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Using the concept of a generalised priority constraint satisfaction problem, we previously

found a way to introduce priority queries into fuzzy relational databases. The results were

PFSQL (Priority Fuzzy Structured Query Language) together with a database independent

interpreter for it. In an effort to improve the performance of the resolution of PFSQL

queries, the aim of the current paper is to formalise PFSQL queries by obtaining their

interpretation in an existing fuzzy logic. We have found that the �LΠ 1
2

logic provides

sufficient elements. The SELECT line of PFSQL queries is semantically a formula of some

fuzzy logic, and we show that such formulas can be naturally expressed in a conservative

extension of the �LΠ 1
2

logic. Furthermore, we prove a theorem that gives the PSPACE

containment for the complexity of finding a model for a given �LΠ 1
2

logic formula.

1. Introduction

The relational model’s inability to model uncertain and incomplete data can be viewed as

one of its disadvantages. The idea of using fuzzy sets and fuzzy logic to extend existing

database models to include these possibilities has been around since the 1980s. However,

although this area has been researched for a long time, working implementations are rare.

The literature contains references to several models of fuzzy knowledge representation in

relational databases. For example, the Buckles–Petry model (Buckles and Petry 1982) was

the first model to introduce similarity relations in the relational model. The GEFRED

(Generalised Model of Fuzzy Relational Databases) model (Medina et al. 1994) is a

possibilistic model that refers to generalised fuzzy domains and allows the possibility

distribution in domains. It includes the case where the underlying domain is not purely

numeric, but contains scalars of any type. It also contains the notion of unknown,

undefined and null values. Subsequently, it has been expanded in various ways – see, for

example, Galindo et al. (1999; 2001). A first approach to incorporating fuzzy logic in ER
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(Entity–Relationship) models was made in Zvieli and Chen (1986), which allowed fuzzy

attributes in entities and relationships. Chen and Kerre (1998) introduced fuzzy extensions

of several major EER (Extended Entity–Relationship) concepts. Chaudry et al. (1994)

suggested a method for designing fuzzy relational databases following Zvieli and Chen’s

extension of the ER model by proposing a way to convert a crisp database into a fuzzy one.

Galindo et al. (2006) described a way to use fuzzy EER to model the database together

with a detailed method for representing the fuzzy knowledge modelled in this way using

relational databases. They also described the specification and implementation of FSQL,

which is an advanced SQL language with fuzzy capabilities. Another recent approach to

fuzzy SQL language design that includes a full implementation is given in Hudec (2009).

In Takači and Škrbić (2005), we studied the possibilities for extending the relational

model with fuzzy logic capabilities. We elaborated on this in Takači and Škrbić (2008)

and gave a detailed model of a fuzzy relational database. Moreover, using the concept

of a Generalised Priority Constraint Satisfaction Problem (GPFCSP) from Takači (2005)

and Luo et al. (2003), the authors have found a way to introduce priority queries into

an FRDB (Fuzzy Relational Database). The result was the PFSQL (Priority Fuzzy

Structured Query Language) query language. Takači and Škrbić (2007; 2008), Škrbić

and Racković (2009) and Škrbić et al. (2011) introduced similarity relations on the fuzzy

domain for the evaluation of FRDB conditions. They also described a complete solution

for a fuzzy relational database application development and gave the architecture of the

PFSQL interpreter together with the data model that this implementation is based on –

we give a brief overview of this system in Section 2.

Unfortunately, this implementation of the PFSQL interpreter has limited performance.

The main goal set earlier in the process of modelling and implementating the PFSQL

interpreter was the creation of a database-independent interpreter prototype that was

close to the final user and suitable for wider use. In an effort to find a better method

of implementation, and to improve the performance of the resolution of PFSQL queries,

we have focused on the possibilities of formalising the query structure. The formal

development of fuzzy logic is a well-developed area – various Hilbert style axiomatisations

can be found in Hájek (1998), Esteva et al. (2000) and Cintula et al. (2007). In order

to obtain a complete axiomatisation of PFSQL queries, we have used the interpretation

method. The aim of the current paper is to obtain an interpretation of PFSQL queries

in an existing fuzzy logic. We found that the �LΠ 1
2

logic provides enough elements to

interpret these queries.

The SELECT line of PFSQL queries is semantically a formula of some fuzzy logic. As we

will show, such formulas can be expressed naturally in the �LΠ 1
2

logic, which is an amalgam

of �Lukasiewicz and Product logics. We will illustrate the formal interpretation through an

example. We will also prove an original theorem about the PSPACE containment for the

complexity of finding a model for a given �LΠ 1
2

logic formula.

1.1. Structure of the paper

The next section describes aspects of the existing solution for a fuzzy relational database

application development and gives the architecture of the PFSQL interpreter. In Section 3,
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we introduce the �LΠ 1
2

logic and prove the theorem that gives PSPACE containment for

the complexity of finding a model for a given �LΠ 1
2

logic formula. In Section 4, we

describe the conservative extension of the �LΠ 1
2

logic that allows its association with

PFSQL queries. In Section 5, we illustrate the PFSQL query transformation to �LΠ 1
2

logic

construct and the evaluation of a formula acquired in this way. Finally, we present our

conclusions in Section 6.

2. The existing solution

In this section we describe the existing system with a view to motivating the introduction

of the �LΠ 1
2

formalisation. We will omit numerous details and subtleties, but give references

that contain complete descriptions of the existing solution and its components.

In order to allow the use of fuzzy values in SQL queries, we extended the classical SQL

with several new elements. In addition to fuzzy capabilities, we have added the ability to

specify priorities for fuzzy statements. We have called the query language constructed in

this way Priority Fuzzy SQL – PFSQL.

The basic difference between SQL and PFSQL interpreters is in the way the database

processes records. In a classical relational database, queries are executed so that a tuple

is either accepted in the result set, if it fulfills the conditions given in a query, or removed

from the result set if it does not fulfill the conditions. In other words, every tuple is given a

value true (1) or false (0). By contrast, PFSQL returns a fuzzy relation on the database as

the result set. Every tuple considered in the query is given a value from the unit interval,

and this value is calculated using fuzzy logic operators.

2.1. PFSQL

Details of the PFSQL syntax can be found in Takači and Škrbić (2008; 2009). Here we

will just give some pointers to those elements of classical SQL that are extended. The

variables in a query should be allowed to have both crisp and fuzzy values, so we need

to allow relational operators between different types of fuzzy values as well as between

fuzzy and crisp values. Next, we introduced and used the possibility based ordering on

the set of fuzzy numbers in the queries. This suggests the introduction of set functions

like MIN, MAX and COUNT in PFSQL.

Classical SQL includes the ability to combine conditions using logical operators. This

feature, of course, also forms part of our fuzzy extensions, so the ability to combine fuzzy

conditions is also required in our implementation. Values are calculated using t-norms,

t-conorms and ‘strict’ negation. Queries are handled using priority fuzzy logic, which is

based on GPFCSP (Generalised Priority Fuzzy Constraint Satisfaction Problem) systems

(Takači et al. 2008; Luo et al. 2003; Takači 2005; Takači and Škrbić 2008).

The complete EBNF (Extended Backus-Naur Form) syntax of the PFSQL language

can be found in Škrbić and Racković (2009). For brevity, we will not present every possible

construction of the language here, but just present some examples of queries that give an

overview of the possibilities and extensions built into PFSQL. The queries are executed

against a hypothetical student database.
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The first query returns the names and surnames of students whose GPA (Grade Point

Average) is equal to the given triangular fuzzy number:

SELECT msd.name, msd.surname FROM MainStudentData msd WHERE

(msd.GPA=#triangle(9,1,0.4)#)

The # symbol is chosen to mark fuzzy constants. The construction #triangle(9,1,0.4)#

denotes a triangular fuzzy number with peak at 9 and with 1 and 0.4 as left and right

offset. In other words, the membership function f : [6, 10] −→ [0, 1] of the fuzzy set

triangle(9, 1, 0.4) is given by

f(x) =

⎧⎨
⎩

0 6 � x < 8 or 9.4 < x � 10

x− 8 8 � x � 9

−2.5x+ 23.5 9 < x � 9.4 .

If we define a linguistic label ‘average GPA’ with the value triangle(9,1,0.4), the previous

query could have been simplified to

SELECT msd.name, msd.surname FROM MainStudentData msd WHERE

(msd.GPA=#ling(averageGPA)#)}

Queries like these can be enriched with additional constraints. The next query returns

names and surnames of students that have average GPA with priority 0.7, and GPA during

the fourth year equal to 8.5 with priority 0.4. The query also contains a threshold clause

that limits the results and removes tuples with fuzzy satisfaction degree smaller than 0.2:

SELECT msd.name, msd.surname FROM MainStudentData msd WHERE

(msd.GPA=ling(averageGPA) PRIORITY 0.7) AND

(msd.GPA4=8.5 PRIORITY 0.4)

THRESHOLD 0.2

As we mentioned earlier, the aggregate functions MAX, MIN and COUNT can take

fuzzy value as an argument. The next query illustrates the use of the aggregate function

MIN to return the minimal GPA:

SELECT MIN(msd.GPA)

FROM MainStudentData msd

If we assume that the variable msd.GPA is fuzzy, the execution of this query becomes

complex because it includes the ordering of fuzzy values. For example, we could get the

value triangle(6.9, 0.4, 0.7) as a result.

In the case of classical SQL queries, it is clear how to assign a truth value to every

elementary condition. With fuzzy attributes, the situation becomes more complex. We first

assign a truth value from the unit interval to every elementary condition. The only way to

do this is to implement a set of algorithms that calculate truth values for every possible

combination of values in a query and values in the database. For instance, if a query

contains a condition that compares a trapezoidal fuzzy number value with a triangular

fuzzy number in a database, we must have an algorithm that calculates the compatibility

degree of the two fuzzy sets. After the truth values from the unit interval are assigned,

they are aggregated using fuzzy logic operators. We use a t-norm for the operator AND,

and its dual t-conorm for the operator OR. For negation, we use the strict negation
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N(x) = 1 − x. In the case of priority statements, we use the GPFCSP system rules to

calculate the result.

We will now describe processes that allow PFSQL queries to be executed. The basic

idea is to first transform the PFSQL query into something that a classical SQL interpreter

understands. Specifically, conditions with fuzzy attributes are removed from the WHERE

clause. Attributes from these conditions are moved up into the SELECT clause. In this

way, conditions containing fuzzy constructs are eliminated, so that a database will return

all the tuples – both those that fulfill fuzzy conditions and those that do not. As a result

of this transformation, we get a classical SQL query. When this query is executed against

a database, the results are interpreted using fuzzy mechanisms. These mechanisms assign

a value (membership degree) from the unit interval to every tuple in a result set. In this

way, the result set contains all tuples – those that partially fulfill query conditions and

those that fully fulfill them. In addition, every tuple in the result set has an associated

membership degree. This membership degree is a measure of how much a tuple belongs

to a result set. If a threshold is given, all the tuples in a result set that have a membership

degree below the threshold are removed.

2.2. Fuzzy-relational database

It is now clear that the PFSQL implementation has to rely on meta-data related to fuzzy

attributes that reside inside a database. To this end, we have defined a FRDB data model,

which we will describe briefly in this section.

Our FRDB data model allows data values to be any fuzzy subset of the attribute

domain. A user only needs to specify a membership function of a fuzzy set. Hypothetically,

we should have an algorithm for each fuzzy set that calculates the values of its membership

function. This would lead to a large spatial complexity of the database. This is why we

only allow well-known standard types of fuzzy sets (triangular, trapezoidal, and so on) as

attribute values. If a type of a fuzzy set is introduced, we only need to store the parameters

necessary to calculate the values of its membership function.

We have introduced one further extension to the set of attribute types in the form

of linguistic labels, which are just named fuzzy values from the domain. Bearing these

extensions in mind, we can define a domain of a fuzzy attribute as follows:

D = CD ∪ FD ∪ LD
where CD is a classical attribute domain, FD is the set of all fuzzy subsets of the domain

and LD is the set of linguistic labels.

In order to represent these fuzzy values in a database, we extend this model with

additional tables that make up the fuzzy meta-data model. Several tables are introduced

to cover all described requirements. Details of the structure of this model can be found

in Takači and Škrbić (2008) and Škrbić et al. (2011).

3. �LΠ 1
2

logic

�LΠ 1
2

logic is a fuzzy logic combining �Lukasiewicz logic and Product logic. The primitive

connectives of �LΠ 1
2

are:
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— � (product conjunction)
— →L (�Lukasiewicz implication)
— →Π (product implication)
— truth constants 0 and 1

2
.

In this context, 0 and 1
2

are purely syntactic objects, and should not be identified

with 0 and 1. The intended meaning of a is to emphasis the canonical interpret-

ation: a is interpreted as a in the canonical (standard) model. For instance, 1
2

is

interpreted as 1
2

in the standard model ([0, 1], ∗Π ,⇒L,⇒Π, 0,
1
2
) of the �LΠ 1

2
logic.

Here:

— ∗Π is the product t-norm on [0, 1];
— ⇒L is the �Lukasiewicz implication on [0, 1]; and
— ⇒Π is the product implication on [0, 1].

The reasons for this choice of primitive connectives are purely technical. For instance,

negations (�Lukasiewicz, product) can be formally defined using the appropriate implication

and 0 by φ →∗ 0, ∗ ∈ {L,Π}. Furthermore, all rational numbers from the real unit interval

can be formally defined by means of connectives and truth constants 0 and 1
2

– see Example

3.1 below.

The axioms and inference rules of �LΠ 1
2

can be found in Esteva et al. (2001).

Semantically, the above connectives are evaluated as follows:

e(0) = 0

e

(
1

2

)
=

1

2

e(φ� ψ) = e(φ) · e(ψ)

e(φ →L ψ) = min(1, 1 − e(φ) + e(ψ))

e(φ →Π ψ) =

⎧⎨
⎩

1 e(φ) � e(ψ)
e(ψ)

e(φ)
e(φ) > e(ψ) .

Note that both �Lukasiewicz implication and product implication behave like orderings.

The following connectives (we will give them semantically) can be defined in �LΠ 1
2
:

e(¬Lφ) = 1 − e(φ) (�Lukasiewicz negation)

e(φ⊕ ψ) = min(1, e(φ) + e(ψ)) (�Lukasiewicz disjunction)

e(φ&ψ) = max(0, e(φ) + e(ψ) − 1) (�Lukasiewicz conjunction)

e(¬Πφ) =

{
1 e(φ) = 0

0 e(φ) > 0
(product negation)

e(φ ∨Π ψ) = e(φ) + e(ψ) − e(φ) · e(ψ) (product disjunction)

e(� φ) =

{
1 e(φ) = 1

0 e(φ) < 1

e(�φ) =

{
1 e(φ) > 0

0 e(φ) = 0

e(φ
 ψ) = max(0, e(φ) − e(ψ))
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e(φ ∧ ψ) = min(e(φ), e(ψ)) (Gödel conjunction)

e(φ ∨ ψ) = max(e(φ), e(ψ)) (Gödel disjunction)

e(φ ≡ ψ) = 1 − |e(α) − e(β)|
e(φ ∨pr ψ) = e(φ ∨Π ¬Lψ). (priority operator)

Example 3.1. All rational numbers in the real unit interval are definable in �LΠ 1
2
. Indeed,

if m, n and k are positive integers such that m < n < k, then m/n can be represented by

(φ⊕ · · · ⊕ φ)︸ ︷︷ ︸
n

→Π (φ⊕ · · · ⊕ φ)︸ ︷︷ ︸
m

,

where φ is the formula 1
2

� · · · � 1
2︸ ︷︷ ︸

k

. For practical purposes, in this paper we will denote

rational numbers m
n
. Finally, we can represent 1 by 0 →L 0.

In many ways, �LΠ 1
2

logic resembles the first-order theory of the reals (RCF), at least

in terms of expressivity. For instance, Marchioni and Montagna have recently shown

that a continuous t-norm is RCF-definable if and only if it is �LΠ 1
2
-definable (Marchioni

and Montagna 2008). Simple and coherent conditional probabilities have been formally

represented using �LΠ 1
2

logic by Hájek, Godo, Esteva, Marchioni and others (Godo

et al. 2000; Godo and Marchioni 2006; Hájek et al. 1995). Complete axiomatisations of

�LΠ 1
2

logic can be found in Esteva et al. (2001) and Hájek et al. (1996).

The next theorem will illustrate the expressive power of �LΠ 1
2

logic: specifically, we will

show that systems of polynomial inequalities can be formally represented in �LΠ 1
2

logic.

As far as we know, the form of the theorem and the proof we present are original.

Theorem 3.1. Let ϕ(x1, . . . , xn) be any quantifier free formula of the language of ordered

fields L = {+, ·,�, 0, 1} and let a1, . . . , an, b1, . . . , bn ∈ �, ai < bi. Then, there is an �LΠ 1
2
-

formula φ(p1, . . . , pn) such that

� |= ∃x1 . . . ∃xn

(
n∧
i=1

ai � xi � bi ∧ ϕ(x1, . . . , xn)

)

if and only if φ(p1, . . . , pn) is satisfiable.

Proof. Up to equivalence, ϕ(x1, . . . , xn) has the form

r∨
i=1

⎛
⎝ s∧
j=1

fi,j(x̄) � 0 ∧
s′∧
j ′=1

gi,j ′ (x̄) > 0

⎞
⎠,

where x̄ = x1, . . . , xn and fi,j(x̄), gi,j ′ (x̄) are polynomials with rational coefficients. Without

loss of generality, we may assume that all coefficients appearing in polynomials are rational

numbers from the real unit interval. Indeed, if f(x̄) is a polynomial with rational coefficients

and M > 0 is a rational number such that M > |c| for each coefficient c of f(x̄), then

� |= ∃x̄(f(x̄) � 0) iff � |= ∃x̄
(

1

M
f(x̄) � 0

)
,

so we can use h(x̄) = 1
M
f(x̄) instead of f(x̄).
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Furthermore, we may assume that a1 = · · · = an = 0 and b1 = · · · = bn = 1, since

� |= ∃x̄
(

n∧
i=1

ai � x � bi ∧ f(x̄) � 0

)

if and only if

� |= ∃x̄
(

n∧
i=1

0 � x � 1 ∧ f
(
(b1 − a1)x+ a1, . . . , (bn − an)x+ an

)
� 0

)
.

Finally, we may assume that the sums of absolute values of all monomials do not exceed 1.

We are now ready to construct the required �LΠ 1
2
-formula φ(p1, . . . , pn). Each pi will

represent the variable xi. The monomial a · xm1

i1 · · · xmsis that appears in some of the given

polynomials will be represented by an �LΠ 1
2
-formula

a� (pi1 � · · · � pi1︸ ︷︷ ︸
m1

) � · · · � (pis � · · · � pis︸ ︷︷ ︸
ms

).

Recall that a is the formal name (syntactical representation) for the rational number a:

for example, 0 is the name for 0. This representation is adequate since

e
(
a� (pi1 � · · · � pi1︸ ︷︷ ︸

m1

) � · · · � (pis � · · · � pis︸ ︷︷ ︸
ms

)
)

= a · e(pi1)m1 · · · e(pis )ms .

Let

fi,j(x̄) = µi,j,1(x̄) + · · · + µi,j,ki,j (x̄) − νi,j,1(x̄) − · · · − νi,j,li,j (x̄),

where µi,j,k(x̄) and νi,j,l(x̄) are monomials. If φk represents µi,j,k(x̄) and ψk represents νi,j,l(x̄),

then the �LΠ 1
2

formula

(φ1 ⊕ · · · ⊕ φki,j ) 
 (ψ1 ⊕ · · · ⊕ ψli,j )

represents polynomial fi,j(x̄). We can represent polynomials gi,j ′ (x̄) similarly.

Let φi,j , ψi,j ′ be �LΠ 1
2
-formulas that represent polynomials fi,j(x̄) and gi,j ′ (x̄), respectively.

We define φ as follows:

r∨
i=1

⎛
⎝ s∧
j=1

φi,j ∧
s′∧
j ′=1

¬Π ¬Πψi,j ′

⎞
⎠ .

Notice that for any truth evaluation e, we have

fi,j
(
e(p1), . . . , e(pn)

)
� 0

if and only if e(φi,j) = 1, and

gi,j ′
(
e(p1), . . . , e(pn)

)
> 0

if and only if e
(
¬Π ¬Πψi,j ′

)
= 1, that is, e(ψi,j ′ ) > 0, which gives ourclaim.
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4. FRDB formalisation

As we have seen, rational numbers can be represented in �LΠ 1
2
, so hard constraints are

expressible in �LΠ 1
2
. In order to capture soft constraints (trapezoidal, fuzzy quantities), we

will define the following conservative extension (extension by definitions) of �LΠ 1
2
:

(1) For each 0 � a < b < c < d � 1, a, b, c, d ∈ �, we will introduce a new unary

connective [a, b, c, d] and add to �LΠ 1
2

the following axioms:

(
� (φ →L a) ∨ � (d →L φ)

)
→L ([a, b, c, d]φ ≡ 0) (a)(

� (b →L φ) ∧ � (φ →L c)
)

→L ([a, b, c, d]φ ≡ 1) (b)(
� (a →L φ) ∧ � (φ →L b) ∧
¬Π � (φ ≡ a)) ∧ ¬Π(� (φ ≡ b)))

→L

(
[a, b, c, d]φ ≡

((
φ� 1

b− a

)

 a

b− a

))
(c)(

� (c →L φ) ∧ � (φ →L d) ∧
¬Π(� (φ ≡ c)) ∧ ¬Π(� (φ ≡ d)))

→L

(
[a, b, c, d]φ ≡

(
d

d− c



(
φ� 1

d− c

)))
. (d)

Notice that (a)–(d) actually formalise the trapezoidal fuzzy number

[a, b, c, d] : [0, 1] −→ [0, 1]

defined by

[a, b, c, d](x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x � a or x � d

1 b � x � c
x
b−a − a

b−a a < x < b

d
d−c − x

d−c c < x < d .

(2) For each 0 � a < b < c � 1, a, b, c ∈ �, we will introduce a new unary connective

[a, b, c] and add to �LΠ 1
2

the following axioms:

(� (φ →L a) ∨ � (c →L φ)) →L ([a, b, c]φ ≡ 0) (a)

� (φ ≡ b) →L ([a, b, c]φ ≡ 1) (b)(
� (a →L φ) ∧ � (φ →L b) ∧
¬Π � (φ ≡ a)) ∧ ¬Π(� (φ ≡ b)))

→L

(
[a, b, c]φ ≡

((
φ� 1

b− a

)

 a

b− a

))
(c)(

� (b →L φ) ∧ � (φ →L c) ∧
¬Π(� (φ ≡ b)) ∧ ¬Π(� (φ ≡ c)))

→L

(
[a, b, c]φ ≡

(
c

c− b



(
φ� 1

c− b

)))
, (d)

which formalises the triangular fuzzy number [a, b, c] : [0, 1] −→ [0, 1] defined by

[a, b, c](x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x � a or c � x

1 x = b
x
b−a − a

b−a a < x < b

c
c−b − x

c−b b < x < c.
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(3) For each 0 � a < b � 1, a, b ∈ �, we will introduce new unary connectives (a, b),

(a, b], [a, b) and [a, b], and add the following axioms to �LΠ 1
2
:(

� (a →L φ) ∧ � (φ →L b) ∧ ¬Π � (φ ≡ a) ∧ ¬Π � (φ ≡ b)
)

→L ((a, b)φ ≡ 1) (a)(
� (φ →L a) ∨ (� (b →L φ)

)
→L ((a, b)φ ≡ 0) (b)(

� (a →L φ) ∧ � (φ →L b) ∧ ¬Π � (φ ≡ a)
)

→L ((a, b]φ ≡ 1) (c)(
¬Π � (φ ≡ a) ∧ (� (φ →L b) ∨ (� (b →L φ))

)
→L ((a, b]φ ≡ 0) (d)(

� (a →L φ) ∧ � (φ →L b) ∧ ¬Π � (φ ≡ b)
)

→L ([a, b)φ ≡ 1) (e)(
¬Π � (φ ≡ a) ∧ (� (φ →L a) ∨ (� (b →L φ))

)
→L ([a, b)φ ≡ 0) (f)(

� (a →L φ) ∧ � (φ →L b)
)

→L ([a, b]φ ≡ 1) (g)(
¬Π � (φ ≡ a) ∧ ¬Π � (φ ≡ b) ∧ (� (φ →L a) ∨ (� (b →L φ))

)
→L ([a, b]φ ≡ 0), (h)

which formalises intervals with rational endpoints.

(4) For each 0 � a1 < · · · < an � 1, a1, . . . , an ∈ �, we will define a new unary connective

{a1, . . . , an} and add to �LΠ 1
2

the following axioms:

n∧
i=1

¬Π � (φ ≡ ai) →L ({a1, . . . , an}φ ≡ 0) (a)

n∨
i=1

� (φ ≡ ai) →L ({a1, . . . , an}φ ≡ 1). (b)

which formalises crisp (finite) sets.

(5) For each 0 � a < b � 1, a, b ∈ �, we will introduce new unary connectives [a, b, ↑]

and [a, b, ↓] and add to �LΠ 1
2

the following axioms:

� (φ →L a) →L ([a, b, ↑]φ ≡ 0) (a)

� (b →L φ) →L ([a, b, ↑]φ ≡ 1) (b)(
� (a →L φ) ∧ � (φ →L b) ∧
¬Π � (φ ≡ a) ∧ ¬Π � (φ ≡ b))

→L

(
[a, b, ↑]φ ≡

((
φ� 1

b− a

)

 a

b− a

))
(c)

� (φ →L a) →L ([a, b, ↓]φ ≡ 1) (d)

� (b →L φ) →L ([a, b, ↓]φ ≡ 0) (e)(
( a →L φ) ∧ (φ →L b) ∧
¬Π � (φ ≡ a) ∧ ¬Π � (φ ≡ b))

→L

(
[a, b, ↓]φ ≡

(
b

b− a



(
φ� 1

b− a

)))
. (f)

Notice that (a)–(f) actually formalise the increasing (‘left shoulder’) and decreasing

(‘right shoulder’) fuzzy quantities.

The previously defined operators formalise fuzzy attribute values in FRDB. The only

problem is that the domain of the attributes must be the unit interval. Thus, before

interpreting a concrete fuzzy value it must be normalised. For example, consider the

trapezoidal fuzzy number representing height trap(180, 190, 10, 10). If we agree the

maximum height is 250, then the connective interpreting this value is[
180 − 10

250
,
180

250
,
190

250
,
190 + 10

250

]
,
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that is, [0.72, 0.76, 0.8, 0.84]. Similarly, the increasing fuzzy quantity fq[180, 190, inc]

is interpreted as [0.76, 0.8, ↑].

Recall that the SELECT operator has three main parts:

— the ‘SELECT’ part, which defines which attribute values are returned;

— the ‘FROM’ part, which defines which tables will be searched;

— the ‘WHERE’ part, which defines constraints.

The interpretation described above allows us to represent the ‘where’ part of the

SELECT operator as an �LΠ 1
2

formula.

5. FEQ operator

In order to formalise DB queries, we need to formalise the fuzzy counterpart of the

relation =, that is, the fuzzy relation FEQ (fuzzy equals). First, we recall the definition

of FEQ.

Definition 5.1. If A,B are fuzzy sets, then the fuzzy relation FEQ(A,B) is defined by

FEQ(A,B) = sup
x∈X

{min(µA(x), µB(x))}.

If, for example, set A = {m} is a crisp set, we have

FEQ(A,B) = µB(m).

On the other hand, letX be an infinite set, m0 ∈ X, µA(m) = 1 for all m ∈ X, µB(m0) = 1

and µB(m) = 0 for all m ∈ X different from m0. Then

FEQ(A,B) = 1.

Arguably, if A is a crisp fuzzy number and B is a continuous one such that∫ 1

0

B(x)dx > 0,

then it would be quite natural to assume that FEQ(A,B) = 0. However, the present

form of the FEQ operator is much more natural for pairs of continuous fuzzy

numbers, and was constructed precisely for that purpose.

Generally, if A = [a, b, c, d] and B = [e, f, g, h] are trapezoidal fuzzy numbers, we have

FEQ([a, b, c, d], [e, f, g, h]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 d � e or h � a

1

⎧⎨
⎩

(b � f � c) or

(b � g � c) or

(f � b ∧ g � c)
df−ec

(f−e−c+d)(c−d) + d
d−c f > c and e < d

hb−ag
(b−a−g+h)(g−h) + h

h−g b > g and a < h

Similarly, we can define FEQ([a, b, c, d], [e, f, ↑]), FEQ([a, b, ↓], [c, d, e, f]), and so on.

As before, in order to formalise the FEQ operator, we extend the language of

�LΠ 1
2

with countably many new constant symbols of the form [a, b, c, d, e, f, g, h],
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Table 1. Example data.

Name Salary Age Height

John 2000 trap[25,27,29,32] fq[160,170,dec]

Dave trap[1000,1400,1800,2000] trap[32,33,34,35] tri[182,185,197]

Ann fq[2000,2200,inc] tri[18,21,24] trap[156,158,161,162]

Michele tri[1900,2200,2500] trap[21,25,27,28] fq[167,169,inc]

[a, b, c, d, e, f, ↑], and so on, that correspond to all possible alterations of arguments in

the FEQ operator, and add new axioms that formally capture the definition of FEQ.

(6) Here we will give the axioms for FEQ([a, b, c, d], [e, f, g, h]) only:(
� (e →L d)∨ � (h →L a)

)
→L

(
[a, b, c, d, e, f, g, h] ≡ 0

)
(a)

((� (f →L b) ∧ � (c →L f))∨
(� (g →L b) ∧ � (c →L g))∨

(� (b →L f) ∧ � (g →L c)))

→L

(
[a, b, c, d, e, f, g, h] ≡ 1

)
(b)

(� (c →L f) ∧ ¬Π � (c ≡ f)∧
� (e →L d) ∧ ¬Π � (e ≡ d))

→L

(
[a, b, c, d, e, f, g, h] ≡

df−ec
(f−e−c+d)(c−d) + d

d−c

) (c)

(� (g →L b) ∧ ¬Π � (g ≡ b)∧
� (a →L h) ∧ ¬Π � (a ≡ h))

→L

(
[a, b, c, d, e, f, g, h] ≡

hb−ag
(b−a−g+h)(g−h) + h

h−g

)
.

(d)

If one of the fuzzy sets is actually a crisp set, we define FEQ by FEQ(c, B) = µB(c).

Example 5.1. Suppose we have the data shown in Table 1 in the database. We will now

show how a query is executed using PFSQL.

Say we want to find a person who has a salary of approximately 2100 euros and is

either age 25–27 or above average height. Also, the salary is very important (priority 1),

Age is the least important(priority 0.5) and height has priority 0.7. This translates to the

following query.

SELECT Salary, Age, Height FROM DB

WHERE (Salary=tri[1900,2100,2200] Priority 1) AND

(Age=trap[22,25,27,29] Priority 0.5 OR Height=fq[165,175,inc]

Priority 0.7)

The calculation will be done using the GPFCSP systems defined in Takači et al. (2008).

If we assume that the maximum salary is 10000, the maximum height is 230, and the

maximum age is 100, the formalisation of attribute values for John is given in Table 2.

We will now explain how the WHERE line of a query is formalised and evaluated

for John. Using φ to denote the formula formalising the WHERE line, φ is evaluated as
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Table 2. Formalised attribute values from table 1.

Name Salary Age Height

John 0.2 [0.25, 0.27, 0.29, 0.32] [ 160
230
, 170

230
, ↑]

Dave [0.10, 0.14, 0.18, 0.20] [0.32, 0.33, 0.34, 0.35] [ 182
230
, 185

230
, 185

230
, 197

230
]

Ann [0.20, 0.22, ↑] [0.18, 0.21, 0.21, 0.24] [ 156
230
, 158

230
, 161

230
, 162

230
]

Michele [0.19, 0.22, 0.22, 0.25] [0.21, 0.25, 0.27, 0.28] [ 167
230
, 169

230
, ↑]

Table 3. Query satisfaction degrees.

Name Salary Age Height QueSat

John 0.5 1 0.25 0.5

Dave 0.25 0 1 0.25

Ann 1 0.333 0 0.9665

Michele 1 1 1 1

follows:

e(φ) = e(φ1) ∧L (e(φ2) ∨L e(φ3)).

The value e(φ1) is then calculated as follows:

e(φ1) = e(ψ1) ∨pr e(1).

We have that ψ1 ≡ [a, b, c, d]ε where [a, b, c, d] = [0.19, 0.21, 0.21, 0.22] are the quotients

of the triangular fuzzy number tri[1900, 2100, 2200] and ε = 0.2. Thus, using axiom 1(c),

we have

ψ1 ≡ [0.19, 0.21, 0.21, 022]0.2 ≡
(

0.2 �
(

1

0.21 − 0.19

))



(
0.19

0.21 − 0.19

)
≡ 0.5

Trivially, we have e(ψ1) = e(0.5) = 0.5. Moreover,

e(φ1) = e(ψ1) ∨pr e(1) = (0.5 ∨L (1 − 1)) = 0.5.

Similarly, e(φ2) = e(ψ2) ∨pr e(0.5).

We have that ψ2 ≡ [a, b, c, d, e, f, g, h] where [a, b, c, d] = [0.22, 0.25, 0.27, 29] are the

quotients of the trapezoidal fuzzy number trap[2200, 2500, 2700, 2900] and [e, f, g, h] =

[0.25, 0.27, 0.29, 0.32] are the quotients of the trapezoidal fuzzy number that represents

John’s age. It is easy to see that ψ2 ≡ 1 (axiom 3(b)), yielding

e(φ2) = e(ψ2) ∨pr e(0.5) = e(1) ∨pr e(0.5) = 1.

Similarly, e(φ3) = e(ψ3) ∨pr e(0.8) = e(0.25 ∨pr e(0.8) = 0.25.

Finally, the satisfaction degree for John is obtained by

e(φ) = e(φ1) ∧L (e(φ2) ∨L e(φ3)) = 0.5 ∧L (1 ∨L 0.25) = 0.5 .

Table 3 gives the query satisfaction degrees for each data tuple.
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6. Conclusion

The main goal of this paper was the formalisation of PFSQL queries by obtaining their

interpretation in some known fuzzy logic, and this has been achieved using �LΠ 1
2

fuzzy

logic. First we defined a conservative extension of the �LΠ 1
2

logic that is powerful enough

to interpret PFSQL queries. We then proved a theorem that illustrates the expressive

power of the �LΠ 1
2

logic and gives the PSPACE containment for the complexity of finding

a model for a given �LΠ 1
2

logic formula. Bearing in mind that we described a way to

extend this logic to allow the PFSQL queries to be coded in it, the fact that it is PSPACE

contained has an important impact on the performance of PFSQL query resolution.

Example 5.1 illustrates how the actual calculations are done. Future work includes

the integration of this formalisation into the existing PFSQL interpreter. The idea is to

process PFSQL queries by formalising them and putting the formalised query through

an automated theorem prover to obtain results. As with any formalisation, there are

potential benefits to be expected. First, it would be possible to prove the correctness of

a query’s resolution. Next, formalisation guarantees that all possible queries defined by

it can be processed by the system, and without errors. Finally, potential benefits in the

performance of query execution can be expected for some types of queries. Obviously, a

performance analysis and a comparison of the results with the previous version of the

PFSQL interpreter should also be carried out.
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