
Euro. Jnl of Applied Mathematics (2015), vol. 26, pp. 401–425. c© Cambridge University Press 2015

doi:10.1017/S0956792515000108
401

Stability and bifurcation analysis of a free
boundary problem modelling multi-layer tumours

with Gibbs–Thomson relation

FUJUN ZHOU1 and JUNDE WU2

1Department of Mathematics, South China University of Technology, Guangzhou,

Guangdong 510640, P.R. China

email: fujunht@scut.edu.cn
2Department of Mathematics, Soochow University, Suzhou,

Jiangsu 215006, P.R. China

email: wujund@suda.edu.cn

(Received 17 August 2014; revised 6 February 2015; accepted 12 March 2015; first published online 10

April 2015)

Of concern is the stability and bifurcation analysis of a free boundary problem modelling

the growth of multi-layer tumours. A remarkable feature of this problem lies in that the free

boundary is imposed with nonlinear boundary conditions, where a Gibbs–Thomson relation

is taken into account. By employing a functional approach, analytic semigroup theory and

bifurcation theory, we prove that there exists a positive threshold value γ∗ of surface tension

coefficient γ such that if γ > γ∗ then the unique flat stationary solution is asymptotically

stable under non-flat perturbations, while for γ < γ∗ this unique flat stationary solution is

unstable and there exists a series of non-flat stationary solutions bifurcating from it. The

result indicates a significant phenomenon that a smaller value of surface tension coefficient γ

may make tumours more aggressive.
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1 Introduction

During the past few decades, considerable attention has been attracted to mathematical

models for the growth of various tumours in vivo and in vitro (cf. [5–7, 21–24, 26, 27]).

Accordingly, a lot of illuminative results have been obtained for rigorous analysis of such

tumour models (see, e.g., [3, 4, 8, 10–13, 17–20, 29–31] and the references cited therein).

These studies provide us with very useful information on tumour growth and suggest a

strategy for tumour treatment. Rigorous mathematical analysis of tumour growth models

has been shown to be a prosperous subject of research and it contains many challenging

problems.
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This paper studies the following multi-dimensional free boundary problem modelling

tumour growth ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δσ = λσ in Ωρ(t), t � 0,

Δp = −μ(σ − σ̃) in Ωρ(t), t � 0,

∂yσ = 0, ∂yp = 0 on Γ0, t � 0,

σ = σ̄(1 − 2γκ), p = p̄ on Γρ(t), t � 0,

V = −∂
νp on Γρ(t), t > 0,

ρ(0, ·) = ρ0 at t = 0,

(1.1)

where σ = σ(t, x, y) and p = p(t, x, y) are unknown functions defined on the time-space

manifold ∪t�0({t}×Ωρ(t)), and ρ0 is the given initial data. Here Ωρ(t) is an a priori unknown

strip-like domain

Ωρ(t) := {(x, y) ∈ �n−1 × � : 0 < y < ρ(t, x), x ∈ �n−1},

with the lower boundary Γ0 := {y = 0} and the upper boundary Γρ(t) := {y = ρ(t, x)}
which is moving and has to be determined together with σ and p. In this model, Δ

represents the Laplacian in the (x, y)-variables, V and 
ν denote the normal velocity and

the outward normal of the free boundary Γρ(t), respectively, and λ, μ, σ̃, σ̄, γ and p̄ are

positive constants.

The problem (1.1) is a mathematical model for the growth of multi-layer tumour – a

cluster of tumour cells cultivated on an impermeable support membrane in a laboratory

by using a new tissue culture technique [22, 23, 26]. It is similar to multicellular tumour

spheroids in its biological properties, but it consists of many layers of tumour cells and

forms a strip-like structure. In this model, σ represents the scaled nutrient concentration, p

stands for the scaled internal pressure, and σ̃ is the scaled threshold value for apoptosis of

tumour cells. The conditions ∂yσ = 0, ∂yp = 0 on Γ0 mean that none of the nutrient and

the tumour cells can pass through the lower boundary. The relation p = p̄ on Γρ(t) indicates

that the pressure is continuous across the upper boundary, where p̄ is the external pressure.

The equation V = −∂
νp follows from the continuity condition on the free boundary. The

model is based on the hypothesis that energy is expended in maintaining the cell–cell

bonds on the tumour surface and the nutrient acts as such energy and satisfies the Gibbs–

Thomson relation, i.e., σ = σ̄(1 − 2γκ), where σ̄ is the external nutrient concentration, γ

and κ are, respectively the surface tension coefficient and the mean curvature of Γρ(t). This

relation states that on the free boundary σ is less than σ̄ by a factor 2γκ, this being the

energy needed to maintain the inner-cellular bonds existing on this boundary (cf. [5–7]).

The Gibbs–Thomson relation in the nutrient boundary condition is a remarkable feature

of this model.

The problem (1.1), which is usually called model with Gibbs–Thomson relation, has

attracted significant mathematical attention. In fact, for the special case γ = 0, Byrne and

Chaplain studied the model for a spheroid domain and proved that the radially symmetric

steady state is unstable to small asymmetric perturbations [6]. Shortly after, Byrne did

further analysis for this case by using a weakly nonlinear stability analysis in [5]. If the

boundary conditions σ = σ̄(1−2γκ), p = p̄ on Γρ(t) are replaced by the form σ = σ̄, p = γκ,

which means that the tumour receives constant nutrient supply from the tumour surface
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and the pressure on the tumour surface is proportional to the mean curvature to maintain

the cell-to-cell adhesiveness of the tumour, the corresponding problem is called model with

surface tension effect and has been well studied. In more detail, Cui and Escher studied

the model with surface tension effect and proved that if the surface tension coefficient γ is

larger than a threshold value γ∗ then the unique flat equilibrium is asymptotically stable,

and if γ < γ∗ then this flat equilibrium is unstable (cf. [11]). Here a solution is called a flat

solution if all the components of this solution are independent of the x-variable. In the

situation that a flat stationary solution is unstable, Zhou, Cui and Escher proved in [32]

that a series of non-flat stationary solutions bifurcates from this flat stationary solution.

Later on, the corresponding analysis was extended to the inhibitor-present situation [33].

While for multicellular tumour spheroid models with surface tension effect, there has also

been great progress, e.g., [10, 11, 13, 17–20, 29–31] and references cited therein.

In this paper, we carry out a systematic analysis of the model with Gibbs–Thomson

relation (1.1). First, it is expected to figure out stability of flat stationary solutions of

equation (1.1) under non-flat perturbations. We find that equation (1.1) has a unique flat

stationary solution if and only if σ̄ > σ̃. Moreover, by employing a functional approach,

a delicate spectrum analysis and geometric theory for parabolic differential equations in

Banach spaces, we prove that there exists a threshold value γ∗ > 0 of the surface tension

coefficient γ such that if γ > γ∗ then the unique flat stationary solution of equation

(1.1) is asymptotically stable under small non-flat perturbations, while for γ < γ∗ it is

unstable. The crucial point in this process is to establish the well-posedness theory, which

is handled by showing that the linearized operator of the transformed fully nonlinear

equation generates an analytic semigroup. Secondly, we are concerned with existence of

non-flat stationary solutions of equation (1.1). Similarly to [4, 10, 19], by treating the

problem (1.1) as a bifurcation problem and applying the Crandall–Rabinowitz bifurcation

theorem, we prove that for γ < γ∗ there exists a series of non-flat stationary solutions

bifurcating from the unique flat stationary solution. It is worth noticing that our results

indicate an interesting phenomenon that a smaller value of surface tension coefficient

γ leads to smaller energy on the free boundary, which makes tumours more aggressive.

Another new character is that the proliferation rate μ does not affect the stability of a

tumour, which is in contrast with the widely studied models with surface tension effect

where increasing the proliferation rate μ may lower a tumour’s stability (cf. [11, 32]).

To give a precise statement of our main result, we need some notation. For the sake

of simplicity, we impose the additional condition that ρ(t, x), σ(t, x, y) and p(t, x, y) are

2π-periodic in every component of x. Moreover, it is not an essential restriction to consider

the case n = 2, because higher-dimensional periodic cases can be treated similarly. Thus

we impose the following condition:

ρ(t, x), σ(t, x, y), p(t, x, y) are 2π-periodic in x ∈ �. (1.2)

In addition, we identify 2π-periodic functions with functions over the circle �1 = �/2π�.

Accordingly, we identify the function space Cper(�) of periodic functions on � with the

corresponding function space C(�1) on the circle �1. Let Ω = �1 × (0, 1) be fixed, which

will be used as the reference domain. Denote the upper boundary �1 × {1} of Ω by Γ1,

the lower boundary �1 × {0} by Γ0. Given m ∈ � and α ∈ (0, 1), we denote by hm+α(�1)
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the so-called little Hölder spaces on �1, i.e., the closure of C∞(�1) in the corresponding

usual Hölder spaces Cm+α(�1). The advantage of working with little Hölder spaces is

that continuous injection and density hold between two spaces with different index. Let

hm+α
+ (�1) stand for the cone of all positive functions in hm+α(�1). Hereafter, we fix α ∈ (0, 1).

To state the stability result of flat stationary solutions of equation (1.1), we define

γ∗ := sup{γk| k = 1, 2, . . .}, where

γk :=
(σ̄ − σ̃)λρ∗

2σ̄k2(
√
k2 + λρ∗ tanh(

√
k2 + λρ∗) − kρ∗ tanh(kρ∗))

− σ̃λρ∗
2σ̄k2

, k = 1, 2, . . . .

The first main result of this paper is formulated below.

Theorem 1.1

(i) The problem (1.1) has a unique flat stationary solution (ρ∗, σ∗, p∗) if and only if σ̄ > σ̃.

(ii) If σ̄ > σ̃ and γ > γ∗, then the unique flat stationary solution (ρ∗, σ∗, p∗) is asymptotically

stable in the following sense: There exists a constant δ > 0 such that if ρ0 ∈ h4+α
+ (�1)

and ‖ρ0 −ρ∗‖h4+α(�1) < δ then the solution (ρ, σ, p) of equation (1.1) exists for all t � 0

and converges to (ρ∗, σ∗, p∗) exponentially as t → ∞, i.e., there are positive constants M

and ω such that

‖ρ(t, ·) − ρ∗‖h4+α(�1) + ‖σ(t, ·) − σ∗‖h2+α(Ω̄) + ‖p(t, ·) − p∗‖h4+α(Ω̄) � Me−ωt, t � 0.

If σ̄ > σ̃ and 0 < γ < γ∗, then (ρ∗, σ∗, p∗) is unstable.

The proof of Theorem 1.1, which is given in Section 3, is proved in three steps. First,

we transform (1.1) into a system of equations defined on a fixed domain, and then reduce

the system into a fully nonlinear equation. Secondly, we show that the linearized operator

generates a strongly continuous analytic semigroup. Finally, the result follows from the

well-posedness and geometric theory for parabolic differential equations in Banach spaces.

To investigate existence of non-flat stationary solutions of equation (1.1), we regard

equation (1.1) as a bifurcation problem with bifurcation parameter γ. The second main

result is stated as follows.

Theorem 1.2 Suppose σ̄ > σ̃. Then there exists a positive integer k∗ such that for every

k � k∗, the parameter γk is a bifurcation point of the flat stationary solution (ρ∗, σ∗, p∗). More

precisely, in a suitable neighbourhood of (γk, ρ∗, σ∗, p∗) there exists a series of bifurcation

solutions (γε, ρε, σε, pε) (0 < ε 
 1) possessing the following asymptotic expansion:

γε = γk + O(ε), ρε(x) = ρ∗ + ε cos kx + O(ε2),

σε(x, y) = σ∗(y) + εDk(y) cos kx + O(ε2), pε(x, y) = p∗(y) + εEk(y) cos kx + O(ε2),

where Dk(y) and Ek(y) are elementary functions given in equation (4.21).
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We prove Theorem 1.2 by first restricting the reduced problem onto an invariant

subspace of Hölder spaces such that each eigenspace of the linearized equation is one-

dimensional, and then employing the Crandall–Rabinowitz bifurcation theorem.

Remark 1.3 It is important to investigate how Gibbs–Thomson relation affects a tumour’s

ability invading into the surrounding tissue. As pointed out by Friedman and Hu in [18,19],

the bifurcation solutions with free boundary ρε(x) = ρ∗ + ε cos kx+O(ε2) are the protrusions

associated with the invasion of a tumour. It follows from our result that bifurcation occurs

only for γ < γ∗. Related to the Gibbs–Thomson relation, we know that 2γκ is the energy

required to maintain the inter-cellular bonds existing on the free boundary. Consequently, a

smaller value of surface tension coefficient γ leads to smaller energy on the free boundary,

which further makes the protrusions generate more easily and tumours more aggressive.

Remark 1.4 It is also interesting to compare the model with Gibbs–Thomson relation and

the model with surface tension effect well studied in [11,32]. From the expressions of γk , we

see that for a tumour with Gibbs–Thomson relation the proliferation rate μ does not affect

the generation of protrusions. This is in contrast with a tumour with surface tension effect,

where a larger value of the proliferation rate μ makes the protrusions generate more easily.

Also, by denoting γ̃∗ the corresponding threshold value for the model with surface tension

effect, from Lemma 2.6 we know that γ∗ > γ̃∗ for small μ, which indicates that a tumour

with Gibbs–Thomson relation is more hazardous than a tumour with surface tension effect

for small value of the proliferation rate μ, while for large μ the situation is the opposite.

Remark 1.5 The above results are connected with the situation σ̄ > σ̃, where a unique flat

equilibrium exists. It is worth mentioning the case σ̄ < σ̃, where the asymptotic behaviour of

solutions follows readily. To show this, let (ρ, σ, p) be a global smooth solution of equation

(1.1). By setting volume of a tumour Vol(t) :=
∫ 2π

0 ρ(t, x)dx for t � 0, we see from the

maximum principle and Green’s formula that

d

dt
Vol(t) � −μ(σ̃ − σ̄)Vol(t).

Thus limt→∞ Vol(t) = 0 for σ̄ < σ̃, which means that the tumour will eventually vanish. In

modelling, this indicates that insufficient nutrient supply cannot sustain the tumour’s survival.

The structure of this paper is arranged as follows. In the next section, we convert the

free boundary problem (1.1) to a fully nonlinear equation on a fixed reference domain and

study its linearization at the flat equilibrium. In Section 3, we prove that the linearized

operator generates an analytic semigroup and give the stability analysis. Section 4 aims at

investigating bifurcation phenomenon of equation (1.1) and gives the proof of Theorem

1.2. In the last section, we give some conclusions and interesting biological implications

of our study.
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2 Transformation and linearization

In this section, we convert the free boundary problem (1.1) to a nonlinear differential

equation in a Banach space defined on a fixed domain and study its linearization at the

flat equilibrium.

We first transform equation (1.1) into a new system on the fixed reference domain Ω.

Recall that Ω is defined by Ω = �1 × (0, 1), with the lower and upper boundary denoted

by Γ0 = �1 × {0} and Γ1 = �1 × {1}, respectively. In the following, we identify Γ0 and Γ1

with �1. Given ρ = ρ(x) ∈ C2
+(�1), define a mapping θρ by

θρ : Ω → Ωρ, (x, y) �→ (x, yρ(x)), (2.1)

and write Ωρ := θρ(Ω). Obviously, Ωρ is a strip-like domain with the lower boundary Γ0.

We use Γρ to denote the upper boundary of Ωρ, i.e., Γρ := θρ(Γ1) = {(x, y) : x ∈ �1, y =

ρ(x)}. It can be easily verified that θρ is a C2-diffeomorphism. The corresponding pull-

back and push-forward operators induced by θρ are denoted by θ∗
ρ and θ

ρ
∗ , respectively,

i.e.,

θ∗
ρu := u ◦ θρ for u ∈ C(Ω̄ρ), θ

ρ
∗v := v ◦ θ−1

ρ for v ∈ C(Ω̄).

Given ρ ∈ C2
+(�1) and v ∈ C2(Ω̄), we define the following transformed operators:

A(ρ)v := θ∗
ρΔ(θρ∗v), D0(ρ)v := θ∗

ρ〈Υ0∇(θρ∗v), n0〉, D1(ρ)v := θ∗
ρ〈Υρ∇(θρ∗v), n1〉,

where ∇ is the gradient operator, Υ0 and Υρ stand for the trace operators on Γ0 and Γρ,

respectively, n0 = (0,−1) and n1 = (−∂xρ, 1) represent the outward normal on Γ0 and

Γρ, respectively, and 〈·, ·〉 denotes the Euclidean inner product in �2. We introduce the

transformed curvature operator

N : C2
+(�1) → C(�1), ρ �→ N(ρ) := θ∗

ρκ(ρ),

where κ(ρ) denotes the mean curvature of the boundary Γρ.

For given ρ ∈ C2
+(�1), an elementary calculation shows that

A(ρ) =

2∑
j,k=1

ajk(ρ)∂j∂k + a2(ρ)∂2, Di(ρ) =

2∑
j=1

bji(ρ)Υi∂j , i = 0, 1, (2.2)

where

a11(ρ) := 1, a12(ρ) := a21(ρ) := −yρ−1ρx, a22(ρ) := ρ−2
(
1 + y2ρ2

x

)
,

a2(ρ) := ρ−2
(
2yρ2

x − yρρxx
)
, b10(ρ) := 0, b20(ρ) := −ρ−1,

b11(ρ) := −ρx, b21(ρ) := ρ−1
(
1 + yρ2

x

)
.

It is not difficult to show that

(A,Di) ∈ C∞(hm+2+α
+ (�1),L(hm+2+α(Ω̄), hm+α(Ω̄) × hm+1+α(�1))), i = 0, 1, m ∈ �,

(2.3)

where L(Z1, Z0) denotes the Banach space of all linear continuous mappings from Z1 to
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Z0. Moreover, the transformed curvature has the expression

N(ρ) = −
(
1 + ρ2

x

)− 3
2 ρxx, (2.4)

which implies

N ∈ C∞(hm+2+α
+ (�1), hm+α(�1)), m ∈ �. (2.5)

Let T > 0 be given and consider a function ρ ∈ C([0, T ], h4+α
+ (�1)) ∩ C1([0, T ], h3+α(�1)).

We abbreviate the operator families t → A(ρ(t)) and t → Di(ρ(t)) for t ∈ [0, T ] to be

A(ρ) and Di(ρ) (i = 0, 1), respectively. Later on we identify a function ρ : [0, T ] → h(�1)

with the corresponding function on �1 × [0, T ] defined by ρ(t, x) = ρ(t)(x) for t ∈ [0, T ]

and x ∈ �1. Writing

u(t) := θ∗
ρσ(t, ·), v(t) := θ∗

ρp(t, ·),
we see that equation (1.1) is transformed into the following initial-boundary value problem:

Given ρ0 ∈ h4+α
+ (�1), find (ρ, u, v) ∈ h4+α

+ (�1) × h2+α(Ω̄) × h4+α(Ω̄) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(ρ)u = λu in Ω × (0, T ),

A(ρ)v = −μ(u − σ̃) in Ω × (0, T ),

D0(ρ)u = 0, D0(ρ)v = 0 on Γ0 × (0, T ),

Υ1u = σ̄(1 − 2γN(ρ)), Υ1v = p̄ on Γ1 × (0, T ),

∂tρ + D1(ρ)v = 0 on Γ1 × (0, T ),

ρ(0) = ρ0 at t = 0.

(2.6)

Concluding the above steps, we get the following result.

Lemma 2.1 The problem (1.1) is equivalent to the problem (2.6) in the following sense: If

(ρ, u, v) is a solution of equation (2.6), then by letting

σ(t, ·) := θ
ρ
∗u(t, ·), p(t, ·) := θ

ρ
∗v(t, ·),

we see that (ρ, σ, p) is a solution of equation (1.1). Conversely, if (ρ, σ, p) is a solution of

equation (1.1), then by setting

u(t, ·) := θ∗
ρσ(t, ·), v(t, ·) := θ∗

ρp(t, ·),

we have that (ρ, u, v) forms a solution of equation (2.6).

In the following, we shall reduce the system (2.6) to a nonlinear differential equation

in some Banach space containing the unknown ρ. For this, let ρ ∈ h4+α
+ (�1) be given and

consider the boundary value problem

A(ρ)u = λu in Ω, D0(ρ)u = 0 on Γ0, Υ1u = σ̄(1 − 2γN(ρ)) on Γ1. (2.7)

Actually, the boundary condition D0(ρ)v = 0 is equivalent to the linear form Υ0∂yv = 0.

By equation (2.5) and the theory of elliptic equations we know that equation (2.7) has a
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unique solution u ∈ h2+α(Ω̄), which we denote by u = Qγ(ρ). From equation (2.5) and the

regularity theory for elliptic equations we get

Qγ ∈ C∞(h4+α
+ (�1), h2+α(Ω̄)), (2.8)

cf. [16]. Then we consider the following boundary value problem

A(ρ)v = −μ(Qγ(ρ) − σ̃) in Ω, D0(ρ)v = 0 on Γ0, Υ1v = p̄ on Γ1, (2.9)

where we have replaced u with Qγ(ρ). Similarly, equation (2.9) has a unique solution

v ∈ h4+α(Ω̄), which is denoted by v = Rγ(ρ) and satisfies

Rγ ∈ C∞(h4+α
+ (�1), h4+α(Ω̄)). (2.10)

By introducing the nonlinear mapping

Φγ(ρ) := D1(ρ)Rγ(ρ), (2.11)

we see that the system (2.6) is reduced to the following problem

∂tρ + Φγ(ρ) = 0, ρ(0) = ρ0. (2.12)

Furthermore, it follows from equations (2.3), (2.5), (2.8), (2.10) and (2.11) that

Φγ ∈ C∞(h4+α
+ (�1), h3+α(�1)). (2.13)

Summarizing the above deductions we get

Lemma 2.2 The problem (2.6) is equivalent to the problem (2.12) in the following sense:

If (ρ, u, v) is a solution of equation (2.6), then ρ forms a solution of equation (2.12). Con-

versely, if ρ is a solution of equation (2.12), then by solving the problems (2.7) and (2.9)

we get u = Qγ(ρ) and v = Rγ(ρ), which combined with the component ρ form a solution

(ρ, u, v) of equation (2.6).

Next, we consider the linearization of the system (2.6) at its flat stationary solution. To

find flat stationary solution of equation (2.6), by virtue of Lemma 2.1, we know that the

stationary form of equation (2.6) for a general stationary solution (ρs(x), σs(x, y), ps(x, y))

is given by ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δσs = λσs in Ωρs ,

Δps = −μ(σs − σ̃) in Ωρs ,

∂yσs = 0, ∂yps = 0 on Γ0,

σs = σ̄(1 − 2γκ), ps = p̄ on Γρs ,

∂
νps = 0 on Γρs .

(2.14)

If ρs(x) ≡ ρ∗, with a positive constant ρ∗ > 0, then the equations in the first four lines of
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equation (2.14) can be solved as

σ∗(y) = σ̄
cosh(

√
λy)

cosh(
√
λρ∗)

, p∗(y) =
μσ̄

λ

(
1 − cosh(

√
λy)

cosh(
√
λρ∗)

)
+

μσ̃

2

(
y2 − ρ2

∗

)
+ p̄. (2.15)

Substituting the expression of p∗(y) into the last equation in equation (2.14), we get

tanh
√
λρ∗√

λρ∗
=

σ̃

σ̄
. (2.16)

It is easy to verify that the function
tanh r

r
is strictly monotone decreasing and

lim
r→0

tanh r

r
= 1, lim

r→∞

tanh r

r
= 0.

As a consequence, we get the following result.

Lemma 2.3 The problem (1.1) has a unique flat stationary solution (ρ∗, σ∗, p∗) if and only

if σ̄ > σ̃. Moreover, this flat stationary solution (ρ∗, σ∗, p∗) satisfies equations (2.15) and

(2.16).

In the rest part of this paper, we always assume that σ̄ > σ̃, which ensures that

equation (1.1) has a unique flat stationary solution (ρ∗, σ∗, p∗). It follows from Lemma

2.1 that (ρ∗, σ∗(ρ∗y), p∗(ρ∗y)) forms a flat stationary solution of equation (2.6). A simple

calculation shows that

[∂A(ρ∗)h]v = −2yρ−1
∗ hx∂12v − 2ρ−3

∗ h∂22v − yρ−1
∗ hxx∂2v, ∂N(ρ∗)h = −hxx,

[∂D0(ρ∗)h]v = ρ−2
∗ hΥ0∂2v, [∂D1(ρ∗)h]v = −hxΥ1∂1v − ρ−2

∗ hΥ1∂2v,
(2.17)

for h ∈ h2+α(�1) and v ∈ h2+α(Ω̄). It follows that [∂A(ρ∗) · ]v and ∂N(ρ∗) are second-

order differential operators, and [∂D0(ρ∗) · ]v and [∂D1(ρ∗) · ]v are first-order differential

operators. To compute the linearization of equation (2.6) at its flat stationary solution

(ρ∗, σ∗(ρ∗y), p∗(ρ∗y)), we set

ρ = ρ∗ + εξ(t, x), u = σ∗(ρ∗y) + εΣ(t, x, y), v = p∗(ρ∗y) + εP (t, x, y),

where ξ, Σ, P are new unknowns and ε is a small parameter. Substituting these expressions

into equation (2.6) we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(ρ∗)Σ = λΣ − [∂A(ρ∗)ξ]σ∗(ρ∗y) in Ω × (0, T ),

A(ρ∗)P = −μΣ − [∂A(ρ∗)ξ]p∗(ρ∗y) in Ω × (0, T ),

D0(ρ∗)Σ = 0, D0(ρ∗)P = 0 on Γ0 × (0, T ),

Υ1Σ = −2γσ̄∂N(ρ∗)ξ, Υ1P = 0 on Γ1 × (0, T ),

∂tξ + D1(ρ∗)P = 0 on Γ1 × (0, T ),

ξ(0) = ξ0 at t = 0,

(2.18)

where we have used the fact that [∂D1(ρ∗)ξ]p∗(ρ∗y) = 0.
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Given ξ ∈ h4+α(�1), similarly to above by solving the linear problem on Σ we get

a unique solution Σ ∈ h2+α(Ω̄), which is 2π-periodic in x. Then substituting Σ into

the second equation in equations (2.18) and solving the corresponding linear problem

on P , we get that P ∈ h4+α(Ω̄) is also 2π-periodic in x. Now we can define a linear

operator L by

Lξ := D1(ρ∗)P for ξ ∈ h4+α(�1). (2.19)

It can be easily verified that L ∈ L(h4+α(�1), h3+α(�1)).

In the following, we shall represent the operator L as a multiplier operator. For this,

we always employ the natural complexification in connection with spectral theory without

distinguishing this in notation. Since h4+α(�1) is compactly embedded into h3+α(�1), the

resolvent (λI −L)−1 is a compact operator for every λ in the resolvent set of L. Therefore,

the spectrum of L, which we denote by σ(L), consists of a sequence of isolated eigenvalues.

Write ∂Φγ(ρ∗) for the Fréchet derivative of Φγ(ρ) at ρ∗. We then have the following.

Lemma 2.4

(i) ∂Φγ(ρ∗)ξ = Lξ for ξ ∈ h4+α(�1).

(ii) σ(−∂Φγ(ρ∗)) = {λk| k = 0, 1, 2, . . .}, where λk is given by

λk = μ(σ̄ − σ̃) −
(
μσ̃ +

2μσ̄γk2

λρ∗

)
(
√

k2 + λρ∗ tanh(
√
k2 + λρ∗) − kρ∗ tanh(kρ∗)).

(2.20)

Proof

(i) Recall that equation (2.18) is the linearization of equation (2.6), and the latter is

equivalent to equation (2.12). It follows that equation (2.19) is equivalent to the

linearized operator ∂Φγ(ρ∗) of Φγ(ρ).

(ii) To calculate each eigenvalue of ∂Φγ(ρ∗), we consider Fourier expansions of ξ, Σ

and P

ξ(t, x) =

∞∑
k=0

ak(t)e
ikx, Σ(t, x, y) =

∞∑
k=0

Bk(t, y)e
ikx, P (t, x, y) =

∞∑
k=0

Ck(t, y)e
ikx.

Substituting the expansion of Σ(t, x, y) into equation (2.18) and comparing coefficients

of eikx for every k, we get the following boundary value problems for Bk(t, y)⎧⎪⎪⎨
⎪⎪⎩

−k2Bk(t, y) + ρ−2
∗

∂2Bk

∂y2
(t, y) = λBk(t, y) + ak(t)ck(y),

∂Bk

∂y
(t, 0) = 0, Bk(t, 1) = −2ak(t)γσ̄k

2, k = 0, 1, 2, . . . ,

where

ck(y) := 2ρ−1
∗ σ̄λ

cosh(
√
λρ∗y)

cosh(
√
λρ∗)

− k2σ̄
√
λ
y sinh(

√
λρ∗y)

cosh(
√
λρ∗)

.
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One can easily verify that the unique solution of this problem is given by

Bk(t, y) = −ak(t)σ̄(
√
λ tanh(

√
λρ∗) + 2γk2)

cosh(
√
k2 + λρ∗y)

cosh(
√
k2 + λρ∗)

+ ak(t)σ̄
√
λ
y sinh(

√
λρ∗y)

cosh(
√
λρ∗)

.

(2.21)

Next, substituting the expansion of P (x, y) into equation (2.18) we get

⎧⎪⎪⎨
⎪⎪⎩

−k2Ck(t, y) + ρ−2
∗

∂2Ck

∂y2
(t, y) = −μBk(t, y) + ak(t)dk(y),

∂Ck

∂y
(t, 0) = 0, Ck(t, 1) = 0, k = 0, 1, 2, . . . ,

where

dk(y) := −2ρ−1
∗ μσ̄

cosh(
√
λρ∗y)

cosh(
√
λρ∗)

+
k2μσ̄√

λ

y sinh(
√
λρ∗y)

cosh(
√
λρ∗)

+ 2ρ−1
∗ μσ̃ − y2k2μσ̃ρ∗.

Solving this problem one obtains

Ck(t, y) = ak(t)μσ̃ρ∗y
2 − ak(t)μσ̄

y sinh(
√
λρ∗y)√

λ cosh(
√
λ1ρ∗)

− ak(t)μ(σ̃ρ∗λ + 2k2γσ̄)
cosh(kρ∗y)

λ cosh(kρ∗)

+ak(t)μσ̄(2k2γ +
√
λ tanh(

√
λρ∗))

cosh(
√
k2 + λρ∗y)

λ cosh(
√
k2 + λρ∗)

.

(2.22)

Finally, we substitute the expansions of ξ and P (t, x, y) into equation (2.19) and get

L

∞∑
k=0

ak(t)e
ikx = −

∞∑
k=0

λkak(t)e
ikx, (2.23)

where λk is given in equations (2.20) and (2.16) is used here. This completes the

proof. �

Moreover, we have the following spectral analysis.

Lemma 2.5

(i) λk � μ(σ̄ − σ̃) for all γ > 0 and k = 0, 1, 2, . . ..

(ii) There exists a constant γ∗ > 0 depending only on μ, σ̃, σ̄, λ and ρ∗ such that for every

γ > γ∗,

λk � C(γ) < 0 for all k = 0, 1, 2, . . . ,

where C(γ) is a positive constant depending on γ. Also for every 0 < γ < γ∗ there exists

a positive integer k0 = k0(γ) such that λk0
> 0.
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Proof

(i) We split each eigenvalue λk as

λk = λ0
k − 2μσ̄γk2

λρ∗
(
√

k2 + λρ∗ tanh(
√

k2 + λρ∗) − kρ∗ tanh(kρ∗)), k = 0, 1, 2, . . . , (2.24)

where

λ0
k := μ(σ̄ − σ̃) − μσ̃(

√
k2 + λρ∗ tanh(

√
k2 + λρ∗) − kρ∗ tanh(kρ∗)).

A standard limitation argument shows that

√
k2 + λρ∗ tanh(

√
k2 + λρ∗) − kρ∗ tanh(kρ∗) > 0,

lim
k→∞

2k(
√
k2 + λρ∗ tanh(

√
k2 + λρ∗) − kρ∗ tanh(kρ∗)) = λρ∗.

(2.25)

It follows that

lim
k→∞

λ0
k = μ(σ̄ − σ̃) > 0. (2.26)

It is easy to prove

x tanh x + 1 − x

tanh x
> 0 for all x > 0,

which implies

λ0 = λ0
0 = −μσ̃

(
√
λρ∗ tanh

√
λρ∗ + 1 −

√
λρ∗

tanh
√
λρ∗

)
< 0, (2.27)

where we have used the relation (2.16) again. It is not difficult to prove that λ0
k is

strictly monotone increasing in k, that is,

λ0
0 < λ0

1 < · · · < λ0
k < λ0

k+1 < · · · . (2.28)

Combining equations (2.26)–(2.28) we get

λk � λ0
k � μ(σ̄ − σ̃), k = 0, 1, 2, . . . . (2.29)

(ii) We define

γk :=
(σ̄ − σ̃)λρ∗

2σ̄k2(
√
k2 + λρ∗ tanh(

√
k2 + λρ∗) − kρ∗ tanh(kρ∗))

− σ̃λρ∗
2σ̄k2

, k = 1, 2, . . . . (2.30)

Then λk can be re-expressed as

λk = −2μσ̄k2

λρ∗
(
√

k2 + λρ∗ tanh(
√

k2 + λρ∗) − kρ∗ tanh(kρ∗))(γ − γk), k = 1, 2, . . . .

(2.31)
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By virtue of equation (2.25),

γk =
(
1 − σ̃

σ̄

)1

k
+ O

(
1

k2

)
as k → ∞. (2.32)

Thus we can define

γ∗ := sup{γk| k = 1, 2, . . .}. (2.33)

It is obvious that 0 < γ∗ < ∞. It follows from equation (2.31) that if γ > γ∗ then

λk < 0 for all k = 1, 2, . . ., while for 0 < γ < γ∗ there exists k0 ∈ � such that

λk0
> 0. Combining this with equation (2.27), we get the desired assertion in (ii). This

completes the proof. �

It is necessary to compare the threshold value γ∗ with the corresponding threshold

value γ̃∗ obtained in [11, 32] for the model with surface tension effect. Recall that γ̃∗ can

be rewritten as

γ̃∗ := sup{γ̃k| k = 1, 2, . . .}, (2.34)

where

γ̃k := μ

[
σ̄ − σ̃ − σ̃(

√
k2 + λρ∗ tanh(

√
k2 + λρ∗) − kρ∗ tanh(kρ∗))

k3 tanh(kρ∗)

]
, k = 1, 2, . . . , (2.35)

cf. [11, 32]. It follows from equation (2.25) that

γ̃k

μ
=

σ̄ − σ̃

k3
+ O(

1

k4
) as k → ∞.

Thus we can define q∗ := sup{γ̃k/μ| k = 1, 2, . . .}, a positive finite value independent of μ.

It follows that γ̃∗ = μq∗ and the following conclusion holds.

Lemma 2.6 γ̃∗ < γ∗ if and only if μ <
γ∗
q∗

.

3 Stability

In this section, we investigate stability of the unique flat stationary solution (ρ∗, σ∗, p∗) of

equation (1.1) under non-flat perturbations and give the proof of Theorem 1.1.

We first establish well-posedness of equation (1.1) by employing analytic semigroup

theory. Let E0 and E1 be Banach spaces such that E1 is densely injected in E0, and

let H(E1, E0) denote the set of all A ∈ L(E1, E0) such that −A generates a strongly

continuous analytic semigroup on E0. We use Lis(E1, E0) to represent the set of all

bounded isomorphisms from E1 onto E0. In the following, we want to prove that ∂Φγ(ρ∗) ∈
H(h4+α(�1), h3+α(�1)). Due to the theory of Amann [1], it is suffice to prove that there

exist constants ω̄ > 0 and β � 1 such that for all Reλ � ω̄

λ + ∂Φγ(ρ∗) ∈ Lis(h
4+α(�1), h3+α(�1)), (3.1)
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and

|λ| · ‖(λ + ∂Φγ(ρ∗))
−1‖L(h3+α(�1)) � β. (3.2)

For this, we refer to [14, 15] and define the Sobolev space

Hs(�1) := {f ∈ L2(�1) :
∑
n∈�

(n2 + 1)s|fn|2 < ∞},

endowed with the scalar product

< f, g >:=
∑
n∈�

(n2 + 1)sfngn,

where fn denotes the nth Fourier coefficient of f. The Sobolev embedding theorem and

the fact that smooth functions are dense in Hs(�1) imply that Hk+s(�1) ↪→ Ck(�1) for all

k ∈ � and s > 1
2
. Thus

Hk+s(�1)
d
↪→ hk+α(�1),

for all k ∈ �, α ∈ (0, 1) and s > 3
2
. Hereafter we fix the positive constant ω̄ := 2μ(σ̄ − σ̃).

Lemma 3.1 Given s � 0 and Reλ � ω̄,

λ + ∂Φγ(ρ∗) ∈ Lis(H
s+1(�1), Hs(�1)).

Proof From the expression (2.20) of λk and the limit in equation (2.25) we know

lim
k→∞

λk

k
= −μσ̄γ,

which implies that there exists C1, C2 > 0 such that

C1(k
2 + 1)

1
2 � |λk| � C2(k

2 + 1)
1
2 .

Given Reλ � ω̄ and h =
∑
k∈�

hke
ikx ∈ Hs+1(�1), one can find

‖∂Φγ(ρ∗)h‖Hs(�1) =

∥∥∥∥∥
∑
k∈�

λkhke
ikx

∥∥∥∥∥
Hs(�1)

=
∑
k∈�

(k2 + 1)s|λkhk|2

� C2

∑
k∈�

(k2 + 1)s+1|hk|2 = C2‖h‖Hs+1(�1).

Then ∂Φγ(ρ∗) ∈ L(Hs+1(�1), Hs(�1)), which combined with the fact that |λ − λk| �
μ(σ̄ − σ̃) > 0 for all k ∈ �, yield that λ + ∂Φγ(ρ∗) is injective. On the other hand, given
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Reλ � ω̄ and h =
∑

k∈� hke
ikx ∈ Hs(�1), we have

∥∥∥∥∥
∑
k∈�

(λ − λk)
−1hke

ikx

∥∥∥∥∥
Hs+1(�1)

=
∑
k∈�

(k2 + 1)s+1|(λ − λk)
−1hk|2 � C−1

λ

∑
k∈�

(k2 + 1)s|hk|2

= C−1
λ

∥∥∥∥∥
∑
k∈�

hke
ikx

∥∥∥∥∥
Hs(�1)

,

where we have used the estimate |λ − λk| � Cλ(k
2 + 1)

1
2 for some Cλ and all k ∈ �. As a

consequence, the inverse of λ + ∂Φγ(ρ∗), which is defined by

(λ + ∂Φγ(ρ∗))
−1h :=

∑
k∈�

(λ − λk)
−1hke

ikx for h =
∑
k∈�

hke
ikx ∈ Hs(�1),

satisfies (λ + ∂Φγ(ρ∗))
−1 ∈ L(Hs(�1), Hs+1(�1)). Thus λ + ∂Φγ(ρ∗) is surjective and we

complete the proof. �

Lemma 3.2 {λ ∈ �| Reλ � ω̄} ⊂ ρ(−∂Φγ(ρ∗)).

Proof Let Re(λ) � ω̄ be given. We first prove that

(λ + ∂Φγ(ρ∗))
−1 ∈ L(C3+α(�1), C4+α(�1)). (3.3)

Recall that the multiplier operator (λ + ∂Φγ(ρ∗))
−1 is defined by

(λ + ∂Φ(ρ∗))
−1h =

∑
k∈�

(λ − λk)
−1hke

ikx for h =
∑
k∈�

hke
ikx.

It is easy to see that

lim
k→∞

k

λ − λk
=

1

μσ̄γ
, (3.4)

which indicates

sup
k∈�

|k|
∣∣∣ 1

λ − λk

∣∣∣ < ∞. (3.5)

A simple calculation yields that lim
k→∞

(λk+1 − λk) = −μσ̄γ, which combined with equation

(3.4) lead to

sup
k∈�

|k|2
∣∣∣ 1

λ − λk+1
− 1

λ − λk

∣∣∣ = sup
k∈�

| k

λ − λk+1

k

λ − λk
| · |λk+1 − λk| < ∞. (3.6)

Moreover, a standard limitation argument shows that

lim
k→∞

(λk+2 − 2λk+1 + λk) = 0, lim
k→∞

(λk+2(λk+1 − λk) − λk(λk+2 − λk+1)) = 2μ2σ̄2γ2. (3.7)
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Thus

sup
k∈�

|k|3
∣∣∣ 1

λ − λk+2
− 2

λ − λk+1
+

1

λ − λk

∣∣∣
= sup

k∈�

∣∣∣∣ k

λ − λk+2

k

λ − λk+1

k

λ − λk

∣∣∣∣ |λ(λk+2 − 2λk+1 + λk) + λk+2(λk+1 − λk)

−λk(λk+2 − λk+1)|
< ∞.

(3.8)

Combining equations (3.5), (3.6) and (3.8) and using Theorem 4.5 of [2] (see also [14, 15,

28]), we get equation (3.3).

Noticing the dense embedding Hk+s(�1)
d
↪→ hk+α(�1) and the fact that h4+α(�1) is just

the closure of Hs(�1) in C4+α(�1) (s > 11
2
), we derive from Lemma 3.1 and equation (3.3)

that

(λ + ∂Φγ(ρ∗))
−1 ∈ L(h3+α(�1), h4+α(�1)). (3.9)

This completes the proof. �

Lemma 3.3 There exists β � 1 such that for all Reλ � ω̄,

|λ| · ‖(λ + ∂Φγ(ρ∗))
−1‖L(h3+α(�1)) � β.

Proof Given h =
∑
k∈�

hke
ikx ∈ Hs(�1), we have

|λ|(λ + ∂Φ(ρ∗))
−1h =

∑
k∈�

|λ|(λ − λk)
−1hke

ikx,

for all Reλ � ω̄. Noticing that λk � μ(σ̄ − σ̃) and Re(λ − λk) � μ(σ̄ − σ̃) for all Reλ � ω̄

and k ∈ �, we can prove that

∣∣∣ λ

λ − λk

∣∣∣ �
|λ − λk| + |λk|

|λ − λk| � 2,

for −μ(σ̄ − σ̃) � λk � μ(σ̄ − σ̃) and λk � −μ(σ̄ − σ̃), respectively. Thus for all Reλ � ω̄

and k ∈ � we get

sup
k∈�

∣∣∣ λ

λ − λk

∣∣∣ � 2. (3.10)

From equation (3.6) and the above estimate we know that there exists a constant C1 > 0

such that

sup
k∈�

|k|
∣∣∣ |λ|
λ − λk+1

− |λ|
λ − λk

∣∣∣ = sup
k∈�

|λ|
|λ − λk+1|

|k|
|λ − λk| |λk+1 − λk| � C1. (3.11)

Using equations (3.5), (3.7) and (3.10), one can find that there exists constant C2 > 0
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such that

sup
k∈�

|k|2
∣∣∣ |λ|
λ − λk+2

− 2|λ|
λ − λk+1

+
|λ|

λ − λk

∣∣∣
= sup

k∈�

|λ|
|λ − λk+2|

|k|
|λ − λk+1|

|k|
|λ − λk| |λ(λk+2 − 2λk+1 + λk)

+ λk+2(λk+1 − λk) − λk(λk+2 − λk+1)|
� C2.

(3.12)

Combining equations (3.10)–(3.12) and Theorem 4.5 of [2], we get the desired result. �

Define

Om+α
δ (�1) := {ρ ∈ hm+α

+ (�1)| ‖ρ − ρ∗‖C1(�1) < δ} for m ∈ � and m � 4, (3.13)

where δ is a small constant to be fixed later on. We have the following result.

Theorem 3.4 Let ρ ∈ O4+α
δ (�1) be given. If δ is sufficiently small, then

∂Φγ(ρ) ∈ H(h4+α(�1), h3+α(�1)),

for all γ > 0.

Proof Combining Lemma 3.1–3.3 and employing the theory of Amann [1], we get

∂Φγ(ρ∗) ∈ H(h4+α(�1), h3+α(�1)),

for all γ > 0. Given ρ ∈ O4+α
δ (�1), the result follows readily from the well-known

perturbation result of generators (cf. Section 2.4 of [25]). �

We can state the following local well-posedness for the problem (2.12).

Theorem 3.5 Given ρ0 ∈ O4+α
δ (�1), there exist t+ := t+(ρ0) > 0 and a unique maximal

solution

ρ ∈ C([0, t+), h4+α
+ (�1)) ∩ C1([0, t+), h3+α(�1)) ∩ C∞((0, t+) × �1)

of the problem (2.12). The map (t, ρ0) �→ ρ(t, ρ0) defines a smooth semiflow on h4+α
+ (�1).

Proof It follows from Theorem 8.1.1 of [25] that a unique maximal solution exists and

equation (2.12) generates a semiflow on h4+α(�1). The fact that ρ is smooth is based on a

bootstrapping argument in the scale of hm+α(�1). �

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1 We prove this by employing geometric theory for parabolic dif-

ferential equations in Banach spaces. For this, we set Ψ (ρ) := Φγ(ρ + ρ∗) − ∂Φγ(ρ∗)ρ. It

follows from equation (2.13) that Ψ ∈ C∞(h4+α
+ (�1), h3+α(�1)). It is obvious that

Ψ (0) = Φγ(ρ∗) = 0, ∂Ψ (0) = 0. (3.14)
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Consequently, the problem (2.12) is equivalent to the following problem

∂tρ + ∂Φγ(ρ∗)ρ + Ψ (ρ) = 0, ρ(0) = ρ0. (3.15)

Let γ∗ > 0 be the threshold value given in equation (2.33) and assume that γ > γ∗.

Noticing equations (3.14) and (3.15) and invoking Lemma 2.4, Theorems 3.4 and 3.5, we

see that all the assumptions in Theorem 9.1.2 of [25] are satisfied. This means that there

are positive constants ω, ε and M1 such that if ρ0 ∈ O4+α
δ (�1) for sufficiently small δ, then

the solution ρ(t, ·) of equation (2.12) exists globally and satisfies

‖ρ(t, ·) − ρ∗‖h4+α(�1) � M1e
−ωt‖ρ0 − ρ∗‖h4+α(�1) for all t � 0.

From the construction we have σ∗ = Qγ(ρ∗), which combined with the mean value theorem

implies that there exists a constant C such that

‖σ(t, ·)−σ∗‖h2+α(Ω̄) = ‖Qγ(ρ(t))−Qγ(ρ∗)‖h2+α(Ω̄) � C‖ρ(t)−ρ∗‖h4+α(�1) � Me−ωt for all t � 0.

The corresponding estimate for p(t, ·) can be obtained similarly.

If γ < γ∗, then Theorem 9.1.3 of [25] and Lemma 2.4 imply that the equilibrium ρ∗ of

equation (2.12) is unstable. By using Lemmas 2.1 and 2.2 and returning to the problem

(1.1), we complete the proof of Theorem 1.1. �

Remark 3.6 Concerning the effect of the nutrient on a tumour’s growth, it follows from

equations (2.30) and (2.33) that the threshold value γ∗ is a monotone increasing function

of the nutrient supply σ̄. This implies that an increasing nutrient supply lowers a tumour’s

stability.

4 Bifurcation

In this section, we investigate existence of non-flat stationary solutions of equation (1.1)

and give the proof of Theorem 1.2.

It follows from Lemma 2.1 that the free boundary problem (1.1) is equivalent to the

transformed problem (2.6), and the latter has the following stationary form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A(ρ)u = λu in Ω,

A(ρ)v = −μ(u − σ̃) in Ω,

D0(ρ)u = 0, D0(ρ)v = 0 on Γ0,

Υ1u = σ̄(1 − 2γN(ρ)), v = p̄ on Γ1,

D1(ρ)v = 0 on Γ1.

(4.1)

It should be observed that the transformed stationary problem (4.1) is equivalent to the

problem (2.14) by virtue of Lemma 2.1. From Section 2, we know that the linearization

of equation (4.1) at the flat equilibrium (ρ∗, σ∗(ρ∗y), p∗(ρ∗y)) is just the stationary form of
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equation (2.18), that is,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A(ρ∗)Σ = λΣ − [∂A(ρ∗)ξ]σ∗(ρ∗y) in Ω,

A(ρ∗)P = −μΣ − [∂A(ρ∗)ξ]p∗(ρ∗y) in Ω,

D0(ρ∗)Σ = 0, D0(ρ∗)P = 0 on Γ0,

Υ1Σ = −2γσ̄∂N(ρ∗)ξ, Υ1P = 0 on Γ1,

D1(ρ∗)P = 0 on Γ1.

(4.2)

In the following, we first study existence of nontrivial solutions of the linearized problem

(4.2). For this, as in Section 2, we consider Fourier expansions of ξ, Σ and P

ξ(x) =

∞∑
k=0

ake
ikx, Σ(x, y) =

∞∑
k=0

Bk(y)e
ikx, P (x, y) =

∞∑
k=0

Ck(y)e
ikx.

Following the same procedure as in Section 2, we get Bk(y) and Ck(y) as in equations

(2.21) and (2.22), where ak(t) is replaced with ak . Then substituting the expressions of ξ

and P into the last equation in equation (4.2) we have

Lξ(x) = −
∞∑
k=0

λkake
ikx = 0, (4.3)

where L is defined in equation (2.19) and λk is given by equation (2.20) or (2.31).

Lemma 4.1

(i) The linearization (4.2) has a nontrivial solution (ξ, Σ, P ) if and only if γ = γk , where

γk is given by equation (2.30). Moreover, this nontrivial solution (ξ, Σ, P ) has the form

ξ(x) = ake
ikx, Σ(x, y) = Bk(y)ake

ikx, P (x, y) = Ck(y)ake
ikx,

where ak is an arbitrary constant, and Bk(y) and Ck(y) are given by equations (2.21)
and (2.22) with ak(t) replaced with ak .

(ii) lim
k→∞

γk = 0, and there exists a positive integer k∗ such that γk > 0 and γk is strictly

monotone decreasing for all k � k∗.

Proof The above deductions indicate that the first statement (i) holds. Then (ii) follows

readily from equation (2.32). �

Similarly in Section 2, we can reduce the transformed stationary problem (4.1) into a

differential equation Φγ(ρ) = 0 in the space hm+α(�1). Defining

F(ρ, γ) := Φγ(ρ), (4.4)

we see from equation (2.13) and the definitions of Qγ(ρ), Rγ(ρ) and Φγ(ρ) that

F ∈ C∞(Om+α
δ (�1) × �+, hm−1+α(�1)), (4.5)

where Om+α
δ (�1) is defined in equation (3.13). Then we have the following conclusion.
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Lemma 4.2 The transformed stationary problem (4.1) is equivalent to the following bi-

furcation problem with bifurcation parameter γ: Find ρ ∈ Om+α
δ (�1) and γ ∈ �+ satisfying

F(ρ, γ) = 0. (4.6)

Later on we shall use the Crandall–Rabinowitz bifurcation theorem to solve equation

(4.6). For this, we must overcome a basic difficulty: By Lemma 4.1, we know that the

linearized problem (4.2) has an infinite number of eigenvalues, with the eigenspace of each

of them being of two dimensions. Since equation (4.1) is equivalent to equation (4.6), its

linearization (4.2) must be equivalent to the linearization of equation (4.6). Hence all the

eigenspaces of the linearization of equation (4.6) are also two-dimensional. This implies

that the Crandall–Rabinowitz bifurcation theorem cannot be used directly. Fortunately,

as we shall see below, we can restrict equation (4.6) onto certain subspace of Cm+α(�1)

such that the restricted problem has eigenspaces of one dimension. To do this, for any

given integers k � 1 and m � 4 we introduce

Um+α
k (�1) := the closure of the span {cos jkx : j = 0, 1, 2, . . .} in Cm+α(�1),

Vm+α
k (Ω̄) := the closure of C∞([0, 1], U∞

k (�1)) ∩ C∞(Ω̄) in Cm+α(Ω̄),

where U∞
k (�1)) :=

⋂∞
m=0 U

m+α
k (�1). It is easy to see that Um+α

k (�1) and Vm+α
k (Ω̄) are

subspaces of the little Hölder spaces hm+α(�1) and hm+α(Ω̄). We have the following result.

Lemma 4.3 For any given integers k � 1 and m � 4, there holds

F ∈ C∞(Om+α
δ (�1) ∩ Um+α

k (�1) × �+, Um−1+α
k (�1)). (4.7)

Proof For any ρ ∈ Om+α
δ (�1) ∩ Um+α

k (�1) and γ ∈ �+, we can find a sequence {ρj}∞
j=1 ∈

Om+α
δ (�1)∩U∞

k (�1) such that ρj → ρ in Cm+α(�1). By the continuity of F : Om+α
δ (�1)×�+ →

Cm−1+α(�1), we have F(ρj, γ) → F(ρ, γ) in Cm−1+α(�1). If we can prove F(ρj, γ) ∈ U∞
k (�1),

then by the definitions of Um−1+α
k (�1) and U∞

k (�1), we obtain F(ρ, γ) ∈ Um−1+α
k (�1). Hence,

it suffices to prove that if ρ ∈ Om+α
δ (�1) ∩ U∞

k (�1) and γ ∈ �+, then F(ρ, γ) ∈ U∞
k (�1).

Let ρ ∈ Om+α
δ (�1) ∩ U∞

k (�1) and γ ∈ �+ be given. We first prove that

Qγ(ρ) ∈ C∞([0, 1], U∞
k (�1)) ∩ C∞(Ω̄). (4.8)

Indeed, for any given ρ ∈ Om+α
δ (�1) ∩ U∞

k (�1), from equations (2.2) and (2.3) we know

that the problem (2.7) is equivalent to the following problem:

A(ρ)u = λu in Ω, ∂yu = 0 on Γ0, Υ1u = u∞ on Γ1, (4.9)

where u∞ = u∞(x) := σ̄(1 − 2γN(ρ(x))) is known for given ρ. It is clear that N ∈
C∞(Om+α

δ (�1) ∩ Um+α
k (�1), Um−2+α

k (�1)), which indicates u∞ ∈ U∞
k (�1)). Since ρ ∈ C∞(�1),

by the well-known regularity theory for elliptic equations we see that u = Qγ(ρ) ∈ C∞(Ω̄).
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Hence u(x, y) has the Fourier expansion

u(x, y) = a0(y) +

∞∑
j=1

(aj(y) cos jx + bj(y) sin jx),

where a0, aj , bj ∈ C∞[0, 1]. We shall prove that each bj(y) is zero, and if j is not proportional
to k then every aj(y) is also zero. Let H1(Ω) and H1

0 (Ω) be the usual H1 and H1
0 Sobolev

spaces on Ω, respectively, and define

Wk(Ω) := the closure of V∞
k (Ω̄) in H1(Ω).

Observe that given w ∈ Wk(Ω), there exist a0, ajk in C∞([0, 1]) such that

w(x, y) =

∞∑
j=0

ajk(y) cos jkx for (x, y) ∈ Ω.

It is obvious that H1(Ω) = Wk(Ω) ⊕ (Wk(Ω))⊥. We now consider the functional J on
Wk(Ω) ∩ H1

0 (Ω) defined by

J(h) :=
1

2

∫
Ω

[
(∂xh)

2 +
1

ρ2
(∂yh)

2

]
ρdxdy

+

∫
Ω

[
λ

2
(h + u∞)2 − (u∞)xxh

]
ρdxdy, h ∈ Wk(Ω) ∩ H1

0 (Ω).

From the definition of u∞, we know that u∞, (u∞)xx ∈ Wk(Ω). A standard argument

indicates that J has a unique local minimum in Wk(Ω) ∩ H1
0 (Ω), which we denote by u0.

Note that since ρ ∈ C∞(�1), we actually have u0 ∈ C∞([0, 1], U∞
k (�1)) ∩ C∞(Ω̄). In the

following, we show that u = u0 + u∞.

Since u0 is the minimum point of J ,

0 = J ′(u0)v =

∫
Ω

[
∂xu0∂xv +

1

ρ2
∂yu0∂yv

]
ρdxdy +

∫
Ω

[λ(u0 + u∞) − (u∞)xx]vρdxdy (4.10)

for any v ∈ Wk(Ω) ∩ H1
0 (Ω). Noticing ρ ∈ Om+α

δ (�1) ∩ U∞
k (�1), u0 ∈ C∞([0, 1], U∞

k (�1)) ∩
C∞(Ω̄) and u∞, (u∞)xx ∈ U∞

k (�1), by careful calculation we can prove that∫
Ω

[
∂xu0∂xv +

1

ρ2
∂yu0∂yv

]
ρdxdy +

∫
Ω

[λ(u0 + u∞) − (u∞)xx]vρdxdy = 0, (4.11)

for any v ∈ (Wk(Ω))⊥ ∩H1
0 (Ω). Then equations (4.10) and (4.11) imply that equation (4.11)

holds for all v ∈ H1
0 (Ω). It follows by classical variation theory that u0 +u∞ is a solution of

equation (4.9). By uniqueness we have u = u0 +u∞. Hence, u ∈ C∞([0, 1], U∞
k (�1))∩C∞(Ω̄)

and equation (4.8) holds.

Substituting u = Qγ(ρ) into equation (4.1) and following a similar deduction, we can

show that p = Rγ(ρ) ∈ C∞([0, 1], U∞
k (�1)) ∩ C∞(Ω̄). Hence we get

F(ρ, γ) = D1(ρ)Rγ(ρ) = −ρxΥ1∂xRγ(ρ) + ρ−1(ρ2
x + 1)Υ1∂yRγ(ρ) ∈ U∞

k (�1).

This completes the proof. �
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Let Fk be the restriction of F on Om+α
δ (�1) ∩ Um+α

k (�1) × �+. Instead of equation (4.6),

hereafter, we consider the following problem: Find ρ ∈ Om+α
δ (�1) ∩ Um+α

k (�1) and γ ∈ �+

such that

Fk(ρ, γ) = 0. (4.12)

Obviously, equation (4.12) is not equivalent to equation (4.6), but a solution of equation

(4.12) is certainly a solution of equation (4.6).

It is time to give the proof of Theorem 1.2.

Proof of Theorem 1.2 We shall prove Theorem 1.2 by employing the well-known Crandall–

Rabinowitz bifurcation theorem. For this purpose, we need to verify that the map Fk(ρ, γ)

satisfies all the assumptions in that theorem.

Noticing that ρ∗ is an equilibrium of equation (4.12) for all γ ∈ �+, we have

Fk(ρ∗, γ) = 0 for all γ ∈ �+, (4.13)

∂γFk(ρ∗, γ) = 0, ∂γγFk(ρ∗, γ) = 0. (4.14)

Since equation (4.12) is the restriction of equation (4.6), and the latter is equivalent to

equation (4.1), deducing similarly as in Section 3, we see that the linearized equation of

(4.12) at ρ∗, which is denoted by

∂ρFk(ρ∗, γ)ξ = 0 for ξ ∈ Um+α
k (�1),

is equivalent to the linearized problem (4.2) with the unknown (ξ, Σ, P ) restricted to

Um+α
k (�1) × Vm−2+α

k (Ω̄∗) × Vm+α
k (Ω̄∗).

Then Lemma 4.1 indicates that equation (4.12) has nontrivial solutions if and only if

γ = γk (k � k∗), and in this situation all solutions of equation (4.12) are given by

ξ(x) = C cos kx,

where C is an arbitrary constant. It follows that

Ker∂ρFk(ρ∗, γk) is of one dimension, spanned by ξk = cos kx. (4.15)

Moreover, by Lemma 2.4, equations (2.27), (2.31) and (4.4) we have

∂ρFk(ρ∗, γ)1 = −λ0 � 0,

∂ρFk(ρ∗, γ) cos jkx = cjk(γ − γjk) cos jkx, j = 1, 2, . . . ,

where

cjk =
[
2μσ̄j2k2(

√
j2k2 + λρ∗ tanh(

√
j2k2 + λρ∗) − jkρ∗ tanh(jkρ∗))

]
/λρ∗,

and γjk has the expression in equation (2.30) with k replaced with jk. Hence, we have

codim Im∂ρFk(ρ∗, γk) = 1. (4.16)
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From the above analysis we can easily deduce that

∂γ∂ρFk(ρ∗, γ) cos kx|γ=γk = ck cos kx, (4.17)

where ck has the same form as the above cjk with jk replaced with k. Moreover, equations

(4.15) and (4.16) imply that

cos kx is orthogonal to ∂ρFk(ρ∗, γk)h for any h =

∞∑
j=0

cos jkx. (4.18)

It follows from equations (4.17) and (4.18) that

∂γ∂ρFk(ρ∗, γ)ξk|γ=γk � Im∂ρFk(ρ∗, γk). (4.19)

Combining equations (4.13)–(4.16) and (4.19), we see that all the assumptions in The-

orem 1.7 of [9] are satisfied by the equation (4.12). Thus using that theorem we infer that

in a neighbourhood of (ρ∗, γk) the set of solutions of equation (4.12) consists of two Cm−2

smooth curves Γ1 and Γ2, which intersect only at the point (ρ∗, γk). Actually, Γ1 is the

curve (ρ∗, γ) and Γ2 can be parameterized as

Γ2 : (ρε, γε), |ε| is small, (ρ0, γ0) = (ρ∗, γk), ρ′(0) = 0.

Returning to the original problem (1.1) and using equations (2.21) and (2.22), we see that

the corresponding bifurcation solution (γε, ρε, σε, pε) of equation (1.1) has the asymptotic

expansion

γε = γk + O(ε), ρε(x) = ρ∗ + ε cos kx + O(ε2),

σε(x, y) = σ∗(y) + εDk(y) cos kx + O(ε2), pε(x, y) = p∗(y) + εEk(y) cos kx + O(ε2),
(4.20)

where

Dk(y) = −σ̄(
√
λ tanh(

√
λρ∗) + 2γk2)

cosh(
√
k2 + λρ∗y)

cosh(
√
k2 + λρ∗)

+ σ̄
√
λ
y sinh(

√
λρ∗y)

cosh(
√
λρ∗)

,

Ek(y) = μσ̃ρ∗y
2 − μσ̄

y sinh(
√
λρ∗y)√

λ cosh(
√
λ1ρ∗)

− μ(σ̃ρ∗λ + 2k2γσ̄)
cosh(kρ∗y)

λ cosh(kρ∗)

+ μσ̄(2k2γ +
√
λ tanh(

√
λρ∗))

cosh(
√
k2 + λρ∗y)

λ cosh(
√
k2 + λρ∗)

.

(4.21)

This completes the proof of Theorem 1.2. �

5 Conclusions and biological implications

In this paper, we have studied a free boundary problem modelling the growth of multi-

layer tumours with Gibbs–Thomson relation. By reducing it to a nonlinear differential

equation on Banach spaces and then using analytic semigroup theory and bifurcation

analysis, we prove that there exists a positive threshold value γ∗ of surface tension

coefficient such that if γ > γ∗ then the unique flat stationary solution is asymptotically

https://doi.org/10.1017/S0956792515000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000108


424 F. Zhou and J. Wu

stable, while for γ < γ∗ it is unstable and there exist infinite number of non-flat stationary

bifurcation solutions with free boundary ρε(x) = ρ∗ + ε cos kx + O(ε2).

Instability of a tumour implies that the tumour may grow with a variety of shapes, in

particular, generate protrusions, or “fingers” in the form of bifurcation solutions, which

are associated with invasion by the tumour of its surrounding stroma (cf. [18, 19]]).

Concerning Gibbs–Thomson relation, 2γκ is the energy required to maintain the inter-

cellular bonds existing on the free boundary. As a consequence, our results indicate that a

smaller value of surface tension coefficient γ leads to smaller energy on the free boundary,

which further makes the protrusions generate more easily and tumours more aggressive.

It is also interesting to compare the model with Gibbs–Thomson relation and the model

with surface tension effect which was well studied in [11, 32], with a similar result for a

corresponding threshold value γ̃∗ (see equation (2.34)). In the model with Gibbs–Thomson

relation, by the definition (2.33) we see that γ∗ is independent of the proliferation rate μ,

which means that the proliferation rate has no effect on the tumour’s stability. However

for the model with surface tension effect, γ̃∗ depends linearly on μ. Moreover, Lemma 2.6

says that γ∗ < γ̃∗ for large proliferation rate μ, which implies that a tumour with surface

tension effect is more hazardous and aggressive than a tumour with Gibbs–Thomson

relation. However for small proliferation rate the situation is the opposite.
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