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Abstract. The generation of magnetic fields due to ponderomotive forces in astro-
physical plasma consisting of electrons, ions and positrons is investigated theoreti-
cally. It is seen that collisional or non-collisional interactions (between electromag-
netic waves and plasma particles) via ponderomotive forces in an inhomogeneous
plasma can excite a magnetic field. The growth rate of the magnetic field is illus-
trated graphically for different values of the temperature and concentration of
positrons in the plasma.

1. Introduction
The magnetic field is one of the most important factors causing various linear and
nonlinear phenomena in a plasma. There are several mechanisms for the generation
of magnetic fields in laboratory and space plasmas. In laboratory experiments,
magnetic fields are observed that are possibly generated due to anisotropy of an
electron plasma [1], thermal instabilities [2], Weibel instabilities [3], the∇n×∇T
mechanism [4], filamentation [5], the inverse Faraday effect [6, 7] and pondero-
motive forces [8], etc. In astrophysical bodies, the dynamo effect is one of the main
sources of magnetic fields [9–12]. For magnetic field generation, the dynamo motion
should be such as to convert mechanical energy to magnetic energy. In general, the
dynamo effect generates an axial magnetic field in the medium [13–15]. In an
underdense and moving plasma, a turbulent dynamo effect is possibly a source
of magnetic field [16–19]. However, another mechanism is also possible for the
generation of magnetic fields in astrophysical bodies. It is also possible to generate
a magnetic field in a nonlinear medium, even if its density and temperature do not
change [20].

In the present paper, we propose that the ponderomotive force is one of the
possible sources of a stellar magnetic field. In an inhomogeneous plasma, the pon-
deromotive force becomes prominent, and it helps to generate a magnetic field
in the medium. We investigated theoretically the role of positrons in a plasma
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for producing such a magnetic field. It is generally believed that electron–ion–
positron plasmas are produced in the early universe [21, 22], and make important
contributions to physical processes in active galactic nuclei [23], pulsar magneto-
spheres [24] and neutron stars [25, 26]. Several authors [27–31] have considered
the presence of positrons together with electrons and ions in their studies of the
propagation of waves, including solitary waves and double layers, in astrophysical
plasmas. However, little attempt has been made to determine the role of positrons
in the generation of magnetic fields in cosmic plasmas. Rizzato [32] investigated
weak nonlinear electromagnetic wave and low-frequency magnetic field generation
in electron–positron–ion plasmas. He showed that the amplitude of the wave be-
comes a strongly dependent function of the angle between the slow modulations
and the fast spatial variations and that there is a possibility of spontaneous gen-
eration of a low-frequency magnetic field. In the present paper, we investigated
the wave propagation in an electron–ion–positron plasma, with the conclusion that
the ponderomotive force is one of the possible mechanisms for generating magnetic
fields in cosmic plasmas.

2. The origin of the ponderomotive force
Light waves produce radiation pressure, and when an intense laser beam or high-
powered microwaves are incident on a plasma, the radiation pressure can become
very large and exert a great force on the plasma. This type of force, which is
nonlinear in nature and coupled to the charged particles in a subtle way, is called
the ponderomotive force. A qualitative discussion on the existence of such a force
may be given as follows. In an inhomogeneous high-frequency electric field of an
electromagnetic wave, the motion of an electron may be thought to be composed
of two parts: (i) a high-frequency oscillation about an effective centre of oscillation
and (ii) a relatively slow motion of this oscillation centre. Let us take the electric
field as E(r, t) = E(r) cosωt and let the amplitude of this field be increasing in
the positive x direction. As an electron moves into the stronger field, it will be
accelerated more strongly back towards the oscillation centre. On the other hand,
when the electron moves towards the weaker field (as x goes negative), it experiences
a weaker restoring force. Thus, on average, the electron will experience a slow drift
towards the weaker field, as if under the influence of a steady or slowly varying
force, while at the same time undergoing a rapid oscillation at the high frequency.

For a quantitative treatment, we consider the equation of motion of a charged
particle (of charge q and mass m) in an inhomogeneous electromagnetic field:

m
d2r
dt2

= q

[
E(r, t) +

1
c

v(r)× B(r, t)
]
. (1)

This equation is exact when E and B are evaluated at the instantaneous position
of the charged particle. The nonlinearity coming from the first term is due to the
fact that E has to be evaluated at the actual position rather than at the oscillating
centre, while the second term is replaced by v1×B1, where v1 and B1 are the values
obtained from the linear theory. Obviously, this term is of second order. At first
order, we neglect this term and write the equation of motion as

m
d2r
dt2

= qE(r) cosωt. (2)
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We separate the motion into a slow motion and a fast motion such that r = r0 + δr,
where δr = 〈δr〉, the average over the first scale, or over the period T = 2π/ω. Thus
r0 describes the oscillation centre and δr describes the rapidly oscillating motion.
δr is determined by

m
d2δr
dt2

= qE0 cosωt, (3)

where E0 = E(r0). Now solving (3), we get

v1 =
q

mω
E0 sinωt,

δr = − q

mω2 cosωt.

 (4)

For the slow variation, we expand E(r) about r0,

E(r) = E(r0 + δr) = E + δr ·∇E0,

such that the equation of motion becomes

m
d2(r0 + δr)

dt2
= qE(r0 + δr) cosωt.

Using the expression for E(r0 + δr) given above and taking the average over the
faster time scale, we get the equation of motion for r0 as

m
d2r0

dt2
= q〈δr cosωt〉 ·∇E0. (5)

Putting the expression for δr given in (4) and noting that the average 〈cos2 ωt〉 =
1/2, we get

m
d2r0

dt2
= − q2

4mω2∇(E2
0 ). (6)

We now consider the full equation of motion given by (1), containing the v1 × B1

term. The magnetic field B1 is given by the Maxwell equation

∇× E1 = −1
c

∂B
∂t
.

Thus, since E = E(r) cosωt,

B1 = − 1
ω
∇× E1|r0 sinωt. (7)

We now write the complete equation of motion, including v1 × B1 term, as

m
dr

dt
= q

[
(δr ·∇)E0 +

1
c

v1 × B1

]
. (8)

Using the expressions for δr,E, v1, and B1 from (4), (5), and (7), and averaging over
the time period T = 2π/ω, we get

dr0

dt
= − q2

2mω2 [(E ·∇)E + E× (∇× E)], (9)

where we have used 〈sin2 ωt〉 = 〈cos2 ωt〉 = 1/2. The terms within the square brack-
ets can be combined to obtain

dr0

dt
= − q2

2mω2∇(E2
0 ) (10)
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The right-hand side of (10) is the expression for the ponderomotive force on a single
electron. This force can be expressed in terms of the electron plasma frequency ωpe.
Although this force acts on the electron, it is ultimately transmitted to the ions.
This is due to the fact that this force is a low-frequency effect. A direct effect of
this force is the self-focusing of intense electromagnetic waves, such as laser light,
in a plasma. This is, in fact, the origin of the ponderomotive force.

3. Formulation
We consider a plasma consisting of electrons, positive ions and positrons. The basic
equations describing the motion of the plasma interacting with an electromagnetic
wave are as follows:

continuity equations
∂ns
∂t

+∇ · (nsvs) = 0; (11)

momentum equations

msns

(
∂

∂t
+ vs ·∇

)
vs = −kB∇(nsTs) + qsns

(
E +

vs × B
c

)
−msns

∑
k=i,e,p
k�s

νsk(vs − vk) (12)

and the Maxwell equations

∇× E =
1
c

∂B
∂t
, (13)

∇× B = −1
c

∂E
∂t

+
4π
c

∑
s

nsqsvs, (14)

∇ · E = 4π
∑
s

nsqs, (15)

∇ · B = 0. (16)

Where the subscript s indicates the species of the plasma: s = e for the electrons,
s = i for ions, and s = p for positrons. ne, ni, and np are the densities; ve, vi, and
vp are the velocities; me, mi, and mp are the masses, and νei, νep, and νpi are the
collision frequencies; E is the electric field intensity, B is the magnetic field intensity,
kB is Boltzmann’s constant, and c is the velocity of light; qs = −e for electrons and
qs = +e for positrons and ions.

We now express all the field variables related to electrons and positrons as sums
of slow and fast components in the following manner:

ne = ne0 + ne1, ve = ve0 + ve1,

np = np0 + np1, vp = vp0 + vp1,

E = E0 + E1, B = B0 + B1,

 (17)

where suffix ‘0’ stands for the slow and ‘1’ for the fast component. Now,
using (17) in (11)–(16), we obtain for the slow components, by averaging over the
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fast components,

msns0

(
∂

∂t
+ vs0 ·∇

)
vs0 = −kB∇(ns0Ts) + qsns0

(
E0 +

vs0 × B0

c

)
−msns0

∑
k=i,e,p
k�s

νsk(vs0 − vk0) + Πs, (18)

∇× E0 = −1
c

∂B0

∂t
, (19)

where

Πs=e,p = −msns0

(
〈(vs1 ·∇)vs1〉 +

qs
ms

〈
vs1 × B1

c

〉)

−kB
〈
n2
s1

n2
s0

〉
∇(ns0Ts) + kB

ns1
ns0
∇〈ns1Ts〉,

Πi = 0.

Πe and Πp are the ponderomotive forces, which are steady body forces, acting on
electrons and positrons. These nonlinear forces arise due to nonlinear coupling of
two fast components, whose average is non-zero; such averages are denoted by 〈 〉.
Similarly, for the fast components, the following equations are obtained:

msns0

[(
∂

∂t
+ vs0 ·∇

)
vs1 + (vs1 ·∇)vs0

]

= −
(

1 +

〈
n2
s1

〉
ns0

)
kB∇(ns1Ts)− ns1

ns0
kB∇(ns0Ts)

+qsns0

(
E1 +

vs0 × B1

c
+

vs1 × B0

c

)
−msns0

∑
k�s

νsk(vs1 − vk1)−msns1
∑
k�s

νsk(vs0 − vk0), (20)

∇× E1 = −1
c

∂B1

∂t
, (21)

∇ · E1 = 4π
∑
s=e,p

qsns1. (22)

It should be noted that the convection terms(vs0·∇)vs1 can be neglected in compari-
son with ∂vs1/∂t. The other convective terms (vs1 ·∇)vs0 are also smaller than the
scale length of vs1. The terms qsns0(vs1×B0/c) are also ignored compared with the
terms msns0 ∂vs1/∂t. The other terms vs0×B1/c are even smaller than (vs1 ·∇)vs0,
since B1 < B0 and vs1 is generally of the same order as vs0. It should be remembered
that the magnitude of the density fluctuations ns1 is much less than the equilibrium
density ns0. It is possible to prove that the linear dispersion relation is

ω2 = ω2
p

(
1 +

np0

ne0

)
+ k2c2, (23)
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where ω and k are the frequency and wavenumber of the electromagnetic wave, and
ωp = 4πne0e

2/me is the electron plasma frequency. Further, the current densities
J0 and J1 are simplified to

J0 =
∑
s=i,e,p

ns0qsvs0,

J1 =
∑
s=e,p

qsns0vs1

4. Growth rate of the magnetic field
From (19), the growth rate of the magnetic field, ∂B0/∂t, can be calculated after
finding E0. Neglecting the slowly varying inertial term for electrons and positrons
in (18) and using the expressions for the current densities and the quasineutrality
condition ni0 + np0 = ne0 = n0 (say), E0 is obtained as

E0 = Λ1 + Λ2 + Λ3 + Λ4, (24)

where

Λ1 =
kB
2

∑
s=e,p

1
qsns0

∇(ns0Ts)−
(

vk′0 × B0

c

)
− 1

2

∑
s=e,p
k=e,p
k�s

ns0
nk0

,

Λ2 =
1
2

(
J0 × B0

c

) ∑
s=e,p

(
− 1
qsns0

)
− 1

2

∑
s=e,p
k=e,p
k�s

ns0
nk0

(
vs0 × B0

c

)
,

Λ3 =
ms

2q2
s

∑
s=e,p

νsk′

ns0
J0 − 1

2

∑
s=e,p
k=e,p
k�s

msνkk′
ns0
nk0

(vs0 − vk′0),

Λ4 =
∑
s=e,p

νsk
qs
msvs0 − 1

2

∑
s=e,p
k=e,p
k�s

Πs

qsns0

(with k′ = i). Now taking the curl of (24) and using (19) and the value of Πs, ignoring
thermoelectric terms and considering only the ponderomotive force terms, we get

∂B0

∂t
= −1

2

∑
s=e,p

∇×
(
mc

qs
〈vs1 ·∇vs1〉 · 〈vs1 × B1〉

)
, (25)

where me = mp = m (say).
It should be mentioned that the density gradient exists only normal to the di-

rection of wave propagation, or the density gradient and temperature gradient lie
perpendicular to each other. Let us consider the field variable f1 = f1 exp(−iωt) or
f1 = fR cosωt+ fI sinωt, where f1 stands for ve1, vp1, E1, or B1. Then (25) becomes

∂B0

∂t
= −∇× ε, (26)
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where

ε = ε1 + ε2, (27)

ε1 =
∑
s=e,p

(
− 1
qs

)
vsR × (∇× vsR)−

∑
s=e,p

1
mω

vsR × (∇× EI ),

ε2 =
∑
s=e,p

1
qs

vsL × (∇× vsI ) +
∑
s=e,p

1
mω

vsI × (∇× ER),

and we write

DI =∇(∇ · E1), DR =∇(∇ · ER), γ =
α1

α2
,

Ω1 =
νei
ω
, Ω2 =

νep
ω
, Ω3 =

νpi
ω
.

Now from (20–22) and using the values of J0 and J1, we obtain

∇×∇× E1 =
ω2

c2 εeE1 + β2DI , (28)

where

εe = 1− ω2
p

ω2 {[1 + i(Ω1 + Ω2)]−1 + α2[1 + i(Ω2 + Ω3)]−1},

β2 =
c2
s

c2 ({1 + i[Ω1 + Ω2(1 + α1/α2)]}−1 + α1{1 + i[Ω3 + Ω2(1 + α2/α1)]}−1),

c2
s =

kBTe
m

, α1 =
Tp
Te
, α2 =

np0

ne0
.

εe is the effective dielectric constant of the medium and cs is the thermal speed of
the electrons. Therefore (26) gives∣∣∣∣∂B0

∂t

∣∣∣∣
z

ea2cν

2mc2
s

=
(

1
1 + α1

)2
[

1− ω2
p

ω2 (1 + α2)

](
ω

ωp

)2

×

[

1− ω2
p

ω2 (1 + α2)

]2

− 6ν2

ω2

α1

α2

(
1− α1

α2

)
1/2

× sin

[
2ω

(
xε

1/2
e

βc
− t
)]

, (29)

which is also obtained using (28), where E1 = a exp[i(px − ωt)] εk is the general
solution of (28).

5. Results and some concluding remarks
The expression (29) gives the growth rate of the magnetic field that is generated
due to the ponderomotive force in an astrophysical plasma consisting of electrons,
positive ions, and positrons. In (29), εe is the effective dielectric constant, c is the
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Figure 1. Dependence of |∂B0/∂t|z/(ea2cν/2mc2
s): (a) on α2 for fixed α1;

(b) on α1 for fixed α2.

speed of light, and ν is the collision frequency. Thus, it is seen that the growth rate
depends on the amplitude of electromagnetic wave, the density and temperature
of electrons and positrons, and the collision frequency. To get an idea about the
role of positrons in the growth rate of the magnetic field, we consider different
values of concentration and temperature of both positrons and electrons (Fig. 1).
For a typical astrophysical plasma, we consider different values of the density
ratio α2 and the temperature ratio α1. For estimating the numerical result, we
have assumed that a = 10−2 and ν/ω = 10−2. From the results, we find that the
presence of positrons in an astrophysical plasma plays a key role in the generation
of a magnetic field due to the ponderomotive force. From Figs 1(a) and (b), it is seen
that the behaviour of the growth rates of the magnetic field for α1 and α2 are very
different. Figure 1(b) shows that the growth rate increases up to certain values of
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α1, then decreases, and finally becomes constant at higher values of α1. The shape
of the growth rate of the magnetic field becomes solitary type for lower values of
α1. On the other hand, Fig. 1(a) shows that with increasing value of α2, the growth
rate of the magnetic field decreases and then increases. In this case, the shape of
the growth rate of the magnetic field is of inverse solitary type. From this, it can
be concluded that the shapes of the growth rate of the magnetic field due to the
ponderomotive force for various values of α1 and α2 are inverse. It is also important
to note that the growth rate is proportional to the square of the amplitude of the
electromagnetic wave. So, a high-power electromagnetic wave propagating through
an electron–ion–positron plasma would generate a strong magnetic field, which may
be one of the sources of various astrophysical phenomena.
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