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Modeling without Mathematics
Martin Thomson-Jones*†

Inquiries into the nature of scientific modeling have tended to focus their attention on
mathematical models and, relatedly, to think of nonconcrete models as mathematical
structures. The arguments of this article are arguments for rethinking both tendencies.
Nonmathematical models play an important role in the sciences, and our account of sci-
entific modeling must accommodate that fact. One key to making such accommodations,
moreover, is to recognize that one kind of thing we use the term ‘model’ to refer to is a
collection of propositions.

1. Introduction. My starting point for this article is the assumption that
in order to understand how modeling works, we need to be thinking clearly
about what sorts of things models are—or rather, what sorts of things they
can be. And one key to getting that right, I will argue, is to pay attention to
nonmathematical models.

Concrete, physical models aside, I will call a model amathematical model
when standard presentations of it in scientific contexts employ mathematical
tools, and a nonmathematical model otherwise. Let me furthermore stipulate
that the labels imply nothing else. In particular, then, to classify a model as
mathematical in the current sense is not to say anything about what sort of
object it is (nothing nontrivial, anyway). That a model is mathematical in this
sense thus does not entail that it is a mathematical structure: things other than
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mathematical structures can be presented with mathematical tools.1 If that is
not already evident, I hope to make it so in what follows.

Another point of terminology: I will speak throughout of “nonconcrete”
models. By this I mean simply to restrict attention to models that are not con-
crete, physical objects. One might, of course, call such nonconcrete models
“abstract models,” but that phrase is often used to convey something about
the representational content of a model—roughly speaking, that it omits a
great deal—whereas the issue at hand is one of ontological kind.2

When it comes to nonconcrete models, then, the primary focus of inves-
tigation has indisputably been mathematical models. But there are nonmath-
ematical models, too, and important ones at that. The aim of this article is to
explore some of the implications of giving this fact its proper weight.

First, the focus on mathematical models has surely lent plausibility to the
thesis that nonconcrete models are, one and all, mathematical objects—set-
theoretical structures, perhaps. I argue that the fact that many important mod-
els are (in my thin sense) nonmathematical gives us good reason to reject that
thesis, and I offer an alternative account on which much talk of models—
even of mathematical models—is about collections of propositions. I go on
to provide several additional arguments for preferring this alternative view,
including the fact that it solves a problem of individuation faced by its rival,
and I respond to two objections.

Toward the end of the article, and far more briefly, I make two additional
points: first, that my main thesis removes some of the pressure to see the tar-
gets of models as quasi-mathematical objects, to interpose data models be-
tweenmodels and targets, and to construemodel-target relations inmathemat-
ical terms and, second, that a desire to understandmodeling as an activity and
as a process provides us with another reason to take nonmathematical models
seriously.

2. Nonmathematical Models. We should first consider an example of a
nonmathematical model. Here I take my lead from Downes, who cites the
textbook model of the eukaryotic cell: “in most texts a schematized [eukary-
otic] cell is presented that contains a nucleus, a cell membrane, mitochondria,
a Golgi body, [the] endoplasmic reticulum, and so on” (1992, 145).3 This
3. It is important for Downes, too, that the model in question is nonmathematical, and
my purposes overlap with his in some significant respects; my main thesis in the current
article is not one Downes advances, however.

2. For my own views about the best way to regiment talk of abstraction with regard to
representational content, see Jones (2005).

1. This usage is thus a temporary divergence from some previous usage of my own
(Thomson-Jones 1997, 2006) and from various ways other people have used the term
‘mathematical model’.
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model is not a model of any particular cell, or even of any very specific type
of cell. It is typically presented by means of a diagram and some surrounding
text describing, for example, the functions of some of the organelles the cell
contains. Crucially, no mathematics is employed.

It is not hard to find more examples. As Downes points out (1992, 145–
46), biology textbooks typically go on to present equally nonmathematical
models of the various organelles inside the cell, such as the mitochondria.
And, importantly, the use of nonmathematical models is not restricted to ped-
agogical contexts. In evolutionary theory, for example, there is Maynard
Smith and Szathmáry’s (1995) discussion of Gánti’s “chemoton” model,
a model of a system that minimally meets certain requirements for life—sep-
arateness from its environment, metabolism, self-replication, and so on.4

Again, the model is presented by means of a combination of descriptive
prose and a diagram, and essentially without mathematics (20–23).5 In the
earth sciences, there are Wegener’s models of continental drift (Giere 1988,
chap. 8, esp. 273), and such areas of psychology as cognitive neuropsy-
chology are replete with nonmathematical models.6

It seems to me, too, that there are nonmathematical models in even the
relatively recent history of physics and chemistry. Two examples are the bil-
liard ball model of gases and the nuclear model of the atom, both understood
as models that transcended and outlived various detailed proposals about
how to model the features of their targets (e.g., exactly how the molecules
in a gas interact).7 The idea that there are such models is suggested, I think,
by the work of Kuhn (1970) and McMullin (1985), but I will not attempt to
make a case for it here. At this point, I hope, the reader is happy to grant that
there are nonmathematical models in the sciences and that such models can
play important roles in scientific work. The question I want to ask now is,
What does this tell us about the sorts of things models can be?
4. I am indebted to Arnon Levy for this example.

5. This case is, admittedly, a little tricky. Gánti, e.g., says that the chemoton model makes
it possible to present an answer to the question, ‘What is life?’ with “exact mathematica
methods” (2003, 1) and insists that even “the most elementary simplified description o
chemotons” provides the basis for “an exact numerical investigation of [their] workings”
(4–5). And Maynard Smith and Szathmáry refer to quantitative results due to Koch
concerning the energetic possibility of cell division in certain circumstances (1995, 22)
Nonetheless, Maynard Smith and Szathmáry’s presentation of the chemoton mode
employs no mathematics (the use of the word ‘two’ and one mention of a ratio aside), and
yet they put it to substantial theoretical use in developing their views about certain aspects
of evolutionary theory.

6. Edouard Machery, personal communication.

7. See also the third point in sec. 7, below.
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3. What Models Can Be. One possible view, the mathematical structures
view, is that all talk of nonconcrete models is to be understood as talk about
mathematical structures.8 Perhaps no one holds exactly this view, simple and
unqualified as it is. Nonetheless, I will take it as my foil: doing so will sim-
plify my discussion, and a dominant tendency in current thought about mod-
eling comes close enough to endorsing themathematical structures view—by
taking it that mathematical structures are at least always involved in noncon-
crete modeling, for example, or by considering only cases of nonconcrete
modeling that involvemathematical structures—that the arguments I present
against it will bear quite directly on a range of views explicitly presented or
implicitly promoted in the literature.9

The existence of nonmathematical models poses an immediate challenge
to themathematical structures view, for it is a strain to suppose that such non-
mathematical models as the textbook model of the eukaryotic cell are math-
ematical structures. For one thing, it is not clear that the representational con-
tent of the model could be captured by a mathematical structure.10 Even if it
could, however, it seems quite implausible that when someone lays out the
textbook model of the cell, he or she is actually presenting us with a math-
ematical structure, and so it is implausible that themodel in question is in fact
a mathematical structure. We thus have reason to reject the mathematical
structures view.

Instead, I propose that the textbookmodel of the cell is a collection of prop-
ositions. The following propositions are among those that make up the
model: that the eukaryotic cell has a membrane, that it has a nucleus, that the
nucleus contains a nucleolus, that the nucleolus has such-and-such functions,
and that the cell contains mitochondria. These are some, but not all, of the
propositions contained in the collection of propositions that we can take the
model in question to be.

I do not mean to restrict my proposal to nonmathematical models, how-
ever. Given that we can use mathematical language to express propositions,
I propose that mathematical models can be collections of propositions, too.11
8. The mathematical structures in question might be state spaces with trajectories running
through them or n-tuples of sets or other sorts of things. There are differences on this front;
those differences will not matter in what follows.

9. For more on models as mathematical structures and further references to the literature,
see Thomson-Jones (1997, esp. sec. 1.3; 2006). For recent examples of the tendency in
question, see van Fraassen (2008) and Weisberg (forthcoming).

10. At least not given our actual practices surrounding the use of mathematical structures
as representations (cf. Thomson-Jones 2011, 135–38).

11. Note that I say “can be,” not “are.” The reason for this will become clearer in the
next section.
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As an example, consider the Bohr model of the hydrogen atom. The follow-
ing propositions are among those making up the Bohr model:

• the hydrogen atom is composed of a proton and an electron
• the electron is significantly lighter than the proton and moves around

it in circular orbits
• the two particles carry opposite electrical charges, ± e, and attract

one another in accordance with Coulomb’s law
• F5ma
• ðmv 2Þ=r5 e 2=r 2

• mvr5nħ n51; 2; 3; :::
• rn5n2ðħ2=me2Þ n51; 2; 3; :::
• vn5 ð1=nÞðe2=ħÞ n51; 2; 3; ::: ,

where m is the mass of the electron, a its acceleration, F the net force it ex-
periences, v its velocity, r its orbital radius, and n indexes its permissible or-
bits.12 Some of the propositions the model contains are typically expressed
by means of equations and other expressions in mathematical language, and
so the model is a mathematical one; nonetheless, it seems quite natural to re-
gard it as a collection of propositions.

When a model is a collection of propositions forming a representation of a
particular system, or a particular kind of system, I will call it a propositional
model.13 My proposal, then, is that when it comes to nonconcrete models,
nonmathematical models are propositional models, and mathematical mod-
els can be.

I should immediately address one likely source of unease with this pro-
posal, which is that it brings tomind the syntactic viewof theories (also known
as the Received View), a view almost universally regarded as misbegotten
these days. The simple point, however, is that the view I am proposing here
is not the syntactic view, nor does it have enough in common with that view
to be deemed guilty by association. Propositional models are collections of
propositions, not sentences, and that difference alone renders the view I am
proposing invulnerable to some of the most well-known objections to the
syntactic view. Moreover, the syntactic view was laden with tenets arising
12. The presentation of the Bohr model just given is partial, omitting (e.g.) any mention
of energy. It is also historically misleading, but only in entirely standard textbook ways.
Note, finally, that some of the propositions listed are consequences of combinations of
others.

13. The clearest precursor here is Peter Achinstein’s notion of a “theoretical model”
(1968, 212–18); Michael Redhead took up Achinstein’s analysis and explored it further
in a later paper (1980). Achinstein’s characterization of the theoretical model begins in
much the same way as my characterization of the propositional model, but it goes further
in a number of respects; for more on the differences, see Thomson-Jones (1997, 11–14).
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from empiricist concerns about meaning and the like, none of which are part
of my proposal.14

4. Two Senses of ‘Model’. There is another issue likely to be troubling

anyone familiar with the philosophical literature on scientific modeling: Am
I saying that a mathematical structure cannot be a model, and thus that no
model is a mathematical structure? The answer is no. Instead, I want to say
thatmathematical structures can indeed bemodels, in just the same sense that
concrete, physical objects can be models. To spell this out, and make the
overall view I am advancing more transparent, it will help to distinguish two
senses of the term ‘model’.15
One sense of ‘model’, and in some contexts the primary sense, is just that
captured by the notion of a propositional model: in that sense, a model is a
collection of propositions that together form a representation of a particular
(kind of ) system. In another sense of ‘model’, however, a model is an object
used as a representation of a particular (kind of ) system.16 Given this, a math-
ematical structure clearly can count as a model, if it is used to represent a par-
ticular (kind of ) system, for then it can be a model in the second sense.

The next thing to notice is that models of these two kinds can peacefully
coexist; indeed, they can be intertwined. A propositional model can contain
propositions about relations between its target and a certain mathematical
structure. And that can be how we use the mathematical structure as a rep-
resentation of the target—namely, by forming a propositional model con-
cerning, in part, various relationships between the mathematical structure
and the target. In that case, we will be employing both a propositional model
of the target and something that is a model of it in the second sense; that latter
something will be a mathematical structure.

We should also note the parallel we now have between mathematical
structures as models and concrete objects as models: both are models in the
second of the two senses I have just distinguished, and both can come to be
models in that sense by being related to target systems by propositional
models.
14. Another difference, of course, is that the syntactic view was about theories, whereas
the current proposal is about models. For discussion of the talk of models that took place
in the framework of the syntactic view of theories, see Thomson-Jones (1997, 14–16).

15. Or at least, two kinds of referent the word can have. I will sometimes talk of senses
of ‘model’ in what follows, but my arguments could then be reformulated in terms of
kinds of referent without loss.

16. Giere (1988, 80) and van Fraassen (2008, 23, chap. 11, and passim) provide prom-
inent examples of this usage. There are other senses of ‘model’, too, of course, and other
senses of the term that play or have played important roles in the literature on scientific
modeling. For a considerably more extensive discussion, see Thomson-Jones (1997, esp.
sec. 1).
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To summarize, then, if the mathematical structures view is that
17. O

86/667
All nonconcrete models are mathematical structures,
then one way of putting the core of the opposing view I want to argue for is
this:
Some nonconcrete models are mathematical structures, and some are col-
lections of propositions.
This second formulation, however, might create the impression that it makes
sense to expect a straightforward answer to all questions of the form “So
which kind of thing is the (nonconcrete) such-and-such model?”when in fact I
would take any such expectation to be mistaken. A better way of formulating
the view I am advancing involves a little semantic ascent: when talking about
nonconcrete models, we (philosophers and scientists both) sometimes use the
term ‘model’ to refer to a mathematical structure and sometimes to a collec-
tion of propositions. In the case of most nonmathematical models (perhaps all),
we do not use it to refer to a mathematical structure, as no mathematical struc-
ture is involved; instead, we use it to refer to a collection of propositions. In the
case of many mathematical models (perhaps all), we use it both ways: mathe-
matical modeling (often, and perhaps always) involves constructing a collec-
tion of propositions that are, in part, about relations between a certain mathe-
matical structure and the target system, and we then use the term ‘model’ to
refer both to the collection of propositions and to the mathematical structure.

Let us call the view I have just laid out the propositional view, not because
it claims that all nonconcrete models are propositional models—it quite ex-
plicitly does not—but because it embraces propositional models and makes
them fundamental. Although amathematical structure can be amodel, too, on
this view, inmany cases (and perhaps all) it comes to be amodel because some
propositionalmodel claims that it stands in certain relations to a target system.

5. Arguments for the Propositional View. There are at least four reasons

for preferring the propositional view to the mathematical structures view.17 It
is worth noting that, even though a recognition of the existence and impor-
tance of nonmathematical models provided the initial impetus for introduc-
ing the propositional view, three of the four reasons given below for adopting
that view are quite independent of any such considerations.
5.1. Nonmathematical Modeling andUnification. As I have already ar-

gued, the propositional view accommodates nonmathematical modeling
r five. Strictly speaking, sec. 5.1 identifies two distinct reasons.
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quite comfortably, whereas it is hard to see how the mathematical struc-
tures view can do so. Relatedly, the propositional view offers a relatively
unified account of mathematical and nonmathematical modeling, whereas
it seems unlikely that any extension of the mathematical structures view
that managed to accommodate nonmathematical modeling would yield a
similarly unified picture.
.1086/66787
5.2. Capturing Ordinary Talk. When talking about nonconcrete mod-

els in an unguarded way, both scientists and philosophers of science regu-
larly employ such locutions as “One assumption of the model . . . ,” “Ac-
cording to the model . . . ,” and “It’s true in the model that . . . .” These
ways of talking make perfect sense if we take the speakers to be using the
term ‘model’ to refer to a collection of propositions on such occasions. It is
significantly more awkward to account for the use of such locutions if we
take the speakers to be using the term ‘model’ to refer to some mathematical
structure or other.
5.3. Individuating Models. The mathematical structures view has diffi-

culty individuating models in the right way. This problem arises because
some pairs of models employ the same mathematical structure—a certain
model of a pendulum and a certain model of an electrical circuit, say. The
mathematical structures view seems committed to identifying both the pendu-
lummodel and themodel of the electrical circuit with themathematical struc-
ture they have in common and, thus, to insisting that the pendulum model
and the model of the circuit are one and the same model. Yet there is surely
a sense of ‘model’ in which the pendulum model and the circuit model are
distinct: one is a model of a pendulum, after all, and the other is not.
The propositional view avoids this difficulty. The sense of ‘model’ in
which there are two distinct models in such a case is just the sense in which
a model is a collection of propositions: clearly two collections of proposi-
tions can be distinct and yet concern, in part, the same mathematical struc-
ture. If, however, there is also a sense of ‘model’ in which it is correct to say
that the model of the pendulum and the model of the circuit are the same
model, the propositional view can accommodate that fact by claiming (as
does the mathematical structures view) that the sense of model in question
is the second of the two senses distinguished in section 4.

5.4. Essentiality of Content. In one sense of ‘model’, at least, it seems

true to say each of the following things: (1) the Bohr model of hydrogen
could not have failed to have aboutness—that is, it could not have failed to
be a representation of something. (2) The Bohr model of hydrogen could not
have been about anything other than hydrogen. (3) The Bohr model of hy-
drogen could not have said things about hydrogen other than the things it ac-
6 Published online by Cambridge University Press
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tually says. The propositional view can accommodate this fact by taking the
phrase ‘the Bohr model of hydrogen’, as it appears in each of the three utter-
ances in question, to refer to a certain collection of propositions. In that case,
all three claims will be straightforwardly true—at least, if we assume certain
standard views about propositions and take collections of propositions to be
individuated by their members.18 None of the three claims is true, however, if
we take the phrase ‘the Bohr model of hydrogen’ to refer to a mathematical
structure that represents the hydrogen atom as having such-and-such features
in virtue of the ways we use it, for facts about the ways we use mathematical
structures are surely contingent facts. Only the propositional view, then, can
accommodate these intuitions about the essentiality of the content of the
thingwe refer to on at least some occasionswhenwe use the phrase ‘the Bohr
model’.
oi.org/10.10
6. Complaints. In turning to consider two objections one might have to the

propositional view, I will again take the dialectical context to be a compar-
ative one: as neither of the objections I will discuss provides a knockdown
reason to reject the propositional view, the question I mean to address is
whether either of them could give us good reason to prefer the mathematical
structures view.
There are, of course, potential complaints I lack the space to discuss here.
In particular, one might have worries about the presumed ontological com-
mitment to propositions, and about the fact that no account has been pro-
vided of either the nature of propositions or how propositions themselves
represent. I must limit myself to remarking that at least part of my response to
such worries would be to argue that the propositional view fares no worse
than the mathematical structures view in such respects. There is a more com-
plex story to be told on another occasion, but for now I will focus instead on
two quite different objections.

6.1. Sterility. It can be claimed that the mathematical structures view

provides (and has provided) fertile ground for the development of accounts
of explanation, prediction, confirmation, empirical adequacy, and the like, at
least when those phenomena involve models: if models are mathematical
structures, then we can hope to develop such accounts by bringing to bear
the various mathematical and metamathematical tools we have at our dis-
posal. Onemight then object that the propositional view seems sterile by com-
parison. What parallel work can be done by thinking about collections of
propositions?
18. We might take propositional models to be sets of propositions in order to under-
write the latter assumption.
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My response has two prongs: first, there are of course various bits of in-
tellectual technology we can employ in thinking about collections of propo-
sitions. Logic is one example, as propositions stand in logical relations to one
another, and the various theories of confirmation provide further examples,
as we can take it that the entities that stand in relations of confirmation to one
another (perhaps by functioning as the arguments of probabilities) are propo-
sitions. Second, remember that the propositional view encourages a peaceful
coexistence between propositional models and mathematical-structure mod-
els (sec. 4). As a result, whenever it is appropriate to apply mathematical ma-
chinery to the task of understanding modeling—by grappling with the inner
workings of the mathematical structures we sometimes use to model, or the
relationships between those mathematical structures and data models, for ex-
ample—such work can just as well be done under the auspices of the prop-
ositional view.

6.2. Nonpropositional Content. Suppose there are models that have

representational content that cannot be captured by propositions (even inex-
pressible ones). Perhaps in some cases we are presenting models of that sort
when we employ diagrams, for example. What should we say then?
I cannot examine the crucial supposition here, so I will simply point out
that, at most, this would mean that we should expand our overall account of
modeling to accommodate another kind of model. There is no reason here to
deny that one kind of thing we pick out when we use the term ‘model’ is a
collection of propositions, nor is there any reason to doubt the arguments
given for that claim in section 5. And there is (thus) no reason here to prefer
the mathematical structures view, even if, as seems unlikely, all nonconcrete
models with nonpropositional content (still supposing there to be such)
should turn out to be mathematical structures. That would only mean that
some models are mathematical structures, a claim the propositional view al-
ready embraces.

7. Three Further Thoughts. I will close with three further thoughts, one

about propositional models and two about nonmathematical modeling. I
mention the first only as an idea for further exploration. According to the
standard slogan, the semantic view of theory structure has it that a theory is
a collection ofmodels,19 and themodels in question aremost often taken to be
mathematical structures. Might there be advantages to thinking of theories
(or some theories, at least) as collections of propositional models instead?
The second point is that exclusive attention to mathematical models
has introduced a pressure to see the targets of our modeling practices—the
19. It is not easy to pin this claim on the central figures in the development of the
semantic view, however (Thomson-Jones 1997, n. 53).
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systems we are modeling—as protomathematical objects in one way or
another; either that, or we find ourselves automatically interposing a math-
ematical counterpart of the target between the model and the target itself.
And there is an associated pressure to see model-target relations as ubiqui-
tously mathematical. Attention to nonmathematical models serves as a use-
ful corrective to these tendencies. This is not to deny that there aremathemat-
ical data models or that they play an important role in scientific practice, but
we should be careful not to insist on finding them wherever there is model-
ing. More generally, we should not be surprised if changing our understand-
ing of what models can be makes a difference to the way we understand both
model-target relations and the targets themselves (see also Downes 1992,
147–48, including n. 2).

Finally, we should bear in mind that if we want to understand the episte-
mology and methodology of modeling as an activity, then it will surely be
important to understand all the stages of the modeling process, and even
when the outcome of that process is a mathematical model, there will often
be nonmathematical models lurking in the prehistory.20 This point provides
us with another reason to take nonmathematical models seriously and to in-
sist on an account of the nature of models that can accommodate them.

8. Conclusion. There is a clear tendency for philosophers who are trying

to understand nonconcrete scientific modeling to focus their attention on
mathematical models, in some cases more or less exclusively. And although
perhaps no one holds the mathematical structures view as stated, there is a
related tendency to think only about mathematical structures when thinking
about nonconcrete models. The arguments of this article are arguments for
rethinking both tendencies. Nonmathematical models play an important
role in the sciences, and our account of scientific modeling must accommo-
date that fact. One key is to recognize that an important notion of model in
the sciences, and for the philosophy of science, is that of the propositional
model.
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