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CARSTEN FÜHRMANN† and DAVID PYM‡§

†University of Bath, England, U.K.
‡University of Bath and HP Labs, Bristol, England, U.K.

Received 19 January 2005; revised 21 October 2006; first published online 21 September 2007

It is well known that weakening and contraction cause naive categorical models of the

classical sequent calculus to collapse to Boolean lattices. In previous work, summarised

briefly herein, we have provided a class of models called classical categories that is sound

and complete and avoids this collapse by interpreting cut reduction by a poset enrichment.

Examples of classical categories include boolean lattices and the category of sets and

relations, where both conjunction and disjunction are modelled by the set-theoretic product.

In this article, which is self-contained, we present an improved axiomatisation of classical

categories, together with a deep exploration of their structural theory. Observing that the

collapse already happens in the absence of negation, we start with negation-free models

called Dummett categories. Examples of these include, besides the classical categories

mentioned above, the category of sets and relations, where both conjunction and disjunction

are modelled by the disjoint union. We prove that Dummett categories are MIX, and that

the partial order can be derived from hom-semilattices, which have a straightforward

proof-theoretic definition. Moreover, we show that the Geometry-of-Interaction construction

can be extended from multiplicative linear logic to classical logic by applying it to obtain a

classical category from a Dummett category.

Along the way, we gain detailed insights into the changes that proofs undergo during cut

elimination in the presence of weakening and contraction.

1. Introduction

It is notoriously hard to find a decent denotational semantics for the classical sequent

calculus, let alone an algorithmic interpretation. This problem is related to the non-

deterministic behaviour of cut elimination. To see this, consider the sequent proof

Λ =

Φ1···
Γ � ∆

weakening
Γ � A,∆

Φ2···
Γ � ∆

weakening
Γ, A � ∆

Cut
Γ,Γ � ∆,∆

contractions

Γ � ∆
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where Φ1 and Φ2 are arbitrary proofs of the sequent Γ � ∆. We call this the ‘Lafont

proof’, because it is a variant of an example credited to Lafont (cf. Girard et al. (1989,

page 151)). The sub-proof Φ1 is weakened on the right and the sub-proof Φ2 is weakened

on the left. There is then a cut, where the cut formula is the formula A introduced by

the weakenings. Finally, the double occurrences of Γ and ∆ are removed by left and right

contractions. (Clearly, the two contractions are supposed to commute with each other, so

we do not need to be specific about the order in which they are applied.) The proof Λ

reduces to

Φ1···
Γ � ∆

weakenings

Γ,Γ � ∆,∆

contractions

Γ � ∆

or to

Φ2···
Γ � ∆

weakenings

Γ,Γ � ∆,∆

contractions

Γ � ∆

However, it is clear that the weakenings followed by the contractions are essentially

nothing (cf. Girard et al. (1989, page 152)). So Φ1 and Φ2 are obtained by reducing the

same proof. Thus, the denotations of Φ1 and Φ2 must be equal for any semantics that

admits cut reduction in the sense that the reduct is denotationally equal to the redex.

Summarising, any denotational semantics that admits cut reduction must identify all

proofs of a sequent Γ � ∆. Note that this argument does not rely on negation!

There are various ways to escape from this denotational collapse. First, we might

simply abandon classical logic and adopt, for example, intuitionistic logic or linear logic

instead. As explained in Gentzen’s seminal article (Gentzen 1934), intuitionistic logic

can be obtained by restricting the classical sequent calculus in such a way that the

succedent ∆ contains at most one formula. As is widely known, intuitionistic logic can

be modelled by cartesian-closed categories. Models of linear logic also abound. However,

both intuitionistic logic and linear logic differ from classical logic with respect to provable

sequents, and we do not wish to depart from classical provability.

A second possibility, which enables us to keep with classical logic, might be to move to

‘classical natural deduction’ systems (Prawitz 1965), where proofs may be represented as

terms of the λµν-calculus (Parigot 1992; Pym and Ritter 2001). However, such systems do

not admit all cut reductions: it turns out that the call-by-name version of λµν admits only

the reduction to Φ2, while the call-by-value version only admits the reduction to Φ1. Each

version corresponds to a different choice of ¬¬-translation (also known as ‘continuation-

passing-style transformations’ in programming-language jargon) of classical logic into

intuitionistic logic (Troelstra and Schwichtenberg 1996; Plotkin 1975). Models of λµν can

be obtained in fibrations over a base category of structural maps in which each fibre is

a model of intuitionistic natural deduction and in which dualising negation is interpreted

as certain maps between the fibres (Ong 1996; Pym and Ritter 2001). Alternative models

are given by control categories and co-control categories (Selinger 2001).
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In our companion paper (Führmann and Pym 2006), we presented a solution that,

unlike classical natural deduction, models all cut reductions: we introduced a kind

of poset-enriched category called a classical category, whose objects model types and

whose morphisms model proofs of the classical sequent calculus; whenever a proof of

Φ can be reduced to another proof Ψ, we only require C �Φ� � C �Ψ� (as opposed

to C �Φ� = C �Ψ�), where C �Φ� and C �Ψ� are the morphisms denoted by Φ and Ψ

in the classical category C. Classical categories are a special case of symmetric linearly

distributive categories (Cockett and Seely 1997b): they have symmetric monoidal products

⊗ and ⊕ for modelling conjunction and disjunction, respectively. To model contraction

and weakening on the right, every object A is endowed with a symmetric monoid (�A :

A ⊕ A � A, []A : ⊥ � A): the multiplication � models contraction, and the unit []

models weakening. The dual construction is used to model contraction and weakening on

the left. (It is worth mentioning here that symmetric linearly distributive categories with

negation are equivalent to ∗-autonomous categories; however, the former provide a better

choice of primitives for achieving our goals.)

In Führmann and Pym (2006), we proved that classical categories are sound and

complete for the classical sequent calculus. More precisely, we introduced a notion of

theory with judgments of the form

Φ···
Γ � ∆

�
Ψ···

Γ � ∆

where the � is a preorder that contains all reductions required for cut elimination. The

soundness theorem in Führmann and Pym (2006) states, essentially, that Φ � Ψ implies

C �Φ� � C �Ψ� for every classical category C. The completeness theorem states, essentially,

that Φ � Φ is a theorem of a theory T whenever C �Φ� � C �Ψ� holds for every model

C �−� of T. Its proof uses a category built from Robinson’s proof nets for classical logic

(Robinson 2003), which build on ideas due to Girard and correspond directly to the

classical sequent calculus. (We shall discuss these nets briefly in Section 2.2.) A morphism

of that category is an equivalence class of proof nets with respect to the preorder �. For

morphisms f, g : A � B with representing nets Nf and Ng , that category has f � g if

and only if Nf � Ng . (This explains why � is a partial order even though the preorder �
is not generally antisymmetric.)

In Führmann and Pym (2006), we gave the following concrete examples of classical

categories:

— An initial model built from proof nets;

— The category Rel of sets and relation, where both ⊗ and ⊕ are defined to be the

evident functor that takes two sets to their cartesian product, and � is the set-theoretic

inclusion of relations;

— Boolean lattices;

— The product of any two classical categories – for example, Rel × B for any Boolean

lattice B. This shows that there are models that are non-posetal (that is, there are

hom-sets with more than one element) and non-compact (that is, ⊗ 	= ⊕).
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In Führmann and Pym (2004), we found further classical categories that arise from an

abstract Geometry-of-Interaction (GoI) construction starting with a quantaloid, and then

used those models to study the ‘increase’ in denotations during cut elimination.

Since we presented Führmann and Pym (2004) in the summer of 2004, we have managed

to:

1 considerably advance the axiomatisation and understanding of classical categories, in

particular, by proving that they are MIX;

2 strongly generalise the GoI construction we presented in Führmann and Pym (2004).

Many of the new insights were sparked by Masahito Hasegawa in private communications,

which is why several propositions in this paper are attributed to him.

This paper gives a comprehensive account of our improved axiomatisation and struc-

tural theory of classical categories (Section 3), and of our generalised GoI construction

(Section 4). Because of the substantial advances in presentation and axiomatisation, we

have chosen to make this paper self-contained so that it requires no previous knowledge

of Führmann and Pym (2006) or Führmann and Pym (2004).

On the purely technical side, we have adopted the proof nets in the style of Blute

et al. (1996); understanding these nets takes a little more effort than understanding

Robinson’s nets, but they are more efficient for calculations.

1.1. Outline

This section gives a detailed overview of this paper.

— In Section 2, we recall some preliminaries: the classical sequent calculus, proof nets and

the categorical semantics of multiplicative linear logic (MLL) in symmetric linearly

distributive categories.

— In Section 3, we introduce classical categories from the ground up. We proceed in two

steps:

1 We first extend symmetric linearly distributive categories by adding some structure

for modelling weakening and contraction. This structure consists of a symmetric

monoid and a symmetric comonoid for every object, and a poset enrichment

The resulting categories are models of the negation-free fragment of the classical

sequent calculus. We call them Dummett categories (inspired by Dummett’s extensive

discussion of multi-succedent intuitionistic sequent calculi given in ‘Elements of

Intuitionism’ (Dummett 1977)).

2 We then introduce classical categories as Dummett categories with the property of

having negation in the sense of Cockett and Seely.

We then establish the close connection between classical categories and the classical

sequent calculus by constructing the free classical category from proof nets (The-

orem 3.32). (This extends the construction of the free symmetric linearly distributive

category from MLL proof nets in the sense of Blute et al. (1996).) From a logical

point of view, the result means that classical categories are sound and complete (in

the order-theoretic sense explained above) with respect to a certain super-relation of

cut reduction for the classical sequent calculus.
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Our free construction relies on a series of results about the structure of Dummett

categories, including:

– the remarkable result (due to Hasegawa) that the monoids or comonoids cause

symmetric linearly distributive categories to be MIX (Theorem 3.11);

– the fact that the poset enrichment is not needed as an extra structure, but is induced

by hom-semilattices, which are derivable from other primitives (Proposition 3.28).

We conclude Section 3 by presenting an extremely economic axiomatisation of compact

Dummett categories (see Proposition 3.42, which is due to Hasegawa), and even

more economical axiomatisation of Dummett categories with finite biproducts (see

Proposition 3.43, which is also due to Hasegawa).

— In Section 4, we introduce an extended GoI construction that sends a traced Dummett

category to a classical category (Theorem 4.4). This shows that GoI works in the pres-

ence of weakening and contraction, even with respect to the partial order that models

cut reduction. As we shall explain, traced Dummett categories are essentially traced

symmetric monoidal categories, plus symmetric monoids and symmetric comonoids

on every object that satisfies certain conditions. Our extended GoI construction is an

instance of the well-known construction of a compact closed category from a traced

symmetric monoidal category. (See the introduction to Section 4 for an overview of the

history of GoI leading to that construction.) The key point of our extended construction

is that the symmetric monoids and symmetric comonoids, and the conditions required

for a Dummett category, ‘survive’ the extended GoI construction.

In Section 4.4, we study the special case in which the starting point of the extended

GoI construction is a traced Dummett category with finite biproducts. In particular,

we present a comprehensive characterisation of morphisms in such GoI categories

with respect to their behaviour under cut reduction (Proposition 4.5).

— Finally, we suggest some directions for future work in Section 5.

1.2. Related work

The article Hyland (2004) introduced a notion of abstract interpretation of classical proof

as a compact closed category in which every object is equipped with a symmetric monoid

and a symmetric comonoid satisfying certain conditions. (This work was foreshadowed

in Hyland (2002).) These abstract interpretations are almost the same as our classical

categories in the compact case where ⊗ = ⊕. The only difference is that compact classical

categories need to satisfy an extra equation (Equation 3 in Section 3.4.2). As we shall

show in Section 3.4.2, this equation implies that every compact classical category has

hom-semilattices, which yield the partial order we use for modelling cut reduction. So our

approach is more general than Hyland’s in that it does not require compactness, and more

special in that we require certain conditions that lead to the existence of hom-semilattices.

Another overlap with Hyland (2004) occurs when we specialise our GoI construction to

categories with finite biproducts. The partial order specific to our models allows a precise

analysis of the behaviour of morphisms with respect to cut reduction (which is explained

in Section 3.2.1).
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The article Bellin et al. (2004) contains a semantics of the classical sequent calculus

that is finer grained than ours in that it rejects axiom expansions (also called η-rules),

that is, the categorical connectives ⊗ and ⊕ that model conjunction and disjunction do

not generally preserve identities. In contrast, our work fits into the existing framework

of symmetric linearly distributive categories, in which ⊗ and ⊕ are functorial. Another

difference between our work and Bellin et al. (2004) is that we deal with the modelling

of cut reduction (using the poset enrichment) but Bellin et al. (2004) does not. A notion

of ‘Boolean category’ is introduced in Dosen (1999) and Dosen and Petric (2004). This

notion relies on the presence of products and coproducts, which leads to a more ‘collapsed’

structure than ours, and is closely related to the category of finite sets and relations.

There has also been some interesting work on confluent cut elimination in the presence

of the MIX rule (Bellin 2003; Lamarche and Straßburger 2004). For example, one can

remove the non-determinism of cut reduction by allowing a reduction

Φ···
Γ � ∆

WR
Γ � A,∆

Φ′
···

Γ �′ ∆′

WL
Γ′, A � ∆′

Cut
Γ,Γ′ � ∆,∆′

�

Φ···
Γ � ∆

Φ′
···

Γ �′ ∆′

MIX
Γ,Γ′ � ∆,∆′

The confluent cut elimination procedure in Lamarche and Straßburger (2004) (which is

based on proof nets) does this implicitly. Our semantics is compatible with this approach:

the MIX rule is denotationally equivalent to a degenerate cut with cut formula A = ⊥
or A = � (both choices of A result in the same denotation). So, in our view, this kind

of confluent ‘cut elimination’ is a removal of arbitrary cuts in favour of degenerate cuts

(that is, MIXes); a MIX is still non-deterministic – in fact, it is the pure incarnation of

proof-theoretic non-determinism, because it is the ‘parallel composition’ of Φ and Φ′ that

one might want to reduce to either Φ or Φ′. Our models support this view, because they

admit the reduction of MIX to Φ and to Φ′. In fact, the hom-semilattices of our models

are given by

Φ1 ∗ Φ2 =

Φ1···
Γ � ∆

Φ2···
Γ � ∆

MIX.
Γ,Γ � ∆,∆

contractions

Γ � ∆

From a technical point of view, this article is based on symmetric linearly distributive

categories, which were introduced in Cockett and Seely (1997b). In particular, we make

heavy use of the proof nets for symmetric linearly distributive categories introduced in

Blute et al. (1996), because they are very efficient for the calculations required in this

article. We also build on the discussions of MIX categories in Blute et al. (2000) and

Cockett and Seely (1997a), and the notion of traced object in a MIX category presented

in Blute et al. (2000).
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Table 1. Inference rules of MLL

Ax
A � A

∧L
Γ, A, B,Γ′ � ∆

Γ, A ∧ B,Γ′ � ∆

Γ1 � ∆1, A1,∆
′
1 Γ2 � ∆2, A2,∆

′
2

Γ1,Γ2 � ∆1,∆2, A1 ∧ A2,∆
′
1,∆

′
2

∧R

∨L
Γ1, A1,Γ

′
1 � ∆1 Γ2, A2,Γ

′
2 � ∆2

Γ1,Γ2, A1 ∨ A2,Γ
′
1,Γ

′
2 � ∆1,∆2

Γ � ∆, A, B,∆′

Γ � ∆, A ∨ B,∆′
∨R

�L
Γ,Γ′ � ∆

Γ,�,Γ′ � ∆ � �
�R

⊥L
⊥ �

Γ � ∆,∆′

Γ � ∆,⊥,∆′
⊥R

¬L
Γ,Γ′ � ∆, A,∆′

Γ,¬A,Γ′ � ∆,∆′

Γ, A,Γ′ � ∆,∆′

Γ,Γ′ � ∆,¬A,∆′
¬R

EL
Γ, A, B,Γ′ � ∆

Γ, B, A,Γ′ � ∆

Γ � ∆, A, B,∆′

Γ � ∆, B, A,∆′
ER

Γ2 � ∆1, A,∆3 Γ1, A,Γ3 � ∆2
Cut

Γ1,Γ2,Γ2 � ∆1,∆2,∆3

We also rely on results from the GoI literature; the related work in this area is described

in Section 4.

The literature on graphical analyses of classical proofs is too diverse to be summarised

here.

2. Preliminaries

2.1. The sequent calculus

The version of the sequent calculus we will use consists of the system of multiplicative

linear logic (MLL) presented in Table 1, plus the rules for weakening and contraction

presented in Table 2. In this way we obtain a calculus that differs from LK (Gentzen 1934)

only in its use of the multiplicative form of the introduction rules and in the absence of

implication. We consider implication to be derived – that is, A ⇒ B = ¬A ∨ B. A sequent

has the form Γ � ∆ where Γ and ∆ are finite lists of formulae. The capital Latin letters

range over formulae.
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Table 2. Inference rules for weakening and contraction

WL
Γ,Γ′ � ∆

Γ, A,Γ′ � ∆

Γ � ∆,∆′

Γ � ∆, A,∆′
WR

CL
Γ, A, A,Γ′ � ∆

Γ, A,Γ′ � ∆

Γ � ∆, A, A,∆′

Γ � ∆, A,∆′
CR

In the rest of this paper we shall call sequent proofs derivations, to avoid any confusion

with the notion of ‘proof’ at the meta-level.

To simplify the presentation of the semantics, we shall introduce a more economic

version of the sequent calculus just described: the new version is obtained by replacing

the rules ∧R, ∨L, ¬L, ¬R, WL, WR, CL, and CR by axioms. For example, to replace ∧R,

we introduce an axiom

Ax ∧ R
A,B � A ∧ B

and consider ∧R as an abbreviation for

Γ1 � ∆1, A1,∆
′
1

Γ2 � ∆2, A2,∆
′
2

Ax ∧ R.
A1, A2 � A1 ∧ A2

Cut
A1,Γ2 � ∆2, A1 ∧ A2,∆

′
2

Cut
Γ1,Γ2 � ∆1,∆2, A1 ∧ A2,∆

′
1,∆

′
2

The extra axioms lead to the revised version of the sequent calculus described in Tables 3, 4

and 5 (we have put the rules for negation in a separate table because we shall also study the

negation-free fragment). This revised version simplifies the presentation of the semantics,

because axioms simply denote morphisms, and only seven inference rules remain that are

not axioms. However, we shall keep the names ∧R, ∨L, ¬L, ¬R, WL, WR, CL and CR as

abbreviations for the evident derivations that involve Ax ∧ R, Ax ∨ L, Ax¬L, Ax¬R, AxWL,

AxWR and AxCL, respectively.

For the purposes of categorical logic, we shall consider derivations over any signature.

A signature Σ consists of a set of atomic formulae and a set of optional axioms. The set

of formulae over Σ is generated in the obvious way from the atomic formulae, using ∧, ∨,

�, ⊥ and ¬. We say a formula over Σ is positive if it is negation free. Optional axioms

are of the form

f
Γ � ∆

Typical optional axioms are the ones for weakening and contraction in Table 5.

Definition 2.1. A derivation Φ over a signature Σ is a tree generated by the rules in

Tables 3 and 4, plus the optional axioms of Σ. We say a derivation over Σ is positive if

all of its formulae are positive.
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Table 3. Revised inference rules of MLL: negation-free fragment

Ax
A � A

∧L
Γ, A, B,Γ′ � ∆

Γ, A ∧ B,Γ′ � ∆ A,B � A ∧ B
Ax ∧ R

Ax ∨ L
A ∨ B � A,B

Γ � ∆, A, B,∆′

Γ � ∆, A ∨ B,∆′
∨R

�L
Γ,Γ′ � ∆

Γ,�,Γ′ � ∆ � �
�R

⊥L
⊥ �

Γ � ∆,∆′

Γ � ∆,⊥,∆′
⊥R

EL
Γ, A, B,Γ′ � ∆

Γ, B, A,Γ′ � ∆

Γ � ∆, A, B,∆′

Γ � ∆, B, A,∆′
ER

Γ2 � ∆1, A,∆3 Γ1, A,Γ3 � ∆2
Cut

Γ1,Γ2,Γ2 � ∆1,∆2,∆3

Table 4. Revised inference rules of MLL: axioms for negation

Ax¬L
A,¬A � � ¬A,A

Ax¬R

Table 5. Optional axioms for weakening and contraction

AxWL
⊥ � A A � �

AxWR

AxCL
A � A ∧ A A ∨ A � A

AxCR

2.2. Proof nets

The essence of a sequent proof can be captured by a proof net, an idea introduced by

Girard (Girard 1987). In this paper, we shall need proof nets (or ‘nets’ for short) to

describe equalities between proofs. The nets we use are, essentially, those from Blute

et al. (1996), extended to account for the extra structure of classical logic. This marks

a departure from Führmann and Pym (2006), where we used the classical proof nets
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introduced by Robinson (Robinson 2003). Robinson’s nets correspond more directly to

the sequent calculus than those of Blute et al. (1996), but the latter are more convenient

for calculations.

Disclaimer. This paper is not about proof nets – it only uses nets à la Blute et al. (1996) to

help presentation and calculations. While these nets are very useful from a mathematical

perspective, we make no claims about their logical or philosophical status.

Informally, a net is a graphical skeleton of a derivation. For example, both of the

derivations

Ax
A � A

Ax ∨ L
B ∨ C � B,C

∧R
A, (B ∨ C) � (A ∧ B), C

∧L
A ∧ (B ∨ C) � (A ∧ B), C

∨R
A ∧ (B ∨ C) � (A ∧ B) ∨ C

and

Ax ∧ R
A,B � A ∧ B

Ax
C � C

∨L
A, (B ∨ C) � (A ∧ B), C

∨R
A, (B ∨ C) � (A ∧ B) ∨ C

∧L
A ∧ (B ∨ C) � (A ∧ B) ∨ C

have the following proof net:

∨L

∧L

B ∨ C : L

Ax Ax Ax

∧R

∨R

A ∧ B : R

A ∧ (B ∨ C) : L (A ∧ B) ∨ C : R

A : L B : L C : L A : R B : R C : R

This net is in the style used in Robinson (2003); in that paper, a proof structure is

defined to be a bipartite directional graph whose two families of nodes are labelled as

follows:

Family 1 labelled by an inference rule of the sequent calculus;

Family 2 labelled by a formula, together with the information Left of Right.

The graph is subject to two additional constraints, which essentially mean that:

1 The incoming (respectively, outgoing) arrows of a rule node uniquely match the

hypothesis (respectively, conclusions) of the corresponding rule of the sequent calculus.

2 Each formula node has a unique incoming and at most one outgoing arrow.

Translating derivations into proof structures is straightforward. Not all proof structures

are the images of derivations; those that are are called proof nets. (When a graph is a

proof net can also be characterised by the switching criterion introduced in Danos and

Regnier (1989), which requires that certain subgraphs of the proof structure be connected
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and acyclic.) Robinson’s nets, with minor notational changes, were used in Führmann and

Pym (2006).

However, in this paper, we have adopted the nets introduced in Blute et al. (1996). In

that style, the net for the derivations above is

⊗

B

B ⊕ C

A ⊕

C

A ⊗ (B ⊕ C)

(A ⊗ B) ⊕ C

A ⊗ B

Here, the only nodes are rule nodes. We write ⊗ for ∧, ⊕ for ∨, and A⊥ for ¬A,

because these nets are also used to describe morphisms in symmetric linearly distributive

categories, as we shall see in Section 2.4.2. The wires are labelled with types, which can

be seen either as formulae or as objects of a symmetric linearly distributive category. The

left-hand formula of the derived sequent appears at the top of the net, and the right-hand

formula at the bottom. The top-to-bottom orientation has advantages over the left-to-

right orientation with respect to the alignment of types and wires. It also ensures the

nice property that a net is planar if and only if the corresponding derivations are within

non-commutative logic, that is, they contain no exchange rules, cf. Blute et al. (1996).

An important difference between nets in the style of Robinson and nets in the style of

Blute et al. (1996) is that the latter have no axiom links and no cut links. Abandoning

these links is possible because a cut and an axiom cancel each other out according to

a (poly)categorical neutrality law (Führmann and Pym 2006). Another difference is that

Robinson’s nets have links for weakening and contraction, while nets in the style of Blute

et al. (1996) do not. (However, we shall see that such links can be easily added to the

latter.) It is a bit harder to make the leap from derivations to nets in the style of Blute

et al. (1996) than to nets in the style of Robinson. However, the former are better for

heavy calculations, because they have no cluttering cut links and axiom links, and because

one can drop the type annotations when they are clear from the context. (Just as one

sometimes omits type annotations from lambda terms). This is why we have opted for

them in this paper.

Now we turn to a formal definition of nets, based on the definition in Blute et al. (1996),

but not quite as formal. We define the notion of a typed circuit. Building a typed circuit

requires a set T of types and a set C of components. Each component f ∈ C has a list

α = (A1, . . . , An) of types describing the input ports, and a list β = (B1, . . . , Bm) of types

describing the output ports of f:

f

A1 An

Bm

. . .

. . .B1
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We define the collection of circuits over C inductively:

— Every component f ∈ C is a circuit.

— The identity wire

A

is a circuit, with one input port and one output port, each of type A.

— Given any number of circuits, connecting some output ports with input ports of the

same type yields another circuit.

As an example of a circuit, consider

f

g

BA D

H

KJIE G

F

C

Note that it has two connections (of types F and H) from f to g. As we shall see, this

is not a net for symmetric linearly distributive categories, because those nets must have

exactly one connection between any two components; however, the nets for symmetric

monoidal categories that we shall introduce much later in Section 3.4.1 allow such multiple

connections.

Remark 2.2. Our definition of circuit is more general than that in Blute et al. (1996) in

that it allows feedback, for example,

f

which we shall employ in Section 4 only.

A net (for symmetric linearly distributive categories), in short, is a circuit built from

components that correspond to the introduction rules of the sequent calculus, subject to

the condition of sequentiality, which means that the circuit must represent a derivation.

We shall now spell this out in detail.

The types for nets are given by the grammar

A,B ::= A ⊗ B |A ⊕ B | � | ⊥ |A⊥ | b ,

https://doi.org/10.1017/S0960129507006287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006287


On categorical models of classical logic and the Geometry of Interaction 969

where b ranges over atomic formulae. We have the following components:

— for conjunction

⊗L

A B

A ⊗ B

⊗
A ⊗ B

BA

⊗R

— for disjunction

⊕L ⊕
B

A ⊕ B

A

B

A ⊕ B

A

⊕R

— to deal with �

�L

�
�A �

� �R

Remark 2.3. A curiosity here is that �L requires the supporting wire A. The wire that

is directly attached to the supporting wire is called a thinning link in Blute et al. (1996).

Thinning links are needed because of categorical coherence issues: for example, using

nets without thinning links would force the identity morphism on � ⊕ � to be equal to

the twist map, which is false in some symmetric linearly distributive categories (see Blute

et al. (1996)).

Dually, we have components:

— to deal with ⊥

⊥L ⊥
⊥

⊥

⊥
A

⊥R

The components �L and ⊥R are called thinning links.

— for when we consider negation

¬L
A A⊥

¬ AA⊥

¬ ¬R

Table 6 describes how a derivation Φ of A1, . . . , An � B1, . . . , Bm is turned into a circuit

Φ

A1 An

Bm

. . .

. . .B1

The double lines labelled Γi or ∆j stand for bundles of wires, one for every formula

contained in Γi or ∆j . In the translations for �L and ⊥R, any wire in Φ can be used as a

supporting wire. (We shall consider any two choices of supporting wire to be equivalent,

see Section 2.2.1.)

We call the components ⊗L, ⊗R, ⊕L, ⊕R, �L, �R, ⊥L, ⊥R, ¬L and ¬R links

to distinguish them from arbitrary components. Links depicted by rectangular boxes
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Table 6. From derivations to nets

Φ···
Γ2 � ∆1, A,∆3

Ψ···
Γ1, A,Γ3 � ∆2

Cut
Γ1,Γ2,Γ2 � ∆1,∆2,∆3

= A

Ψ

Φ

Γ2

∆2

Γ1

∆1

Γ3

∆3

Ax
A � A

= A

Φ···
Γ1, A, B,Γ2 � ∆

∧L
Γ1, A ∧ B,Γ2 � ∆

=

Γ1 Γ2

∆

A ⊗ B

Φ

B A Ax ∧ R
A,B � A ∧ B

= ⊗
A ⊗ B

BA

Ax ∨ L
A ∨ B � A,B

= ⊕
B

A ⊕ B

A

Φ···
Γ � ∆1, A, B,∆2

∨R
Γ � ∆1, A ∨ B,∆2

=

∆1 ∆2

Φ

A

A ⊕ B

B

Γ

Φ···
Γ1,Γ2 � ∆

�L
Γ1,�,Γ2 � ∆

=

Γ1 Γ2

∆

�
�

Φ

�R
� �

=
�

�

⊥L
⊥ �

= ⊥
⊥

Φ···
Γ � ∆1,∆2

⊥R
Γ � ∆1,⊥,∆2

=
Φ

Γ

∆1 ∆2

⊥
⊥

Ax¬L
A,¬A �

=
A A⊥

¬
Ax¬R

� ¬A,A
=

AA⊥
¬

Φ···
Γ1, A, B,Γ2 � ∆

EL
Γ1, B, A,Γ2 � ∆

=

Γ1

∆

Φ

B A Γ2 Φ···
Γ � ∆1, A, B,∆2

ER
Γ � ∆1, B, A,∆2

=
Φ

Γ

∆1 ∆2B A

f
A1, . . . , An � B1, . . . , Bm

= f

A1 An

Bm

. . .

. . .B1

correspond to axioms (for example, Ax ∧ R, Ax ∨ L, Ax¬L, Ax¬R, ⊥L, �R); they are nets.

Links with circles correspond to inference rules that have one or more hypotheses; they

are used to build nets, but they are not nets. (This is a notational clarification we adopt

from Cockett et al. (2003).)
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Definition 2.4. A net over a signature Σ is a circuit:

1 whose types are the formulae over Σ;

2 whose components are the links ⊗L, ⊗R, ⊕L, ⊕R, �L, �R, ⊥L, ⊥R, ¬L, ¬R and

components of the form

f

A1 An

Bm

. . .

. . .B1

where f
A1, . . . , An � B1, . . . , Bm

is an optional axiom of Σ;

3 which is in the image of translation in Table 6.

We say a net is positive if all of its formulae are positive. We write Net(Σ) (respectively,

Net¬(Σ)) for the positive (respectively, arbitrary) nets over Σ. We write Net(Σ)(Γ,∆)

(respectively, Net¬(Σ)(Γ,∆)) for the positive (respectively, arbitrary) nets with input ports

according to Γ and output ports according to ∆.

Remark 2.5. We have defined the notion of a net inductively. Evidently, not every circuit

is a net (for example, ⊕R). In fact, a circuit that satisfies the first two conditions of the

preceding definition is a net (that is, in the image of translation in Table 6) if and only if

it satisfies the following combinatorial condition due to Girard (Girard 1987), which we

present here in the same form as Blute et al. (1996): consider the components ⊗L and ⊕R

to be ‘switchable’ in the sense introduced by Girard. This means in the case of ⊗L that

at most one of the two bottom wires is to be regarded as being ‘connected’, although we

do not know which switch is set, and similary for the top two wires of ⊕R. The criterion

for being a net holds if for any choice of switch settings the undirected graph determined

by the remaining wires is acyclic and connected.

2.2.1. Net equivalence In this section, we shall recall the equivalence between nets

introduced in Blute et al. (1996). It is defined by a number of rules for rewriting subcircuits.

These rules can only be applied if both the original circuit whose subcircuit is rewritten and

the resulting circuit are nets.

First, we have reductions that simulate the cut elimination of MLL:

⊗

BA

A ⊗ B

A B

= A B (Reduce⊗)

BA

A B

⊕

A ⊕ B = A B (Reduce⊕)
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�

�

�
A = A (Reduce�)

A⊥

⊥

⊥
= A (Reduce⊥)

¬

¬

A

A

A⊥ = A (Reduce¬)

Second, we have expansions that allow us to express an axiom on a compound formula

in terms of axioms on the subformulae:

A ⊗ B = A B

⊗

A ⊗ B

A ⊗ B

(Expand⊗)

A ⊕ B = A B

A ⊕ B

A ⊕ B

⊕

(Expand⊕)

� =

�

�

�

�

(Expand�)

⊥ =

⊥

⊥

⊥

⊥

(Expand⊥)

A⊥ = A

A⊥

A⊥

¬

¬

(Expand¬)
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Finally, Blute et al. (1996) contains a large number of rewriting rules that deal with the

manipulation of thinning links. Fortunately, in the case of commutative logic, these rules

amount to the Empire Rewiring Proposition (Blute et al. 1996, Proposition 3.3), which

states that the supporting wire can be chosen freely within the empire† of the formula

introduced by the thinning. This amounts to saying that the supporting wire can be chosen

freely within any net containing the original supporting wire. For a detailed discussion of

rewiring, see Blute et al. (1996).

2.3. Symmetric linearly distributive categories

Linearly distributive categories, which are due to Cockett and Seely and were initially

called ‘weakly distributive categories’, can be used to model MLL. (This is explained in

Cockett and Seely (1997b), but we shall spell out the semantics in Section 2.4.1.) All logical

systems we consider in this paper are commutative – that is, they allow unrestricted use

of the exchange rule, which allows us to use symmetric linearly distributive categories.

A symmetric linearly distributive category (Cockett and Seely 1997b) is a category C

with two symmetric monoidal structures

⊗ : C × C � C ⊕ : C × C � C

� ∈ Ob(C) ⊥ ∈ Ob(C)

α⊗ : (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C) α⊕ : (A ⊕ B) ⊕ C ∼= A ⊕ (B ⊕ C)

λ⊗ : � ⊗ A ∼= A λ⊕ : ⊥ ⊕ A ∼= A

ρ⊗ : A ⊗ � ∼= A ρ⊕ : A ⊗ ⊥ ∼= A

σ⊗ : A ⊗ B � B ⊗ A σ⊕ : A ⊕ B � B ⊕ A

and a natural transformation

δ : A ⊗ (B ⊕ C) � (A ⊗ B) ⊕ C

called a (linear) distribution, which must satisfy various coherence conditions. For a

description of these conditions, see Cockett and Seely (1997b). The distribution is used to

model the cut rule, as we shall explain in Section 2.4.1.

We call ⊗ the tensor and ⊕ the cotensor (which is not to be confused with the cotensor

product of modules).

A symmetric linearly distributive category with negation is a symmetric linearly dis-

tributive category together with, for every object A, an object A⊥ and maps

γR : A ⊗ A⊥ � ⊥ τR : � � A ⊕ A⊥

† The empire of a formula is the largest subnet containing that formula as an input port or an output port.
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satisfying the following conditions (Cockett and Seely 1997b):

A ⊗ � id ⊗ τL� A ⊗ (A⊥ ⊕ A)
δ � (A ⊗ A⊥) ⊕ A

γR ⊕ id� ⊥ ⊕ A

A
�

λ⊕ρ⊗

�

A⊥ ⊗ � id ⊗ τR� A⊥ ⊗ (A ⊕ A⊥)
δ� (A⊥ ⊗ A) ⊕ A⊥ γL ⊕ id� ⊥ ⊕ A⊥

A⊥ �

λ⊕ρ⊗

�

where γL and τL are the evident maps resulting from γR and τR by composing with

symmetry maps. These maps can be used to model Ax¬L and Ax¬R, as we shall explain

in Section 2.4.1.

Symmetric linearly distributive categories with negation are equivalent to ∗-autonomous

categories (Cockett and Seely 1997b).

Finally, we recall a notion that plays an important role in the GoI construction: a

compact closed category is a symmetric linearly distributive category C with negation

such that the symmetric monoidal categories (C,⊗,�) and (C,⊕,⊥) are identical, and δ

is the associativity map.

Remark 2.6. Alternatively, one could define a compact closed category to be a symmetric

monoidal category with, for every object A, an assigned left adjoint A⊥ (Kelly and Laplaza

1980). The degenerate versions of the two equational laws for γ and τ are the triangular

identities of that adjunction.

2.4. Categorical semantics of MLL

In this section, we recall the semantics of MLL in symmetric linearly distributive

categories. In Section 2.4.1, we describe the interpretation of derivations as morphisms.

In Section 2.4.2, we switch from derivations to nets, because nets allow a smoother

presentation. At the end of Section 2.4.2, we state the important result that MLL nets

(and therefore also derivations) are in perfect correspondence with symmetric linearly

distributive categories (Theorem 2.7).

2.4.1. The interpretation of sequents An interpretation for a signature Σ in a symmetric

linearly distributive category C sends every formula A over Σ to an object �A� according
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to the rules

�A ∧ B� = �A� ⊗ �B�
�B ∨ B� = �A� ⊕ �B�

��� = �
�⊥� = ⊥ .

If we consider the scenario with negation, then C must be a symmetric linearly distributive

category with negation, and we also require

�¬A� = �A�⊥
.

A derivation Φ of a sequent A1, . . . , An � B1, . . . , Bm is interpreted by a morphism⎢⎢⎢⎣
Φ···

A1, . . . , An � B1, . . . , Bm

⎥⎥⎥⎦ : �A1� ⊗ · · · ⊗ �An� � �B1� ⊕ · · · ⊕ �Bm�,

where ⊗ and ⊕ are, say, left associative, the tensor for n = 0 is �, and the cotensor for

m = 0 is ⊥.

1 The rule Ax is interpreted by the identity morphism, as are Ax ∧ R, Ax ∨ L, Ax�R and

Ax⊥L.

2 The rules ∧L and �L are interpreted by pre-composing the symmetric monoidal

isomorphisms

�Γ� ⊗ (�A� ⊗ �B�) ⊗ �Γ′� ∼= �Γ� ⊗ �A� ⊗ �B� ⊗ �Γ′�

and

�Γ� ⊗ � ⊗ �Γ′� ∼= �Γ� ⊗ �Γ′� ,
respectively, and dually for ∨R and ⊥R.

3 The rule EL is interpreted by pre-composing the symmetric-monoidal isomorphism

�Γ1� ⊗ �A� ⊗ �B� ⊗ �Γ2� ∼= �Γ1� ⊗ �B� ⊗ �A� ⊗ �Γ2� ,

and dually for ER.

4 The cut rule is interpreted as follows: if the interpretations of the premises are⎢⎢⎢⎣
Φ···

Γ2 � ∆1, A,∆3

⎥⎥⎥⎦ = f : �Γ2� � �∆1� ⊕ �A� ⊕ �∆3�

⎢⎢⎢⎣
Ψ···

Γ1, A,Γ3 � ∆2

⎥⎥⎥⎦ = g : �Γ1� ⊗ �A� ⊗ �Γ3� � �∆2�,

then the interpretation
⎢⎢⎢⎢⎢⎣

Φ···
Γ2 � ∆1, A,∆3

Ψ···
Γ1, A,Γ3 � ∆2

Cut
Γ1,Γ2,Γ3 � ∆1,∆2,∆3

⎥⎥⎥⎥⎥⎦
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of the conclusion is

�Γ1� ⊗ �Γ2� ⊗ �Γ3� id⊗f⊗id� �Γ1� ⊗ (�∆1� ⊕ �A� ⊕ �∆3�) ⊗ �Γ3�
δ1� �∆1� ⊕ (�Γ1� ⊗ �A� ⊗ �Γ3�) ⊕ �∆3�

id⊕g⊕id� �∆1� ⊕ �∆2� ⊕ �∆3�,

where δ1 is obtained by combining the distribution δ and structural isomorphisms

of the symmetric monoidal category. (There are different such combinations, but the

coherence laws of a symmetric linearly distributive category ensure that they all amount

to the same morphism.)

5 If we consider the scenario with negation, Ax¬L and Ax¬R are interpreted by γR and

τL, respectively.

We shall describe the semantics of weakening and contraction later in this paper.

Evidently, an interpretation of a derivation is determined by its action on the optional

axioms.

2.4.2. Nets as symmetric linearly distributive categories Our goal in this section is to

explain the perfect correspondence between MLL and symmetric linearly distributive

categories (with negation). To build a term model, we could construct a symmetric

linearly distributive category whose morphisms are equivalence classes of derivations.

However, the range of required equational laws would be almost unmanagable, because

of countless commuting conversions and laws involving the exchange rule. Nets turn out

to work much better here, because they deal with commuting conversions and exchange

implicitly.

We believe that the transition from derivations to nets is harmless, because translating

derivations into nets is almost trivial (essentially, the nets can be drawn into the

derivation!).

The aim of this section is to describe how nets can be used to construct free symmetric

linearly distributive categories (Theorems 2.7 and 2.9, which are taken from Blute et al.

(1996)).

Given a set E of equivalences on Net(Σ) (where two nets can only be equivalent if they

inhabit the same sequent), we can construct a symmetric linearly distributive category

NetE(Σ) as follows:

— The objects are the formulae over Σ.

— A morphism from A to B is a net f ∈ Net(Σ)(A,B) modulo the congruence relation

generated from E and the reductions, expansions and empire rewiring equations

described in Section 2.2.1.

— Composition is defined in the evident way by connecting wires.

— The identity morphism on A is given by the wire labelled by A.
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— Given nets representing morphisms f : A � B and g : C � D, the net

representing f ⊗ g is defined by

f ⊗ g =

⊗

A ⊗ C

B ⊗ D

CA

DB

gf

and dually for ⊕.

— The distribution is given by

δ =
⊗

B

B ⊕ C

A ⊕

C

A ⊗ (B ⊕ C)

(A ⊗ B) ⊕ C

A ⊗ B

— The symmetric monoidal isomorphisms with respect to ⊗ are given by

α⊗ =

A

⊗

A ⊗ (B ⊗ C)

B ⊗ C

C

(A ⊗ B) ⊗ C

A ⊗ B

⊗

B
σ⊗ =

A B

⊗

A ⊗ B

B ⊗ A

ρ⊗ =

A ⊗ �

�
�

A

ρ−1
⊗ =

⊗

A ⊗ �

�
�

A

The remaining isomorphisms (α−1
⊗ , λ⊗ and λ−1

⊗ ), and the duals for ⊕, are obvious.

We have the following result from Blute et al. (1996).

Theorem 2.7. NetE(Σ) is the free symmetric linearly distributive category generated by

the signature Σ and the equations E.

Remark 2.8. This theorem implies soundness and completeness when NetE(Σ) is viewed

as a theory whose judgments are equalities between nets. Completeness means that a

judgment M = N holds in the theory NetE(Σ) whenever it holds in every model; this

is true because the theory NetE(Σ) forms a model of itself. Soundness means that every

interpretation of the nets over Σ in a symmetric linearly distributive category C validates
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the equations in Section 2.2.1. This is true because the canonical functor from NetE(Σ) to

C is well defined (that is, it sends equivalent nets to the same morphism).

The free construction can be extended with negation, and to do this, we only need to

replace Net(Σ) by Net¬(Σ), allow the equations Reduce¬ and Expand¬, and define

γR =A A⊥

A ⊗ A⊥

⊥
⊥

¬
τR =

A ⊕ A⊥

�
�

¬

A⊥ A

Theorem 2.9. Net¬
E(Σ) is the free symmetric linearly distributive category with negation

generated by the signature Σ and the equations E.

3. Modelling weakening and contraction: Dummett categories

In this section, we introduce categories that are in very close correspondence with the

classical sequent calculus modulo cut reduction. We proceed by extending the scenario for

MLL presented in Section 2.4 with structure for modelling weakening and contraction.

In Section 3.1, we shall start with symmetric linearly distributive categories and add

symmetric monoids and symmetric comonoids to model weakening and contraction.

In particular, we shall present a remarkable result (explained to us by Hasegawa)

that monoids or comonoids force symmetric linearly distributive categories to be MIX

(Theorem 3.11).

In Section 3.2, we shall add a poset enrichment to model cut reduction in the presence

of weakening and contraction. We call the resulting categories Dummett categories. We do

not require a Dummett category to have negation; if it does, we call it a classical category.

In Section 3.3, we explore the structural properties of Dummett categories. In particular,

we show that every hom-set of a Dummett category is a semilattice, in terms of which the

poset enrichment can be defined (Proposition 3.28). Moreover, we show that Dummett

categories have an axiomatisation in terms of unconditional equalities (Theorem 3.31).

Finally, we use this to show that the construction of the free symmetric linearly distributive

category can be extended to Dummett categories and classical categories (Theorem 3.32).

In Section 3.4, we study the important case of compact Dummett categories (our

extended GoI construction later in the paper involves only compact Dummett categories,

and relies heavily on this section). Compactness allows great simplifications of the nets

and the axiomatisation. In particular, we shall present an axiomatisation of compact

Dummett categories in terms of only one equality (Proposition 3.42). Moreover, we shall

show how compact Dummett categories shed light on cut reductions involving contraction

(Proposition 3.41).

Finally, we specialise the compact setting to categories with finite biproducts, explain

the resulting matrix calculus, and present a single equation that characterises when a

category with finite biproducts is a Dummett category (Proposition 3.43).
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3.1. Symmetric monoids and comonoids

To model AxCL, AxCR, AxWL and AxWR in a symmetric linearly distributive category,

we introduce maps

�A : A � A ⊗ A

�A : A ⊕ A � A

〈〉A : A � �
[]A : ⊥ � A

for every object A.

Definition 3.1. When we use nets, we shall use the abbreviations

AA

A AA

A

A

A

A

A

for

�

A

A ⊗ A

AA A

�

A ⊕ A

AA A

〈〉
�

�

A

⊥
[]

⊥

We shall require certain conditions to ensure that �, [], � and 〈〉 are sensibly defined:

we require (A,�A, []A) to be a symmetric monoid – that is, the following associativity,

neutrality and commutativity laws have to hold:

(A ⊕ A) ⊕ A
α⊕� A ⊕ (A ⊕ A)

A ⊕ A

id ⊕ �
�

A ⊕ A

� ⊕ id
�

A

�

�

� �

(�assoc)

A ⊕ ⊥ id ⊕ []� A ⊕ A �[] ⊕ id ⊥ ⊕ A

A

�

�
λ⊕

�
ρ⊕ �

([]neutral)

https://doi.org/10.1017/S0960129507006287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006287


C. Führmann and D. Pym 980

A ⊕ A
σ⊕� A ⊕ A

A

�

�

� � (�symm)

It is easy to see that these laws correspond to the following widely-accepted equalities

between sequent proofs:

Φ···
Γ � ∆, A, A, A,∆′

CR applied to the left A and the middle A

Γ � ∆, A, A,∆′

CR
Γ � ∆, A,∆′

=

Φ···
Γ � ∆, A, A, A,∆′

CR applied to the middle A and the right A

Γ � ∆, A, A,∆′

CR
Γ � ∆, A,∆′

Φ···
Γ � ∆, A,∆′

WR applied in either of the two evident ways

Γ � ∆, A, A,∆′

CR
Γ � ∆, A,∆′

=

Φ···
Γ � ∆, A,∆′

Φ···
Γ � ∆, A, A,∆′

ER
Γ � ∆, A, A,∆′

=

Φ···
Γ � ∆, A, A,∆′

The net versions of these laws are presented in Table 7 (symmetry means that we need

only one of the two neutrality laws). Moreover, we require for all objects A and B that

the monoid on A ⊕ B is defined pointwise in terms of the monoids on A and B; that is,

we require

A ⊕ B ⊕ A ⊕ B
id ⊕ σ⊕ ⊕ id� A ⊕ A ⊕ B ⊕ B

A ⊕ B

�A ⊕ �B��A⊕B �
(�pointwise)

⊥ ∼= ⊥ ⊕ ⊥

A ⊕ B

[]A ⊕ []B�

[]A⊕B

� ([]pointwise)

and the nullary cases

�⊥ = λ⊕ : ⊥ ⊕ ⊥ � ⊥

[]⊥ = id⊥ ([]trivial)
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Table 7. Net equalities for symmetric monoids

A

=

A

(CR-assoc)

A

A

A

= A (WR-neutral)

A

=
A

(CR-symm)

It is easy to check that the two nullary laws are interderivable; in the remainder of this

paper, we shall stick with []trivial and make no further mention of the other law. The

laws �pointwise, []pointwise and []trivial correspond to the following equalities between

sequent proofs:

Φ···
Γ � ∆, A, B, A, B,∆′

two applications of ∧R

Γ � ∆, A ∧ B,A ∧ B,∆′

CR
Γ � ∆, A ∧ B,∆′

=

Φ···
Γ � ∆, A, B, A, B,∆′

ER
Γ � ∆, A, A, B, B,∆′

two applications of CR

Γ � ∆, A, B,∆′

∧R
Γ � ∆, A ∧ B,∆′

Φ···
Γ � ∆,∆′

WR
Γ � ∆, A ∧ B,∆′

=

Φ···
Γ � ∆,∆′

two applications of WR

Γ � ∆, A, B,∆′

WR
Γ � ∆, A ∧ B,∆′

⊥L
⊥ �

WR
⊥ � ⊥

= Ax
⊥ � ⊥

The net versions of these laws are presented in Table 8.
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Table 8. Net equalities for the pointwise definition of the symmetric monoids

A BAB

A ⊕ B

=

A B

A ⊕ B

A B

B A

(CR-pointwise)

A ⊕ B

A ⊕ B
=

A ⊕ B

A B (WR-pointwise)

⊥
[]

⊥
= ⊥ (WR-trivial)

Remark 3.2. While we believe that the laws in Table 7 are hard to dismiss (logicians seem

to use them implicitly), the laws in Table 8 are perhaps more contentious. We require

them because they seem highly plausible and required for numerous propositions and

constructions.

Dually, we shall use comonoids (�A : A � A ⊗ A, 〈〉A : A � �) to model left

contraction and weakening. The laws for comonoids are called �assoc, []neutral, �symm,

�pointwise, 〈〉pointwise and 〈〉trivial. Their net versions are called CL-assoc, WL-neutral,

CL-symm, CL-pointwise, WL-pointwise and WL-trivial.

Definition 3.3. A symmetric monoidal category C = (C,⊕,⊥) is said to have symmetric

monoids if every object A has a chosen symmetric monoid (�A, []A), and the laws

�pointwise, []pointwise and []trivial hold.

Dually, a symmetric monoidal category C = (C,⊗,�) is said to have symmetric

comonoids if every object A has a chosen symmetric comonoid (�A, 〈〉A), and the laws

�pointwise, 〈〉pointwise and 〈〉trivial hold.

Definition 3.4. A pre-Dummett category is a symmetric linearly distributive category C

such that:

1 The symmetric monoidal category (C,⊕,⊥) has symmetric monoids.

2 The symmetric monoidal category (C,⊗,�) has symmetric comonoids.
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Remark 3.5. This agrees with Hasegawa’s notion of a pre-Dummett category, except that

we do not require that the hom-semigroups (defined in Section 3.3) are idempotent.

Example 3.6. Every distributive lattice D.

The objects are the elements of D, and there is at most one morphism A � B, which

exists if and only if A � B. The functor ⊗ is the greatest lower bound, and ⊕ is the

least upper bound. The object � is the greatest element, and ⊥ is the least element. The

distribution exists because A ⊗ (B ⊕ C) = (A ⊗ B) ⊕ (A ⊗ C) � (A ⊗ B) ⊕ C . The monoids

and comonoids exist because A = A ⊗ A, A � �, A ⊕ A = A and ⊥ � A for all A ∈ D.

Example 3.7. Every symmetric monoidal category C = (C,�, I) with symmetric monoids and

symmetric comonoids, if both ⊗ and ⊕ are defined to be �, and both � and ⊥ are defined

to be I .

The distribution is the associativity A�(B�C) ∼= (A�B)�C . Examples of such categories

include:

— The category Rel whose objects are (small) sets and whose morphism A � B are

subsets of A × B, if � is defined to be the evident functor that sends two sets to their

set-theoretic product and I is defined to be the singleton set {∗}.
We have �A = {((x, x), x) : x ∈ A} and []A = {(∗, x) : x ∈ A}, and dually for �A and

〈〉A. We write (Rel,×) for this pre-Dummett category.

— Every category with finite biproducts if � is defined to be the binary biproduct, and I is

defined to be the zero (that is, initial and terminal) object.

The comonoids are given by the diagonals and projections of the product structure,

and dually for the monoids. Examples include:

– The category Rel if � is defined to be evident functor that sends two sets to their

disjoint union and I is defined to be the empty set.

We write (Rel,�) for this pre-Dummett category.

– The category FDVecK of finite-dimensional vector spaces over a field K , if � is

defined to be the ‘direct sum’, which sends two spaces to their set-theoretic product,

and I is defined to be the one-dimensional space K .

We write (FDVecK,×) to distinguish it from the compact closed category based

on the tensor product.

The product C1×C2 of two pre-Dummett categories is a pre-Dummett category. Letting

C1 be a distributive lattice and C2 be any of the categories in Example 3.7 shows that there

exist pre-Dummett categories with non-trivial hom-sets such that ⊗ 	= ⊕ and � 	= ⊥.

Theorem 3.8. Let Σ be a signature containing AxWL, AxWR, AxCL and AxCR. Let E be

a set of equations on Net(Σ) and E ′ be the set of equations for pre-Dummett categories

described in Tables 7 and 8, and their duals. Then NetE∪E ′(Σ) is the free pre-Dummett

category generated by Σ and E.

Proof. The result follows from Theorem 2.7, and the fact that E ′ characterises pre-

Dummett categories.
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We conclude this section with some definitions. In a pre-Dummett category, the morphisms

πAB
1 and πAB

2 are defined to be

A ⊗ B
id⊗〈〉� A ⊗ � ∼= A and A ⊗ B

〈〉⊗id� � ⊗ B ∼= B,

respectively. Dually, ιAB1 and ιAB2 are defined to be the evident morphisms A � A ⊕ B

and B � A ⊕ B.

3.1.1. MIX By the MIX rule we mean the following inference rule

Γ � ∆ Γ′ � ∆′

MIX
Γ,Γ′ � ∆,∆′

(This is the two-sided version of the MIX rule presented in Girard (1987), not the MIX

rule presented in Gentzen (1934).) It is obviously derivable in the classical sequent calculus,

for example, as follows:

Γ � ∆
WR

Γ � ∆,⊥
Γ′ � ∆′

WL
⊥,Γ′ � ∆′

Cut
Γ,Γ′ � ∆,∆′

A (symmetric) linearly distributive category is called a (symmetric) MIX category or said

to be MIX if it satisfies a certain condition (which we shall present below) that ensures

that the MIX rule has a canonical semantics.

In this section, we show that every pre-Dummett category is MIX. In fact, we show a

stronger result stating that every symmetric linearly distributive category with a monoid

on ⊥ or a comonoid on � is MIX (Theorem 3.11). The MIX property is interesting from

a proof-theoretic point of view; it is also important for the equational characterisation of

Dummett categories (Section 3.3) and for our extended GoI construction (Section 4).

A (symmetric) MIX category is a (symmetric) linearly distributive category with a

morphism m : ⊥ � � such that, for all objects A and B, the two evident morphisms

A ⊗ B � A ⊕ B agree (Cockett and Seely 1997a):

⊥

m

�

BA =

⊥

m

�

BA

We write mixAB for the canonical morphism A ⊗ B � A ⊕ B. The family mixAB of

morphisms is easily seen to be a natural in A and B.
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In a symmetric MIX category, the MIX barbell

⊥

m

�

provides a canonical way of gluing together any two nets f and g:

⊥

m

�

f g

Γ

∆

Γ′

∆′

=
⊥

m

�

f g

Γ

∆

Γ′

∆′

(the supporting wire of the thinning link within each net does not matter owing to the

empire rewiring proposition mentioned in Section 2.2.1). So a symmetric MIX category

provides a canonical semantics to the MIX rule.

Lemma 3.9. Let C be a symmetric linearly category C with a morphism �A : A � A⊗A.

Then for all f, g : A ⊗ ⊥ � ⊥, we have

g

A ⊥

⊥
f

⊥

=

A ⊥

⊥
f

g

⊥

(1)

Similarly, when each side of Equation 1 has n = 0 or n � 2 copies of A as input (that is,

each side has n = 0 or n � 2 occurrences of �A).

Proof. See the Appendix.

Lemma 3.10. A linearly distributive category with a morphism m : ⊥ � � is MIX if

and only if the following diagram commutes:

⊥ ⊗ ⊥ m ⊗ id� � ⊗ ⊥

⊥ ⊗ �

id ⊗ m

� ∼= � ⊥

∼=

�

(2)
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Proof. For the right-to-left direction, suppose that Diagram 2 commutes. Then

⊥

m

�

BA =
�

⊥

⊥

⊥

m
(by Reduce⊥)

=

⊥

⊥

�

⊥

m (by rewiring)

=

⊥

⊥⊥

�

m (by Diagram 2)

=

⊥

m

�

BA (by steps similar to the first three)

The left-to-right direction, which plays no role in this paper, follows from simple

calculations; we leave the details to the reader.

Theorem 3.11 (Führmann and Hasegawa). Every symmetric linearly distributive category

with a comonoid

�⊥ : ⊥ � ⊥ ⊗ ⊥ 〈〉⊥ : ⊥ � �
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is MIX (with m = 〈〉⊥). Dually, every symmetric linearly distributive category with a

monoid

�� : � ⊕ � � � []� : ⊥ � �

is MIX (with m = []�).

Proof. We show the comonoid case, with the help of Lemma 3.10. First, we present a

net k1, which denotes the top-right leg of Diagram 2 (with m = 〈〉⊥), and another net k2,

which denotes the left-bottom leg. Then, we use Lemma 3.9 to show that k1 and k2 are

equal. The dashed boxes labelled f, g, h1 and h2 denote subnets.

k1 =

⊥
⊥

⊥

⊥

g

f

⊥⊥

⊥

h1

=

⊥

⊥

⊥

⊥

(by empire rewiring)

=
⊥

(by WL-neutral)

= ⊥ ⊗ ⊥ 〈〉⊥⊗id� � ⊗ ⊥ ∼= ⊥ .
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k2 =

⊥⊥

h2

⊥

⊥

g

⊥ ⊥
f

⊥

=

⊥

⊥

⊥

⊥

(by empire rewiring)

=
⊥

(by WL-neutral)

= ⊥ ⊗ ⊥ id⊗〈〉⊥� ⊥ ⊗ � ∼= ⊥ .

By Lemma 3.9 with n = 2, we have h1 = h2, and therefore k1 = k2.

Corollary 3.12. Every pre-Dummett category is MIX with m = 〈〉⊥, and also with m = []�.

We write mix
〈〉
AB (respectively, mix []

AB) for the natural transformation A ⊗ B � A ⊕ B

built from 〈〉⊥ (respectively, []�).

Are pre-Dummett categories canonically MIX? In other words, do we have 〈〉⊥ = []�?

We do not know the answer to this question in general, but we shall see (Lemma 3.23)

that the answer for Dummett categories is ‘yes’.
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Table 9. Cut reductions for weakening and contraction (representative cases)

Φ···
Γ � ∆, A

Ψ···
Γ′ � ∆′

WL
A,Γ′ � ∆′

Cut
Γ,Γ′ � ∆,∆′

�

Ψ···
Γ′ � ∆′

WL,WR
Γ,Γ′ � ∆,∆′

(ReduceWL)

Φ···
Γ � ∆, A

Ψ···
A,A,Γ′ � ∆′

CL
A,Γ′ � ∆′

Cut
Γ,Γ′ � ∆,∆′

�

Φ···
Γ � ∆, A

Φ···
Γ � ∆, A

Ψ···
A,A,Γ′ � ∆′

Cut
A,Γ,Γ′ � ∆,∆′

Cut
Γ,Γ,Γ′ � ∆,∆,∆′

CL,CR
Γ,Γ′ � ∆,∆′

(ReduceCL)

Table 10. Net version of Table 9

f

∆

Γ

A
B �

Γ

∆

B (ReduceWL)

f

A A

Γ

∆

�

A A

Γ

f f

∆

(ReduceCL)

3.2. Poset enrichment

Our next goal is to model the cut-reduction rules for weakening and contraction – that

is, the equations in Table 9 and their duals ReduceWR and ReduceCR.

We use the symbol � instead of the equality symbol, because we shall not require that

the denotation of redex and reduct be the same: and if we required them to be the same

in the rules ReduceWL and ReduceWR, then any two derivations of Γ � ∆ would have the

same denotation because of Lafont’s example; and if we required them to be the same in

the rules ReduceCL and ReduceCR, we would rule out desirable models, as we shall see in

Example 3.15.

Table 10 contains the net versions of the reductions in Table 9. The derivation Φ

corresponds to the net f. The net corresponding to Ψ is not needed, because we allow

ourselves to rewrite subcircuits. We assume without loss of generality that Γ and ∆ consist
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of single formulae; this is possible because we can always bundle a wire labelled with

Γ = A1, . . . , An in a single wire labelled with A1 ⊗ · · · ⊗An (by using the two kinds of links

for ⊗), and a wire labelled with ∆ = B1, . . . , Bm in a single wire labelled with B1 ⊕ · · · ⊕Bm

(by using the two kinds of links for ⊕).

In our categorical models, � will be a poset enrichment. Consider the net version of

the law ReduceCL; if ∆ is empty, it corresponds to the categorical law

�A ◦ f � (f ⊗ f) ◦ �Γ , (�lax)

which states that � is a lax natural transformation. Similarly, the law ReduceWL for empty

∆ corresponds to the categorical law

〈〉A ◦ f � 〈〉Γ , (〈〉lax)

which states that 〈〉 be a lax natural transformation.

The parametric categorical laws (that is, the versions for non-empty ∆) are very

cumbersome: stating them requires multiple uses of the distribution δ; alternatively, one

can stick with the non-parametric versions and add four extra inequalities (see Table 1

in Führmann and Pym (2004)). By contrast, the net versions of the laws are elegant;

moreover, equations between nets are perfectly suited to describing equalities between

morphisms, owing to Theorem 2.7. So we stick with the net versions in this paper.

Definition 3.13. A Dummett category is a pre-Dummett category C together with a poset

enrichment � such that:

1 The functors ⊗ and ⊕ are monotonic in both arguments.

2 The laws ReduceWL, ReduceWR, ReduceCL and ReduceCR hold.

Example 3.14. Every distributive lattice D (which we know to be a pre-Dummett category

from Example 3.6).

The partial order is trivial, because each hom-set contain at most one element.

Example 3.15. The pre-Dummett category (Rel,×), where for relations f, f′ : A � B, we

define f � f′ ⇐⇒ f ⊆ f′, where ⊆ is the set-theoretic inclusion.

To see that ReduceWL holds, let Γ, ∆, A, B be sets, and let f be a relation Γ � ∆ × A.

The relation denoted by the redex turns out to be

{((g, b), (d, b)) : b ∈ B ∧ ∃a ∈ A : (g, (d, a)) ∈ f} ,

while the reduct turns out to be

{((g, b), (d, b)) : b ∈ B ∧ g ∈ Γ ∧ d ∈ ∆} .

The two are equal if and only if for all g ∈ Γ and d ∈ ∆, there exists an a ∈ A such that

(g, (d, a)) ∈ f. We call such relations f : Γ � ∆ × A total ; for empty ∆, this agrees with

the usual notion of a total relation. ReduceWR holds by the dual argument. To see that

ReduceCL holds, note that reduct turns out to be

{(g, (d, a, a)) : (g, (d, a)) ∈ f} ,
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while the reduct turns out to be

{(g, (d, a1, a2)) : (g, (d, a1)) ∈ f ∧ (g, (d, a2)) ∈ f} .

The two are equal if and only if for all g ∈ Γ, d ∈ ∆, and a1, a2 ∈ A, we have a1 = a2

whenever (g, (d, a1)) ∈ f and (g, (d, a2)) ∈ f. We call such relations f : Γ � ∆ × A

functional ; for empty ∆, this agrees with the usual notion of a functional relation.

Example 3.16. The pre-Dummett category (Rel,�), where for relations f, f′ : A � B, we

define f � f′ ⇐⇒ f′ ⊆ f.

To see that ReduceWL holds, let Γ, ∆, A, B be sets, and let f be a relation Γ � ∆ � A.

Then f consists of components fΓ∆ : Γ � ∆ and fΓA : Γ � A. The relation denoted

by the redex, when presented as a 2 × 2-matrix, turns out to be
⎛
⎜⎜⎝

Γ B

∆ fΓ∆ �
B � idB

⎞
⎟⎟⎠

while the reduct is ⎛
⎜⎜⎝

Γ B

∆ � �
B � idB

⎞
⎟⎟⎠

The two are equal if and only if fΓ∆ = 0. ReduceWR holds by the dual argument. To

see that ReduceCL holds, note that both redex and reduct turn out to be given by the

3 × 1-matrix ⎛
⎜⎜⎜⎜⎝

Γ

∆ fΓ∆

A fΓA

A fΓA

⎞
⎟⎟⎟⎟⎠

ReduceCR holds by the dual argument.

As we shall see in Remark 3.26, the pre-Dummett category (FDVecK,×) of finite-

dimensional vector spaces over a field K does not form a Dummett category.

As in the case of pre-Dummett categories, the product of two Dummett categories

forms a Dummett category. The product of a distributive lattice and (Rel,�) or (Rel,×)

shows that there are Dummett categories with non-trivial hom-sets such that ⊗ 	= ⊕ and

� 	= ⊥.

Definition 3.17. A classical category is a Dummett category with negation (in the sense

of Section 2.3).

Example 3.18. Every boolean lattice, where A⊥ is the complement of A.

Example 3.19. The Dummett category (Rel,×), with A⊥ = A.

The maps γL and γR are {((a, a), ∗) : a ∈ A}; and similarly for τL and τR .
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The Dummett category (Rel,�) does not have negation: because both ⊥ and � are the

empty set, the maps τL, τR , γL and γR could only be the empty relations; so they could

not satisfy the required equations. However, we shall see later that every traced Dummett

category (for example, (Rel,�)) induces a classical category via an extended Geometry of

Interaction construction (Theorem 4.4).

As in the case of Dummett categories, the product of two classical categories forms

a classical category. The product of a boolean lattice and (Rel,×) shows that there are

classical categories with non-trivial hom-sets such that ⊗ 	= ⊕ and � 	= ⊥.

3.2.1. Homomorphisms Next, we introduce certain kinds of homomorphisms for studying

how morphisms of a Dummett category behave with respect to ReduceWL, ReduceWR,

ReduceCL, and ReduceCR.

If the law

f ◦ � � � ◦ (f ⊕ f) (�lax)

holds for f as an equality, then f is a semigroup homomorphism. If the law

f ◦ [] � [] ([]lax)

holds for f as an equality, then f preserves the unit [] of the monoid; in this case, we call

f a pointed homomorphism. If both laws hold for f as equalities, then f is a monoid ho-

momorphism. Dually, we have notions of cosemigroup homomorphism, copointed homo-

morphism and comonoid homomorphism. Now we generalise this to the parametric case.

Definition 3.20. A morphism f : Γ � ∆ ⊕ A of a Dummett category is said to be a:

— parametrised copointed homomorphism (from Γ to A) if the law ReduceWL (that is, the

parametrised version of the law 〈〉lax) holds for f as an equality;

— parametrised cosemigroup homomorphism (from Γ to A) if the law ReduceCL (that is,

the parametrised version of the law �lax) holds for f as an equality;

— parametrised comonoid homomorphism (from Γ to A) if f is both of the above.

Parametrised pointed, semigroup and monoid homomorphisms are defined dually.

According to the discussions in Examples 3.15 and 3.16, the situation for (Rel,×) and

(Rel,�) is as follows (and dually for semigroup/pointed/monoid homomorphisms):

property (Rel,×) (Rel,�)

f : Γ � ∆ ⊕ A is a parametrised copointed

homomorphism
if f is total if fΓ∆ = �

f : Γ � ∆ ⊕ A is a parametrised cosemigroup

homomorphism
if f is functional always

f : Γ � A is a copointed homomorphism if f is total always

f : Γ � A is a cosemigroup homomorphism if f is functional always

f : Γ � A is a comonoid homomorphism if f is a total function always
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What prevents (Rel,�) from identifying both reducts in Lafont’s example is that not

every morphism is a parametrised (co)pointed homomorphism!

As we shall see in Section 3.4.3, the (co)homomorphism analysis for any Dummett

category with finite biproducts leads to the same result as we found for (Rel,�).

3.3. The structure of Dummett categories

In this section, we show that the partial order of a Dummett category can be expressed in

terms of the underlying pre-Dummett category (Proposition 3.28), and we use that result

to show that Dummett categories can be axiomatised in terms of unconditional equations

(Theorem 3.31). After that, we shall present the construction of the free Dummett category

from nets (Theorem 3.32).

The key to the equational axiomatisation is the observation that every hom-set of a

pre-Dummett category has a binary operation ∗, which in the case of a Dummett category

is a semilattice (in general, without a neutral element), from which the partial order �
can be derived.

Definition 3.21. For two morphisms f, g : A � B of a pre-Dummett category, the

morphism f ∗ g : A � B is defined as follows:

A ⊕ A

A
�� A ⊗ A

m
ix

〈〉
A
,A

�

B ⊕ B
� �

f ⊕
g

�

B

B ⊗ B

m
ix

〈〉
B
,B

�

f ⊗
g �

The corresponding net is

⊥

m

�

f g

A

B

where m = 〈〉�. That is, we glue f and g together with a MIX barbell (as discussed

in Section 3.1.1) to give a morphism A ⊗ A � B ⊕ B, and then pre-compose � and

post-compose �. (Re-attaching the bottom thinning link of the MIX barbell to the wire

above g would yield the upper leg A � B of the commuting diagram above, while

re-attaching the top thinning link of the MIX barbell to the wire below f would yield the
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bottom leg A � B of the commuting diagram above. Both nets are equal to the net

above owing to empire rewiring.)

We shall see soon (Lemma 3.23) that 〈〉⊥ = []� in the case of a Dummett category, so

in that case it does not matter whether we use mix 〈〉 or mix [] in the definition of the

operation ∗.

Example 3.22.

— In (Rel,×), where mixAB = idA×B , ∗ is the set-theoretic intersection.

— In (Rel,�), where mixAB = idA�B , ∗ is the set-theoretic union.

— In (FDVecK,×), where mixAB = idA×B , ∗ is the usual addition.

Note that the operation ∗ is associative (owing to CR-assoc and CL-assoc) and commut-

ative (owing to CR-symm and CL-symm). Now we turn to proving that in every Dummett

category ∗ is idempotent, and therefore a semilattice.

Lemma 3.23. Every Dummett category has a greatest morphism ⊥ � �, and it is equal

to 〈〉⊥ and []�.

Proof. For every morphism f : ⊥ � �, we have

f = id� ◦ f

= 〈〉� ◦ f (by 〈〉trivial)

� 〈〉⊥ . (by 〈〉lax)

Dually, we get f � []�.

Lemma 3.24. In every Dummett category, we have the following laws:

f ∗ g � f f ∗ g � g .

Proof. Without loss of generality, we show f ∗ g � g. We have

f ∗ g =

⊥

m

�

f g

B

A
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where the dashed boxes are only for visual guidance. By applying ReduceWL to the

outermost dashed box, the above net is less than or equal to

g

A

B

A

B

By WR-neutral and WL-neutral, this is equal to g.

Lemma 3.25. For every morphism f of a Dummett category, f ∗ f = f.

Proof. The inequality f ∗ f � f follows directly from Lemma 3.24. For the converse,

note that f is equal to

f

⊥

⊥

⊥

owing to WL-neutral and Reduce⊥. (The dashed boxes are only for visual guidance.) By

applying ReduceCL to the subnet in the outermost dashed box, it follows that the above

net is less than or equal to

f ⊥ f ⊥

⊥

⊥
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By empire rewiring, this is equal to

f ⊥ f ⊥

⊥

⊥

Now we apply Reduce⊥ to remove the ‘appendix’ and expand the bottom thinning link

in the sense of Definition 3.1 to give

f f[]

�

⊥

By Lemma 3.23, we have []� = m, so the above net is equal to f ∗ f.

Remark 3.26. So the pre-Dummett category (FDVecK,×) cannot be a Dummett category

because the addition of vectors is not idempotent.

Lemma 3.27. In every Dummett category, ∗ is monotonic in both arguments with respect

to �.

Proof. The result follows from the definition of ∗ and the fact that ⊕, ⊗ and ◦ are

monotonic with respect to �.

Proposition 3.28. In every Dummett category, the partial order � agrees with the one

induced by the semilattice structure – that is,

f � g ⇐⇒ f = f ∗ g.

Proof. For the left-to-right implication, suppose that f � g. By Lemma 3.24, we have

f ∗ g � f. To see that f � f ∗ g, consider

f = f ∗ f (by Lemma 3.25)

� f ∗ g. (by Lemma 3.27)

The right-to-left implication holds because f ∗ g � g by Lemma 3.24.
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Composition does not generally preserve the semilattice structure – that is, Dummett

categories are not generally semilattice-enriched. In fact, even classical categories are not

generally semilattice-enriched. To see this, consider the classical category (Rel,×). The

operation ∗ is the set-theoretic intersection. We have

(x, z) ∈ h ◦ (f ∗ g) ⇐⇒ ∃y : (x, y) ∈ h and (y, z) ∈ f and (y, z) ∈ g

(x, z) ∈ (h ◦ f) ∗ (h ◦ g) ⇐⇒ ∃y1, y2 : (x, y1) ∈ h and (y1, z) ∈ f

and (x, y2) ∈ h and (y2, z) ∈ g.

Obviously, the two relations differ for some f, g and h. However, composition preserves

∗ in a lax way, and the same is true for ⊗ and ⊕.

Lemma 3.29. In every Dummett category, the following laws hold:

h ◦ (f ∗ g) � (h ◦ f) ∗ (h ◦ g) (f ∗ g) ◦ k � (f ◦ k) ∗ (g ◦ k) (◦lax)

h ⊗ (f ∗ g) � (h ⊗ f) ∗ (h ⊗ g) (f ∗ g) ⊗ k � (f ⊗ k) ∗ (g ⊗ k) (⊗lax)

h ⊕ (f ∗ g) � (h ⊕ f) ∗ (h ⊕ g) (f ∗ g) ⊕ k � (f ⊕ k) ∗ (g ⊕ k). (⊕lax)

Proof. By Lemma 3.24, we have f∗g � f and f∗g � g. Because h◦(−) is monotonic, we

have h◦(f∗g) � h◦f and h◦(f∗g) � h◦g. By Proposition 3.28, we get h◦(f∗g) � (h◦f)∗(h◦g).
The other five inequalities can be proved similarly.

Lemma 3.30 (Hasegawa). In a pre-Dummett category that satisfies the equation idB∗idB =

idB for every object B, the laws ReduceWL and ReduceWR are derivable.

Proof. See the Appendix.

The following theorem provides a characterisation of Dummett categories in terms of

unconditional inequalities (which can be stated as equalities owing to the semilattice

structure).

Theorem 3.31. To give a Dummett category is to give a pre-Dummett category satisfying

the laws 〈〉⊥ = []� and f ∗ f = f, and, letting � be the partial order induced by the

semilattice ∗, the laws ReduceCL, ReduceCR, ◦lax, ⊗lax and ⊕lax.

Proof. Every Dummett category satisfies the law 〈〉⊥ = []� by Lemma 3.23 and the law

f ∗ f = f by Lemma 3.25. By Proposition 3.28, the partial order of the Dummett category

agrees with the order induced by the semilattice ∗. So ReduceCL and ReduceCR hold

for the induced partial order because they are required to hold in a Dummett category;

the laws ◦lax, ⊗lax and ⊕lax hold for the induced partial order because they hold in a

Dummett category, owing to Lemma 3.29.

Conversely, let C be a pre-Dummett category satisfying the equations 〈〉⊥ = []�. By

Corollary 3.12, C is MIX with m = 〈〉⊥ = []�, so ∗ is canonically defined. Now suppose that

f∗f = f for every morphism f. Let � be the partial order induced by the semilattice ∗, and

suppose that the laws ReduceCL, ReduceCR, ◦lax, ⊗lax and ⊕lax hold. By Lemma 3.30,

we have ReduceWL and ReduceWR. So, to see that we have a Dummett category, we still

have to show that ◦, ⊗, ⊕ are monotonic in each argument. We shall show that h ◦ (−)
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is monotonic for every morphism h; the other cases are similar. So, let f � g, that is,

f = f ∗ g. Using ◦lax, we get h ◦ f = h ◦ (f ∗ g) � (h ◦ f) ∗ (h ◦ g) � h ◦ g.

Theorem 3.32. Let Σ be a signature containing AxWL, AxWR, AxCL and AxCR and let:

— E be a set of equations on Net(Σ);

— E ′ be the set of equations for pre-Dummett categories described in Tables 7 and 8

and their duals; and

— E ′′ be the set of equations (between nets) corresponding to the laws 〈〉⊥ = []�, f∗f = f,

ReduceCL, ReduceCR, ◦lax, ⊗lax and ⊕lax, where � is the partial order induced by

the semilattice ∗.

Then NetE∪E ′∪E ′′(Σ) is the free Dummett category generated by Σ and E.

The similar result holds for classical categories.

Proof. The result follows from Theorem 2.7, together with the fact that E ′ charac-

terises pre-Dummett categories and E ′′ characterises Dummett categories, as stated in

Theorem 3.31.

3.3.1. Duality of the monoids and comonoids In this section, we show that the monoids

and comonoids of a classical category are mutually dual via De Morgan isomorphisms.

Every symmetric linearly distributive category with negation has, for all objects A and

B, a De Morgan isomorphism (A ⊗ B)⊥ ∼= A⊥ ⊕ B⊥. The mutually-inverse morphisms

(A ⊗ B)⊥ � A⊥ ⊕ B⊥ and (A ⊗ B)⊥ � A⊥ ⊕ B⊥ are given by the nets

(A ⊗ B)⊥

A⊥ ⊕ B⊥

BA

⊗

¬¬

A⊥
B⊥

¬

A ⊗ B

and

¬
A ⊗ B

¬(A ⊗ B)

¬ ¬

⊕

A⊥ ⊕ B⊥

A
B

B⊥

A⊥

Dually, there is an isomorphism (A ⊕ B)⊥ ∼= A⊥ ⊗ B⊥. Also, there is an isomorphism

�⊥ ∼= ⊥, consisting of the mutually-inverse morphisms

¬
⊥

⊥

�

�⊥

� and

�

�

⊥⊥

⊥

¬

⊥

Dually, there is an isomorphism ⊥⊥ ∼= �.
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Proposition 3.33. In every classical category, the following diagrams and their dual versions

commute:

(A ⊗ A)⊥ ∼= A⊥ ⊕ A⊥

A⊥

�

� (A
⊥ )(�

A ) ⊥ �

�⊥ ∼= ⊥

A⊥

�

[] (A
⊥ )(〈〉

A ) ⊥ �

Proof. Let d be the isomorphism (A ⊗ A)⊥ ∼= A⊥ ⊕ A⊥. We have

(�A)⊥ =

(A ⊗ A)⊥

⊗

¬

A ⊗ A

A

A⊥

¬

and �(A⊥) ◦ d =

(A ⊗ A)⊥

AA

⊗

¬¬

A⊥
A⊥

¬

A ⊗ A

A⊥

The inequality (�A)⊥ � �(A⊥) ◦ d is an instance of ReduceCR, where the subnet that gets

duplicated is the top-left negation component in the net for (�A)⊥. Now for the converse.

Note that, by Expand¬, the net for �(A⊥) ◦ d is equal to

(A ⊗ A)⊥

A

⊗

¬¬

A⊥
A⊥

¬

A⊥

¬

A

¬

A A⊥
A ⊗ A

f

where the subnet f is marked purely for reference. By ReduceCL, where the duplicated

subnet is f, followed by elimination of the two resulting logical cuts involving negation,

we find that this net is less than or equal to the net for (�A)⊥.

The proof for the triangle involving the isomorphism �⊥ ∼= ⊥ is somewhat similar and

left to the reader.

Remark 3.34. Recall that symmetric linearly distributive categories are equivalent to ∗-

autonomous categories. Proposition 3.33 implies that classical categories are equivalent

to ∗-autonomous categories with symmetric comonoids satisfying certain equations; the

monoids can be defined from the comonoids as shown in Proposition 3.33. The term

calculus presented in Section 5 takes advantage of this fact.

Remark 3.35. Linearly distributive categories have a notion of complemented object:

simply speaking, a complemented object of a linearly distributive category is an object

whose negated version exists (Cockett and Seely 1999, Appendix). For a symmetric linearly

distributive category C, the full subcategory S given by the complemented objects has
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negation, because complemented objects are closed under ⊗, ⊕, � and ⊥ (Cockett and

Seely 1999, Proposition 34).

Moreover, it is easy to see that if C is a Dummett category, then S is a classical category.

So even in a Dummett category, the monoids and comonoids are dual whenever it makes

sense to speak of duality.

3.4. Compact Dummett categories

We can think of a symmetric monoidal category C = (C,⊗,�) as a compact symmetric

linearly distributive category, by which we mean that the two symmetric monoidal

structures agree and distribution is the associativity A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C . If

C has symmetric monoids and symmetric comonoids

�A : A � A ⊗ A �A : A ⊗ A � A

〈〉A : A � � []A : � � A,

it forms a pre-Dummett category; in this section, we shall study the situation in which C

is a Dummett category.

In particular, we shall present an axiomatisation of such compact Dummett categories

as compact pre-Dummett categories satisfying only one extra equality (Proposition 3.42).

Moreover, we will show how compact Dummett categories shed light on cut reductions

involving contraction (Proposition 3.41).

Some parts of this section are also required for our extended GoI construction, in

Section 4.

3.4.1. Nets for symmetric monoidal categories There are circuits that make sense in

a symmetric monoidal category that do not make sense in every symmetric linearly

distributive category. For example, the circuit

f

g

BA D

H

KJIE G

F

C

describes the morphism

A ⊗ B ⊗ C ⊗ D
id⊗f⊗id� A ⊗ E ⊗ F ⊗ G ⊗ H ⊗ D

∼=
E ⊗ A ⊗ H ⊗ D ⊗ F ⊗ G

id⊗g⊗id� E ⊗ I ⊗ J ⊗ F ⊗ K ⊗ G.

This does not make sense in every symmetric linearly distributive category, because f

and g are connected by two wires (F and H), which requires us to have a morphism

https://doi.org/10.1017/S0960129507006287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006287


On categorical models of classical logic and the Geometry of Interaction 1001

F ⊕ H � F ⊗ H . Also, juxtapositions like

gf

make sense in a symmetric monoidal category (the semantics is f ⊗ g), but not in every

symmetric linearly distributive category. In fact, if f and g are circuits that describe

morphisms in a symmetric monoidal category C, and we connect any number of output

ports of f to input ports of g (such that the types match), then the resulting circuit also

describes a morphism in C. We call this a symmetric monoidal composition of circuits.

(However, we must not connect an output port with an input port of the same circuit,

unless the category is traced. We will say more about this in Section 4.1.)

The links we shall use in nets for symmetric monoidal categories are

⊗L′ ⊗
B

A ⊗ B

A
⊗
A ⊗ B

BA

⊗R

�L′
�

� �
� �R

We have already used ⊗R and �R in nets for symmetric linearly distributive categories;

but not the links ⊗L′ and �L′. Both ⊗L′ and ⊗R denote idA⊗B , and are useful for

bundling multiple wires. Both �L′ and �R denote id�, and are useful for removing wires

of type �.

When the category is compact closed, we also use the links ¬L and ¬R.

Definition 3.36. The symmetric monoidal nets over a set of atomic types and a set C of

components are the following circuits:

— Types are given by the grammar

A,B ::= A ⊗ B | � | b,

where b ranges over atomic types;

— Components are the links ⊗L′, ⊗R, �L′ and �R, and all elements of C. In the compact

closed case, we also have the links ¬L and ¬R;

— If f and g are symmetric monoidal nets, then so is any symmetric monoidal

composition of f and g.

There is an evident translation that sends nets for symmetric linearly distributive categories

to symmetric monoidal nets. It translates formulae by sending ⊕ to ⊗ and ⊥ to �. It

translates circuits by replacing subcircuits according to the rules in Table 11. It is easy to

see that this translation preserves the semantics. That is, if f is a net for symmetric linearly

distributive categories that denotes a morphism in a symmetric monoidal category, then

the symmetric monoidal net that results from the translation denotes the same morphism.
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Table 11. Rules for translating nets for symmetric linearly distributive categories into nets

for symmetric monoidal categories

A B

A ⊗ B

and ⊕
B

A ⊕ B

A

are replaced by ⊗
B

A ⊗ B

A

⊗
A ⊗ B

BA
and

B

A ⊕ B

A

are replaced by ⊗
A ⊗ B

BA

⊥
⊥

and

�
� are replaced by

�
�

⊥
⊥

and
�

�
are replaced by

�
�

When symmetric monoids and comonoids are present, we shall write

A

A
and

A

A

for

A

〈〉
�

�

and

A

[]

�
⊥

and we keep the notation for contractions given in Definition 3.1.

3.4.2. Characterising compact Dummett categories by one equality In this section, we show

that a symmetric monoidal category with symmetric monoids and symmetric comonoids

forms a Dummett category if and only if it satisfies the following law (Proposition 3.42):

(k ◦ (f ∗ g) ◦ h) ∗ (k ◦ g ◦ h) = k ◦ (f ∗ g) ◦ h (3)

f g

k

h

k

h

g = f g

k

h
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Moreover, we will show how compact Dummett categories can shed light on cut reductions

involving contraction (Proposition 3.41).

Lemma 3.37. Every symmetric monoidal category with symmetric monoids and symmetric

comonoids satisfies the following laws:

f ∗ e = f where e = [] ◦ 〈〉 (4)

(f ⊗ h) ∗ (g ⊗ k) = (f ∗ g) ⊗ (h ∗ k) . (5)

The net version of Equation 5 is

kg

⊗

⊗

f h

⊗

⊗

= kf

⊗

⊗

hg

Proof. Equation 4 holds because

f ∗ e = � ◦ (f ⊗ ([] ◦ 〈〉)) ◦ �

= � ◦ (id ⊗ []) ◦ (f ⊗ id ) ◦ (id ⊗ 〈〉) ◦ �

= f . (by 〈〉neutral and []neutral)

Equation 5 holds because of CLpointwise and CRpointwise.

Lemma 3.38. In every symmetric monoidal category with symmetric monoids and sym-

metric comonoids that satisfies Equation 3, the law g ∗ g = g holds.

Proof. Let k = id , h = id and f = e in Equation 3.

Lemma 3.39. In every symmetric monoidal category with symmetric monoids and sym-

metric comonoids that satisfies Equation 3, ◦ and ⊗ are monotonic in both arguments

with respect to the partial order induced by the hom-semilattice ∗.

Proof. The monotonicity of ◦ follows from Equation 3: for f � g (that is, f ∗ g = id )

we have k ◦ f ◦ h � k ◦ g ◦ h because (k ◦ f ◦ h) ∗ (k ◦ g ◦ h) = (k ◦ (f ∗ g) ◦ h) ∗ (k ◦ g ◦ h) =

k ◦ (f ∗ g) ◦ h = k ◦ f ◦ h. To see the monotonicity of ⊗, suppose that f � g. Then we have

f ⊗ h � g ⊗ h because

(f ⊗ h) ∗ (g ⊗ h) = (f ∗ g) ⊗ (h ∗ h) (by Equation 5 of Lemma 3.37)

= (f ∗ g) ⊗ h

= f ⊗ g.
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Lemma 3.40. In every symmetric monoidal category with symmetric monoids and sym-

metric comonoids that satisfies Equation 3, (� ⊗ id ) ◦ (id ⊗ �) � id .

�

Proof. We have

(� ⊗ id ) ◦ (id ⊗ �) = (� ⊗ id ) ◦ (id ⊗ id ⊗ id ) ◦ (id ⊗ �)

� (� ⊗ id ) ◦ (id ⊗ e ⊗ id ) ◦ (id ⊗ �) (because, by previous

lemmas, e is the neutral/greatest element and ◦ and ⊗
are monotonic in both arguments).

= (� ⊗ id ) ◦ (id ⊗ ([] ◦ 〈〉) ⊗ id ) ◦ (id ⊗ �)

= id . (by []neutral and 〈〉neutral)

Proposition 3.41 below implies that, in every symmetric monoidal category with symmetric

monoids and symmetric comonoids that satisfies Equation 3, the law ReduceCL can be

split into two steps. The first step is the equality stated in the proposition, and the second

step is an inequality that results from applying Lemma 3.40:

A A

Γ

∆

l =

Γ

l l

A A∆

(by Proposition 3.41)

=

A A

Γ

l l

∆

(by Lemma 3.40)

(however, the net on the right-hand side of the first equation is not generally the denotation

of a sequent proof).

Proposition 3.41. In every symmetric monoidal category with symmetric monoids and

symmetric comonoids that satisfies Equation 3, we have

A A

Γ

∆

l =

Γ

l l

A A∆
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Proof. We use Equation 3 with k = id and f, g, h such that the left-hand side looks as

follows:

n =

A

⊗

A

⊗
∆ A A

⊗

A

⊗
∆ A A

⊗

⊗⊗

⊗
∆ A A

Γ

∆ ⊗ A ⊗ A

l

∆ A

∆ ⊗ A

l

∆ A

∆ ⊗ A

h

f
g

m

g

h

(6)

First we focus on the morphism given by the subnet m, which is the right-hand side of

Equation 3. We have

m =
A

⊗

l

A

∆ ⊗ A ⊗ A

∆ AA

∆ A

Γ

(by CL-pointwise, CR-pointwise, and Reduce⊗)

=
⊗

l

∆ ⊗ A ⊗ A

A
∆

Γ

(by WR-neutral and, by Lemma 3.38, � ◦ � = id ∗ id = id )
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By simplifying m accordingly in the net n, we get

n =

⊗

l l

A
∆ ∆

Γ

∆ ⊗ A ⊗ A

A

⊗
AA

=

⊗

l

Γ

∆ ⊗ A ⊗ A

A

l

A

⊗

∆

A∆ A
(by CL-symm and CR-symm)

=

l l

Γ

⊗
∆ ⊗ A ⊗ A

A

∆ A A

(by CR-pointwise)

By WR-neutral, this is equal to the right-hand side of Equation 6. So the right-hand side

of Equation 6 is equal to m, which by Equation 3 is equal to n, which, as we have just

shown, is equal to the left-hand side of Equation 6.

Proposition 3.42 (Hasegawa). A symmetric monoidal category with symmetric monoids

and symmetric comonoids forms a Dummett category if and only if Equation 3 holds.

Proof. Let C be a symmetric monoidal category with monoids and comonoids. For

the ‘only if’ direction, suppose that C forms a Dummett category. The � direction of

Equation 3 is trivial, because the semilattice operation ∗ is the greatest lower bound with
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respect to �. The � direction holds because

k ◦ (f ∗ g) ◦ h = k ◦ ((f ∗ g) ∗ g) ◦ h

= k ◦ � ◦ ((f ∗ g) ⊗ g) ◦ � ◦ h

� � ◦ (k ⊗ k) ◦ ((f ∗ g) ⊗ g) ◦ (h ⊗ h) ◦ � (by �lax and �lax)

= (k ◦ (f ∗ g) ◦ h) ∗ (k ◦ g ◦ h).

For the ‘if ’ direction, suppose C satisfies Equation 3. The monotonicity of ◦ and

⊗ in both arguments follows from Lemma 3.39. The law ReduceCL holds because of

Proposition 3.41 and Lemma 3.40, and dually for ReduceCR.

3.4.3. Dummett categories with finite biproducts In this section, we discuss the special

case of compact Dummett categories where the tensor/cotensor is a biproduct. That is,

Dummett categories in which ⊗ = ⊕ is:

— the cartesian product, with diagonals and projections given by � and 〈〉;
— the cartesian coproduct, with codiagonals and coprojections given by � and [], and

⊥ = � is the zero (that is, initial and terminal) object.

The following proposition shows that such categories have a very simple axiomatisation.

Proposition 3.43 (Hasegawa). A category with finite biproducts forms a Dummett category

(with the biproduct as the tensor/cotensor) if and only if � ◦ � = id .

Proof. Let C be a category with finite biproducts. If C is a Dummett category, we have

� ◦ � = id ∗ id

= id . (by Lemma 3.25)

If C satisfies the equation � ◦ �, then Equation 3 holds because:

(k ◦ (f ∗ g) ◦ h) ∗ (k ◦ g ◦ h) = � ◦ ((k ◦ (� ◦ (f × g) ◦ �) ◦ h) × (k ◦ g ◦ h)) ◦ �

= k ◦ � ◦ (f × (� ◦ �)) ◦ (id × g) ◦ � ◦ h (by calculations

that hold in every category with biproducts)

= k ◦ � ◦ (f × id ) ◦ (id × g) ◦ � ◦ h

= k ◦ (f ∗ g) ◦ h.

Remark 3.44. We have already seen in Example 3.16 that (Rel,�) is a Dummett category

with finite biproducts. Proposition 3.43 makes clear that we could have checked this

simply by verifying the equation � ◦ � = id , which obviously holds.

When dealing with categories with finite biproducts, we follow common practice and

write:

— ⊕ (not ⊗) for the biproduct;

— ⊥ (not �) for the zero object;

— + instead of ∗; and

— 0 instead of e = [] ◦ 〈〉.
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Given objects A1, · · · , An and B1, · · · , Bm, and maps flk : Al
� Bk for l ∈ {1, . . . , n} and

k ∈ {1, . . . , m}, we write

⎛
⎜⎝

f11 · · · fn1
...

...

f1m · · · fnm

⎞
⎟⎠

for the unique morphism f : A1 ⊕ · · · ⊕ An
� B1 ⊕ · · · ⊕ Bm such that πk ◦ f ◦ ιl = flk .

It is easy to see that composition agrees with matrix multiplication.

The homomorphism analysis carried out for (Rel,�) in Section 3.2.1 can be generalised

to all Dummett categories with finite biproducts. Let f : Γ � ∆⊕A be a homomorphism

of a category with finite biproducts. Both the redex and the reduct of ReduceCL turn out

to be ⎛
⎜⎜⎜⎜⎝

Γ

∆ fΓ∆

A fΓA

A fΓA

⎞
⎟⎟⎟⎟⎠

So every f : Γ � ∆ ⊕A is a parametrised cosemigroup homomorphism. The redex and

reduct of ReduceWL turn out to be given by the matrices

⎛
⎜⎜⎝

Γ B

∆ fΓ∆ 0

A 0 idB

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

Γ B

∆ 0 0

A 0 idB

⎞
⎟⎟⎠

respectively. So f is a parametrised copointed homomorphism if and only if fΓ∆ = 0.

4. Geometry of interaction in the presence of weakening and contraction

The Geometry of Interaction (GoI) was introduced by Girard (Girard 1989; Girard 1990;

Girard 1995) in the late 1980s in the context of modelling the dynamics of cut elimination

in (classical) linear logic (Girard 1987). The aim was to capture the essential structure of

the proof theory of cut elimination while avoiding the semantically inessential aspects of

the syntax.

A categorical approach to GoI, based on domain theory and arising from the construc-

tion of a categorical model of linear logic, was described in Abramsky and Jagadeesan

(1994). Some years later, Abramsky et al. presented what can be seen as a general form

of the Geometry of Interaction: a compact closed category is constructed from a traced

symmetric monoidal category (Abramsky 1996; Abramsky et al. 2002). This construction

also appeared in Joyal et al. (1996).

Many of the ideas contributing to these developments have also been described by

Hyland. Beginning in lectures dating from 1992, Hyland has described a range of ideas,

from the construction of compact closed categories from what are now called traced

monoidal categories, and explaining GoI as a matter of interpreting derivations with cuts
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in such categories, through to a recent invited paper (Hyland 2004) in which interpretations

of contraction and weakening in traced categories with biproducts are also considered.

Recently, Haghverdi and Scott (Haghverdi and Scott 2006) have considered a GoI

semantics for multiplicative exponential linear logic based on ‘unique decomposition

categories’. Their objective is distinct from ours in that they are not concerned with classical

logic, and they give an abstract account of Girard’s original ‘untyped’ notion of GoI.

The main contribution of this section is an extended GoI construction that sends a

traced Dummett category to a classical category. (This is a generalisation of the GoI

construction in Führmann and Pym (2004), where the traced Dummett category had

to be a quantaloid with finite biproducts.) This shows that GoI works in the presence

of weakening and contraction, even with respect to the partial order that models cut

reductions.

In Section 4.1, we introduce traced symmetric monoidal categories as symmetric MIX

categories all of whose objects are traced. In Section 4.2, we review the traditional

construction of a compact closed category from a traced symmetric monoidal category

and present it in terms of nets. In Section 4.3, we extend that construction to traced

Dummett categories. In Section 4.4, we study the special case where the starting point of

the extended GoI construction is a traced Dummett category with finite biproducts, and

carry out a homomorphism analysis in the sense of Section 3.2.1.

4.1. Traced symmetric MIX categories

In this section, we recall the notion of a traced object in a symmetric MIX category from

Blute et al. (2000), because our extended GoI construction starts with a Dummett (and

therefore symmetric MIX) category C all of whose objects are traced (in a compatible

way). But, as we shall see, a symmetric MIX category in which every object is traced is

compact in the sense that all maps mixAB : A ⊗ B � A ⊕ B and m : ⊥ � � are

isomorphisms. To make the presentation simpler, we shall assume that these isomorphisms

are identities, so C is simply a traced monoidal category with the extra structure required

for a Dummett category. We take this detour via traced objects, as opposed to introducing

traced symmetric monoidal categories straight away, to show that assuming compactness

in the presence of a trace implies no loss of generality.

An object U of a symmetric MIX category C is said to have a trace if there is a family

of functions trABU : C(U ⊗ A,U ⊗ B) � C(A,B) satisfying certain equations that we

shall present shortly. Following Blute et al. (2000), we write

f

U

U

A

B

for the net that represents tr(f : U ⊗ A � U ⊕ B). We think of the trace of ‘feedback

along U’. The dashed box indicates the scope of the trace.
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The equational laws, presented in terms of nets, are

m

⊥

�

= (Yanking)

f

g

h

= f

g

h

(Tightening)

f
=

f

f
=

f
(Superposing)

The left-hand net in the Yanking law describes a trace over the twisted version of

m : U ⊗ U � U ⊕ U, that is, over the map mix ◦ σ⊗ = σ⊕ ◦ mix : U ⊗ U � U ⊕ U.

The Tightening law lives up to its name and describes how the scope of the trace can be

tightened. The Superposing law (called ‘Superposing (ii)’ in Blute et al. (2000)) explains

how the scope of the trace can be tightened when the links ⊗L and ⊕R are involved. The

categorical-style versions of these laws and a more detailed discussion can be found in

Blute et al. (2000).

Now we let U and V be objects of a symmetric MIX category C, with trace operators

trU and trV , respectively. These traces are called compatible if the equation

f

U

V

= f

U

V

(Compatibility)

holds for every f : U ⊗ V ⊗ A � U ⊕ V ⊕ B. Note that compatibility, like Tightening

and Superposing, is about manipulating the scopes of traces.

Now let C be a symmetric MIX category some of whose objects have a trace, and

suppose all those traces are compatible. Then it is not hard to show that the laws for

Tightening, Superposing and compatibility together imply that the scope of a trace can

be extended and contracted arbitrarily (as long as the net stays syntactically correct), so

the dashed boxes become unnecessary.
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By Blute et al. (2000, Proposition 10), every traced object U of a symmetric MIX

category C is in the core of C – that is, for every object A, the map mix : U⊗A � U⊕A

has an inverse (given by the trace over the distribution δ : U⊗ (U⊕A) � U⊕ (U⊗A)).

By Blute et al. (2000, Proposition 11), if either ⊥ or � has a trace, then m : ⊥ � �
has an inverse (given by the trace over the map U ⊗ � ∼= U ∼= U ⊕ ⊥, where U = ⊥ or

U = �). Hence, if every object of C has a trace, as will be the case in our extended GoI

construction, then all maps mixAB : A ⊗ B � A ⊕ B and m : ⊥ � � have inverses.

To make the presentation simpler, we shall assume that mix and m are identities. Thus,

we recover the original notion of a traced monoidal category as a symmetric monoidal

category in which every object is traced such that any two traces are compatible. (For a

more detailed discussion of this fact, see Blute et al. (2000).)

So we shall use the symmetric-monoidal nets described in Section 3.4.1.

We shall further simplify the notation for the trace by replacing

f with f

The right-hand circuit introduces no unwanted ambiguity: if the loop is part of a cycle

(that is, there is a connection between the loop’s entry point into f and the loop’s exit

point from f), the loop necessarily stands for a trace; otherwise, the loop’s entry point is

connected with some subnet g of f and the exit point is connected with some subnet h of

f such that g and h are not connected:

h

g

This can be rewritten as

k =

h

g

The scenario where the loop is a trace, presented in our old notation, is

h

g

By Tightening and Yanking, this is equivalent to k.

https://doi.org/10.1017/S0960129507006287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006287


C. Führmann and D. Pym 1012

So, in the presence of a trace, we can allow wires from an output port to an input

port of the same circuit. So every circuit built from ⊗L′, ⊗R, �L′ and �R and other

components forms a traced symmetric monoidal net. The equations for the trace, even

yanking, are built into the syntax of the nets. As in the untraced case, the only equations

needed are Reduce⊗, Reduce�, Expand⊗ and Expand�.

4.2. The ‘traditional’ GoI construction

In this section we describe the traditional construction of a compact closed category

from a traced symmetric monoidal category. Our point here is to express this well-known

construction in terms of the traced symmetric monoidal nets described in Section 4.1; this

helps calculations in Section 4.3.

Given a traced symmetric monoidal category C, the category G(C) is defined by:

— Objects are pairs (A+, A−) of objects of C.

— A morphism f : (A+, A−) � (B+, B−) of G(C) is a morphism f : A+ ⊗B− � A− ⊗
B+ of C:

B−

B+A−
f

A+

— The identity on (A+, A−) is the twist map A+ ⊗ A− ∼= A− ⊗ A+ of C:

id (A+ ,A−) =
A+ A−

A+A−

— The composition of morphisms (A+, A−)
f� (B+, B−)

g� (C+, C−) is given by the

net

g ◦ f = g

C−

C+

A+

A−

B−

f

B+

Proposition 4.1. G(C) is a compact closed category.

The proof of this theorem is well known; however, we shall present our own proof to aid

familiarisation with our usage of nets.

Proof. For objects (A+, A−) and (B+, B−), we define

(A+, A−) ⊗ (B+, B−) = (A+ ⊗ B+, A− ⊗ B−) .
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The tensor unit of G(C) is (�,�). For morphisms f : (A+, A−) � (B+, B−) and

g : (C+, C−) � (D+, D−), we define

f ⊗ g =

⊗ ⊗

⊗⊗

A+ ⊗ C+

A+

A−

A− ⊗ C− B+ ⊗ D+

B+

B−

C+

B− ⊗ D−

C−
D+

D−

f g

The fact that ⊗ : G(C) × G(C) � G(C) is a functor follows immediately from the

reduction and expansion rules for nets. We now give an auxiliary definition: for morphisms

f+ : A+ � B+ and f− : A− � B− of C, we define

f+ × f− =

A+

B+A−

B−

f+

f−

Note that × forms a (faithful) functor C × C � G(C) that preserves the monoidal

product, that is

(f+ ⊗ g+) × (f− ⊗ g−) = (f+ × f−) ⊗ (g+ × g−) .

The symmetric-monoidal isomorphisms of G(C) are α× α−1, λ× λ−1, ρ×ρ−1 and σ ×σ−1.

Showing their naturality is straightforward. Their coherence follows immediately from

the coherence of the corresponding maps of C and the fact that × is a functor that

preserves ⊗.

We define

(A+, A−)
⊥

= (A−, A+) ;

the map

γR : (A+, A−) ⊗ (A+, A−)
⊥

= (A+ ⊗ A−, A− ⊗ A+) � (�,�) = �

is given by

⊗

⊗

�

A+ ⊗ A−

A− ⊗ A+

A−
A+

and dually for τR , and symmetrically for γL and τL. Checking the two equations required

for γ and τ is a laborious but routine verification.
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4.3. The GoI construction extended to traced Dummett categories

Our extended GoI construction starts with a Dummett category in which every object has

a trace such that the traces on any two objects are compatible. As explained in Section 4.1,

this causes m : ⊥ � � and mixAB : A ⊗ B � A ⊕ B to be isomorphisms, and to

make our lives a little easier, we assume that they are identities. So we have the following

definition.

Definition 4.2. A traced Dummett category is a traced symmetric monoidal category

together with symmetric comonoids and symmetric monoids that satisfies the conditions

of a Dummett category.

Example 4.3. (Rel,�) is a traced Dummett category: the trace of a relation

⎛
⎜⎜⎝

U A

U fUU fAU
B fUB fAB

⎞
⎟⎟⎠ : U ⊗ A � U ⊗ B

is fAB ∪ fBU ◦ f∗
UU ◦ fUA : A � B, where f∗

UU is the reflexive-transitive closure of fUU .

Theorem 4.4. If C is a traced Dummett category, the compact closed category G(C) is a

classical category.

Proof. The multiplication

(A+ ⊗ A+, A− ⊗ A−) = (A+, A−) ⊗ (A+, A−) � (A+, A−)

is �A+ × �A− , and the unit

(�,�) � (A+, A−)

is []A+ × 〈〉A− . The laws �assoc, []neutral, �symm, �pointwise, []pointwise and []trivial,

result from the corresponding laws for the monoids and comonoids of C and the fact

that the functor × : C × C � G(C) preserves ⊗. We obtain the laws for comonoids

on G(C) dually. So G(C) is a pre-Dummett category with negation. To turn it into a

classical category, we define f � g : (A+, A−) � (B+, B−) if and only if f � g :

A+ ⊗ B− � A− ⊗ B+ holds in C. The monotonicity of � with respect to ⊗ and ◦ in

G(C) follows from the same kind of monotonicity of � in C.

https://doi.org/10.1017/S0960129507006287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006287


On categorical models of classical logic and the Geometry of Interaction 1015

It is easy to check that � ◦ � = id in G(C), that is, id ∗ id = id . Hence, by Lemma 3.30,

we have ReduceWL and ReduceWR.

It just remains to check ReduceCL and ReduceCR. We will check ReduceCL. In a

compact pre-Dummett category, ReduceCL is

Γ
� � Γ ⊗ Γ

∆ ⊗ A ⊗ ∆ ⊗ A

f ⊗ f
�

�

∆ ⊗ ∆ ⊗ A ⊗ A

∼=
�

∆ ⊗ A

f

� id ⊗ �� ∆ ⊗ A ⊗ A

� ⊗ idA ⊗ idA
�

(7)

We have directly from the definition of G(C) that the bottom-left leg is

f

⊗

⊗

⊗

⊗

⊗

⊗
∆+

∆−

A+ ⊗ A+

A− ⊗ A−

∆− ⊗ A− ⊗ A−

∆+ ⊗ A+ ⊗ A+
Γ−

Γ+

∆− ⊗ A−

∆+ ⊗ A+

A+

A−

Optimising the layout and removing inessential outermost ⊗-links gives

f

⊗

⊗

Γ+

Γ− A+

A−∆−

∆+
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Now we apply two cut reductions for ⊗ backwards and focus on the subnet h:

⊗

⊗

f
h

⊗

⊗

⊗

⊗

Applying the law ReduceCL to h gives

⊗

⊗
f

h

⊗
⊗

⊗
f

⊗
⊗

h

⊗

⊗

Now we forget h and focus on two new subnets:

⊗

⊗⊗

f

⊗
⊗

f

⊗
⊗

⊗

⊗
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Applying the law CL-pointwise to the upper subnet and CR-pointwise to the lower subnet

gives

⊗

⊗

f

⊗

f

⊗

⊗

⊗

⊗

After eliminating the two logical cuts, we get

f f

⊗

⊗ ⊗

g1

(the subnet g1 is distinguished purely for later reference).

The definition of G(C) gives us directly that the top-right leg of Diagram 7 is

f f

⊗ ⊗

⊗ ⊗

g2
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The last two nets differ only in the subnets g1 and g2, so it just remains to show that they

are equivalent. Because we have id = id ∗ id = �◦� in C (Lemma 3.25), g1 is equivalent to

⊗

Applying the law CR-pointwise to the marked subnet gives

k =
⊗ ⊗

The subnet in the dashed box is � ◦�. By Lemma A.2 (applied to the compact case where

mAB = idAB), we have � ◦ � � id . So k � g2.

4.4. GoI for traced categories with finite biproducts

In this section, we study our extended GoI construction in the case where the traced

Dummett category C is a category with finite biproducts. (Recall that, by Proposition 3.43,

a category with finite biproducts is a Dummett category if and only if the equation

� ◦ � = id holds.) Using the matrix presentation of morphisms, which is available in

the presence of biproducts (recall Section 3.4.3), we obtain a precise characterisation of

parametrised (co)pointed homomorphisms and parametrised (co)semigroup homomorph-

isms (Proposition 4.5). In this way, we gain a complete understanding of the denotational

change caused by ReduceCL/ReduceCR and ReduceWL/ReduceWR in G(C). We shall also

see that (unparametrised) monoid homomorphism and comonoid homomorphisms are

the same in G(C) (Corollary 4.6), and all denotations of positive (that is, negation-free)

derivations or nets are monoid/comonoid homomorphisms (Corollary 4.7).

Without loss of generality, we shall focus on ReduceWL and ReduceCL. Let f :

Γ � ∆⊗A be a morphism of G(C), where Γ = (Γ+,Γ−), ∆ = (∆+,∆−) and A = (A+, A−).

We want to characterise when f is a parametrised copointed homomorphism (respectively,

parametrised cosemigroup homomorphism), that is, when the laws ReduceWL (respectively,

ReduceCL) hold as equalities. In C, we have f : Γ+ ⊗ ∆− ⊗ A− � Γ− ⊗ ∆+ ⊗ A+;

because of the biproducts, f can be presented as a 3 × 3-matrix

f =

⎛
⎜⎜⎜⎜⎝

Γ+ ∆− A−

Γ− fΓΓ f∆Γ fAΓ

∆+ fΓ∆ f∆∆ fA∆

A+ fΓA f∆A fAA

⎞
⎟⎟⎟⎟⎠
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Proposition 4.5. Let C be a traced category with finite biproducts satisfying the law

� ◦ � = id . Let

f : (Γ+,Γ−) � (∆+,∆−) ⊗ (A+, A−)

be a morphism of G(C). Then f is

— a parametrised copointed homomorphism if and only if it has the form

f =

⎛
⎜⎜⎜⎜⎝

Γ+ ∆− A−

Γ− 0 0 fAΓ

∆+ 0 0 fA∆

A+ fΓA f∆A fAA

⎞
⎟⎟⎟⎟⎠

— a parametrised cosemigroup homomorphism if and only if it has the form

f =

⎛
⎜⎜⎜⎜⎝

Γ+ ∆− A−

Γ− fΓΓ f∆Γ fAΓ

∆+ fΓ∆ f∆∆ fA∆

A+ fΓA f∆A 0

⎞
⎟⎟⎟⎟⎠

The dual statements hold for pointed homomorphisms and semigroup homomorphisms.

Proof. By definition, f is a parametrised cosemigroup homomorphism if it satisfies

ReduceCL as an equality. As observed in the proof of Theorem 4.4, in G(C), the law

ReduceCL boils down to

f

⊗

⊗

Γ+

Γ− A+

A−∆−

∆+

� f f

⊗ ⊗

⊗ ⊗

∆−

∆+

Γ+

Γ− A+ A+

A− A−

Translating this into matrix form gives

⎛
⎜⎜⎝

fΓΓ f∆Γ fAΓ fAΓ

fΓ∆ f∆∆ fA∆ fA∆

fΓA f∆A fAA fAA
fΓA f∆A fAA fAA

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

fΓΓ f∆Γ fAΓ fAΓ

fΓ∆ f∆∆ fA∆ fA∆

fΓA f∆A 0 fAA
fΓA f∆A fAA 0

⎞
⎟⎟⎠

This is an equality if and only if fAA = 0.
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By definition, f is a parametrised copointed homomorphism if it satisfies ReduceWL as

an equality. It turns out that ReduceWL boils down to

⊗

⊗

f

A+

A−

A−

A+

∆−Γ+

∆+Γ−

�

Γ+

Γ−

∆−

∆+

� �
〈〉 〈〉

[] []

in C. Translating this into matrix form gives

⎛
⎜⎜⎝

Γ+ ∆−

Γ− fΓΓ f∆Γ

∆+ fΓ∆ f∆∆

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

Γ+ ∆−

Γ− 0 0

∆+ 0 0

⎞
⎟⎟⎠

This is an equality if and only if fΓΓ, f∆Γ, fΓ∆ and f∆∆ are zero.

Corollary 4.6. Let C be a traced category with finite biproducts satisfying the law � ◦ � =

id . Let f : (A+, A−) � (B+, B−) be a morphism of G(C), and let

f =

⎛
⎜⎜⎝

A+ B−

A− fAA fBA
B+ fBA fBB

⎞
⎟⎟⎠ : A+ ⊗ B− � A− ⊗ B+

be the matrix presentation of f in C. Then the following are equivalent:

— fAA = 0;

— f is a copointed homomorphism;

— f is a semigroup homomorphism.

Dually, the following are equivalent:

— fBB = 0;

— f is a pointed homomorphism;

— f is a cosemigroup homomorphism.

In particular, f is a monoid homomorphisms if and only if it is a comonoid homomorph-

ism, which is the case if

f =

⎛
⎜⎜⎝

A+ B−

A− 0 fBA
B+ fBA 0

⎞
⎟⎟⎠
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that is, if f is of the form

f+ × f− =

A+

B+A−

B−

f+

f−

Corollary 4.7. Let C be a traced category with finite biproducts that satisfies the equation

� ◦ � = id . Then all denotations of positive (that is, negation-free) derivations or nets in

G(C) are monoid/comonoid homomorphisms.

Proof. The denotations of all axioms except Ax¬L and Ax¬R are of the form f+ × f−,

and denotations of the form f+ × f− are closed under ∧L, ∨R, �L, ⊥R, EL, ER and Cut.

(Note also that the denotations of Ax¬L (respectively, Ax¬R) are γR (respectively, τL),

as defined in the proof of Proposition 4.1, and it is clear that they are not of the form

f+ × f−.)

5. Directions for future work

More non-compact classical categories. We have presented classical categories with non-

trivial hom-sets (that is, hom-sets with more than one element) – for example, (Rel,×) and

G(C), where C is a Dummett category (for example, (Rel,�)). However, these models are

compact – that is, ⊗ = ⊕. On the other hand, boolean lattices form classical categories

that are not generally compact, but have trivial hom-sets. The product of any two classical

categories is a classical category. In particular, (Rel,×) × B, where B is a boolean lattice,

is a non-compact classical category with non-trivial hom-sets. However, what seems to

be lacking is a more natural example of a non-compact classical category with non-

trivial hom-sets. Categories of games and strategies seem to be natural candidates. Also,

the double gluing construction (Loader 1994; Tan 1997; Hyland and Schalk 2003) is

known to turn compact closed categories into non-compact ∗-autonomous categories

(that is, non-compact symmetric linearly distributive categories with negation). It would

be interesting to check whether there are circumstances in which the extra structure of a

(compact) classical category survives this construction. In other words: can double gluing

be extended to classical logic just as we extended GoI to classical logic?

Term calculi and programming It would be interesting to study term calculi for Dummett

categories and classical categories.

A classical category is essentially a ∗-autonomous category with symmetric comonoids

satisfying certain conditions that result in hom-semilattices. In private communications,

Hasegawa has suggested using a modified version of the multiplicative fragment of his

lambda calculus DCLL (Dual Classical Linear Logic) (Hasegawa 2002). To be precise,

his approach is based on the lambda calculus below, which is sound and complete with

respect to ∗-autonomous categories with symmetric comonoids:

Types

σ ::= b | ⊥ | σ → σ
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Terms

(Ax)
Γ1, x : σ,Γ2 � x : σ

Γ, x : σ1 � M : σ2
(→ I)

Γ � λxσ1 .M : σ1 → σ2

Γ � M : σ1 → σ2 Γ � σ2
(→ E)

Γ � MN : σ2

(¬¬E)
Γ � Cσ : ((σ → ⊥) → ⊥) → σ

Axioms

(βlin) (λx.E[x])N = E[N]

(η) λx.Mx = M (x 	∈ FV (M))

(C1) L(CσM) = ML (L : σ → ⊥)

(C2) Cσ(λk
σ→⊥.kM) = M (k 	∈ FV (M))

(βvar) (λx.M)y = M[y/x] .

E[−] stands for a lambda term with a single hole. The laws (C1) and (C2) state, essentially,

that Cσ is the left and right inverse of the evident lambda term σ → ((σ → ⊥) → ⊥).

The first four laws characterise ∗-autonomous categories. The law (βvar) allows non-linear

substitutions, but only if the arguments are variables. This allows us to express the

multiplication and unit of the symmetric comonoids as follows.

Derived constructs

� = ⊥ → ⊥
σ1 ∧ σ2 = (σ1 → σ2 → ⊥) → ⊥
σ1 ∨ σ2 = (σ1 → ⊥) → (σ2 → ⊥) → ⊥

〈〉σ = λxσ.λu⊥.u

�σ = λxσ.λkσ→σ→⊥.kxx

...

It turns out that the extra axioms required for a classical category can be given as follows:

(σ) (λx.M)N � M[N/x]

M � N

E[M] � E[N]

M � N N � M

M = N

The order � turns out to be derivable from the hom-semilattice operation

M,N : σ x, k 	∈ FV (M),FV (N)
.

M ∗ N = Cσ(λk
σ→⊥.(λx⊥.kM)(kN)) : σ

We believe that it would be interesting to deepen the study of classical categories via this

lambda calculus.

However, this calculus can only be used for Dummett categories with negation. Also,

its syntax hides the beautiful self-duality of the structure. So it is tempting to devise a self-

dual, negation-free term calculus for Dummett categories. Such a calculus might be based
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on the circuit expressions in Blute et al. (1996), on term calculi for the classical sequent

calculus along the lines of Curien and Herbelin (2000) and Wadler (2003). Expressions in

such calculi can be seen as functional programs with an unspecified evaluation strategy,

while MIX introduces an element of parallelism. Lafont’s example corresponds to a critical

pair that can be resolved by choosing between call-by-value and call-by-name evaluation.

In the literature, there seems to be no semantics that models this non-determinism within

one category. Dummett categories, or something similar, might help here.

Other starting points for a term-language for classical categories might be Filinski’s sym-

metric lambda calculus (Filinski 1989) and the symmetric lambda calculus by Barbanera

and Berardi (Barbanera and Berardi 1996).

Extending Dummett categories to first-order logic Finally, we should like to mention the

possibility of extending our categorical semantics to first-order classical logic. This can be

achieved using certain indexed categories whose fibres are classical categories. This idea

has been explored in Richard McKinley’s doctoral work (McKinley 2006).

Appendix A. Some lemmas and proofs

Proof of Lemma 3.9. Applying Expand⊥ to the left-hand side of Equation 1 yields

⊥

⊥

⊥

⊥

g

f

⊥

⊥

By empire rewiring, we get

h =

⊥

⊥

⊥

⊥

g f

⊥

⊥

By applying similar transformations to the right-hand side of Equation 1, we also get h.

(The fact that f and g appear in opposite order is compensated for by the twisted wires

in the right-hand side of Equation 1.)

The cases for n = 0 and n � 2 are similar.

https://doi.org/10.1017/S0960129507006287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006287


C. Führmann and D. Pym 1024

Proof of Lemma 3.30. Let l and r be the left-hand side (respectively, right-hand side)

of ReduceWL. We show l ∗ r = r. We have

l ∗ r =

f

A
mix

Γ

∆

Γ ⊗ B

∆ ⊕ B

B

B

Γ

∆

ΓB

B ∆

=

f

A
mix

Γ

∆

Γ ⊗ B

∆ ⊕ B

Γ B

∆ B

(by CL-pointwise and CR-pointwise)

=

f

A
mix

Γ ⊗ B

∆ ⊕ B

Γ B

∆ B

∆

Γ

(by empire rewiring)
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By WL-neutral and WR-neutral, we can remove the weakenings that introduce Γ and ∆.

Because �B ◦ mixBB ◦ �B = idB ∗ idB = idB , we obtain r.

Lemma A.1. In every pre-Dummett category:

(πAB
1 ⊗ πAB

2 ) ◦ �A⊗B = idA⊗B (8)

�A ◦ mix
〈〉
AA = πAA

1 ∗ πAA
2 (9)

mix
〈〉
AB = (ιAB1 ◦ πAB

1 ) ∗ (ιAB2 ◦ πAB
2 ) (10)

Proof. Equation 8 follows from a routine calculation using the laws �pointwise and

〈〉neutral. For Equation 9, consider

�A ◦ mix
〈〉
AA = �A ◦ mix

〈〉
AA ◦ (πAA

1 ⊗ πAA
2 ) ◦ �A⊗A (by Equation 8)

= πAA
1 ∗ πAA

2 . (by definition of ∗)

Equation 10 holds because, by the definition of ∗ and the naturality of mix 〈〉, the morphism

(ιAB1 ◦ πAB
1 ) ∗ (ιAB2 ◦ πAB

2 ) is equal to

�A⊕B ◦ (ιAB1 ⊕ ιAB2 ) ◦ mix
〈〉
AB ◦ (πAB

1 ⊗ πAB
2 ) ◦ �A⊗B ,

which by Equation 8 and its dual is equal to mix
〈〉
AB .

Lemma A.2. In every Dummett category

mixAA ◦ �A ◦ �A ◦ mixAA � mixAA .

Proof. By Equation 9 and its dual, we have

mixAA ◦ �A ◦ �A ◦ mixAA = (ιAA1 ∗ ιAA2 ) ◦ (πAA
1 ∗ πAA

2 ) .

Because ∗ is the greatest lower bound with respect to �, and because ◦ is monotonic in

both arguments, we have

mixAA ◦ �A ◦ �A ◦ mixAA � ιAAk ◦ πAA
k

for k ∈ {1, 2}. So

mixAA ◦ �A ◦ �A ◦ mixAA � (ιAA1 ◦ πAA
1 ) ∗ (ιAA2 ◦ πAA

2 ) .

The claim follows because the right-hand side is equal to mixAA by Equation 10.
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