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Abstract In this paper we define almost gentle algebras, which are monomial special multiserial algebras
generalizing gentle algebras. We show that the trivial extension of an almost gentle algebra by its minimal
injective co-generator is a symmetric special multiserial algebra and hence a Brauer configuration algebra.
Conversely, we show that any almost gentle algebra is an admissible cut of a unique Brauer configuration
algebra and, as a consequence, we obtain that every Brauer configuration algebra with multiplicity
function identically one is the trivial extension of an almost gentle algebra. We show that a hypergraph is
associated with every almost gentle algebra A, and that this hypergraph induces the Brauer configuration
of the trivial extension of A. Among other things, this gives a combinatorial criterion to decide when two
almost gentle algebras have isomorphic trivial extensions.

Keywords: gentle algebra; special biserial algebra; symmetric special multiserial algebra; Brauer
configuration algebra

2010 Mathematics subject classification: Primary 16G20; 16G10; 05E10

1. Introduction

In this paper we introduce a new class of multiserial algebras called almost gentle algebras.
These algebras are monomial quadratic algebras which generalize gentle algebras. Namely,
an algebra KQ/I is almost gentle if it is special multiserial and if I is generated by paths
of length 2. It is clear from the definition that every gentle algebra is almost gentle.
While gentle algebras are of tame representation type, almost gentle algebras are wild in
general. However, there are many examples of almost gentle algebras of finite and tame
representation type that are not gentle.

Gentle algebras are one of the most studied classes of algebras, as they appear in many
different contexts such as Jacobian algebras of unpunctured surfaces in cluster theory
[2,25] and algebras associated with dimer models [5,6] or in the context of the study
of the enveloping algebra of Lie algebra [22]. Their representation theory comes with a
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strong combinatorial structure. They are string algebras and as such their indecomposable
modules are given by string and band modules, and their Auslander–Reiten quiver is
completely determined by the string combinatorics [8]. Maps between string and band
modules have been given in [11,24], respectively. They are a class of algebras closed
under derived equivalence [29] and they are derived tame. The indecomposable objects
in the derived category of a gentle algebra have been determined in [3]; they are given by
homotopy strings and bands. In [1] the maps between homotopy strings and bands have
been explicitly described. The singularity category of a gentle algebra has been described
in [23]. Recently, in [7,9,10], a basis of the extensions between string and band modules
has been given.

In [30], a ribbon graph is associated with every gentle algebra A. It is shown that
this ribbon graph gives rise to the Brauer graph of the trivial extension of A, which is
a Brauer graph algebra. As a consequence, the gentle algebra and the associated Brauer
graph algebra (corresponding to the trivial extension) have many properties in common.
Moreover, the associated ribbon graph gives rise to an oriented bounded surface ΣA. This
surface gives a geometric model for the derived category of the gentle algebra A, which
in turn is equivalent to the partially wrapped Fukaya category of ΣA [21,26,27].

Almost gentle algebras do not have the underlying string combinatorics that gentle
algebras have. However, the strong similarity in their structure makes this an interesting
new class of algebras to consider. It contains many examples of well-studied algebras,
such as hereditary algebras arising from many orientations of all Dynkin and extended
Dynkin quivers.

As is the case for gentle algebras, almost gentle algebras can be of finite or infinite
global dimension. They are of infinite global dimension if and only if the quiver contains
an oriented cycle in which every subpath of length 2 is a relation. While gentle algebras
are Gorenstein [17], this is not necessarily true for almost gentle algebras; see the example
in § 2.

In §§ 2 and 3, we give a closed formula for the dimensions of almost gentle algebras and
their trivial extensions in terms of maximal paths in the almost gentle algebras.

In § 4 we show that the trivial extension T (A) = A� Homk(A, k) of an almost gentle
algebra is special multiserial. We note, however, that the converse remains an open ques-
tion: that is, it is not known whether the trivial extension of an algebra A being special
multiserial implies that A is almost gentle.

Another class of examples of algebras arising as trivial extensions of almost gentle alge-
bras is given by symmetric algebras with radical cube zero, which have been extensively
studied; see for example [4,12,13,18]. It follows from the results in this paper and in
[18] that an algebra is a symmetric algebra with radical cube zero if and only if it is a
trivial extension of an almost gentle algebra where the paths in the quiver of the almost
gentle algebra are all of length at most one.

In § 5 we show that an admissible cut, as defined in [30] and based on the definition
of admissible cuts in [14,15] (see § 5 for the definition), of a symmetric special biserial
algebra gives rise to an almost gentle algebra. In the other direction we show that every
symmetric special multiserial algebra with no powers in the relations, or, equivalently,
every Brauer configuration algebra with multiplicity function equal to one, is the trivial
extension of an almost gentle algebra (see [19] for the definition of Brauer configuration
algebras). We note that this almost gentle algebra is not unique. In fact, our construction
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gives a whole family of almost gentle algebras that have isomorphic trivial extensions.
While all of these gentle algebras have the same number of simple modules, they can have
very different homological properties. For example, some might have finite global dimen-
sion while others might have infinite global dimension. Furthermore, it is straightforward
to see that these algebras are not derived equivalent in general. We leave it as an open
question to the reader to determine the relationship between all the gentle algebras that
have the same trivial extension.

In § 6, we give a construction of the Brauer configuration of the trivial extension of
an almost gentle algebra. The construction is based on the notion of an algebra defined
by cycles. A Brauer configuration is a vertex-decorated hypergraph with an orientation
(or hypergraph ribbon structure). Based on this observation, in § 7 we associate with
every almost gentle algebra a decorated hypergraph with orientation, and show that this
hypergraph is precisely the Brauer configuration of the trivial extension of the almost
gentle algebra. That is, in the terminology of § 6, it is exactly the Brauer configuration
of the algebra defined by cycles isomorphic to the trivial extension of the almost gentle
algebra. It follows that two almost gentle algebras have the same trivial extensions if and
only if they have the same associated hypergraph.

2. Almost gentle algebras

In this section we define almost gentle algebras, generalizing the class of gentle algebras.
First we fix some notation. Let K be a field. All algebras are assumed to be indecom-

posable K-algebras. Unless otherwise stated, an algebra given by quiver and relations
KQ/I is assumed to be finite dimensional and the ideal I is assumed to be admissible.
For a quiver Q, we denote by Q0 the set of vertices in Q and by Q1 the set of arrows in
Q. We set ev to be the trivial path at a vertex v ∈ Q0. Furthermore, for a, b ∈ Q1, we
write ab for the path a followed by b. We let s(a) be the vertex at which the arrow a
starts and let t(a) be the vertex at which a ends. For a path p = a1 · · · an in Q, we set
s(p) = s(a1) and t(p) = t(an). Given a finite-dimensional algebra Λ, let Λe � Λ ⊗k Λop.

An algebra A is gentle if it is Morita equivalent to an algebra KQ/I such that:

(S0) I is generated by paths of length 2;

(S1) for every arrow a ∈ Q1, there exists at most one arrow b such that ab /∈ I and at
most one arrow c such that ca /∈ I;

(S2) for every arrow a ∈ Q1, there exists at most one arrow b such that ab ∈ I and at
most one arrow c such that ca ∈ I;

(S3) for every vertex v ∈ Q0, there are at most two arrows ending at v and at most two
arrows starting at v.

Recall from [18] that an algebra is special multiserial if it is Morita equivalent to an
algebra KQ/I satisfying condition (S1).

Definition 2.1. We say that an algebra is almost gentle if it is Morita equivalent to
an algebra KQ/I such that:
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(S0) I is generated by paths of length 2;

(S1) for every arrow a ∈ Q1, there exists at most one arrow b such that ab /∈ I and at
most one arrow c such that ca /∈ I.

So an algebra is almost gentle if it is Morita equivalent to a special multiserial algebra
KQ/I, where I is generated by monomial relations of length 2.

Remark 2.2. Every gentle algebra is almost gentle.

We state some basic facts about almost gentle algebras. An almost gentle algebra
KQ/I is of infinite global dimension if there is an oriented cycle in Q such that every
path of length 2 in that cycle is in I. If no such cycle exists then KQ/I is of finite global
dimension. Since the ideal I can be generated by paths of length 2, every almost gentle
algebra is a Koszul algebra. The only almost gentle algebras that are self-injective are
K[x]/(x2) and the oriented cycle with all paths of length 2 being relations.

Gentle algebras are Gorenstein [17]. The same does not hold for almost gentle algebras.

Consider, for example, the algebra with quiver • a
�� •

b

��
c �� • and where the ideal

of relations is generated by all paths of length 2; then, the resulting algebra is almost
gentle but not Gorenstein.

In the following lemmas we collect some obvious properties of almost gentle algebras.

Lemma 2.3. Let A = KQ/I be an almost gentle algebra and let C be an oriented
cycle in Q. Then there exists a path of length 2 in C that is in I.

Let p be a path in Q. Then we say that p is a maximal path of A = KQ/I if p /∈ I and
for every arrow a in Q we have ap ∈ I and pa ∈ I. We denote the set of maximal paths
of A by M.

Lemma 2.4. Let A = KQ/I be an almost gentle algebra and let v be a vertex in Q.
Then v lies in a unique maximal path of A if and only if one of the following conditions
holds:

(i) v is a sink with a unique arrow ending at v;

(ii) v is a source with a unique arrow starting at v;

(iii) there is a unique arrow a ending at v and a unique arrow b starting at v and ab /∈ I.

Lemma 2.5. Let A = KQ/I be an almost gentle algebra. Then the following hold.

(i) Every arrow a ∈ Q1 lies in exactly one maximal path of A.

(ii) Let m ∈ M. Then m has no repeated arrows.

We introduce two functions associated with an almost gentle algebra A, which will be
used later in the paper. Let � be some element not in Q1 and set A = Q1 ∪ {�}. Define
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σ : Q1 → A and τ : Q1 → A by

σ(a) =

{
b if ab /∈ I

� if ab ∈ I for all b ∈ Q1

and

τ(a) =

{
c if ca /∈ I

� if ca /∈ I for all c ∈ Q1

where a, b, c ∈ Q1. From the definition of special multiserial, we see that these func-
tions are well defined. Since A is finite dimensional, for every a ∈ Q1, there are
smallest non-negative integers Ma and Na such that σMa(a) = � and τNa(a) = �.
It follows that the unique maximal path of A containing the arrow a is
τNa−1(a)τNa−2(a) · · · τ(a)aσ(a) · · ·σMa−1(a), which is of length Ma +Na − 1. Since a
maximal path of A has no repeated arrows and since every arrow is in a unique maximal
path of A, it is easy to see that a maximal path of A is the unique maximal path of
A of any of its arrows, and that the position at which that arrow occurs in the path is
uniquely determined.

If A = KQ/I and π : KQ→ A is the canonical surjection, then for x ∈ KQ we will
denote π(x) by x̄. If a ∈ Q1, we let Ua be the right A-module aA generated by a. If A is
an almost gentle algebra, then the Ua are uniserial A-modules. Note that this holds more
generally if A is a special multiserial algebra; see [18].

Proposition 2.6. Let A = KQ/I be an almost gentle algebra. Then rad(A) =⊕
a∈Q1

Ua. A K-basis for A is the set of p̄, where p̄ is a subpath of length ≥1 of a
maximal path of A, together with the trivial subpaths ev, for v ∈ Q0.

Proof. Since A is a monomial algebra, A has a K-basis {p̄ | p is a path in Q and p /∈
I}. Any such p either has length ≥1 or p = ev for some vertex v. This proves the basis part
of the result. If p = a1 · · · an is a path in Q then p̄ ∈ Ua1 . It also follows that

∑
a∈Q1

Ua =
rad(A), since the images of the arrows generate rad(A). Using that A is a monomial
algebra, we see that

⊕
a∈Q1

Ua = rad(A). �

If p is a path in Q, we let �(p) denote the length of p.

Corollary 2.7. Let A be an almost gentle algebra. Then

dimK(A) =| Q0 | +
∑

m∈M
�(Um)(�(Um) + 1)/2,

where Um is the right uniserial A-module generated by the first arrow in m.

3. The symmetric special multiserial algebra associated with an almost
gentle algebra

In [20], given a special multiserial algebra A, we constructed a symmetric special mul-
tiserial algebra A∗ such that A is a quotient of A∗. Recall from [18] that the class of
symmetric special multiserial algebras and the class of Brauer configuration algebras
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coincide. We refer the reader to [19] for the definition of a Brauer configuration algebra.
We slightly modify that construction below in the case of an almost gentle algebra. In this
section, A = KQ/I will denote an almost gentle algebra, where I is an ideal generated
by quadratic elements. Recall that M is the set of maximal paths of A.

We begin by defining a new quiver Q∗. The vertices of Q∗ are the same as those of Q.
For each m ∈ M, let am denote an arrow (not in Q1) from the end vertex of m to the
start vertex of m. The arrow set of Q∗ is Q1 ∪ {am | m ∈ M}. Since Q is a subquiver
of Q∗, we freely view paths in Q as paths in Q∗. For each m ∈ M, we obtain a cycle
Cm = mam in Q∗. We let S denote the set cycles C∗ such that C∗ is a cyclic permutation
of Cm for some m ∈ M. Let μ : S → Z>0 be defined by μ(C∗) = 1, for all C∗ ∈ S.

We say a cycle in Q∗ is simple if the cycle has no repeated arrows. Following [20], we
say a pair (T , ν) is a defining pair in Q if T is a set of simple cycles in Q and ν : T → Z>0

which satisfy the following conditions:

D0 if C is a loop at a vertex v and C ∈ T , then ν(C) > 1;

D1 if a simple cycle is in T , every cyclic permutation of the cycle is in T ;

D2 if C ∈ T and C ′ is a cyclic permutation of C then ν(C) = ν(C ′);

D3 every arrow occurs in some simple cycle in T ;

D4 if an arrow occurs in two cycles in T , the cycles are cyclic permutations of each
other.

Proposition 3.1. The pair (S, μ) defined above is a defining pair.

Proof. Since for m ∈ M, m has no repeated arrows, the cycles mam and their cyclic
permutations are simple cycles. If a is a loop in Q, and hence in Q∗, then since A is finite
dimensional and I can be generated by paths of length 2, we see that a2 ∈ I. Let m be
the unique maximal path in which a occurs. Then a occurs in mam, which is not a loop.
That is, S contains no loops and hence D0 vacuously holds. By construction, D1 holds.
Since μ ≡ 1, D2 holds. Since every arrow in Q occurs in some maximal path m, every
arrow in Q occurs in some cycle C∗ ∈ S. Each new arrow am occurs in mam ∈ S and
we see that D3 holds. Since an arrow in Q occurs in a unique maximal path in Q, D4
holds. �

Following [20], the defining pair (S, μ) in Q∗ gives rise to a K-algebra with quiver Q∗

and ideal of relations generated by all relations of the following three types.

Type 1 Cμ(C) − C ′μ(C′), if C and C ′ are cycles in S at some vertex v ∈ Q0.

Type 2 Ca, if C ∈ S and a is the first arrow in C.

Type 3 ab, if a, b ∈ Q1 and ab does not lie on any C ∈ S.

In [20], an algebra KQ/I given by a defining pair (T , ν) in Q such that I is generated
by all relations of Types 1, 2 and 3 is called the algebra defined by cycles (T , ν).

The next result follows from [20].
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Theorem 3.2. Let A be an almost gentle algebra and let A∗ be the algebra defined
by cycles (S, μ) as defined above. Then A∗ is a symmetric special multiserial algebra and
thus it is a Brauer configuration algebra.

We call the algebra A∗ = KQ∗/I∗ above the symmetric special multiserial algebra
associated with A.

The next result determines the dimension of A∗.

Proposition 3.3. Let A be an almost gentle algebra and let A∗ be the symmetric
special multiserial algebra associated with A. Then

dimK(A∗) = 2|Q0| +
∑

m∈M
�(m) · (�(m) + 1).

In particular, dimK(A∗) = 2 dimK(A).

Proof. The quiver of Q∗ of A∗ has |Q0| vertices, and so there are |Q0| paths of length
0, the ev, for v ∈ Q0. Since A∗ is a symmetric algebra, the socle of A∗ has dimension |Q0|.
We now find the dimension of rad(A∗)/ soc(A∗). Consider m ∈ M. The cycle mam ∈ S
has length �(m) + 1. If a is an arrow in mam then aA∗ is a uniserial module of length
�(m) + 1. Then aA∗/(aA∗ ∩ soc(A∗)) has dimension �(m) and there are �(m) + 1 choices
for a. Therefore, we see that dimK(rad(A∗)/ soc(A∗)) =

∑
m∈M �(m)(�(m) + 1).

The last part follows from Corollary 2.7. �

4. Trivial extension of an almost gentle algebra

The trivial extension of a ring by a bimodule allows one to consider the bimodule as an
ideal in the trivial extension. A canonical bimodule, other than the algebra itself, is the
dual of the algebra. For this bimodule, the trivial extension always is a symmetric algebra,
which is a natural generalization of a group ring. Understanding trivial extensions (by
the dual of the algebra) for a class of algebras leads to a deeper understanding of the
algebras and their properties.

Let A = KQ/I be a finite-dimensional algebra and let D(A) = HomK(A, K) be its
K-linear dual. Recall that the trivial extension T (A) = A�D(A) is a symmetric algebra
defined as the vector space A⊕D(A) and with multiplication given by (a, f)(b, g) =
(ab, ag + fb), for any a, b ∈ A and f, g ∈ D(A). Note that D(A) is an A-A-bimodule
via the following. If a, b ∈ A and f ∈ D(A), then afb : A→ K by (afb)(x) = f(bxa). We
keep the convention that if x ∈ KQ and π : KQ→ A is the canonical surjection, then we
denote π(x) by x̄.

Let B be the set of finite directed paths in Q and suppose that I is generated by
paths; that is, KQ/I is a monomial algebra. Consider the set B̄ = {p ∈ B | p /∈ I}. The
set {p̄ | p ∈ B̄} is a K-basis of A. We abuse the notation and view B̄ as a K-basis of A.
Then the set M of maximal paths of A is a subset of B̄ and forms a K-basis of socAe(A).

The dual basis B̄∨ = {p∨ | p ∈ B̄} is a K-basis of D(A) where, if p ∈ B̄, p∨ ∈ D(A) is
the element in D(A) defined by p∨(q) = δp,q for q ∈ B̄, where δp,q is the Kronecker delta.
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Lemma 4.1. Let A be a finite-dimensional monomial algebra withK-basis B̄ as above.
Then, for p, q, r ∈ B̄, the following hold in T (A).

(1) (p, 0)(0, r∨) =

{
(0, s∨) if there is some s ∈ B̄ with sp = r

0 otherwise.

(2) (0, r∨)(q, 0) =

{
(0, s∨) if there is some s ∈ B̄ with qs = r

0 otherwise.

(3) (0, p∨)(q, 0)(0, r∨) = 0.

(4) If prq ∈ B̄ for some p, q, r ∈ B̄ then (q, 0)(0, (prq)∨)(p, 0) = (0, r∨).

Proof. Parts (1) and (2) are immediate consequences of the multiplication in T (A).
Part (3) follows from parts (1) and (2) and that (0, x∨)(0, y∨) = 0 for all x, y ∈ B̄. Part
(4) follows from parts (1) and (2). �

Proposition 4.2. Let A be a finite-dimensional monomial algebra. Then T (A) is
generated by {(a, 0) | a ∈ Q1} ∪ {(0, m∨) | m ∈ M}.

Proof. Let B̄ be a K-basis of A as defined above. Since {(p, 0) | p ∈ B̄} ∪ {(0, p∨) |
p ∈ B̄} is a K-basis of T (A), we need only show that if p ∈ B̄, then (p, 0) and (0, p∨)
are in the two-sided ideal in T (A) generated by {(a, 0) | a ∈ Q1} ∪ {(0, m∨) | m ∈ M}.
Let p ∈ B̄. Since p is a product of arrows, (p, 0) is a product of elements of the form
(a, 0), where a is an arrow in Q. Now consider (0, p∨). There are paths r and s such that
rps ∈ M. But then (0, p∨) = (s, 0)(0, (rps)∨)(r, 0) by Lemma 4.1 part (4) and we are
done. �

We now prove the main result of this section.

Theorem 4.3. Let A = KQ/I be an almost gentle algebra, A∗ the symmetric special
multiserial algebra associated with A, and T (A) the trivial extension of A by D(A). Then
A∗ is isomorphic to T (A).

Proof. Let Q∗ be the quiver of A∗ which is defined in § 3. We begin by defining a ring
surjection ϕ from KQ∗ to T (A). Since the vertices of Q∗ are the same as the vertices of Q
and Q is a subquiver of QT , the quiver of T (A), we send a vertex v in Q∗ to v̄, the image of
v in T (A) under the canonical surjection KQT → T (A). We define ϕ on arrows as follows.
If a is an arrow in Q ⊆ Q∗, let ϕ(a) = (a, 0). If m ∈ M, then ϕ(am) = (0, m∨). Note that
am is an arrow from t(m) to s(m) and that (0, m∨) = (et(m), 0)(0, m∨)(es(m), 0). By the
universal mapping property of a path algebra, we obtain a K-algebra homomorphism
ϕ : KQ∗ → T (A). By Proposition 4.2, ϕ is a surjection.

Next we show that I∗ (defined in § 3) is contained in ker(ϕ). For this, we prove that
relations of Types 1, 2 and 3 are in ker(ϕ). Recall that S is defined to be the set of
simple cycles in Q∗ that are cyclic permutations of the cycles mam, for some m ∈ M. We
begin with a Type 1 relation. Let C, C ′ ∈ S be cycles in S at a vertex v ∈ Q∗. We need
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to show that ϕ(C − C ′) = 0. Let m, m′M, p, q, p′, q′ ∈ B̄ such that pq = m, p′q′ = am′ ,
C = qamp and C ′ = q′am′p′. Then ϕ(C) = (p, 0)(0, m∨)(q, 0). Since C is a cycle at v,
by Lemma 4.1, (p, 0)(0, m∨)(q, 0) = (0, qm∨p) = (0, r∨) where prq = m. It follows that
r = ev since pevq = m. Thus, we have shown that ϕ(C) = (0, e∨v ). By a similar argument,
ϕ(C ′) = (0, e∨v ) and we conclude that ϕ(C − C ′) = 0.

Next we show that Type 2 relations are sent to 0 by ϕ. Let C ∈ S be a cycle at
v, with first arrow b. Either b is an arrow in Q or b = am for some m ∈ M. Then
ϕ(Cb) = (0, e∨v )ϕ(b). If b is an arrow in Q, then (0, e∨v )(b, 0) = (0, be∨v ). If (0, be∨v ) = 0
then (0, be∨v ) = (0, r∨) where rb = ev, which is not possible since b is an arrow. If b = am,
for some m ∈ M, then ϕ(Cb) = (0, e∨v )(0, m∨) = 0 by Lemma 4.1. Hence we have shown
that Type 2 relations are sent to 0 under ϕ.

Finally, let ab be a Type 3 relation. We want to show that ϕ(ab) = 0. There are four
cases: both a and b are arrows in Q, a is an arrow in Q and b = am for some m ∈ M, b is
an arrow in Q and a = am for some m ∈ M, and a = am, b = am′ for some m, m′ ∈ M. If
both a and b are arrows inQ, then, since ab is a relation in A∗, ab = 0. Next suppose that a
is an arrow in Q and b = am for some m ∈ M. Then ϕ(aam) = (a, 0)(0, m∨) = (0, am∨).
If (0, am∨) = 0, then (0, am∨) = (0, r∨) where ra = m. But then a is the last arrow in
m and aam is not a Type 2 relation. The case where a = am for some m ∈ M and b is
an arrow is handled in a similar fashion to the last case. The final case is when a = am

and b = am′ for some m, m′ ∈ M. Then ϕ(ab) = (0, m∨)(0, m′∨) = 0 by 4.1(4). This
completes the proof that ϕ(I∗) = 0.

Since ϕ : KQ∗ → T (A) is a surjection and ϕ(I∗) = 0, ϕ induces a surjection
ψ : KQ∗/I∗ → T (A). Now A∗ = KQ∗/I∗ and, by Proposition 3.3, dimK(A∗) =
2 dimK(A). Clearly, dimK(T (A) = 2 dimK(A). Hence ψ : A∗ → T (A) is an isomor-
phism. �

Corollary 4.4. Let A = KQ/I be an almost gentle algebra. Then T (A) is symmetric
special multiserial; that is, T (A) is a Brauer configuration algebra.

We end this section with an open question.

Question 4.5. Is it true that if a trivial extension T (A) of a finite-dimensional
K-algebra is special multiserial then A is almost gentle?

5. Admissible cuts

Let Λ = KQΛ/IΛ be the symmetric special multiserial algebra given by the defining pair
(S, μ). There is an equivalence relation on S as follows: two special cycles are equivalent
if one is a cyclic permutation of the other. Let {C1, . . . , Ct} be a set of equivalence class
representatives.

Definition 5.1. An admissible cut D of QΛ is a subset of arrows in QΛ consisting of
exactly one arrow in each special cycle corresponding to an equivalence class representa-
tive Ci, for i = 1, . . . , t. We call kQΛ/〈IΛ ∪D〉 the cut algebra associated with D where
〈IΛ ∪D〉 is the ideal generated by IΛ ∪D.
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Recall that any symmetric special multiserial algebra is defined by cycles. We show the
following theorem.

Theorem 5.2. Let Λ = KQΛ/IΛ be a symmetric special multiserial algebra defined by
a defining pair (S, μ) and let D be an admissible cut of QΛ. Set Q to be the quiver given
by Q0 = (QΛ)0 and Q1 = (QΛ)1 \D. Then the cut algebra, KQΛ/〈IΛ ∪D〉 associated
with D is isomorphic to KQ/(IΛ ∩KQ).

Moreover, KQ/(IΛ ∩KQ) is an almost gentle algebra.

Proof. The inclusion of quivers Q ⊂ QΛ induces a K-algebra homomorphism f :
KQ→ KQΛ/〈IΛ ∪D〉. We show that f is surjective. Let

∑
p λpp be an element in

KQΛ; that is, λp ∈ K, with almost all λp = 0 and p a path in QΛ. Then
∑

p λpp =∑
q λqq +

∑
r λrr where the first sum runs over all paths q such that no arrow of D

occurs in q, and the second sum runs over all paths r in Q such that there is at least one
arrow of D in r. Then

∑
λrr is in the ideal 〈IΛ ∪D〉 and

∑
λqq is in the image of KQ

in KQΛ. It follows that f is surjective.
We now show that ker f = IΛ ∩KQ. Clearly IΛ ∩KQ ⊂ ker f . Now suppose that

f(
∑
λpp) = 0. Then

∑
λpp is in 〈IΛ ∪D〉. Thus∑

λpp =
∑

λr,sr(Cμ(C) − (C ′μ(C′)))s+
∑

λr′,s′r′Cμ(C)as′

+
∑

λr′′,s′′r′′abs′ +
∑

λr′′′,s′′′r′′′ads
′′′,

where λ∗,∗ are elements of K; r, r′, r′′, r′′′, s, s′, s′′, s′′′ are paths; Cμ(C) − (C ′μ(C′)) are
Type 1 relations; Cμ(C)a are Type 2 relations, ab are Type 3 relations; and ad are arrows
in D. Since the left-hand side is a K-linear combination of paths in Q, the sum of all
paths having at least one arrow in D on the right-hand side must equal 0. Each C ∈ S
has an arrow in D, so we conclude that∑

λpp =
∑

λr′′,s′′r′′abs′′,

where ab is a Type 3 relation and no arrow in D occurs in any r′′abs′′. Noting that such
ab are in IΛ ∩KQ, we conclude that f is an isomorphism.

It also follows from the above that the relations in IΛ ∩KQ are monomial quadratic.
Suppose ab /∈ IΛ ∩KQ and ab′ /∈ IΛ ∩KQ for a, b, b′ ∈ Q1. Then ab /∈ IΛ and ab′ /∈ IΛ,
which is a contradiction since by [18] KQΛ/IΛ is special multiserial. Similarly, we see that
given an arrow in Q, there is at most one arrow c ∈ Q1 such that ca /∈ IΛ ∩KQ. Hence,
KQ/(IΛ ∩KQ) is a special multiserial algebra and we have shown that KQ/(IΛ ∩KQ)
is an almost gentle algebra. �

The next result shows that if one starts with an almost gentle algebra and takes the
appropriate admissible cut in the trivial extension of the almost gentle algebra, then the
almost gentle algebra is isomorphic to the cut algebra.

Theorem 5.3. Let A = KQ/I be an almost gentle algebra with set of maximal paths
M and let T (A) = QT (A) be the trivial extension of A by D(A) where the set of new
arrows of QT (A) is given by D = {βm, m ∈ M}. Then D is an admissible cut of QT (A)

and the cut algebra associated with D is isomorphic to A.
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Proof. It follows from the construction of T (A) that there exists exactly one arrow
from D in any special cycle. Hence D is an admissible cut of T (A). The constructions in
Theorem 5.2 give the result. �

The next result shows that if one starts with a symmetric special multiserial algebra
defined by a defining pair (S, μ) and μ ≡ 1 and an admissible cut D, then the algebra
associated with D, trivially extended by its dual, is isomorphic to the original symmetric
special multiserial algebra.

Theorem 5.4. Let Λ = KQΛ/IΛ be a symmetric special multiserial algebra defined
by the defining pair (S, μ) and assume that μ ≡ 1. Let D be an admissible cut of QΛ.
Denote by A = KQ/I the cut algebra associated with D. Then T (A) is isomorphic to Λ.

Proof. The special cycles in QΛ are of the form C = p1βp2, for β ∈ D and where
p1 = a1 . . . ar and p2 = ar+1 . . . as. We now show that p2p1 is a maximal path in A. Since
C is a special cycle, we have special cycles p2p1β and βp2p1. Thus, p2p1 /∈ IΛ and hence
p2p1 /∈ IΛ ∩KQ. Since Λ is a special multiserial algebra, and both arβ and βar+1 are
not in IΛ, we see that arb and bar+1 are in IΛ for all arrows b ∈ Q. Thus A is an almost
gentle algebra since I = IΛ ∩KQ is generated by quadratic monomials and is special
multiserial. It is now easy to see that T (A) is isomorphic to Λ. �

Consider the set of pairs (Λ, D) such that Λ = KQΛ/IΛ is a symmetric special mul-
tiserial K-algebra and D is an admissible cut in QΛ. We say that (Λ, D) and (Λ′, D′)
are equivalent if there is a K-algebra isomorphism from Λ to Λ′ sending D to D′ and
let X denote the equivalent classes. The next result is an immediate consequence of the
previous two theorems.

Corollary 5.5. There is a bijection ϕ : A −→ X from the set A of isomorphism classes
of almost gentle algebras to the set X of equivalence classes of pairs consisting of a sym-
metric special multiserial algebra and a cut as defined above. The isomorphism is given,
for A ∈ A, by ϕ(A) = (T (A), D) where D = {βm | m a maximal path in A}. Moreover,
for (Λ, D) ∈ X , we have ϕ−1(Λ, D) = A where A is the isomorphism class of the algebras
associated with the cut D.

Remark 5.6.

(1) Given a symmetric special multiserial algebra Λ = KQΛ/IΛ, two distinct admissible
cuts of QΛ yield, in general, non-isomorphic, non-derived equivalent cut algebras
A and A′. We note that A and A′ have the same number of simple modules and
dimK A = dimK A′. But there are examples where gldimA <∞ and gldimA′ = ∞.

(2) If Λ = KQΛ/IΛ is of finite (respectively tame) representation type then any cut
algebra associated with a cut of QΛ is of finite (respectively tame) representation
type. To see this, suppose that A is the cut algebra of Λ associated with an admis-
sible cut. Then Λ is isomorphic to T (A) and there is a full faithful embedding of
the category of finitely generated A-modules into the category of finitely generated
Λ-modules.
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Let Λ = KQΛ/IΛ be a symmetric special multiserial algebra and let (S, μ) be a defining
pair in QΛ so that Λ is defined by (S, μ). If μ is identically equal to 1, we say that Λ
has multiplicity function identically equal to 1. Note that if one views Λ as a Brauer
configuration algebra with multiplicity function ν, this corresponds to ν being identically
equal to one.

Corollary 5.7. Every symmetric special multiserial algebra with multiplicity function
identically equal to one in its defining pair is a trivial extension of an almost gentle algebra.

Equivalently, we have that every Brauer configuration algebra with multiplicity
function identically equal to one is the trivial extension of an almost gentle algebra.

6. The Brauer configuration algebra associated with an almost gentle
algebra

We have seen that for every almost gentle algebra A = KQ/I, the trivial extension algebra
T (A) is a symmetric special multiserial algebra. In [18] we saw that a symmetric special
multiserial algebra is a Brauer configuration algebra. In this section we show how to
construct the Brauer configuration of the Brauer configuration algebra T (A) from an
almost gentle algebra A.

Given an almost gentle algebra A, we saw in § 3 that there is a defining pair (S, μ)
obtained from A and that the algebra associated with (S, μ) is isomorphic to T (A). In
this section, we show, more generally, how to construct a Brauer configuration from a
defining pair (T , μ) so that the associated Brauer configuration algebra is isomorphic to
the algebra associated with (T , μ).

Let (T , μ) be a defining pair for the quiver Q. There is an equivalence relation on T :
two cycles in T are equivalent if one is a cyclic permutation of the other. Suppose there are
m equivalence classes of elements of T and let c1, . . . , cm be a full set of representatives
of the equivalence classes.

Recall from [19] that a Brauer configuration is a 4-tuple, Γ = (Γ0, Γ1, ν, o), where Γ0

is a set of vertices, Γ1 is a set of polygons which are multisets of vertices, ν : Γ0 → Z≥0,
and o is an orientation. More precisely, the orientation corresponds to the following: at
each vertex α ∈ Γ0, there is a cyclic ordering of the set of polygons containing vertex
α; the polygon V appears k times in the cyclic order at α if V contains k copies of α.
We begin by setting Γ0 = {α1, . . . , αm} where m is the number of equivalence classes of
elements of T . If Q0 = {v1, . . . , vn} then Γ1 = {V1, . . . , Vn}, where αj occurs k-times in
the multiset Vi if vi occurs as a vertex k-times in the cycle cj . The function ν is defined
by ν(αi) = μ(ci). Finally, the orientation at vertex αi is Vi1 < Vi2 < · · · < Vi�(ci)

(< Vi1)
if the sequence of vertices in the cycle ci is vi1 , vi2 , . . . , v�(ci), vi1 .

It is straightforward to check that the Brauer configuration algebra associated with the
Brauer graph (Γ0, Γ1, ν, o) defined above is isomorphic to the algebra associated with
the defining pair (T , μ).

7. The hypergraph of an almost gentle algebra

This section builds on the observation that every Brauer configuration Γ is an oriented
hypergraph H with a vertex decoration, where the decoration on H corresponds to the
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multiplicity function on Γ and where the orientation on H is induced by the orientation
on Γ. Given an almost gentle algebra, we will give an alternative direct construction of
its associated oriented hypergraph (i.e. without passing to the trivial extension). This
construction gives, for example, an easy criterion to determine whether two almost gentle
algebras have isomorphic trivial extensions.

A hypergraph is a generalization of a graph in which an edge can contain more than
two vertices. That is, a hypergraph H is a tuple (H0, H1) where H0 is a finite set of
vertices and H1 is a finite set of hyperedges given by multisets of elements of H0, with
the convention that each multiset contains at least two elements. A hypergraph with
orientation is a hypergraph H = (H0, H1) together with an orientation σ such that for
every vertex x ∈ H0, the set of hyperedges containing x are cyclically ordered (counting
repeats). The orientation can be seen as a ribbon graph-like structure on the hypergraph.

Remark 7.1. In the context of Brauer configurations, we also could adopt the conven-
tion of allowing hyperedges with one element. These would correspond to the truncated
edges of the Brauer configuration.

Let A = KQ/I be an almost gentle algebra. Recall from § 2 that M is the set of
maximal paths in KQ/I. Let V0 be the subset of Q0 containing vertices v such that one
of the following holds:

(1) v is the source of exactly one arrow and there is no arrow ending at v;

(2) v is the target of exactly one arrow and there is no arrow starting at v;

(3) v is the target of exactly one arrow a and the source of exactly one arrow b and
ab /∈ I.

Set M = M∪ {ev|v ∈ V0}. We say that a vertex v ∈ Q0 lies in M if there exists p ∈ M
with p = qevr where q, r are possibly trivial paths in Q.

The next result follows directly from the definition of M and from Lemma 2.4.

Lemma 7.2. Every vertex in Q0 lies in at least two elements of M.

Construction of the hypergraph HA with orientation of A: Let A = KQ/I be
an almost gentle algebra. Define HA = (H0, H1) as follows.

• The vertices H0 are in correspondence with the elements in M.

• The hyperedges in H1 correspond to the vertices in Q0; namely, the hyperedge
corresponding to a vertex v ∈ Q0 is given by all elements p ∈ M such that v lies in p.

• The orientation is induced by the maximal paths in M. Let x be a vertex in H0

and let V1, V2, . . . , Vn be the hyperedges corresponding respectively to the vertices
v1, v2, . . . , vn in Q0 such that v1, v2, . . . , vn lie in (the maximal path) p correspond-
ing to x. Suppose, without loss of generality, that p = ev1a1ev2a2ev3 · · · an−1evn

with
ai ∈ Q1; then, the cyclic ordering at x is given by V1 < V2 < · · · < Vn < V1.
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Note that if Γ is the Brauer configuration corresponding to H then the multiplicity func-
tion of Γ is identically equal to one and by our results the associated Brauer configuration
algebra ΛΓ is isomorphic to the trivial extension T (A).

Remark 7.3.

(1) If A is gentle then the construction of the oriented hypergraph gives exactly the
ribbon graph constructed in [30]. We note that this is the general construction
underlying the graphs in [16,28].

(2) In the case of a gentle algebra associated with a surface triangulation (respectively
angulation of a surface), the ribbon graph associated with the gentle algebra A
gives rise to the underlying surface and its triangulation (respectively angulation).

The hypergraph of an almost gentle algebra A uniquely determines a Brauer config-
uration which uniquely determines a Brauer configuration algebra. It follows from §§ 4
and 6 that this Brauer configuration algebra is isomorphic to the trivial extension of A.
Hence, we immediately see the following.

Theorem 7.4. Two almost gentle algebras A and B have the same associated
hypergraph with orientation if and only if T (A) � T (B).

Example 7.5.

(1) Let A1 = KQ1/I1 be the almost gentle algebra given by

Q1: and I = 〈a2b, a2c, a3a1, ba1, ba2〉.

Then
M = {a1a2a3, b, c} ∪ {ev3}

Therefore, HA = (H0, H1) is such that H0 = {1, 2, 3, 4}, where

1 corresponds to a1a2a3

2 corresponds to b

3 corresponds to c

4 corresponds to ev3 ;

and H1 = {V1, V2, V3}, where

V1 = {1, 1, 2}
V2 = {1, 2, 3}
V3 = {3, 4}.

Finally, the orientation is induced by the order of the vertices in the maximal paths:
ev1a1ev1a2ev2a3ev1 , ev2bev1 , ev2cev3 . So the cyclic ordering of the polygons at vertex
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1 is given by V1 < V1 < V2 < V1 < V1, at vertex 2 it is V2 < V1 < V2, at vertex 3
it is V2 < V3 < V2 and at vertex 4 it is V3. The hypergraph H has a geometric
realization as follows.

(2) Let Q2: and I2 = 〈a1a3, a1b, a2a1, a2b〉. Set A2 =

KQ2/I2. Then A2 is almost gentle. Note that A2 has the same associated hyper-
graph as A1, that is, HA2 = HA1 . Therefore, by Theorem 4.3 and the construction
in § 6, the algebras T (A1) and T (A3) are isomorphic to each other and isomorphic
to the Brauer configuration algebra with Brauer configuration given by H with
multiplicity function identically equal to one.
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29. J. Schröer and A. Zimmermann, Stable endomorphism algebras of modules over special
biserial algebras, Math. Z. 244(3) (2003), 515–530.

30. S. Schroll, Trivial extensions of gentle algebras and Brauer graph algebras, J. Algebra
444 (2015), 183–200.

https://doi.org/10.1017/S001309151800055X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151800055X

	1 Introduction
	2 Almost gentle algebras
	3 The symmetric special multiserial algebra associated with an almost gentle algebra
	4 Trivial extension of an almost gentle algebra
	5 Admissible cuts
	6 The Brauer configuration algebra associated with an almost gentle algebra
	7 The hypergraph of an almost gentle algebra
	References

