meier estimator (4.3), where all the IVS life data were considered
as fully observed, while in KM-B, the data from the initial and final IVS lifetimes are treated as right-
censored. This SF curve is the same as shown in figure 6(c) for the longest simulated time, which, together
with figures 6(a,c,d), forms the base data analysed in this work. Also, KM-C shows the SF computed as in
KM-A but eliminating all the initial and final IVS lifetimes. Here, p(t) is the PDF of the IVS lifetimes obtained
by using all the IVS lifetime data and 128 bins, while S(τ ) is the SF obtained by integrating p(t) as in (4.1).

the initial and final IVS lifetimes as right-censored (KM-B), and by eliminating all the
initial and final IVS lifetimes (KM-C). Notice that the SF for the case KM-B is the sameas
shown in figure 6(c) for the longest simulated time that is chosen as statistically relevant
in all the subsequent analysis of this work. These SFs are compared with a ‘classical’
straightforward approach that consists of computing the PDF of the IVS lifetimes (p(t))
using all the data, and by integrating this function using (4.1) to obtain the SF (S(τ )).

The figure shows that the SFs for KM-A, KM-C and S(τ ) are virtually identical, and
the small difference between S(τ ) and KM-A (which are mathematically equivalent in
the continuous limit) for the less frequent events is due to the limitations of the binning
process, which here uses 128 bins. It is noteworthy that the shape of p(t) is similar to
that shown in Biferale et al. (2010), where the lifetimes of the IVS were estimated by
applying an indirect method, and where a limited number of samples was used. The figure
shows that, as expected, the SF for KM-B is slightly higher (for a given τ ) than the other
curves; however, the difference is very small (notice that the plot is shown in logarithmic
coordinates). This difference basically reflects the superiority of the KM estimator with
right-censored data from the other, straightforward approaches, and reflects how censored
data are treated. Whereas for right-censored data we can only assign a probability of
‘death’ equal to or higher than the observed one, for a fully observed case we can assign
a probability of ‘death’ to the observed one, because we can actually ‘see’ it. By labelling
an observation as ‘censored’, the KM method is designed to compensate the estimation
accordingly (Klein & Moeschberger 2003).

Appendix B: Effects of the vorticity threshold Pth , and of the minimum number of
axis points per IVS Pax

In the present work, we use two particular thresholds to define the IVS. As described in
§ 3.1, we define the IVS as the structures with the highest vorticity magnitude covering
Pth = 1 % of the total flow domain, in agreement with the majority of the existing works
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N 3 Pth (%) Pax Reλ ν u′ λ L11 ε η kmaxη N f τη τL t f /τL

1283 1 20 54 0.0370 2.90 0.68 1.48 10.01 0.0474 2.0 1400 0.061 0.51 6.70
1283 2 20 54 0.0370 2.91 0.68 1.47 10.09 0.0474 2.0 1400 0.061 0.50 6.77
1283 3 20 52 0.0370 2.87 0.68 1.47 10.05 0.0474 2.0 1400 0.061 0.51 6.54
1283 1 10 53 0.0370 2.90 0.68 1.46 10.11 0.0473 2.0 1400 0.060 0.50 6.58

Table 9. Physical and computational parameters of the DNS: number of collocation points (N 3); value of
the vorticity threshold used to detect the IVS ( Pth ); minimum number of axis points per IVS (Pax );
Taylor-based Reynolds number (Reλ); kinematic viscosity (ν); root mean square of the velocity fluctuations

(u′ =
√

u′2); Taylor microscale (λ); longitudinal integral scale (L11); viscous dissipation rate (ε); Kolmogorov
microscale (η); maximum effective wavenumber normalised by the Kolmogorov microscale (kmaxη); number
of instantaneous fields analysed (N f ); Kolmogorov time scale (τη); integral time scale (τL = L11/u′); final
simulation time normalised by the integral time scale (t f /τL ). Notice that the first simulation in this table is
the same as shown in table 1.

assessing these structures (see Ghira et al. (2022) and references therein). We also set a
minimum number of axis points for these structures, Pax = 20, as in e.g. Jiménez et al.
(1993) and Jiménez & Wray (1998), and structures with fewer than this number of axis
points are discarded.

In this appendix, we investigate the effect of these two thresholds (Pth and Pax ) on
the main results obtained in the present work. For this purpose, we carry out three new
simulations, listed in table 9, that are similar to the reference DNS with N 3 = 1283 and
Reλ = 54. In the first two, we use Pth = 2 % and 3 % (instead of Pth = 1 %), while in the
third we keep Pth = 1 % but use Pax = 10 (instead of Pax = 20). Concerning the evolution
of the velocity field, these simulations are virtually identical to the reference DNS of
N = 1283 listed in table 1, except for the small variability typically observed in different
simulations, e.g. the Reynolds number and dissipation rate vary as 52 � Reλ � 54 and
10.05 � ε � 10.11, respectively, which compares to Reλ = 54 and ε = 10.01 (see table 9)
obtained in the reference simulation (see table 1).

Table 10 lists the results from these new simulations for the mean lifetime τivs , birth
rate CB , and number of structures N∞, where the first row is taken from the reference
simulation in table 4. As expected, by increasing the threshold Pth , more structures
are detected (we obtain N∞ = 43 for Pth = 3 % instead of N∞ = 18 in the reference
simulation), and naturally the birth rate also increases (CBτη = 9.78 for Pth = 3 % instead
of CBτη = 4.59). Bigger values of Pth and smaller values of Pax lead to larger mean
lifetimes because the filaments will remain detectable for longer periods before falling
below any of the mentioned thresholds. Notice, however, that the mean lifetime of the
structures is only very slightly affected, with a variation of less than 10 % for the value
of τ Fit

ivs τη obtained between Pth = 1 % and Pth = 3 %. A similar observation concerns the
effect of the minimum number of axis points, where the variation of the mean lifetime of
the structures τ Fit

ivs /τη is smaller than 4 % comparing the reference DNS values in table 4
and the new simulation considering Pax = 20.

To summarise, these variations are either negligible or as expected, and no dramatic
variations of the results are observed. Therefore, we conclude that the lifetime results
obtained in the core of this paper are robust and relatively independent from the chosen
values of both thresholds, Pth and Pax . We expect therefore that the values obtained in this
study can be extended to more frequent, slightly less intense vorticity structures.
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N 3 Reλ Pth (%) Pax
τ RM ST

ivs

τη

τ M L E
ivs

τη

τ Fit
ivs

τη

CBτη N∞

1283 54 1 20 4.07 4.01 4.10 4.59 18
1283 54 2 20 4.09 4.10 4.13 8.30 34
1283 52 3 20 4.39 4.37 4.51 9.78 43
1283 53 1 10 4.32 4.37 4.26 10.03 44

Table 10. Mean lifetimes of the IVS estimated with three different methods, normalised by the Kolmogorov
time τη for the three new DNS described in table 9, where different values of the thresholds Pth and Pax are
assessed (the values in the first row are taken from table 4). Here: number of collocation points (N 3); Taylor-
based Reynolds number (Reλ); fraction of volume used in the vorticity threshold definition of the IVS (Pth);
minimum number of axis points for the detected IVS (Pax ); mean lifetime using the restricted mean survival
time (τ RM ST

ivs ); mean lifetime using the maximum likelihood estimator considering an exponential distribution
(τ M L E

ivs ); mean lifetime measured by fitting the KM estimate for the SF (τ Fit
ivs ); birth rate (CBτη); number of

structures at saturated conditions (N∞). Notice that the values in the first row are taken from table 4.

Case 〈Rivs〉/η 〈Rivs/RB〉 〈Livs〉/η 〈Uivs〉/u′

Full 4.25 0.99 53.65 0.95
Sampled 4.23 0.97 53.01 0.95

Table 11. Characteristics of the IVS from the Full and Sampled DNS (see text for details) obtained as in Ghira
et al. (2022). Mean values of: radius normalised by the Kolmogorov length scale (〈Rivs〉/η); radius normalised
by the Burgers radius (〈Rivs/RB〉); axis length normalised by the Kolmogorov length scale (〈Livs〉/η);
tangential velocity normalised by the root mean square velocity 〈Uivs〉/u′.

Appendix C: Analysis of the effects of using only 1/8 of the computational domain
Because of the extremely large computational cost of time tracking the IVS in the biggest
DNS used in the present work, the statistics were made using only 1/8 of the computational
domain. In practice, instead of using the IVS time tracked data in the entire computational
domain (10243 grid points), the analysis was made in a subdomain with only 5123 grid
points located at one of the corners of the domain. In order to assess the consequences
of this reduced sampling method, we have carried out two new DNS with N = 5123 grid
points. The two simulations use the same parameters of the reference DNS with N =
5123 grid points listed in table 1. In one of these DNS (Full) the data from the entire
computational domain are used, whereas in the other (Sampled) the statistics are computed
using only 1/8 of the computational domain. This first comparison does not involve any
time tracking of the IVS, but consists merely of a repetition of the methods used in Ghira
et al. (2022), which are based on single or multiple uncorrelated velocity fields.

Table 11 shows the mean values of the several IVS characteristics taken from these two
simulations. For the Full DNS, one instant is used to collect the statistics, whereas for
the Sampled DNS, the statistics are computed using eight evenly sampled instants during
t f ≈ 2τL , so that the total number of samples is the same in the two cases. The goal of this
comparison is to assess the effects of using only a subdomain of the total computational
box.

It is clear that the IVS characteristics are virtually the same in the two simulations.
The same is observed when one compares the PDFs for these quantities. The PDF of
the IVS radius normalised by the Burgers radius (figure 15a) shows that the two PDFs
(obtained using the full and sampled DNS) are also virtually equal, as no differences can
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N 3 Reλ N f Nivs
τ RM ST

ivs

τη

CBτηVη

Vbox

〈Ñ (t)〉Vη

Vbox

ÑI (t f )

Nivs

ÑM (t f )

Nivs

ÑS(t f )

Nivs

5123 143 6707 33684 3.77 1.63 5.93 0.76 0.02 0.14
5123 (Sampled) 147 7001 4938 3.48 2.00 6.29 0.77 0.02 0.13

Table 12. Time tracking statistics obtained with the Full and Sampled DNS. The first row lists the results
from the reference DNS with N 3 = 5123 points (listed in table 1), while the second row corresponds to
the Sampled DNS. Here: Taylor-based Reynolds number (Reλ); number of instantaneous fields analysed
(N f ); total number of structures tracked during the simulation time window (Nivs ); mean lifetime of the
IVS using the restricted mean survival time normalised by the Kolmogorov time (τ RM ST

ivs /τη); birth rate CB
per unit volume, where the volume is defined with the Kolmogorov microscale (CBτηVη/Vbox ); temporal
average of the instantaneous number of structures alive at a given time per unit volume defined with
the Kolmogorov microscale (〈Ñ (t)〉Vη/Vbox ); fraction of isolated or solitary (non-interacting) structures
(ÑI (t f )/Nivs ); fraction of merging events (NM (t f )/Nivs ); fraction of splitting events (NS(t f )/Nivs ). Notice
that for the reference DNS (listed in table 1), Vbox = (2π)3, while for the Sampled DNS, Vbox = (2π)3/8.

(a)

Full

Rivs /RB

Sampled

(b)
101

100

10–1

10–2

10–3

100

10–1

10–2

10–3

10–4
0 1 2 3 4 0 70 140 210 280

Reλ = 54
Reλ = 91
Reλ = 143
Reλ = 189
Reλ = 147, Sampled

(τ – τ0)/τrot

Figure 15. (a) The PDFs of the IVS radius normalised by the Burgers radius for the Full and Sampled DNS.
(b) The SFs normalised by the turnover time scale (τrot ) for different Reynolds numbers shown in figure 9(a),
with the addition of the SF for the Sampled DNS.

be observed between them apart from the typical variability of these simulations, in the
regions of extremely small probabilities.

Table 12 shows several statistics related to the time tracking of the IVS for the Full
and Sampled DNS. In this case, Full DNS is simply the reference DNS of N 3 = 5123

listed in table 1, and the data already presented in that table are repeated here simply for
convenience.

The total number of fields is approximately the same in both simulations, but as
expected, the Sampled DNS contain considerably fewer structures, i.e. close to 1/8 of the
IVS followed in the reference DNS. Despite this fact, the normalised lifetime is very close
in the two cases, with a difference of approximately 7.7 %, while the difference for the
birth rate density is larger, at approximately 18 %. The differences for the other quantities
are almost imperceptible.

In order to assess these results in more detail, figure 15(b) shows again the SFs
obtained for all the DNS from figure 9(a) (with the exception of the DNS carried out
for Appendix B), with the addition of the SF for the Sampled DNS. Despite the much
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smaller number of samples used in the Sampled DNS, the two DNS, i.e. Full (yellow)
and Sampled (green), show that the SFs agree well until quite small values of the SFs are
attained. This suggests that the extreme events may be slightly removed from the statistical
sample, but otherwise the mean values, such as the mean lifetime of the IVS, can be used
with confidence. Notice that 1/8 of the computational box for the DNS of N 3 = 10243

results in a box of 5123 points, i.e. similar to that of the Full DNS assessed here.
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