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SUMMARY
This paper presents a hybrid approach to optimize the
counterweight balancing of a robot arm. A new technique
that combines an artificial intelligence technique called the
genetic algorithm (GA) and the weighted min-max multi-
objective optimization method is proposed. These
techniques are included in a system developed by the
authors, called MOSES, which is intended to be used as a
tool for engineering design optimization. The results
presented here show how the new proposed technique can
get better trade-off solutions and a more accurate Pareto
front for this highly non-convex problem using an ad-hoc
floating point representation and traditional genetic opera-
tors. Finally, a methodology to compute the ideal vector
using a genetic algorithm is presented. It is shown how with
a very simple dynamic approach to adjust the parameters of
the GA, it is possible to obtain better results than those
previously reported in the literature for this problem.

KEYWORDS: GA technique; Robot arms; Multiobjective opti-
mization.

1. INTRODUCTION
The use of industrial robots in different fields of technology
is becoming more common every day, making it more
important to be able to improve their efficiency in terms of
energy consumption and working accuracy. The proper
balancing of a robot manipulator is one way to improve
such efficiency. There are two main methods for balancing
a robot manipulator:1 1) by spring mechanisms, and 2) by
counterweights. The second approach, which is the one
selected for this work, has been frequently used in the
literature for establishing better mass distributions of
mechanisms and its use on robot manipulators involves the
minimization of driving forces or torques as well as the
support reactions at joints. Since these two criteria have to
be satisfied at the same time, a multiobjective optimization
approach has to be taken. The lengths and masses of
balancing mechanisms of the robot arm are used as design
variables, and several constraints derived from the allowable
movements of the arm are imposed. The optimization model

used for this work is based on the rigid-body dynamics of
the PUMA-560 robot.2 A hybrid approach was used to solve
this problem, using a combination of a genetic algorithm
(GA) with the min-max method to get the Pareto optimal
set, which corresponds to several possible robot designs
from which the decision maker has to choose the most
appropriate. This set was obtained by varying the impor-
tance of each of the four objective functions derived from
the optimization model—two torques and two reactions—.
This new approach is compared to a more traditional min-
max technique in which a combination of random and
sequential search is used to generate the Pareto optimal
solutions. This problem has a highly non-convex search
space, which implies the presence of several local minima.
On the other hand, the large amount of CPU time required
to evaluate the different objectives arises some interesting
issues on the use of the genetic algorithms in this kind of
application.

The use of our approach produces significantly better
results than any traditional mathematical programming and
GA-based technique, and does not require much additional
effort from the user’s side, since GAs operate like black
boxes to which any separate module that performs the
analysis of the problem to be solved can be attached without
affecting the rest of the implementation. The main drawback
of GAs is the difficulty of adjusting their parameters (i.e.,
crossover and mutation rates, maximum number of genera-
tions, and population size). However, as we will show later,
our proposal includes a methodology to automatically adjust
the parameters of a GA used for numerical optimization,
which should facilitate its use by practitioners in Robotics
and other application areas.

2. STATEMENT OF THE PROBLEM
Consider the PUMA-560 shown in Figure 1. Koski and
Osyczka1 presents a multiobjective optimization model of
such arm based on its rigid-body dynamics. By using
angular coordinates for the PUMA-560 robot, it is possible
to calculate the generalized torques at each joint applying
the following equation:

Mti =
d
dtSL

u̇i
D2

L
ui

(1)* This work was supported in part by EPSCoR grant: NSF/
LEQSF (1992–93)-ADP-04.
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where ui is the rotation at joint i and u̇i is the corresponding
angular velocity. The term

L=T2V (2)

represents the Lagrangian function of the mechanical
system. Here, T is the total kinetic energy of the system and
V is the total potential energy.

The manipulator is an isostatic structure, and thus it is
possible to get explicit expressions for all forces and
moments in the system. The friction in the joints as well as
the flexibility of the arm are not included in the following
design model. For the application of optimization methods,
a two-member robot arm, which corresponds to the two
links of the PUMA-560 robot in a plane motion, is
considered. This arm is assumed to move in the xy-plane
only (corresponding angular coordinates ui are shown in
Figure 2). The masses of the members are m1 and m2 . They
are located as point masses at distances e1 and e2 from the
joints. The external load is represented by the point mass
m3 . In the model used by Koski and Osyczka, only the
counterweight masses m4 and m5 , as well as their distances
from the joints x1 and x2 are treated as design variables,
whereas all the other quantities are fixed. The torques of this

two-member link are obtained from Equation (1) and are
expressed as follows:

Mt1 =D11ü1 +D12ü2 +D1
11u̇

2
1 +D2

12u̇
2
2 +(D1

12 +D2
11 )u̇1u̇2 +D1

Mt2 =D21ü1 +D22ü2 +D1
21u̇

2
1 +D2

22u̇
2
2 +(D1

22 +D2
21 )u̇1u̇2 +D2

(3)

In addition to the torques, the joint forces are considered
in the optimization process. In this application the most
convenient way of solving them is to use the force
equilibrium conditions in both coordinate directions x and y.
For this purpose, the free-body diagrams of both members
have been depicted in Figure 3. The positive directions in
this figure are associated with the global xy-axes, and the
positive rotation direction is counterclockwise. By comput-
ing the accelerations from the well-known kinematic
equation

ap =aQ +a3 rp/Q +v3 (v3 rp/Q ) (4)

analytic expressions for ai(1, . . . , 5) can be obtained. Here,
aQ is the acceleration vector of the comparison point, a the
angular acceleration vector of the member, rp/Q the position
vector from point Q to point P along the member, and v the

Fig. 1. PUMA-560 robot arm and schematic representation of
coordinate angles ui .

Fig. 3. Free-body diagrams of the robot arm.

Fig. 2. Mechanical model of the robot arm used for optimization.
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angular velocity of the member.
By applying the force equilibrium conditions in the

coordinate directions, the following joint reactions (see
Figure 3) to member 2 are obtained:

R2x =m2a2x +m3a3x +m5a5x
(5)

R2y =m2a2y +m3a3y +m5a5y +(m2 +m3 +m5 )g

The torque Mt2 at the joint can be calculated from the
moment equilibrium condition. By applying the same
routine to member 1, it is possible to derive expressions for
the support reactions:

R1x =m1a1x +m2a2x +m3a3x +m4a4x +m5a5x

R1y =m1a1y +m2a2y +m3a3y +m4a4y +m5a5y

+(m1 +m2 +m3 +m4 +m5)g
(6)

The torque Mt1 is obtained again from the moment
equilibrium condition. Corresponding to the Lagrangian
approach, the torques Mt1 and Mt2 must be the same as those
computed from Equation (3). The resulting support reac-
tions are:

R1 =(R2
1x +R2

1y )1/2, R2 =(R2
2x +R2

2y )1/2 (7)

The torques Mti and the forces Ri are chosen as criteria in
the optimization model. It is important to present the
detailed expressions for Mti and Ri because the choice of the
design variables as well as the general complexity of the
optimization problem are associated with these formulas.

Given the previous information, the optimization problem
can now be formulated. The objective is to find such masses
m4 and m5 for the counterweights and such joint distances x1

and x2 which will minimize the chosen four design criteria.
Consequently, the design variable vector is:

x̄= (x1 , x2 , x3 , x4 )T (8)

where the first two are the distances shown in Figure 2,
x3 =m4 and x4 =m5 . The upper and lower limits for all these
four design variables can be given in the form

xl
i#xi#xu

i , i=1, . . . , 4 (9)

The torques Mt1 and Mt2 at the arm joints are chosen as the
first two criteria of the vector objective function. Their
minimization is important because it is then possible to use
smaller motors, and the energy consumption is lower if the
variation ranges of the torques are small.1 In the explicit
expressions of Equation (3), terms m4x1 , m4x

2
1 , m5 x2 and

m5 x2
2 appear, and thus it is reasonable to choose the design

variables in the way presented.
The torques do not depend on the design variables alone,

but also on the position of the robot arm (u1 , u2 ), on the
angular velocities (u̇1 , u̇2 ) and on the angular accel-
erations(ü1 , ü2 ). Usually, the working space of the robot arm
is restricted, and thus the constraints of the form:

u l
i#ui#u u

i , i=1, 2 (10)

are needed. Here, u l
i and u u

i are the lower and the upper
limits of the angles ui . In each position of the arm, the
angular velocities and accelerations may be different. In
order to optimize the performance of the robot, the torques
should be as small as possible at all working positions and

at all existing angular velocity acceleration combinations.
Thus, the first two criteria are chosen as follows:

f1(x̄)=max
u1

max
u2

max
üi, üi

Mt1

(11)

f2(x̄)=max
u1

max
u2

max
üi, üi

Mt2

where notation u̇i , u̇i is associated with the chosen angular
velocity profile.

The construction of joints, especially with the choice of
bearings, depends largely on the reaction forces at the joints.
Thus, it seems reasonable to choose the maximum values of
the joint forces as two additional criteria. By using fixed
trapezoidal velocity profiles and every feasible position of
the arm, these criteria can be expressed in the form

f3(x̄)=max
u1

max
u2

max
üi, üi

R1

(12)

f4(x̄)=max
u1

max
u2

max
u̇i, üi

R2

We can now formulate the multiobjective optimization
problem as:1

min( f1(x̄), f2(x̄), f3(x̄), f4(x̄))T (13)

subject to

u l
i#ui#u u

i i=1, 2
(14)

xl
i#xi#xu

i i=1, 2, 3, 4

The numerical design data for the design problem is
given below.1 These values are close to those for the first
two links of the PUMA-560 robot shown in Figure 1.2

m1 =17 kg, m2 =6 kg, m3 =2 kg,

L1 =L2 =0.43 m, e1 =0.07 m, e2 =0.14 m,

u l
1 =240°, u u

1 =220°, u l
2 =2140°, u u

2 =140°,

u̇1 max =2rad/s, u̇2 max =4rad/s,

ü1 max =10rad/s2
, ü2 max =20rad/s2

,

x l
1 =x l

2 =0, x u
1 =x u

2 =0.2 m, x l
3 =x l

4 =0,

x u
3 =35 kg, x u

4 =15 kg,

J1 =0.2619 kg2m2, J2 =0.0924 kg2m2

(15)

3. SOLUTION PROCEDURE
To obtain the term max(·)

u1

, the procedure given by Koski and

Osyckza1 was followed:
(i) Compute the torques and joint forces at the positions

u l
1 , u l

1 +Du1 , u l
1 +2Du1 , . . . , u u

1 , where the increment
Du1 was chosen to be 20 degrees.

(ii) Select separately the maximum value for each crite-
rion.

(iii) Perform the same calculations for max(·)
u2

with an

increment Du2 (a value of 20 degrees was used).
(iv) The terms max(·)

u̇i üi

are computed using some chosen
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combinations of u̇i and üi for given u1 and u2 . Table I
contains the seven points chosen for the calculations
presented in this paper.

(v) After calculating Mti and Ri for all the rows of Table I,
the maximum values can be chosen.

3.1. The classical min-max method
In the classical min-max method, also known as the Global
Criterion method,3 an optimal solution is a vector of
decision variables which minimizes some global criterion. A
function describing this global criterion is a measurement of
how close the decision maker can get to the ideal vector—
i.e., the vector that contains the optimal solutions of every
objective function assuming that these were treated inde-
pendently—, which will be denoted by f 0. The most
common form of this function is

f(x)=Ok

i=1
Sf 0

i 2 fi(x)
f 0

i
Dp

(16)

where k is the number of objective functions.
For this formula Boychuk and Ovhinnikov4 have sug-

gested p=1, and Salukvadze5 has suggested p=2, but other
values of p can also be used.

The name min-max method is given to the global criterion
method with the L∞ ( f )2metric, because for this metric the
optimum x* is defined as

f(x*)=minx maxiUf 0
i 2 fi(x)

f 0
i

U i=1, . . . , k (17)

The solution to this optimization problem yields the best
compromise solution, in which all criteria are considered
equally important. The use of weighting coefficients has
been introduced before6 in conjunction with this method to
rank the importance of the candidate criterion, so that the
min-max problem can be restated as follows

f(x*)=minx maxi vi Uf 0
i 2 fi(x)

f 0
i

U i=1, . . . , k (18)

where vi is the weighting coefficient representing the
relative importance of the ith criterion. Koski and Osyczka1

took this approach to solve the counterweight balancing
problem presented in this paper, by using the Computer

Aided Multicriteria Optimization System (CAMOS).7 They
used a method which combines random and sequential
search to generate the Pareto-optima. First, they generated
some points by the random search method, and the best of
them were stored and used as the starting points for the
sequential search procedure. Then, they minimized each
objective separately, to obtain the set of optimal solutions,
so that they could use the weighting min-max method
described above for generating several Pareto-optimal
solutions. The weights were chosen so that their sum were
always equals to one. While seeking both, the ideal vector
and the other Pareto-optima, they used the random search
method in combination with the Nelder-Mead simplex
method8 with a penalty function.

4. NOTIONS OF GENETIC ALGORITHMS
The famous naturalist Charles Darwin defined Natural
Selection or Survival of the Fittest in his book as the
preservation of favorable individual differences and varia-
tions, and the destruction of those that are injurious. In
Nature, individuals have to adapt to their environment in
order to survive in a process called evolution, in which those
features that make an individual more suited to compete are
preserved when it reproduces, and those features that make
it weaker are eliminated. Such features are controlled by
units called genes which form sets called chromosomes.
Over subsequent generations not only the fittest individuals
survive, but also their fittest genes which are transmitted to
their descendants during the sexual recombination process
which is called crossover.

John H. Holland became interested in the application of
natural selection to machine learning, and in the late 60s,
while working at the University of Michigan, he developed
a technique that allowed computer programs to mimic the
process of evolution. Originally, this technique was called
reproductive plans, but the term genetic algorithm became
popular after the publication of his book9 in the 70s. In
1989, Goldberg published a book10 that provided a solid
scientific basis for this area, and cited no less than 73
successful applications of the genetic algorithm. In the last
few years the growing interest on this technique is reflected
in a larger number of conferences, a new international
journal, and an increasing amount of software and literature
devoted to this subject.

Koza11 provides a good definition of a GA:

The genetic algorithm is a highly parallel mathematical
algorithm that transforms a set (population of individual
mathematical objects (typically fixed-length character
strings patterned after chromosome strings), each with an
associated fitness value, into a new population (i.e., the
next generation) using operations patterned after the
Darwinian principle of reproduction and survival of the
fittest and after naturally occurring genetic operations
(notably sexual recombination).

A genetic algorithm for a particular problem must have
the following five components:

(i) A representation for potential solutions to the problem.
(ii) A way to create an initial population of potential

solutions.

Table I. Angular velocities and accelerations at the calculation
points shown in Figure 4.

Point u̇1 u̇2 ü1 ü2

1 0 0 ü1 max ü2 max

2 1
2u̇1 max

1
2u̇2 max ü1 max ü2 max

3 u̇1 max u̇2 max ü1 max ü2 max

4 u̇1 max u̇2 max 0 0
5 u̇1 max u̇2 max 2ü1 max 2ü2 max

6 1
2u̇1 max

1
2u̇2 max 2ü1 max 2ü2 max

7 0 0 2ü1 max 2ü2 max
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(iii) An evaluation function that plays the role of the
environment, rating solutions in terms of their
‘‘fitness’’.

(iv) Genetic operators that alter the composition of chil-
dren.

(v) Values for various parameters that the genetic algorithm
uses (population size, probabilities of applying genetic
operators, etc.).

The basic operation of a Genetic Algorithm is illustrated
in the following segment of pseudo-code:13

generate initial population, G(0);
evaluate G(0);
t:=0;
repeat

t:= t+1;
generate G(t) using G(t21);
evaluate G(t);

until a solution is found

First, an initial population is randomly generated. The
individuals of this population will be a set of chromosomes
or strings of characters (letters and/or numbers) that
represent all the possible solutions to the problem. We apply
a fitness function to each of these chromosomes in order to
measure the quality of the solution encoded by the
chromosome. Knowing each chromosome’s fitness, a selec-
tion process takes place to choose the individuals
(presumably, the fittest) that will be the parents of the
following generation. The most commonly used selection
schemes are the following:
d Proportionate Reproduction: This term is used generically

to describe several selection schemes that choose individ-
uals for birth according to their objective function values
f. In these schemes, the probability of selection p of an
individual from the ith class in the tth generation is
calculated as

pi, t =
fi

∑k
j=1 mj, t fj

(19)

where k classes exist and the total number of individuals
sums to n. Several methods have been suggested for
sampling this probability distribution, including Monte
Carlo or roulette wheel selection,14 stochastic remainder
selection,15 and stochastic universal selection.16

d Ranking Selection: In this scheme, proposed by Baker17

the population is sorted from best to worst, and each
individual is copied as many times as it can, according to
a non-increasing assignment function, and then propor-
tionate selection is performed according to that
assignment.

d Tournament Selection: The population is shuffled and
then is divided into groups of k elements from which the
best individual (i.e. the fittest) will be chosen. This
process has to be repeated k times because on each
iteration only m parents are selected, where

m=
population size

k

For example, if we use binary tournament selection

(k=2), then we have to shuffle the population twice, since
in each stage half of the parents required will be selected.
The interesting property of this selection scheme is that
we can guarantee multiple copies of the fittest individual
among the parents of the next generation.
After being selected, crossover takes place. During this

stage, the genetic material of a pair of individuals is
exchanged in order to create the population of the next
generation. The two main ways of performing crossover are
called single-point and two-point crossover. When a single-
point crossover scheme is used, a position of the
chromosome is randomly selected as the crossover point as
indicated in Figure 4. When a two-point crossover scheme is
used, two positions of the chromosome are randomly
selected as indicated in Figure 5.

Mutation is another important genetic operator that
randomly changes a gene of a chromosome. If we use a
binary representation, a mutation changes a 0 to 1 and vice
versa. This operator allows the introduction of new
chromosomic material to the population and, from the
theoretical perspective, it assures that—given any popula-
tion—the entire search space is connected.13

If we knew in advance the final solution, it would be
trivial to determine how to stop a genetic algorithm.
However, as this is not normally the case, we have to use
one of the two following criteria to stop the GA: either give
a fixed number of generations in advance, or to verify when
the population has been stabilized (i.e., all or most of the
individuals in the population have the same fitness).

5. USING MOSES
To solve the multiobjective optimization problem presented
in this paper, a system developed by the authors18 called
MOSES (Multiobjective Optimization of Systems in the
Engineering Sciences), was used. Several Multiobjective
Optimization approaches based on genetic algorithms are
implemented in MOSES. The main body of the system is
based on the Simple Genetic Algorithm (SGA) originally
implemented by Goldberg10 and then translated to C by R.
E. Smith and modified by Jeff Erickson. However, this C
implementation had to be modified to support both binary
and floating point representations.

The traditional representation used by the GA community
is the binary scheme according to which a chromosome is a
string the form (b1 , b2 , . . . , bm ), where b1 , b2 , . . . , bm are
called alleles (either zeros or ones). Since the binary
alphabet offers the maximum number of schemata per bit of
information of any coding,10 its use has become very
popular among scientists. This coding also facilitates
theoretical analysis of the technique and allows elegant
genetic operators. However, since the ‘‘implicit parallel-
ism’’ property of GAs does not depend on using bit strings19

it is worthwhile to experiment with larger alphabets, and
even with new genetic operators. In particular, for optimiza-
tion problems in which the parameters to be adjusted are
continuous, a floating point representation scheme seems a
logical choice. According to this representation, a chromo-
some is a string of the form (d1 , d2 , . . . , dm ), where d1 , d2 ,
. . . , dm are digits (numbers between zero and nine).
Consider the example shown in Figure 6, in which the same
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value is represented using binary and floating point
encoding. Notice how the binary value shown in the
chromosome is not a typical binary representation of a
floating point number in which some bits would represent
the mantissa, another portion the exponent and the first bit
the sign. The representation provided here is intended to be
translated directly from binary to decimal, producing the
value 289301 in this case, which will become the desired
value (238.301) when we divide it by a certain amount
(1000 in this example).

The term ‘‘floating’’ may seem misleading since the
position of the implied decimal point is at a fixed position,
and the term ‘‘fixed point representation’’ seems more
appropriate. However, the reason that the term ‘‘floating
point’’ is preferred is because in this representation each
variable (representing a parameter to be optimized) may
have the point at any position along the string. This means
that even when the point is fixed for each gene, is not
necessarily fixed along the chromosome. Therefore, some

variables could have a precision of 3 decimal places, while
others are integers, and still they could all be represented
with the same string. Nevertheless, the term real-coded GAs
is also used in the literature.20 Floating point representation
is faster and easier to implement, and provides a higher
precision than its binary counterpart, particularly in large
domains, where binary strings would be prohibitively long.
One of the advantages of floating point representation is that
it has the property that two points close to each other in the
representation space must also be close in the problem
space, and vice versa.19 This is not generally true in the
binary approach, where the distance in a representation is
normally defined by the number of different bit positions.

MOSES has an automatic encoding facility. The user can
choose among the three different types of variables: integer,
discrete and real. The user has to provide the ranges of each
variable (or the list of possible values if the type discrete is
used), and MOSES will automatically compute the length of
the chromosome. MOSES expects all its input from a file,

Fig. 4. Use of a single-point crossover between two chromosomes. Notice that each pair of chromosomes produces two descendants for
the next generation. The cross-point may be located at the string boundaries, in which case the crossover has no effect and the parents
remain intact for the next generation.

Fig. 5. Use of a two-point crossover between two chromosomes. In this case the genes at the extremes are kept, and those in the middle
part are exchanged. If one of the two cross-points happens to be at the string boundaries, a single-point crossover will be performed, and
if both are at the string boundaries, the parents remain intact for the next generation.
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and it needs another file to generate its output. The
parameters of the GA (maximum number of generations,
maximum number of runs, population size, crossover rate,
mutation rate, maximum number of generations and random
numbers seed) can be passed on the command line, but
suitable defaults are included in the program. The system
was designed in a modular fashion, so that the user only has
to plug the particular decoding, a report template, and
fitness modules to start working. Everything else remains
normally the same, except for the code used for selection,
which can be changed according to the user needs. The
fitness function used for this problem is the following:

t1 =Uf 0
1 2 f1

f 0
1
U t2 =Uf 0

2 2 f2

f 0
2
U t3 =Uf 0

3 2 f3

f 0
3
U t4 =Uf 0

4 2 f4

f 0
4
U

t5 =Uf 0
1 2 f1

f1
U t6 =Uf 0

2 2 f2

f2
U t7 =Uf 0

3 2 f3

f3
U t8 =Uf 0

4 2 f4

f4
U

if (t1 > t5 ) z1 = t1 else z1 = t5 (20)
if (t2 > t6 ) z2 = t2 else z2 = t6

if (t3 > t7 ) z3 = t3 else z3 = t7

if (t4 > t8 ) z4 = t4 else z4 = t8

z=w1z1 +w2z2 +w3z3 +w4z4

fitness=
1
z

The weights wi were also chosen such that
w1 +w2 +w3 +w4 =1. Fifteen combinations of these four
weights were used to generate the best overall result. For all
tests, except for one method, binary tournament selection
was used, together with double-point crossover, and a
population size of 100 chromosomes. The methods included
in MOSES are discussed in the following section.

6. MONTE CARLO METHODS
The two Monte Carlo methods used by Osyczka21 to find the
min-max optimum were also implemented in MOSES.

These methods are called exploratory because a point is
generated by means of a rule which disregards the results
previously obtained. In particular, the Monte Carlo method
picks up a certain number of points at random over the
estimated range of all the variables of the problem. This is
done formally by obtaining the randomly selected value for
xi from the following formula

xi =x a
i +di(x

b
i 2x a

i ) for i=1, 2, . . . , n (21)

where xa
i is the estimated or given lower limit for xi , x

b
i is the

estimated or given upper limit for xi , and di is a random
number between zero and one. The same random number
generator used by the genetic algorithm was employed to
implement the FORTRAN function RANF of the original
program.

If the values of variables for l a points want to be
generated, the random numbers di for each point have to be
generated first, and then equation (21) should be used to
obtain the values of the variables xi . After that, each
generated point has to be tested for violation and discard it
if it is not a feasible solution. If the point is in the feasible
region, the objective function should be evaluated for that
point. The best result is taken as the minimum, and a new set
of random numbers is generated for each of l a points.

Osyczka21 presents two Monte Carlo methods to find the
min-max optimum, which are included in MOSES. There
are several trade-offs between these two methods. For
example, the second method uses less CPU time than the
first, because the space of variables is explored only once,
but it also requires much more memory since the whole
Pareto set has to be stored. Obviously, the designer normally
wants to analyze the entire Pareto set in order to take a
decision, but this set could be too large and the computa-
tional resources available could be insufficient for that sake.
Osyczka recommends the reduction of this set by introduc-
ing constraints of the form fi(x̄)#f 0

i for i=1, 2, . . . , k where
values of f 0

i are chosen by the designer.
The second method should be preferred for problems

with a large number of constraints and for discrete
programming problems, because in those cases we should
expect to have a small Pareto set. The main advantage of

Fig. 6. Representing the same number using binary and floating point encodings.
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exploratory methods in general is their flexibility, since they
can be applied both to linear and non-linear programming
problems. However, they are normally recommended only
for cases where a few decision variables are handled
because otherwise, they could take too long to find a
reasonable good solution.

7. OSYCZKA’S MULTICRITERION
OPTIMIZATION SYSTEM
This system was developed at the Technical University of
Cracow, and its FORTRAN implementation is provided in
Osyczka’s book.21 A C translation of that code was
incorporated into MOSES, and it contains several multi-
objective optimization methods:
d Min-max method: The equation

∧
iPI

(zi(x̄)=max{z9i (x̄), z0i ( x̄)} (22)

is used to determine the elements of the vector z̄(x̄).
d Global Criterion method: The equation (16) is used as the

global function.
d Weighting min-max method: This is a combination of the

weighting method and the min-max approach that can
find the Pareto set of solutions for both convex and non-
convex problems. The equation

∧
iPI

(zi(x̄)=max{wiz9i (x̄), wiz0i ( x̄)}) (23)

is used to determine the elements of vector z̄(x̄).
d Pure weighting method: The equation

minOk

i=1

wi fi(x̄) (24)

is used to determine a preferred solution. In this equation,
wi$0 are the weighting coefficients representing the
relative importance of the objectives.

d Normalized weighting method: f̄(x̄) is used in equation
(24).
Since all these methods require the ideal vector, the user
is given the choice of providing it, or letting the system
find it automatically. For this purpose, the system
includes two single criterion optimization techniques:
(i) The flexible tolerance (FT) method: Is a sequential

method in which a point is established on the basis of
the previously obtained results. Based on this infor-
mation, the method will know where the minimum is
likely to be so that the appropriate search direction
may be established. Normally sequential methods are
more efficient and more highly developed than
exploratory methods, but tend to be designed to solve
only continuous convex problems.

(ii) The direct and random search (DRS) method: It is a
mixture of an exploratory and a sequential method.
The direct search method starts from the point chosen
by the user and seeks a minimum. Then, a new
starting point is generated at random and then the
direct search method seeks a better solution. The
procedure is repeated n times, and each time the direct

search method starts from a new point where the value
of n is given by the user. The best result from all
searches is taken as the minimum.

8. GA-BASED METHODS
Goldberg10 indicates that the notion of genetic search in a
multicriteria problem dates back to the late 60s, in which
Rosenberg’s22 study contained a suggestion that would have
led to multicriteria optimization if he had carried it out as
presented. His suggestion was to use multiple properties
(nearness to some specified chemical composition) in his
simulation of the genetics and chemistry of a population of
single-celled organisms. Since his actual implementation
contained only one single property, the multiobjective
approach could not be shown in his work, but it was a
starting point for researchers interested in this topic.

Genetic algorithms require scalar fitness information to
work, which means that when approaching multicriteria
problems, it is necessary to perform a scalarization of the
objective vectors. One problem is that it is not always
possible to derive a global criterion based on the formula-
tion of the problem. In the absence of information,
objectives tend to be given equivalent importance, and when
there is some understanding of the problem, it is possible to
combine them according to the information available,
probably assigning more importance to some objectives.
Optimizing a combination of the objectives has the
advantage of producing a single compromise solution ,
requiring no further interaction with the decision maker. The
problem is, that if the optimal solution cannot be accepted,
either because the function used excluded aspects of the
problem, which were unknown prior to optimization or
because an inappropriate setting of the coefficients of the
combining function was chosen, additional runs may be
required until a suitable solution is found.

8.1. VEGA
David Schaffer23 extended Grefenstette’s GENESIS pro-
gram24 to include multiple objective functions. Schaffer’s
approach was to use an extension of the Simple Genetic
Algorithm (SGA) that he called the Vector Evaluated
Genetic Algorithm (VEGA), and that differed from the first
only in the way in which selection was performed. This
operator was modified so that at each generation a number
of sub-populations was generated by performing propor-
tional selection according to each objective function in turn.
Thus, for a problem with k objectives, k sub-populations of
size N/k each would be generated, assuming a total
population size of N. These sub-populations would be
shuffled together to obtain a new population of size N, on
which the GA would apply the crossover and mutation
operators in the usual way.

8.2. Lexicographic ordering
The basic idea of this technique is that the designer ranks
the objectives in order of importance. The optimum solution
is then found by minimizing the objective functions, starting
with the most important one and proceeding according to
the order of importance of the objectives.25 Fourman26
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suggested a selection scheme based on lexicographic
ordering. In a first version of his algorithm, objectives were
assigned different priorities by the user and each pair of
individuals were compared according to the objective with
the highest priority. If this resulted in a tie, the objective
with the second highest priority was used, and so on. A
second version of this algorithm, reported to work surpris-
ingly well,27 consisted of randomly selecting the objective to
be used in each comparison. As in VEGA, this corresponds
to averaging fitness across fitness components, each compo-
nent being weighted by the probability of each objective
being chosen to decide each tournament.27 However, the use
of pairwise comparisons makes an important difference
with respect to VEGA, since in this case scale information
is ignored. Therefore, the population may be able to see as
convex a concave trade-off surface, depending on its current
distribution, and on the problem itself. This second version
of the lexicographic ordering algorithm was used in
MOSES.

8.3. Multiple Objective Genetic Algorithm (MOGA)
Fonseca and Fleming28 have proposed a scheme in which
the rank of a certain individual corresponds to the number of
chromosomes in the current population by which it is
dominated. Consider, for example, an individual xi at
generation t, which is dominated by p(t)

i individuals in the
current generation. Its current position in the individuals’
rank can be given by:28

rank(xi , t )=1+p(t)
i (25)

All non-dominated individuals are assigned rank 1, while
dominated ones are penalized according to the population
density of the corresponding region of the trade-off
surface.

Fitness assignment is performed in the following way:28

(i) Sort population according to rank.
(ii) Assign fitness to individuals by interpolating from the

best (rank 1) to the worst (rank n*#N) in the way
proposed by Goldberg,10 according to some function,
usually linear, but not necessarily.

(iii) Average the fitness of individuals with the same rank,
so that all of them will be sampled at the same rate. This
procedure keeps the global population fitness constant
while maintaining appropriate selective pressure, as
defined by the function used.

8.4. Non-dominated Sorting Genetic Algorithm
The Non-dominated Sorting Genetic Algorithm (NSGA)
was proposed by Srinivas and Deb,29 and is based on several
layers of classifications of the individuals. Before selection
is performed, the population is ranked on the basis of
nondomination: all nondominated individuals are classified
into one category (with a dummy fitness value, which is
proportional to the population size, to provide an equal
reproductive potential for these individuals). To maintain
the diversity of the population, these classified individuals
are shared with their dummy fitness values. Then this group
of classified individuals is ignored and another layer of
nondominated individuals is considered. The process con-

tinues until all individuals in the population are classified. A
stochastic remainder proportionate selection was used for
this approach. Since individuals in the first front have the
maximum fitness value, they always get more copies than
the rest of the population. This allows to search for
nondominated regions, and results in quick convergence of
the population toward such regions. Sharing, by its part,
helps to distribute it over this region. The efficiency of
NSGA lies in the way multiple objectives are reduced to a
dummy fitness function using a nondominated sorting
procedure. With this approach, any number of objectives
can be solved,30 and both maximization and minimization
problems can be handled. This method is the only one
implemented in MOSES that does not use tournament
selection, but uses the stochastic remainder method
instead.

8.5. Niched Pareto GA
Horn and Nafpliotis31 proposed a tournament selection
scheme based on Pareto dominance. Instead of limiting the
comparison to two individuals, a number of other individ-
uals in the population was used to help determine
dominance. When both competitors were either dominated
or non-dominated (i.e., there was a tie), the result of the
tournament was decided through fitness sharing.32 Popula-
tion sizes considerably larger than usual were used so that
the noise of the selection method could be tolerated by the
emerging niches in the population.27

The pseudocode for pareto domination tournaments
assuming that all of the objectives are to be maximized is
presented below.31 S is an array of the N individuals in the
current population, random_pop_index is an array holding
the N indices of S, in a random order, and tdom is the size of
the comparison set.

function selection/* Returns an individual from the current
population S */
begin

shuffle(random_pop_index);/* Re-randomize random
index array */

candidate_1=random_pop_index[1];
candidate_2=random_pop_index[2];
candidate_1_dominated= false;
candidate_2_dominated= false;
for comparison_set_index=3 to tdom +3 do/* Select
tdomindividuals randomly from S*/

begin
comparison_individual=random_pop_index-

[comparison_set_index];
if S[comparison_individual] dominates S[candi-

date_1]
then candidate_1_dominated= true;

if S[comparison_individual] dominates S[candi-
date_2]

then candidate_2_dominated= true;
end /* end for loop */

if ( candidate_1_dominated AND candidate_2_domi-
nated )

then return candidate_2;
else if ( —| candidate_1_dominated AND candidate_

2_dominated )
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then return candidate_1;
else

do sharing;
end

8.6. Hajela’s approach
Hajela and Lin33 proposed the use of a utility function of the
form:

Ū=Ol

i=1

Wi

Fi

F*i
(26)

where F*i are the scaling parameters for the objective
criterion, l is the number of objective functions, and Wi are
the weighting factors for each objective function Fi . In the
current implementation, a min-max approach was used to
determine the utility function, so that the scaling factor was
the ideal vector.

Hajela’s approach also uses a sharing function of the
form:

f(dij )=
12S dij

ssh
Da

,

0,

dij <ssh

otherwise

(27)

where a=1 for this work, dij is a metric indicative of the
distance between designs i and j, and ssh is the sharing
parameter, which is typically chosen between 0.01 and 0.1.
The fitness of a design i is then modified as:

fsi
=

fi

∑M
j=1 f(dij )

(28)

where M is the number of designs located in vicinity of the
i-th design.

Hajela incorporates weight combinations into the chro-
mosomic string, so MOSES’s implementation was extended
to accommodate the additional genes required, according to
the number of weight combinations provided by the user.
Under Hajela’s representation, a single number represents
not the weight itself, but a combination of weights. For
example, the number 4 (under floating point representation)
could represent the vector Xw = (0.4, 0.6) for a problem with
two objective functions. Then, sharing is done on the
weights.

Finally, a mating restriction mechanism was imposed, to
avoid members within a radius smat to cross. The value of
smat =0.15 used by Hajela was adopted in MOSES’s
implementation.

8.7. An approach based on a weighted min-max strategy
This is really a variant of Hajela’s idea, in which a few
changes were introduced by the authors:

(i) The initial population is generated in such a way that all
their individuals constitute feasible solutions. This can
be ensured by checking that none of the constraints is
violated by the solution vector encoded by the corre-

sponding chromosome.
(ii) The user should provide a vector of weights, which are

used to spawn as many processes as weight combina-
tions are provided (normally this number will be
reasonably small). Each process is really a separate
genetic algorithm in which the given weight combina-
tion is used in conjunction with a min-max approach to
generate a single solution. It should be noticed that in
this case the weights do not have to be encoded in the
chromosome as in Hajela’s approach.

(iii) after the n processes are terminated (n=number of
weight combinations provided by the user), a final file
is generated containing the Pareto set, which is formed
by picking up the best solution from each of the
processes spawned in the previous step.

(iv) Since this approach requires to know the ideal vector,
the user is given the choice to provide such values
directly (in case he/she knows them) or to use another
genetic algorithm to generate it. This additional pro-
gram works in a similar manner, spawning k processes
(k=number of objective functions), where each process
corresponds to a genetic algorithm responsible for a
single objective function. When all the processes
terminate, there will be a file containing the ideal
vector, which turns out to be simply the best values
produced by each one of the spawned processes.

(v) The crossover and mutation operators were modified to
ensure that they produced only feasible solutions.
Whenever a child encodes an unfeasible solution, it is
replaced by one of its parents.

(vi) Notice that the Pareto solutions produced by this
method are guaranteed to be feasible, as opposed to the
other GA-based methods in which there could be
convergence towards a non-feasible solution.

9. THE GA OPTIMIZER FOR SINGLE-OBJECTIVE
PROBLEMS
Using the GA itself as an optimizer for single-objective
problems is a controversial topic, mainly because of the
difficulties found to adjust its parameters (i.e., population
size, maximum number of generations, mutation and
crossover rate). Since one of the goals of this work was to
be able to produce a reliable design optimization system,
this is a natural problem to face. In practice, GA parameters
are empirically adjusted in a trial and error process that
could take quite a long time in some cases.

During several months, a very simple methodology,
explained below, has been tried with different engineering
design optimization problems, and the results obtained so
far18 led us to think that it was a reasonable choice to use in
MOSES. The method is the following:
d Choose a certain value for the random numbers seed and

make it a constant.
d Make constants also the population size and the max-

imum number of generations (100 chromosomes and 50
generations, respectively are normally used).

d Loop the mutation and crossover rates from 0.1 to 0.9 at
increments of 0.1 (this is actually a nested loop). This
implies that 81 runs are necessary. In each step of the
loop, the population is not reinitialized.
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d For each run, update 2 files. One contains only the final
costs, and the other has a summary that includes, besides
the cost, the corresponding values of the design parame-
ters and the mutation and crossover rates used.

d When the whole process ends up, the file with the costs is
sorted in ascending order, and the smallest value is
searched in the other file, returning the corresponding
design parameters as the final answer.

10. COMPARISON OF RESULTS
First, the ideal vector was generated using each of the single
objective optimization techniques included in MOSES. The
results are presented in Table II. As can be seen from these
results, the GA with floating point representation was able
to find the complete ideal vector, obtaining even better
results than those previously reported in the literature.1 It is
interesting to notice that the results reported by Koski and
Osyczka1 using CAMOS for computing the ideal vector are
not any better than those obtained with Osyczka’s Multi-
objective Optimization System,21 which is an older
program. Probably the reason for that is that the software
used to compute the ideal vector of this problem could have
employed less digits of precision than MOSES’s imple-
mentation of Osyczka’s Multiobjective Optimization
System, producing a discrepancy in their results. CAMOS is
not part of MOSES, so the results shown in Table II were
taken directly from the literature.1 Nevertheless, CAMOS
achieves a much better overall solution than any of the
methods included in Osyczka’s Multiobjective Optimization
System (see Table III).

The best trade-off results obtained by each of the methods
included in MOSES for multiobjective optimization were
compared against each other, producing the results shown in
Table III. To evaluate these results, the maximum deviation
from the optimum was used as a parameter. This maximum

deviation is defined by

Lp( f )=O4

i=1

wi Uf 0
i 2 fi(x)

ri
U (29)

where ri = f 0
i , or fi(x), depending on which gives the

maximum value for Lp( f ).
It should be mentioned that this expression will favor

mathematical programming techniques and approaches such
as Hajela’s and the new algorithm presented before, in
which the emphasis is on obtaining the best overall result.
Further studies18 have shown that techniques such as
MOGA27 are very successful at keeping the population of a
GA from converging to a single solution, and can also
obtain reasonable overall results under certain conditions
not met by this problem. However, the goal of this work was
to show that it was possible to develop a GA-based
technique that could compete with any mathemtical pro-
gramming technique in finding the best overall solution to a
complex multiobjective optimization problem, while at the
same time avoiding total convergence of the population.

Table III shows the comparison of results using all the
techniques implemented in MOSES and CAMOS,1 includ-
ing the new method based on the min-max algorithm. As
can be seen, this new method found the best trade-off
solution using both representations, surpassing even the
mathematical programming techniques employed. Floating
point representation provided the best result of all using this
new method, with a significantly low total deviation,
showing the suitability of this representation for numerical
optimization problems.

Also, the Pareto front was generated, using the eleven
weights proposed by Koski et al.1 using the new method
based on the min-max optimum, and the comparison of
results is presented in Table IV. As can be seen, the new
technique consistently finds better results than Koski’s

Table II. Comparison of results computing the ideal vector for the design of a robot arm. For each method
the best results for optimum f1 , f2 , f3 and f4 are shown in boldface. OS stands for Osyczka’s Multiobjective

Optimization System.

Method x1 x2 x3 x4 f1 f2 f3 f4

Monte Carlo 1 0.19247 0.19511 34.9006 2.4059 103.11 39.30 708.72 236.49
Monte Carlo 1 0.02417 0.09112 18.9996 14.5462 214.30 29.85 795.79 434.79
Monte Carlo 1 0.04311 0.10200 0.00755 0.70932 135.1197 41.1169 385.88 205.76
Monte Carlo 1 0.01713 0.12098 29.5132 0.02916 127.45 41.90 658.27 194.94
Min-Max (OS) 0.19247 0.19511 34.9006 2.40593 103.11 39.30 708.72 236.49
Min-Max (OS) 0.02417 0.09112 18.9996 14.5462 214.30 29.85 796.79 734.79
Min-Max (OS) 0.04311 0.10200 0.07550 0.70932 135.12 41.12 385.88 205.76
Min-Max (OS) 0.01713 0.12098 29.5132 0.02916 127.45 41.90 658.27 194.94
GA (Binary) 0.1565 0.2000 35.0000 0.4095 92.82 41.25 679.78 201.59
GA (Binary) 0.1621 0.0963 22.4752 15.00 194.43 29.60 805.76 444.92
GA (Binary) 0.2000 0.1972 0.00340 0.0000 132.20 41.94 373.85 194.52
GA (Binary) 0.1419 0.0965 1.8294 0.0066 130.06 41.93 389.06 194.61
GA (FP) 0.1557 0.2000 35.00 0.9869 91.99 40.29 684.44 211.95
GA (FP) 0.2000 0.0930 35.00 15.00 168.03 29.59 890.92 443.34
GA (FP) 0.2000 0.2000 0.0000 0.0004 132.21 41.94 373.83 194.52
GA (FP) 0.2000 0.0096 35.00 0.0010 105.22 41.94 692.73 194.52
Literature 0.199 0.199 34.98 5.77 112.75 39.06 750.60 303.09
Literature 0.175 0.114 10.24 14.86 216.76 30.21 713.05 452.31
Literature 0.198 0.140 0.001 0.002 133.11 41.94 374.82 195.23
Literature 0.191 0.198 14.30 0.001 111.99 41.94 485.66 195.21
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algorithm, proving its efficiency in this domain. Only
floating point representation was used in this case with the
new algorithm, since it has consistently provided with better
results in all the experiments performed so far.18

The two main drawbacks of this new technique when
compared to similar GA-based approaches are that the user
has to decide what are the weights to be employed and that

the ideal vector has to be known. With respect to the first
drawback, it can be said that small sets (of a maximum of
about 20 vectors of values) have proved to be sufficient in
practice, even when dealing with problems with larger
search spaces.18 With respect to the second problem it
should be said that the ideal vector does not have to be
known beforehand, since this algorithm works with a utility

Table III. Comparison of the best overall solution found by each one of the methods included in MOSES. GA-based
methods were tried with binary (B) and floating point (FP) representations. The following abbreviations were used:
OS=Osyczka’s System, GCM=Global Criterion Method (exponent=2.0), WMM (Weighting Min-Max), PWM (Pure
Weighting Method), NWM (Normalized Weighting Method), GALC=Genetic Algorithm with a linear combination of

objectives using scaling. In all cases, weights were assumed equal to 0.25 (equal weight for every objective).

Method x1 x2 x3 x4 f1 f2 f3 f4 Lp( f )

Ideal 91.99 29.59 373.83 194.52 0.000000
Monte Carlo 1 0.18738 0.18074 13.47721 1.5555 117.68 39.74 505.73 221.24 1.112581
Monte Carlo 2 0.12276 0.17042 9.26852 0.33446 123.43 41.41 458.17 200.12 0.995563
Min-max (OS) 0.12438 0.09609 29.9961 6.9961 135.62 35.06 740.01 306.76 2.215680
GCM (OS) 0.12438 0.09609 29.9961 6.9961 135.62 35.06 740.01 306.76 2.215680
WMM (OS) 0.12438 0.09609 29.9961 6.9961 135.62 35.06 740.01 306.76 2.215680
PMM (OS) 0.12438 0.09609 29.9961 6.9961 135.62 35.06 740.01 306.76 2.215680
NMM (OS) 0.12438 0.09609 29.9961 6.9961 135.62 35.06 740.01 306.76 2.215680
GALC (B) 0.20000 0.20000 20.2738 0.0132 102.18 41.94 529.01 194.52 0.943299
GALC (FP) 0.20000 0.06450 35.0000 15.000 161.89 30.85 878.20 430.70 3.365909
Lexicographic (B) 0.04690 0.01970 10.5668 0.4671 129.19 41.29 414.91 202.44 0.950512
Lexicographic (FP) 0.20000 0.02720 35.0000 0.8189 105.00 41.74 694.10 197.74 1.425351
VEGA (B) 0.18010 0.08990 15.3888 0.4392 129.71 41.90 393.13 194.90 0.879695
VEGA (FP) 0.20000 0.01320 35.0000 0.0188 105.20 41.94 692.83 194.79 1.415545
NSGA (B) 0.13680 0.06090 20.9519 0.4369 115.61 41.69 465.15 197.78 0.926816
NSGA (FP) 0.14100 0.20000 35.0000 0.2221 93.16 41.48 676.66 199.22 1.248742
MOGA (B) 0.17370 0.00630 35.0000 9.1130 144.92 34.49 637.22 316.49 2.072441
MOGA (FP) 0.20000 0.08090 35.0000 15.000 165.01 29.73 885.55 438.00 3.418972
NPGA (B) 0.08520 0.04760 35.0000 0.6984 109.84 41.51 695.58 204.99 1.1511325
NPGA (FP) 0.20000 0.20000 0.0009 15.000 227.94 29.75 631.28 449.13 3.480962
Hajela (B) 0.19990 0.11240 0.0391 0.1537 132.75 41.75 376.58 196.89 0.873619
Hajela (FP) 0.20000 0.20000 35.000 10.0624 166.52 47.46 841.71 394.29 3.692761
GAminmax1 (B) 0.16430 0.20000 0.0059 0.0006 132.20 41.94 373.87 194.52 0.172920
GAminmax1 (FP) 0.20000 0.20000 0.0300 0.0440 133.16 41.87 375.72 195.91 0.091128
Literature 0.10300 0.11400 0.1380 2.0800 141.63 39.46 408.89 228.29 0.194282

Table IV. Pareto-optimal solutions for the robot arm whose mechanical model is shown in Figure 1.

Method w1 w2 w3 w4 f1 f2 f3 f4 x1 x2 x3 X4 Lp( f )

Koski 0.25 0.25 0.25 0.25 138.88 38.93 510.18 268.92 0.186 0.198 7.95 4.06 0.3809
GA 0.25 0.25 0.25 0.25 133.16 41.87 375.73 195.92 0.200 0.200 0.029 0.045 0.2170

Koski 0.3 0.3 0.2 0.2 139.91 37.98 612.36 298.39 0.171 0.184 16.9 5.66 0.4737
GA 0.3 0.3 0.2 0.2 102.45 41.87 532.12 195.92 0.200 0.200 20.46 0.045 0.2431

Koski 0.35 0.35 0.15 0.15 152.99 37.74 667.45 336.62 0.194 0.182 19.6 7.59 0.5540
GA 0.35 0.35 0.15 0.15 96.99 40.70 581.09 209.56 0.200 0.200 25.055 0.853 0.2438

Koski 0.4 0.4 0.1 0.1 152.76 38.85 800.85 344.61 0.130 0.193 32.9 7.84 0.5793
GA 0.4 0.4 0.1 0.1 94.71 40.20 615.27 215.86 0.200 0.1778 27.689 1.237 0.2298

Koski 0.2 0.2 0.3 0.3 136.76 38.91 505.85 264.17 0.190 0.197 8.05 3.82 0.3711
GA 0.2 0.2 0.3 0.3 133.15 41.87 375.76 195.92 0.200 0.200 0.033 0.045 0.1742

Koski 0.15 0.15 0.35 0.35 139.62 38.63 457.88 245.80 0.200 0.200 0.039 0.044 0.2917
GA 0. 15 0.15 0.35 0.35 133.14 41.87 375.79 195.91 0.200 0.200 0.039 0.044 0.1315

Koski 0.1 0.1 0.4 0.4 141.63 39.46 408.89 228.29 0.103 0.114 0.138 2.08 0.1943
GA 0.1 0.1 0.4 0.4 133.16 41.87 375.72 195.91 0.200 0.200 0.03 0.044 0.0911

Koski 0.5 0.1 0.2 0.2 99.44 41.46 592.53 202.09 0.172 0.093 26.5 0.45 0.2036
GA 0.5 0.1 0.2 0.2 98.91 41.88 553.41 195.84 0.200 0.200 23.244 0.04 0.1749

Koski 0.1 0.5 0.2 0.2 153.03 35.75 645.41 335.46 0.198 0.157 17.0 7.84 0.4584
GA 0.1 0.5 0.2 0.2 133.25 41.84 375.83 196.25 0.200 0.200 0.0 0.065 0.2533

Koski 0.4 0.2 0.2 0.2 121.99 38.42 606.99 258.65 0.148 0.182 20.6 3.6 0.3788
GA 0.4 0.2 0.2 0.2 98.91 41.87 553.44 195.91 0.200 0.200 23.243 0.044 0.2090

Koski 0.2 0.4 0.2 0.2 162.68 39.11 583.60 319.94 0.152 0.198 10.3 6.6 0.5215
GA 0.2 0.4 0.2 0.2 133.16 41.87 375.74 195.92 0.200 0.200 0.031 0.045 0.2566
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function. This means that any set of values that are
considered suitable can be employed, even if they under-
estimate or overestimate the optima. Nevertheless, a module
to compute the ideal vector using either mathematical
programming or GA-based single objective optimization
techniques has also been included in MOSES.

11. FUTURE WORK
Because of the intensive CPU time-consuming nature of this
problem, it would be desirable to explore the use of other
techniques that can reduce the number of function evalua-
tions, such as the approximation of functions by low order
polynomials over some small region.34 In this case a
computationally expensive function is evaluated at a
sufficient number of points to construct a low order
polynomial approximation. Then, an iterative optimization
algorithm is used for finding the minimum of the approx-
imate function. At the point obtained, the optimization
model is replaced by a new approximate model, and the
process continues until the improvement in the objective
function cannot be distinguished.

Another interesting path of research is to explore other
possible alternatives to use genetic algorithms to solve
multiobjective optimization problems. In that respect, there
has been some experimenting with another technique also
based on the min-max optimum but that does not require the
ideal vector or any other set of target values to compute the
Pareto set.18 This approach uses sharing to keep the GA
from converging to a single solution, but still has some
difficulties to generate good trade-offs in certain domains,
and more work has to be done in that respect.

12. CONCLUSIONS
A GA-based min-max approach has been proposed for a
complex multiobjective optimization problem: the balanc-
ing of a robot arm. Also, MOSES, a multiobjective design
optimization system developed by the authors was intro-
duced as a powerful tool to apply different mathematical
programming and GA-based techniques to numerical opti-
mization problems. Its modularity makes it easy to expand
it in the future to include new approaches as required by the
user’s needs.

The problem analyzed in this paper has four objective
functions to be minimized, and is highly non-convex.
Furthermore, the complex calculations involved consume a
lot of CPU time, and make necessary the development of
heuristic techniques that require the least possible number
of function evaluations. The great variation of the results
obtained show that this problem would be very difficult to
solve with pure random search, or with brute-force
techniques. Also, to find a reasonable heuristic seems a
difficult task given the factors previously mentioned, and
the possible presence of local minima. The GA has shown to
be very consistent in this application, finding better
compromise solutions for all the instances of the problem
under consideration.

Finally, some other GA-based approaches seem suitable
for this application, especially those in which a Pareto-
based selection is applied. However, time complexity

remains to be an issue to be considered in further
applications of the GA to this problem, and it would be
desirable to explore techniques for reducing the number of
function evaluations. Nevertheless, the use of such a
powerful heuristic should bring benefits to the robotics
industry, and this work should be seen as a small module of
a larger system whose goal is to optimize the entire design
process of a robot arm.
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