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Abstract The p-cohomology of an algebraic variety in characteristic p lies naturally in the category

Db
c (R) of coherent complexes of graded modules over the Raynaud ring (Ekedahl, Illusie, Raynaud). We

study homological algebra in this category. When the base field is finite, our results provide relations

between the absolute cohomology groups of algebraic varieties, log varieties, algebraic stacks, etc., and
the special values of their zeta functions. These results provide compelling evidence that Db

c (R) is the

correct target for p-cohomology in characteristic p.
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Introduction

Each of the usual cohomology theories X  H j (X, r) on algebraic varieties over a field

k arises from a functor RΓ taking values in a triangulated category D(k) equipped with
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802 J. S. Milne and N. Ramachandran

a t-structure and a Tate twist N  N (r). The heart of D(k) has a tensor structure and,

in particular, an identity object 1. The cohomology theory satisfies

H j (X, r) ' H j (RΓ (X)(r)), (1)

and there is an absolute cohomology theory

H j
abs(X, r) ' HomD(k)(1, RΓ (X)(r)[ j]). (2)

See, for example, Deligne (1994, § 3).

Let k be a perfect base field of characteristic p. For the `-adic étale cohomology, D is the

category of bounded constructible Z`-complexes (Ekedahl, 1990). For the p-cohomology,

it is the category Db
c(R) of coherent complexes of graded modules over the Raynaud

ring. This category was defined in Illusie and Raynaud (1983), and its properties were

developed in Ekedahl (1984, 1985, 1986). We study homological algebra in this category

and, when k is finite, we prove relations between Exts and zeta functions.

Let k = Fq with q = pa . The Ext of two objects M , N of Db
c(R) is defined by the usual

formula

Ext j (M, N ) = HomDb
c (R)

(M, N [ j]).

Using that k is finite, we construct a canonical complex

E(M, N ) : · · · → Ext j−1(M, N )→ Ext j (M, N )→ Ext j+1(M, N )→ · · ·

of abelian groups for each pair M, N in Db
c(R).

An object P of Db
c(R) can be regarded as a double complex of Wσ [F, V ]-modules. On

tensoring P with Q and forming the associated simple complex, we obtain a bounded

complex s PQ whose cohomology groups H j (s PQ) are F-isocrystals over k. We define the

zeta function Z(P, t) of P to be the alternating product of the characteristic polynomials

of Fa acting on these F-isocrystals. It lies in Qp(t).
Attached to each P in Db

c(R) there is a bounded complex R1⊗
L
R P of graded k-vector

spaces whose cohomology groups have finite dimension (see § 1.1 below for the precise

definitions of R and R1). The Hodge numbers hi, j (P) of P are defined to be the dimensions

of the k-vector spaces H j (R1⊗
L
R P)i .

Finally, we let RHom(−,−) denote the internal Hom in Db
c(R) (see § 3 below for the

definition of RHom(−,−)).

Theorem 0.1. Let M, N ∈ Db
c(R), and let P = RHom(M, N ). Let r ∈ Z, and assume that

qr is not a multiple root of the minimum polynomial of Fa acting on H j (s PQ) for any

integer j .

(a) The groups Ext j (M, N (r)) are finitely generated Zp-modules, and the alternating

sum of their ranks is zero.

(b) The zeta function Z(P, t) of P has a pole at t = q−r of order

ρ =
∑

j
(−1) j+1

· j · rankZp (Ext j (M, N (r))).
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(c) The cohomology groups of the complex E(M, N (r)) are finite, and the alternating

product of their orders χ(M, N (r)) satisfies∣∣∣∣ lim
t→q−r

Z(P, t) · (1− qr t)ρ
∣∣∣∣−1

p
= χ(M, N (r)) · qχ(P,r),

where

χ(P, r) =
∑

i, j (i6r)

(−1)i+ j (r − i) · hi, j (P).

Here, | · |p is the p-adic valuation, normalized so that |pr m
n |
−1
p = pr if m and n are prime

to p.

We identify the identity object of Db
c(R) with the ring W of Witt vectors. Then

RHom(W, N ) ' N .

Each algebraic variety (or log variety or stack) over k defines several objects in Db
c(R)

(see § 6). Let M(X) be one of the objects of Db
c(R) attached to an algebraic variety X

over k, and define the absolute cohomology of X to be

H j
abs(X,Zp(r)) = HomDb

c (R)
(W,M(X)(r)[ j]).

The complex E(W,M(X)(r)) becomes

E(X, r) : · · · → H j−1
abs (X,Zp(r))→ H j

abs(X,Zp(r))→ H j+1
abs (X,Zp(r))→ · · · .

Theorem 0.2. Assume that qr is not a multiple root of the minimum polynomial of Fa

acting on H j (s M(X)Q) for any j .

(a) The groups H j
abs(X,Zp(r)) are finitely generated Zp-modules, and the alternating

sum of their ranks is zero.

(b) The zeta function Z(M(X), t) of M(X) has a pole at t = q−r of order

ρ =
∑

j
(−1) j+1

· j · rankZp

(
H j

abs(X,Zp(r))
)

.

(c) The cohomology groups of the complex E(X, r) are finite, and the alternating product
of their orders χ(X,Zp(r)) satisfies∣∣∣∣ lim

t→q−r
Z(M(X), t) · (1− qr t)ρ

∣∣∣∣−1

p
= χ(X,Zp(r)) · qχ(M(X),r).

Let X be a smooth projective variety over k, and let M(X) = RΓ (X,W�•X ).

Then H j (s M(X)Q) = H j
crys(X/W )Q, and in an earlier article the authors showed that

H j
abs(X,Zp(r)) is the group H j (X,Zp(r)) defined in terms of logarithmic de Rham–Witt

differentials (see § 4.1 below). Moreover, the zeta function and the Hodge numbers of

M(X) agree with those of X , and so, in this case, Theorem 0.2 becomes the p-part of the

main theorem of Milne (1986). See p. 828 below.
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Remarks

0.3. Let ζ(P, s) = Z(P, q−s), s ∈ C. Then ρ is the order of the pole of ζ(P, s) at s = r ,

and

lim
t→q−r

Z(P, t) · (1− qr t)ρ = lim
s→r

ζ(P, s) · (s− r)ρ · (log q)ρ .

0.4. We expect that the F-isocrystals H j (s PQ) are always semisimple (so Fa always acts

semisimply) when P arises from algebraic geometry. If this fails, there will be spurious

extensions over Q that will have to be incorporated into the statement of (0.1).

0.5. The statement of Theorem 0.1 depends only on Db
c(R) as a triangulated category

with a dg-lifting.

0.6. We leave it as an (easy) exercise for the reader to prove the analogue of (0.1) for

` 6= p (the indolent may refer to the article below, namely, to Milne and Ramachandran

(2013)).

0.7. In a second article, we apply (0.1) to study the analogous statement in a triangulated

category of motivic complexes (Milne and Ramachandran, 2013).

Outline of the article

In § 1 and § 3, we review some of the basic theory of the category Db
c(R) (Ekedahl, Illusie,

Raynaud), and in § 2 we prove a relation between the numerical invariants of an object

of Db
c(R). In § 4, we begin the study of the homological algebra of Db

c(R), and in § 5 we

take the ground field to be finite and prove Theorem 0.1. In § 6, we study applications of

Theorem 0.1 to algebraic varieties.

Notation

Throughout, k is a perfect field of characteristic p 6= 0, and W is the ring of Witt vectors

over k. As usual, σ denotes the automorphism of W inducing a 7→ a p modulo p. We use

a bar to denote base change to an algebraic closure k of k. For example, W denotes the

Witt vectors over k. We use ' to denote a canonical, or specific, isomorphism.

1. Coherent complexes of graded R-modules

In this section, we review some definitions and results of Ekedahl, Illusie, and Raynaud,

for which Illusie (1983) is a convenient reference.

1.1. The Raynaud ring is the graded W -algebra R = R0
⊕ R1 generated by F and V in

degree 0 and d in degree 1, subject to the relations

FV = p = V F, Fa = σa · F, aV = V · σa, (3)

d2
= 0, FdV = d, ad = da (a ∈ W ). (4)
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In other words, R0 is the Dieudonné ring Wσ [F, V ], and R is generated as an R0-algebra

by a single element d of degree 1 satisfying (4). For m > 1,

Rm
def
= R/(V m R+ dV m R). (5)

1.2. To give a graded R-module M =
⊕

i∈Z M i is the same as giving a complex

M• : · · · → M i−1 d
−→ M i d

−→ M i+1
→ · · ·

of W -modules whose components M i are R0-modules and whose differentials d satisfy

FdV = d. For n ∈ Z, M{n} is the graded R-module deduced from M by a shift of

degree,1 i.e., M{n}i = Mn+i and d i
M{n} = (−1)ndn+i

M . The graded R-modules and graded

homomorphisms of degree 0 form an abelian category Mod(R) with derived category

D(R). The bifunctor M, N  Hom(M, N ) of graded R-modules derives to a bifunctor

R Hom : D(R)opp
×D+(R)→ D(Zp)

(denoted by R HomR in Illusie (1983, 2.6.2), and Ekedahl (1986, p. 8), and by RHomR
in Ekedahl (1985, p. 73)).

1.3. A graded R-module is said to be elementary (Illusie, 1983, 2.2.2, p. 30) if it is one

of the following two types.

Type I The module is concentrated in degree zero, finitely generated over W , and V
is topologically nilpotent on it. In other words, it is a Wσ [F, V ]-module whose

p-torsion submodule has finite length over W , and whose torsion-free quotient is

finitely generated and free over W with slopes lying in the interval [0, 1[ (we review

slopes in 5.3 below).

Type II The module is isomorphic to

Ul :
∏
n>0
deg 0

kV n d
−→

∏
n>1
deg 1

kdV n

for some l ∈ Z. Here F (respectively, V ) acts as zero on U 0
l (respectively, U 1

l ),

and dV n should be interpreted as F−nd when n < 0. In more detail, U 0
l is the

Wσ [F, V ]-module k[[V ]] with F acting as zero. When l > 0, U 1
l consists of the

formal sums

aldV l
+ al+1dV l+1

+ · · · (al ∈ k),

and when l < 0, U 1
l consists of the formal sums

a−l F−ld + · · ·+ a−1 F−1d + a0d + a1dV + a2dV 2
+ · · · (al ∈ k).

1.4. A graded R-module M is said to be coherent if it admits a finite filtration M ⊃
· · · ⊃ 0 whose quotients are degree shifts of elementary modules (i.e., of the form

M{n} with M elementary and n ∈ Z). Coherent R-modules need not be noetherian or

artinian—the object U0 is obviously neither.

1Illusie et al. write M(n) for the degree shift of M, but this conflicts with our notation for Tate twists.

https://doi.org/10.1017/S1474748014000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000176
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1.5. A complex M of R-modules is said to be coherent if it is bounded with coherent

cohomology. Let Db
c(R) denote the full subcategory of D(R) consisting of coherent

complexes. Ekedahl has given a criterion for a complex to lie in Db
c(R), from which

it follows that Db
c(R) is a triangulated subcategory of D(R); in particular, the coherent

modules form an abelian subcategory of Mod(R) closed under extensions (Illusie, 1983,

2.4.8). In more detail (ibid. 2.4), define a graded R•-module to be a projective system

M• = (M1 ← · · · ← Mm ← Mm+1 ← · · · )

equipped with maps F : Mm+1 → Mm and V : Mm → Mm+1 of degree zero satisfying (3)

and (4); here, Mm is a graded Wm[d]-module. The graded R•-modules form an abelian

category. The functor M•  lim
←−

Mm : Mod(R•)→ Mod(R) derives to a functor

R lim
←−
: D(R•)→ D(R).

On the other hand, the functor sending a graded R-module M to the R•-module (Rm ⊗R
M)m>1 derives to a functor

R•⊗L
R −: D(R)→ D(R•).

These functors compose to a functor

M  M̂ : D(R)→ D(R).

For M in D−(R), there is a natural map M → M̂ inducing isomorphisms Rm ⊗
L
R M →

Rm ⊗
L
R M̂ for all m, and M is said to be complete if this map is an isomorphism. Ekedahl’s

criterion states: A bounded complex of graded R-modules M lies in Db
c(R) if and only

if M is complete and R1⊗
L
R M is a bounded complex such that H i (R1⊗

L
R M) is finite

dimensional over k for all i .

1.6. Following Illusie (1983, 2.1), we view a complex of graded R-modules

M : · · · → M•, j
→ M•, j+1

→ · · ·

as a bicomplex M•,• of R0-modules in which the first index corresponds to the

R-gradation. Thus the jth row M•, j of the bicomplex is a graded R-module and the

ith column M i• is a complex of R0-modules:

...
...

...
...

M• j+1
: · · · M i−1, j+1 M i, j+1 M i+1, j+1

· · ·

M• j
: · · · M i−1, j M i, j M i+1, j

· · ·

...
...

...
...

d d

d d

(6)
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In this diagram, the squares commute, the vertical differentials commute with F and

V , and the horizontal differentials satisfy FdV = d. The cohomology modules of M are

obtained by passing to the cohomology in the columns:

H j (M) : · · · → H j (M i−1,•)
d
−→ H j (M i,•)

d
−→ H j (M i+1,•)→ · · · .

In other words, for a complex M = M•,• of graded R-modules, H j (M) is the graded

R-module with H j (M)i = H j (M i,•).

By definition, M{m}[n] is the bicomplex with

(M{m}[n])i, j
= M i+m, j+n (7)

and with the appropriate sign changes on the differentials.

1.7. Let T be the functor of graded R-modules such that (T M)i = M i+1 and T (d) = −d,

i.e., T M = M{1} (degree shift). It is exact and defines a self-equivalence T : Db
c(R)→

Db
c(R). The Tate twist of a coherent complex of graded R-modules M is defined as

M(r) = T r (M)[−r ] = M{r}[−r ];

thus M(r)i, j
= M i+r,i−r (cf. Milne and Ramachandran, 2005, § 2).

1.8. With any complex M of graded R-modules, there is an associated simple complex

s M of W -modules with

(s M)n =
⊕

i+ j=n

M i, j , dx i j
= d ′x i j

+ (−1)i d ′′x i j .

The functor s extends to a functor s : D+(R)→ D(W ). If M ∈ Db
c(M), then s M is a perfect

complex of W -modules (Illusie, 1983, p. 34).

1.9. For a coherent complex M of graded R-modules, the filtration of s M by the first

degree defines a spectral sequence

E i j
1 = H j (M)i H⇒ H i+ j (s M) (8)

called the slope spectral sequence. The slope spectral sequence degenerates at E1 modulo

torsion and at E2 modulo W -modules of finite length. In particular, for r > 2, E i j
r is a

finitely generated W -module of rank equal to that of H j (M)i/torsion. This was proved

by Bloch (1977) and Illusie and Raynaud (1983) for the complex M = RΓ (X,W�•X )

attached to a smooth complete variety X , and by Ekedahl for a general M (see Illusie,

1983, 2.5.4).

1.10. Let K = W ⊗Q (field of fractions of W ). Then K ⊗W Wσ [F, V ] ' Kσ [F]. Recall

that an F-isocrystal over k is a Kσ [F]-module that is finite dimensional as a K -vector

space and such that F is bijective. The F-isocrystals form an abelian subcategory of

Mod(Kσ [F]) closed under extensions, and so the subcategory Db
iso(Kσ [F]) of Db(Kσ [F])

consisting of bounded complexes whose cohomology modules are F-isocrystals is

triangulated.
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1.11. Let M be a complex of graded R-modules with only nonnegative first degrees,

and let F ′ act on M i, j as pi F . The condition FdV = d implies that pFd = d F , and so

both differentials in the diagram (6) commute with the action of F ′. Therefore s(M) is

a complex of Wσ [F ′]-modules. If M ∈ Db
c(R), then s(M)K lies in Db

iso(Kσ [F
′
]). From the

degeneration of the slope spectral sequence at E1, we get isomorphisms

(H j (M)iK , pi F) '
(

H i+ j (s M)K , F
)
[i,i+1[

(9)

for M ∈ Db
c(R). This can also be written2

(Hn−i (M)iK , pi F) ' (Hn(s M)K , F)[i,i+1[. (10)

1.12. A domino N is a graded R-module that admits a finite filtration N ⊃ · · · ⊃ 0 whose

quotients are elementary of type II.

Let N be elementary of type II, say N = Ul . Then N 0
= kσ [[V ]], and so V : N 0

→ N 0

is injective with cokernel N 0/V = kσ [[V ]]/(V ) ' k. Similarly, F : N 1
→ N 1 is surjective

with kernel kdV l (l > 0) or k F−ld (l < 0).

Let N be a domino, and suppose that N admits a filtration of length l(N ) with

elementary quotients. Induction on l(N ) shows that

(a) the map V : N 0
→ N 0 is injective with cokernel of dimension l(N ) (as a k-vector

space) and F |N 0 is nilpotent;

(b) the map F : N 1
→ N 1 is surjective with kernel of dimension l(N ) and V |N 1 is

nilpotent.

Therefore the number of quotients in such a filtration is independent of the filtration, and

equals the common dimension of the k-vector spaces N 0/V and of Ker
(
F : N 1

→ N 1).
This number is called the dimension of N .

1.13. Let M be a graded R-module. Then Z i (M) def
= Ker

(
d : M i

→ M i+1) is stable under

F but not in general under V , whereas Bi (M) def
= Im(d : M i−1

→ M i ) is stable under V
but not in general under F . Instead, one puts

V−∞Z i (M) = {x ∈ M i
| V n x ∈ Z i (M) for all n},

F∞Bi (M) = {x ∈ M i
| x ∈ Fn Bi (M) for some n}.

Then V−∞Z i (M) is the largest R0-submodule of Z i (M), and F∞Bi (M) is the smallest

R0-submodule of M i containing Bi (M):

Bi (M) ⊂ F∞Bi (M) ⊂ V−∞Z i (M) ⊂ Z i (M). (11)

2For each n, we have Hn(s M)K =
⊕

H j (M)iK , where the sum is over pairs (i, j) with i + j = n. Our

assumption on M says that i > 0, and so only Hn(M)0K , Hn−1(M)iK , . . . , H0(M)nK contribute. Each of

these (with the map F) is an isocrystal with slopes [0, 1[. But with the map pi F , the slopes of Hn−i (M)iK
are in [i, i + 1[. The slopes of distinct summands do not overlap. Hence we get (10). Cf. Illusie (1983,
p. 64).
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The homomorphism of W -modules d : M i
→ M i+1 factors as

M i M i+1

M i/V−∞Z i (M) F∞Bi+1(M)

d

d

(12)

When M is coherent, the lower row in (12) is an R-module admitting a finite filtration

whose quotients are of the form Ul{−i}; in other words, (lower row){i} is a domino (Illusie,

1983, 2.5.2).

1.14. The heart of a graded R-module M is the graded R0-module ♥(M) =
⊕
♥

i (M)
with ♥i (M) = V−∞Z i (M)/F∞Bi (M) (see (11)). When M is coherent, ♥(M) is finitely

generated as a W -module; moreover, Z i (M)/V−∞Z i (M) and F∞Bi (M)/Bi (M) are of

finite length, and so

♥
i (M)K '

(
Z i (M)/Bi (M)

)
K

(Illusie, 1983, 2.5.3).

Example 1.15. Let X be a smooth variety over a perfect field k. The de Rham–Witt

complex

W�•X : WOX −→ · · · −→ W�i
X

d
−→ W�i+1

X −→ · · ·

is a sheaf of graded R-modules on X for the Zariski topology. On applying RΓ to this

complex, we get a complex RΓ (X,W�•X ) of graded R-modules, which we regard as a

bicomplex with (i, j)th term RΓ (X,W�i
X )

j . When we replace each vertical complex

with its cohomology, the jth row of the bicomplex becomes

R jΓ (X,W�•X ) : H j (X,WOX )→ · · · → H j (X,W�i
X )

d
→ H j (X,W�i+1

X )→ · · · .

The complex RΓ (X,W�•X ) is bounded and complete (Illusie, 1983, 2.4), and becomes

RΓ (X, �•X ) when tensored with R1, and so RΓ (X,W�•X ) is coherent when X is complete.

In this case, RΓ (X/W )
def
= s(RΓ (X,W�•X )) is a perfect complex of W -modules such that

H j (RΓ (X/W )) ' H j
crys(X/W ) (isomorphism of Wσ [F]-modules)

(ibid. 1.3.5), and the slope spectral sequence (8) becomes

E i j
1 = H j (X,W�i

X ) H⇒ H i+ j (X,W�•X ) (' H∗crys(X/W ). (13)

2. The numerical invariants of a coherent complex

Definition of the invariants

Let M be a coherent graded R-module. The dimension of the domino attached to d : M i
→

M i+1 (see (1.13)) is denoted by T i (M). It is equal to the number of quotients of the form

Ul{−i} (varying l) in a filtration of M with elementary quotients.

We let W [[V ]] denote the noncommutative power series ring (in which a · V = V · σa)

and W ((V )) the ring obtained from W [[V ]] by inverting V .
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Lemma 2.1. For a coherent graded R-module M,

T i (M) = lengthW ((V ))W ((V ))⊗W [[V ]] M i . (14)

Proof. It suffices to prove this for an elementary graded R-module M . If M is elementary

of type I, then V is topologically nilpotent on it, and so, when we invert V , M becomes 0;

this agrees with T 0(M) = 0. If M is elementary of type II , say M = Ul , then W ((V ))⊗
M0
' W ((V )) and W ((V ))⊗M1

= 0, agreeing with T 0(M) = 1 and T i (M) = 0 for

i 6= 0. 2

Let M be an object of Db
c(R). Ekedahl (1986, p. 14) defines the slope numbers of M to

be

mi, j (M) = dimk
H j (M)i

H j (M)ip-tors+ V
(
H j (M)i

) + dimk
H j+1(M)i−1

H j+1(M)i−1
p-tors+ F

(
H j+1(M)i−1

) ,
where X p-tors denotes the torsion submodule of X regarded as a W -module. Set

T i, j (M) = T i (H j (M)).

Ekedahl (ibid., p. 85) defines the Hodge–Witt numbers of M to be

hi, j
W (M) = mi, j (M)+ T i, j (M)− 2T i−1, j+1(M)+ T i−2, j+2(M)

(see also Illusie (1983, 6.3)). Note that the invariants mi, j (M) and T i, j (M) (hence also

hi, j
W (M)) depend only on the finite sequence (H j (M)) j∈Z of graded R-modules. It follows

from (7) that

hi, j
W (M{m}[n]) = hi+m, j+n

W (M). (15)

In particular (see 1.7),

hi, j
W (M(r)) = hi+r, j−r

W (M). (16)

Example 2.2. We compute these invariants for certain M ∈ Db
c(R).

(a) Suppose that H j (M)i has finite length over W for all i, j . Then H j (M)i =
H j (M)ip-tors, and so mi, j (M) is zero for all i , j . Moreover, V is nilpotent on H j (M)i ,

and so T i, j (M) = 0. It follows that hi, j
W (M) is also zero for all i , j .

(b) Suppose that

H j (M)i =
{

R0/R0(Fr−s
− V s) if (i, j) = (i0, j0)

0 otherwise

for some r > s > 0. Then

mi. j (M) =


dimk(kσ [F]/(Fr−s) = r − s if (i, j) = (i0, j0)
dimk(kσ [V ]/(V s) = s if (i, j) = (i0+ 1, j0− 1)
0 otherwise.

Note that (
R0/R0(Fr−s

− V s)
)
⊗ K ' Kσ [F]/(Fr

− ps),
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which is an F-isocrystal of slope λ = s/r with multiplicity m = r . As the dominoes

attached to the H j (M)i are obviously all zero, we see that

hi, j
W (M) = mi. j (M) =


m(1− λ) if (i, j) = (i0, j0)
mλ if (i, j) = (i0+ 1, j0− 1)
0 otherwise,

where λ is the unique slope of the F-isocrystal (H j0(M)i0
K , F) and m is its multiplicity.

(c) Suppose that

(
H j0(M)i0 d

−→ H j0(M)i0+1
)
=

∏
n>0
deg i0

kV n d
−→

∏
n>l

deg i0+1

kdV n

 = Ul{−i0},

and that H j (M)i = 0 for all other values of i and j . Then H j (M)i = H j (M)ip-tors, and

so mi, j (M) is zero for all i , j . The only nonzero T invariant is T i0, j0(M) = 1. It follows

that the only nonzero Hodge–Witt numbers are

hi0, j0
W (M) = 1, hi0+1, j0−1

W (M) = −2, hi0+2, j0−2
W (M) = 1.

Weighted Hodge–Witt Euler characteristics

Theorem 2.3. For every M in Db
c(R) and r ∈ Z,∑

i, j (i6r)

(−1)i+ j (r − i)hi, j
W (M) = er (M), (17)

where

er (M) =
∑

j

(−1) j−1T r−1, j−r (M)+
∑

i, j,l (λi, j,l6r−i)

(−1)i+ j (r − i − λi, j,l). (18)

The sum in (17) is over the pairs of integers (i, j) such that i 6 r , and the first sum

in (18) is over the integers j . In the second sum in (18), (λi, j,l)l is the family of slopes

(with multiplicities) of the F-isocrystal H j (M)iK , and the sum is over the triples (i, j, l)
such that λi, j,l 6 r − i .

Example 2.4. Let M be a graded R-module, regarded as an element of Db
c(R) concentrated

in degree j . Let F ′ act on M i as pi F (assuming that only nonnegative i occur). Then F ′

is a σ -linear endomorphism of M regarded as a complex of R0-modules

· · · M i−1 M i M i+1
· · ·

· · · M i−1 M i M i+1
· · · ,

pi−1 F

d

pi F

d

pi+1 F

d

d d d

and the second term in (18) equals∑
i,l (λi,l6r)

(−1)i+ j (r − λi,l),

where (λi,l)l is the family of slopes of the F-isocrystal (M i , pi F)K .
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Lemma 2.5. For every distinguished triangle M ′→ M → M ′′→ M ′[1] in Db
c(R),

mi, j (M) = mi. j (M ′)+mi, j (M ′′)

T i, j (M) = T i, j (M ′)+ T i, j (M ′′),

and so

hi. j
W (M) = hi, j

W (M ′)+ hi, j
W (M ′′).

Proof. The distinguished triangle gives rise to an exact sequence of graded R-modules

· · · → H j (M ′)→ H j (M)→ H j (M ′′)→ · · ·

with only finitely many nonzero terms. It suffices to show that m and T are additive on

short exact sequences

0→ M ′→ M → M ′′→ 0 (19)

of coherent graded R-modules. But mi j (M) depends only on K ⊗W M , where K is the

field of fractions of W , and the sequence (19) splits when tensored with K . The additivity

of T follows from the description of T i in Lemma 2.1. 2

Lemma 2.6. For every distinguished triangle M ′→ M → M ′′→ M ′[1] in Db
c(R),

er (M) = er (M ′)+ er (M ′′). (20)

Proof. The same argument as in the proof of Lemma 2.5 applies. 2

Proof of Theorem 2.3

The numbers do not change under extension of the base field, and so we may suppose that

k is algebraically closed. First note that, if M ′→ M → M ′′→ M ′[1] is a distinguished

triangle in Db
c(R) and (17) holds for M ′ and M ′′, then it holds for M (apply 2.5 and 2.6).

A complex M in Db
c(R) has only finitely many nonzero cohomology groups, and each has

a finite filtration whose quotients are elementary graded R-modules. By using induction

on the sum of the lengths of the shortest such filtrations, one sees that it suffices to prove

the formula for a complex M having only one nonzero cohomology module, which is a

degree shift of an elementary graded R-module; i.e., we may assume that M = H j0(M) =
N {−i0}, where N is elementary.

Assume that N is elementary of type I. If N is torsion, then both sides are zero. We may

suppose that N is a Dieudonne module of slope λ ∈ [0, 1[ with multiplicity m (because

N is isogenous to a direct sum of such modules — recall that k is algebraically closed).

In this case (see 2.2b), the only nonzero Hodge–Witt invariants of M are

hi0, j0
W (M) = mi0, j0(M) = m(1− λ)

hi0+1, j0−1
W (M) = mi0+1, j0−1(M) = mλ.

Both sides of (17) are zero if r 6 i0, and so we may suppose that r > i0. Then the left-hand

side (17) is

(−1)i0+ j0(r − i0)hi0, j0 + (−1)i0+1+ j0−1(r − i0− 1)hi0+1, j0−1

= (−1)i0+ j0(r − i0)(1− λ)m+ (−1)i0+ j0(r − i0− 1)λm

= (−1)i0+ j0(r − i0− λ)m.
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On the other hand, the isocrystal H j (M)iK is zero for (i, j) 6= (i0, j0), and H j0(M)i0
K is

an isocrystal with slope λ of multiplicity m, and so

er (M) = (−1)i0+ j0(r − i0− λ)m.

If N is of type II, i.e., H j0(M) = Ul{−i0}, then T i0, j0 = 1 is the only nonzero T -invariant

(see 2.2c), and so

er (M) =
{
(−1)i0+ j0 if r = i0+ 1
0 otherwise.

The nonzero hW -invariants are

hi0, j0
W (M) = 1 hi0+1, j0−1

W (M) = −2 hi0+2, j0−2
W (M) = 1,

from which (17) follows by an elementary calculation.

Aside 2.7. Here is an alternative proof of Theorem 2.3. Let

L(r) =
∑

i, j (i6r)
(−1)i+ j (r − i)

(
T i, j (M)− 2T i−1, j+1(M)+ T i−2, j+2(M)

)
.

The contribution of T i0, j0 to this sum is (−1)i0+ j0 T i0, j0 if i0 = r − 1 and 0 otherwise.

Therefore

L(r) =
∑

j
(−1)r−1+ j T r−1, j

=

∑
j
(−1) j−1T r−1, j−r .

(21)

For an F-crystal P, let P[i,i+1[ = (K ⊗W P)[i,i+1[ (part with slopes λ, i 6 λ < i + 1).

From the degeneration of the slope spectral sequence (1.9) at E1 modulo torsion, we find

that

Hn(s M)[i,i+1[ ' (Hn−i (M)iK , pi F).

From this, it follows that

mi,n−i (M) =
∑

λ∈[i,i+1[

(i + 1− λ)hn
λ−

∑
λ∈[i−1,i[

(i − 1− λ)hn
λ,

where hn
λ is the multiplicity of λ as a slope of Hn(s M) (cf. Illusie (1983, 6.2)). Using these

two statements, we find that∑
i, j (i6r)

(−1)i+ j (r − i)mi, j (M) =
∑

i, j,l (λi, j,l6r−i)

(−1)i+ j (r − i − λi, j,l). (22)

On adding (21) and (22), we obtain (17).

Weighted Hodge Euler characteristics

Following Ekedahl (1986, p. 14), we define the Hodge numbers of an M in Db
c(R) to be

hi, j (M) = dimk(H j (R1⊗
L
R M)i ).
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Theorem 2.8. For every M in Db
c(R) and i ∈ Z,∑

j
(−1) j hi, j

W (M) =
∑

j
(−1) j hi, j (M). (23)

Proof. As for Theorem 2.3, it suffices to prove this for an elementary R-module, where

it can be checked directly. See Ekedahl (1986, IV, Theorem 3.2). 2

For M = RΓ (W�•X ), the formula (23) was found independently by Crew and Milne

(cf. ibid. p. 86).

Corollary 2.9. For every M in Db
c(R),∑

i, j (i6r)

(−1)i+ j (r − i)hi, j (M) = er (M). (24)

Proof. We have

LHS =
∑

i6r
(−1)i (r − i)

(∑
j
(−1) j hi, j (M)

)
(23)
=

∑
i6r
(−1)i (r − i)

(∑
j
(−1) j hi, j

W (M)
)
= RHS. 2

3. Tensor products in the category Db
c(R) and internal Homs

We review some constructions from Ekedahl (1985).

The internal tensor product

Let M and N be graded R-modules. Ekedahl (1985, p. 69) defines M ∗ N to be the largest

quotient of M ⊗W N ,

x ⊗ y 7→ x ∗ y : M ⊗W N → M ∗ N ,

in which the following relations hold: V x ∗ y = V (x ∗ Fy), x ∗ V y = V (Fx ∗ y), F(x ∗ y) =
Fx ∗ Fy, and d(x ∗ y) = dx ∗ y+ (−1)deg(x)x ∗ dy.

Regard W as a graded R-module concentrated in degree zero with F acting as σ . Then

W ∗M ' M ' M ∗W, (25)

and so W plays the role of the identity object 1.

The bifunctor (M, N ) M ∗ N of graded R-modules derives to a bifunctor

∗
L
: D−(R)×D−(R)→ D−(R).

If M and N are in Db
c(R), then so also is

M ∗̂N def
= M̂ ∗L N .

See Ekedahl (1985, I, 4.8) and Illusie (1983, 2.6.1.10).
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The internal Hom

For graded R-modules M, N , we let Homd(M, N ) denote the set of graded

R-homomorphisms M → N of degree d, and we let Hom•(M, N ) =
⊕

d Homd(M, N ). Let

R R denote the ring R regarded as a graded left R-module. The internal Hom of two

graded R-modules M, N is

Hom(M, N ) def
= Hom•(R R ∗M, N ).

This graded Zp-module becomes a graded R-module thanks to the right action of R on

R R, and Hom derives to a bifunctor

RHom : D(R)opp
×D+(R)→ D(R)

(denoted by RHomR in Illusie (1983, 2.6.2.6), by RHom!R in Ekedahl (1985, p. 73), and

by R Hom!R in Ekedahl (1986, p. 8)).

The functor RHom(M, N ) commutes with extension of the base field. For M in D−(R)
and N in D+(R),

RHom(W, N )
(25)
' R Hom•(R R, N ) ' N (26)

R Hom(W, RHom(M, N )) ' R Hom(M, N ) (27)

(isomorphisms in Db
c(R) and D(Zp) respectively). Ekedahl shows that

R1⊗
L
R RHom(M, N ) ' R Hom(R1⊗

L
R M, R1⊗

L
R N )

(isomorphism in D(k[d])) and that

∧

RHom(M, N ) ' RHom(M̂, N̂ ), (28)

and so his criterion (see 1.5) shows that RHom(M, N ) lies in Db
c(R) when both M and N

do (Illusie, 1983, 2.6.2.9, 2.6.2.10, 2.6.2.11).

4. Homological algebra in the category Db
c(R)

Throughout this section, S = Spec k, and Λm = Z/pmZ.

The perfect site

An S-scheme U is perfect if its absolute Frobenius map Fabs : U (1/p)
→ U is an

isomorphism. The perfection T pf of an S-scheme T is the limit of the projective system

T
Fabs
←− T (1/p) Fabs

←− · · · . The scheme T pf is perfect, and, for any perfect S-scheme U , the

canonical map T pf
→ T defines an isomorphism

HomS(U, T pf)→ HomS(U, T ).

Let Pf/S denote the category of perfect affine schemes over S. A perfect group scheme

over S is a representable functor Pf/S→ Gp. For any affine group scheme G over S, the

https://doi.org/10.1017/S1474748014000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000176


816 J. S. Milne and N. Ramachandran

functor U  G(U ) : Pf/S→ Gp is a perfect group scheme represented by Gpf. We say

that a perfect group scheme is algebraic if it is represented by an algebraic S-scheme.

Let S denote the category of sheaves of commutative groups on
(
Pf/S

)
et. The

commutative perfect algebraic group schemes killed by some power of p form an abelian

subcategory G of S which is closed under extensions. Let G ∈ G. The identity component

G◦ of G has a finite composition series whose quotients are isomorphic to Gpf
a , and the

quotient G/G◦ is étale. The dimension of G is the dimension of any algebraic group

whose perfection is G◦. The category G is artinian. See Milne (1976, § 2), or Berthelot

(1981, II).

Example 4.1. Let f : X → S be a smooth scheme over S. The functors U  Γ (U,Wm�
i
X )

are sheaves for the étale topology on X . The composite

Wm+1�
i
X

F
−→ Wm�

i
X → Wm�

i
X/d(Wm�

i−1
X )

factors through the projection Wm+1�
i
X → Wm�

i
X , and so defines a homomorphism

F : Wm�
i
X → Wm�

i
X/d(Wm�

i−1
X ).

The sheaf νm(i) on Xet is defined to be the kernel of

1− F : Wm�
i
X → Wm�

i
X/d(Wm�

i−1
X )

(Milne, 1976, § 1; Berthelot, 1981, p. 209). The map Wm+1�
i
X → Wm�

i
X defines a

surjective map νm+1(i)→ νm(i) with kernel ν1(i).
Assume that f is proper. The sheaves Ri f∗νm(r) lie in G. When m = 1, this is proved

in Milne (1976, 2.7), and the general case follows by induction on m. See also Illusie and

Raynaud (1983, IV, 3.2.2). Following Milne (1986, p. 309), we define

H i (X, (Z/pmZ)(r)) = H i−r (Xet, νm(r))

H i (X,Zp(r)) = lim
←−

H i (X, (Z/pmZ)(r)).

In the terminology introduced in the Introduction, the main theorem of Milne and

Ramachandran (2005) states that there are canonical isomorphisms

H i (X,Zp(r)) ' H i
abs(X,Zp(r)).

The functor M  M F

For a complex M of graded R-modules, we define

M F
= R Hom(W,M). (29)

Then M  M F is a functor D+(R)→ D(Zp).

Let R̂ denote the completion lim
←−

Rm of R. From

W ' R0/R0(1− F) ' R̂/R̂ (1− F),

we get an exact sequence

0→ R̂
1−F
−→ R̂→ W → 0 (30)
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of graded R-modules (Ekedahl, 1985, III, 1.5.1, p. 90). If M is in Db
c(R), then, because

M is complete,

R Hom(R̂,M) ' R Hom(R,M) ' M0 (31)

(isomorphisms of graded R-modules; ibid. I, 5.9.3ii, p. 78). Now (30) gives a canonical

isomorphism

M F
' s(M0 1−F

−→ M0) (32)

(ibid. I, 1.5.4(i), p. 90), which explains the notation. Note that

s(M0 1−F
−→ M0) = Cone(1− F : M0

→ M0)[−1]. (33)

For M, N in Db
c(R), we have

R Hom(M, N )
(27)
' R Hom(W, RHom(M, N )) def

= RHom(M, N )F (34)

in D(Zp).

The functor M  MF
•

Let S• denote the category of projective systems of sheaves (Pm)m∈N on (Pf/S)et with Pm
a sheaf of Λm-modules, and let G• denote the full subcategory of systems (Pm)m∈N with

Pm in G. Then G• is an abelian subcategory of S• closed under extensions.

Let M be a graded R-module, and let Mm = Rm ⊗R M . Let Mi
m denote the sheaf

Spec(A) M i
m ⊗W W A on (Pf/S)et, and let Mi

• denote the projective system (Mi
m)m∈N.

Thus Mi
• ∈ S•. Let F (respectively, V ) denote the endomorphism of M•

i defined by

F ⊗ σ (respectively, V ⊗ σ−1) on (M i
m ⊗W W A)m . In this way, we get an R•-module

M• : · · · →Mi
•

d
−→Mi+1

• → · · ·

in S•. Cf. Illusie and Raynaud (1983, IV, 3.6.3).

Example 4.2. Let M = M0 be an elementary graded R-module of type I. For each

m, the map 1− F : Mm →Mm is surjective with kernel the étale group scheme MF
m

over k corresponding to the natural representation of Gal(k/k) on ((M/V m)⊗W W )F⊗σ .

Therefore MF
• is a pro-étale group scheme over k with

MF
• (k)

def
= lim
←−

MF
m(k) = (M ⊗W W )F⊗σ .

Cf. (5.5) below.

Example 4.3. Let M be an elementary graded R-module of type II. Then 1− F :Mi
•→

Mi
• is bijective for i = 0, and it is surjective with kernel canonically isomorphic to Gpf

a
for i = 1 (Illusie and Raynaud, 1983, IV, 3.7, p. 195).

Proposition 4.4. Let M be a coherent graded R-module. For each i , the map 1− F :Mi
•→

Mi
• is surjective, and its kernel (Mi

•)
F lies in G•. There is an exact sequence

0→ U i
→ (Mi

•)
F
→ Di

→ 0
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with U i a connected unipotent perfect algebraic group of dimension T i−1(M) and Di

the profinite étale group corresponding to the natural representation of Gal(k/k) on

(♥i M ⊗W W )F⊗σ .

Proof. When M is an elementary graded R-module, the proposition is proved in the two

examples. The proof can be extended to all coherent graded R-modules by using Illusie

and Raynaud (1983, IV 3.10, 3.11, p. 196). 2

Corollary 4.5. Let M be a coherent graded R-module, and let H i (M) = Z i (M)/Bi (M).
Then Di (k) def

= lim
←−m

Di
m(k) is a finitely generated Zp-module, and

Di (k)⊗Zp Qp ' (H i (M)⊗W K )F⊗σ .

Proof. According to (4.4), Di (k) ' (♥i M ⊗W W )F⊗σ . Now the statement follows from

(1.14). 2

Let Γ (Set,−) denote the functor

(Mm)m∈N  lim
←−

Γ (Set,Mm) : S•→ Mod(Zp).

It derives to a functor RΓ (Set,−) : D(S•)→ D(Zp).

For a coherent graded R-module M , the system M• depends only on the projective

system M• = (Mm)m . The functor M•  M• : Mod(R•)→ S• is exact, and so it defines

a functor

M•  M• : D(R•)→ D(S•).

Let

MF
• = Cone(M0

•

1−F
−→M0

•)[−1]. (35)

Proposition 4.6. The following diagram commutes:

Db
c(R) Db(R•) Db(S•)

Db(R) Db(Zp).

M M•

M M̂

(−)F

R lim
←−

RΓ (Set,−)

(−)F

The functor (−)F on the top row (respectively, bottom row) is that defined in (35)

(respectively, (29)). In other words, for M in Db
c(R),

RΓ (Set,MF
• ) ' M F .

Proof. This follows directly from the definitions and the isomorphism

M F
' Cone(1− F : M0

→ M0)[−1]

obtained by composing the isomorphisms (32) and (33). 2
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Proposition 4.7. Let M ∈ Db
c(R), and let r ∈ Z. For each j , there is an exact sequence

0→ U j
→ H j (M(r)F

• )→ D j
→ 0

with U j a connected unipotent perfect algebraic group of dimension T r−1, j−r and D j

the profinite étale group corresponding to the natural representation of Gal(k/k) on

(♥r (H j (M)
)
⊗W )F⊗σ .

The reader should take care to distinguish H i (M) in (4.5) from the similar looking H j (M)
in (4.7): the first comes from the kernel and image of the element d of the Raynaud ring,

whereas the second is cohomology in a complex.

Proof. Apply (4.4) to H j (M(r)) with i = 0. 2

Corollary 4.8. The Zp-module D j (k) is finitely generated, and

D j (k)⊗Zp Qp ' (H r (H j (M))⊗ K )F⊗σ . (36)

Here, H r (H j (M)) is the Er, j
2 term in the slope spectral sequence for M.

Proof. Apply (4.5) to H j (M). (In order to be able apply (4.5), one needs to know that,

for any P in Db
c(R), H0(H j (P)) and H j (P)0 become isomorphic when tensored with K .

This follows from the degeneration of the slope spectral sequence (8).) 2

The functors RHom

If M, N in Db
c(R), then P def

= RHom(M, N ) lies in Db
c(R) (see § 3). Let

RHom(M, N ) = PF
•

def
= Cone(P0

•

1−F
−→ P0

• )[−1]

(see (35)). Then RHom is a bifunctor

RHom : Db
c(R)×Db

c(R)→ Db
G•(S•)

(denoted by RHomR in Ekedahl (1986, p. 11), except that he allows graded

homomorphisms of any degree; see p. 817 for the categories G• and S•).

Proposition 4.9. For M, N ∈ Db
c(R),

RΓ (Set, RHom(M, N )) ' R Hom(M, N ). (37)

Proof. From (4.6) with P = RHom(M, N ), we find that

RΓ (Set, RHom(M, N )) ' RHom(M, N )F .

But RHom(M, N )F
' R Hom(M, N ) (see (34)). 2

For M, N in Db
c(R), we let

Ext j (M, N ) = H j (R Hom(M, N ))

Ext j (M, N ) = H j (RHom(M, N ))

Ext j (M, N ) = H j (RHom(M, N )).
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The first is a Zp-module, the second is a coherent graded R-module, and the third is an

object of G•. From (27) and (37), we get spectral sequences

Exti (W,Ext j (M, N )) H⇒ Exti+ j (M, N )

RiΓ (Set, Ext j (M, N )) H⇒ Exti+ j (M, N ).

For example, it follows from (26) that

Ext j (W,M) = H j (M)

Ext j (W,M) = H j (MF
• ), and

T i, j (W,M) = T i, j (M).

Aside 4.10. If M ∈ Db
c(R), then the dual

D(M) def
= RHom(M,W )

of M also lies in Db
c(R). If M, N ∈ Db

c (R), then

D(M )̂∗N ' RHom(M, N )

(see Illusie, 1983, 2.6.3.4). In particular,

T i, j (M, N ) = T i, j (D(M )̂∗N ).

5. The proof of the main theorem

Throughout this section, Γ is a profinite group isomorphic to Ẑ, and γ is a topological

generator for Γ . For a Γ -module M , the kernel and cokernel of 1− γ : M → M are

denoted by MΓ and MΓ , respectively.

Elementary preliminaries

Let [S] denote the cardinality of a set S. For a homomorphism f : M → N of abelian

groups, we let

z( f ) =
[Ker( f )]
[Coker( f )]

when both cardinalities are finite.

Lemma 5.1. Let M be a finitely generated Zp-module with an action of Γ , and let

f : MΓ
→ MΓ be the map induced by the identity map on M. Then z( f ) is defined if

and only if 1 is not a multiple root of the minimum polynomial γ on M, in which case

MΓ has rank equal to the multiplicity of 1 as an eigenvalue of γ on MQp , and

z( f ) =
∣∣∣∏

i, ai 6=1
(1− ai )

∣∣∣
p
,

where (ai )i∈I is the family of eigenvalues of γ on MQp .

Proof. The proof is elementary (Tate, 1966, z.4). 2
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Lemma 5.2. Consider a commutative diagram

· · · −−−−→ C j−1 C j f j

−−−−→ C j+1yg j−1
xh j

yg j+1

· · · −−−−→ A j−1 d j−1
−−−−→ A j d j

−−−−→ A j+1
−−−−→ · · ·yh j−1

xg j
yh j+1

B j−1 f j−1

−−−−→ B j B j+1
−−−−→ · · ·

in which A• is a bounded complex of abelian groups and each column is a short exact

sequence (in particular, the g are injective and the h are surjective). The cohomology

groups H j (A•) are all finite if and only if the numbers z( f j ) are all defined, in which

case ∏
j
[H j (A•)](−1) j

=

∏
j

z( f j )(−1) j
.

Proof. Because h j−1 is surjective, g j maps the image of f j−1 into the image of d j−1.

Because g j+1 is injective and h j is surjective, h j maps the kernel of d j onto the kernel

of f j . The snake lemma applied to

Im( f j−1)
g j

−−−−→ Im(d j−1) −−−−→ 0y y y
0 −−−−→ B j g j

−−−−→ Ker(d j )
h j

−−−−→ Ker( f j ) −−−−→ 0
gives an exact sequence

0→ Coker( f j−1)→ H j (A•)→ Ker( f j )→ 0.

Therefore H j (A•) is finite if and only if Coker( f j−1) and Ker( f j ) are both finite, in which

case

[H j (A•)] = [Coker( f j−1)] · [Ker( f j )].

On combining these statements for all j , we obtain the lemma. 2

Cohomological preliminaries

Let Λ be a finite ring, and let ΛΓ be the group ring. For a Λ-module M , we let M∗
denote the corresponding co-induced module. Thus M∗ consists of the locally constant

maps f : Γ → M and τ ′ ∈ Γ acts on f according to the rule (τ ′ f )(τ ) = f (ττ ′). When

M is a discrete Γ -module, there is an exact sequence

0→ M −→ M∗
αγ
−→ M∗→ 0, (38)

in which the first map sends m ∈ M to the map τ 7→ τm and the second map sends

f ∈ M∗ to τ 7→ f (τγ )− γ f (τ ). Let F be the functor M  MΓ
: Mod(ΛΓ )→ Mod(Λ).

The class of co-induced ΛΓ -modules is F-injective, and so (38) defines isomorphisms

RF(M) ' F(M∗
αγ
−→ M∗) ' (M

1−γ
−→ M)

https://doi.org/10.1017/S1474748014000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000176


822 J. S. Milne and N. Ramachandran

in D+(Λ). For the second isomorphism, note that MΓ
∗ is the set of constant functions Γ →

M , and, if f is the constant function with value m, then (αγ f )(τ ) = f (τγ )− γ f (τ ) =
m− γm.

Now let Mod(Λ•Γ ) denote the category of projective systems (Mm)m∈N with Mm a

discrete Γ -module killed by pm , and let F be the functor Mod(Λ•Γ )→ Mod(Zp) sending

(Mm)m to lim
←−

MΓ
m . We say that an object (Mm)m of Mod(Λ•Γ ) is co-induced if Mm is

co-induced for each m. For every complex X = (Xm)m of Λ•Γ -modules, there is an exact

sequence

0→ X → X∗
αγ
−→ X∗→ 0 (39)

of complexes with X j
∗ = (X

j
m∗)m for all j,m. The class of co-induced Λ•Γ -modules is

F-injective, and so (39) defines isomorphisms

RF(X) ' s(F(X∗ −→ X∗)) ' s( EX
1−γ
−→ EX) (40)

in D+(Zp), where EX = (R lim
←−
)(X) and EX

1−γ
−→ EX is a double complex with EX as both its

zeroth and first column. From (40), we get a long exact sequence

· · · → H j−1( EX)
1−γ
−→ H j−1( EX)→ R j F(X)→ H j ( EX)

1−γ
−→ H j ( EX)→ · · · . (41)

If (Mm)m is a Λ•Γ -module satisfying the Mittag–Leffler condition, then

R j F((Mm)m) ' H j
cts(Γ, lim

←−
Mm)

(continuous cohomology). Let Λ• = (Z/pmZ)m . Then

R1 F(Λ•) ' H1
cts(Γ,Zp) ' Homcts(Γ,Zp),

which has a canonical element θ , namely, that mapping γ to 1. We can regard θ as an

element of

Ext1(Λ•,Λ•) = HomD+(Λ•Γ )(Λ•,Λ•[1]).

Thus, for X in D+(Λ•Γ ), we obtain maps

θ : X → X [1]

Rθ : RF(X)→ RF(X)[1].

The second map is described explicitly by the following map of double complexes:

RF(X) EX EX

RF(X)[1] EX EX

−1 0 1

Rθ γ

1− γ

1− γ

For all j , the following diagram commutes:

R j F(X) R j+1 F(X)

H j ( EX) H j ( EX)

d j

id

(42)
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where d j
= H j (Rθ) and the vertical maps are those in (41). The sequence

· · · −→ R j−1 F(X)
d j−1
−→ R j F(X)

d j
−→ R j+1 F(X) −→ · · · (43)

is a complex, because Rθ ◦ Rθ = 0. See Rapoport and Zink (1982, § 1).

Review of F-isocrystals

Let V be an F-isocrystal over k. The K -module V def
= K ⊗K V becomes an F-isocrystal

over k with F acting as σ ⊗ F (recall that K is the field of fractions of W = W (k)).

5.3. Let λ be a nonnegative rational number, and write λ = s/r with r, s ∈ N, r > 0,

(r, s) = 1. Define Eλ to be the F-isocrystal Kσ [F]/ (Kσ [F](Fr
− ps)).

When k is algebraically closed, every F-isocrystal is semisimple, and the simple

F-isocrystals are exactly the Eλ with λ ∈ Q>0. Therefore an F-isocrystal has a unique

(slope) decomposition

V =
⊕
λ>0

Vλ (44)

with Vλ a sum of copies of Eλ. See Demazure (1972, IV).

When k is merely perfect, the decomposition (44) of V is stable under Gal(k/k), and

so arises from a (slope) decomposition of V . In other words, V =
⊕

λ Vλ with Vλ = V λ.

If λ = r/s with r, s as above, then Vλ is the largest K -submodule of V such that Fr Vλ =
ps Vλ. The F-isocrystal Vλ is called the part of V with slope λ, and {λ | Vλ 6= 0} is the set

of slopes of V .

5.4. Let V be an F-isocrystal over k. The characteristic polynomial

PV,α(t)
def
= det(1−αt |V )

of an endomorphism α of V lies in K [t], but commutes with F , and so lies in Qp[t]. Let

k = Fq with q = pa , so that Fa is an endomorphism of (V, F), and let

PV,Fa (t) =
∏
i∈I

(1− ai t), ai ∈ Qp.

According to a theorem of Manin,
(
ordq(ai )

)
i∈I is the family of slopes of V . Here, ordq

is the p-adic valuation on Qp normalized so that ordq(q) = 1. See Demazure (1972,

pp. 89–90).

5.5. Let (V, F) be an F-isocrystal over k = Fpa , and let λ ∈ N. Let

V(λ) = {v ∈ V | Fv = pλv} (Qp-subspace of V ).

Then V(λ) is a Qp-structure on Vλ. In other words, Vλ has a basis of elements e with the

property that Fe = pλe, and hence(
γ ⊗ Fa) e = F

a
e = qλe.
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Therefore, as c runs over the eigenvalues of Fa on V with ordq(c) = λ, the quotient qλ/c
runs over the eigenvalues of γ on V(λ); moreover, c is a multiple root of the minimum

polynomial of Fa on Vλ if and only if qλ/c is a multiple root of the minimum polynomial

of γ on V(λ). See Milne (1986, 5.3).

5.6. Let (V, F) be an F-isocrystal over k = Fpa . If Fa is a semisimple endomorphism of

V (as a K -vector space), then End(V, F) is semisimple, because it is a Qp-form of the

centralizer of Fa in End(V ); it follows that (V, F) is semisimple. Conversely, if (V, F) is

semisimple, then Fa is semisimple, because it lies in the centre of the semisimple algebra

End(V, F). Let V and V ′ be nonzero F-isocrystals; then V ⊗ V ′ is semisimple if and only

if both V and V ′ are semisimple.

A preliminary calculation

In this subsection, k is the finite field Fq with q = pa , and Γ = Gal(k/k). We take the

Frobenius element x 7→ xq to be the generator γ of Γ .

Recall that, for P in Db
c(R), H j (s P)K is an F-isocrystal over k.

Proposition 5.7. Let M, N ∈ Db
c(R), let P = RHom(M, N ), and let r ∈ Z. For each j , let

f j : Ext j (M, N (r))Γ → Ext j (M, N (r))Γ

be the map induced by the identity map. Then z( f j ) is defined if and only if qr is not a

multiple root of the minimum polynomial of Fa on H j (s P)K , in which case

z( f j ) =

∣∣∣∣∣∣
∏

a j,l 6=qr

(
1−

a j,l

qr

)∣∣∣∣∣∣
p

∣∣∣∣∣∣
∏

ordq (a j,l )<r

qr

a j,l

∣∣∣∣∣∣
p

qT r−1, j−r (P),

where (a j,l)l is the family of eigenvalues of Fa acting on H j (s P)K .

Proof. (Following the proof of Milne (1986, 6.2).) Let G j denote the perfect pro-group

scheme Ext j (M, N (r)) def
= H j (P(r)F

• ). There is an exact sequence

0→ U j
→ G j

→ D j
→ 0

in which U j is a connected unipotent perfect algebraic group of dimension T r−1, j−r (P)
and D j is a pro-étale group such that D j (k) is a finitely generated Zp-module and

D j (k)⊗Zp Qp ' H j (s P(r)K )(0) ' H j (s PK )(r) (45)

(see 4.7, 4.8). The map 1− γ : U j (k)→ U j (k) is surjective, because it is étale and U j is

connected. On applying the snake lemma to

0 −−−−→ U j (k) −−−−→ G j (k) −−−−→ D j (k) −−−−→ 0y1−γ
y1−γ

y1−γ

0 −−−−→ U j (k) −−−−→ G j (k) −−−−→ D j (k) −−−−→ 0,
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and using that the first vertical arrow is surjective, we obtain the upper and lower rows

of the following exact commutative diagram:

0 −−−−→ U j (k)Γ −−−−→ G j (k)Γ −−−−→ D j (k)Γ −−−−→ 0y f ′j

y f j

y f ′′j

0 −−−−→ 0 −−−−→ G j (k)Γ −−−−→ D j (k)Γ −−−−→ 0.

(46)

Because U j has a composition series whose quotients are isomorphic to Gpf
a ,

[U j (k)] = qdim(U j )
= qT r−1, j−r (P).

On the other hand, it follows from (5.5) that the eigenvalues of γ acting on D j (k)Qp are

the quotients qr/a j,l with ordq(a j,l) = r . Therefore, (5.1) and (5.5) show that z( f ′′j ) is

defined if and only if the minimum polynomial of Fa on H j (s P)K does not have qr as a

multiple root, in which case

z( f ′′j ) =

∣∣∣∣∣∏
l

(
1−

qr

a j,l

)∣∣∣∣∣
p

,

where the product is over the a j,l such that ordq(a j,l) = r but a j,l 6= qr . Note that∣∣∣∣1− a j,l

qr

∣∣∣∣
p
=

∣∣∣∣1− qr

a j,l

∣∣∣∣
p

if ordq(a j,l) = r,

and ∣∣∣∣1− a j,l

qr

∣∣∣∣
p
=

{
|a j,l/qr

|p if ordq(a j,l) < r
1 if ordq(a j,l) > r.

Therefore,

z( f ′′j ) =

∣∣∣∣∣∣
∏

a j,l 6=qr

(
1−

a j,l

qr

)∣∣∣∣∣∣
p

∣∣∣∣∣∣
∏

ordq (a j,l )<r

qr

a j,l

∣∣∣∣∣∣
p

,

where both products are over all a j,l satisfying the conditions. The snake lemma applied

to (46) shows that z( f j ) is defined if and only if both z( f ′j ) and z( f ′′j ) are defined, in

which case z( f j ) = z( f ′j ) · z( f ′′j ). The proposition now follows. 2

Definition of the complex E(M, N (r))

Recall (4.9) that the bifunctor

R Hom : D(R)opp
×D+(R)→ D(Zp)

factors canonically through

RΓ (Set,−) : D+(S•)→ D(Zp),

where Γ (Set,−) is the functor (Pm)m  lim
←−

Γ (Set, Pm). Since RΓ (Set,−) obviously factors

through

RF : D+(Λ•Γ )→ D(Zp), F =
(
(Mm)m  lim

←−
MΓ

m

)
, Γ = Gal(k/k),
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so also does R Hom. Therefore, for M, N ∈ Db
c(R), there exists a well-defined object X in

D+(Λ•Γ ) such that RF(X) = R Hom(M, N (r)). For an algebraically closed base field k,

RF(X) = EX , and so, for a general k, EX = R Hom(M, N (r)).
Now let k be Fq with q = pa . With X as in the last paragraph, the sequence (41) gives

us short exact sequences

0→ Ext j−1(M, N (r))Γ → Ext j (M, N (r))→ Ext j (M, N (r))Γ → 0. (47)

Moreover, (43) becomes a complex:

E(M, N (r)) : · · · → Ext j−1(M, N (r))→ Ext j (M, N (r))→ Ext j+1(M, N (r))→ · · · .

This is the unique complex for which the following diagram commutes:

Ext j (M, N (r))Γ
f j

−→ Ext j (M, N (r))Γx y
· · · −→ Ext j−1(M, N (r))

d j−1
−−→ Ext j (M, N (r))

d j
−→ Ext j+1(M, N (r)) −→· · ·y x

Ext j−1(M, N (r))Γ
f j−1

−−−→ Ext j−1(M, N (r))Γ

(48)

(the vertical maps are those in (47) and the maps f j are induced by the identity map).

Let P ∈ Db
c(R). The zeta function Z(P, t) of P is the alternating product of the

characteristic polynomials of Fa acting on the isocrystals H j (s P)K :

Z(P, t) =
∏

j
det(1− Fa t | H j (s P)K )

(−1) j+1
.

Proof of Theorem 0.1

We first note that the condition on the minimum polynomial of Fa implies that the

minimum polynomial of γ on H j (s PK )(r) does not have 1 as a multiple root (see 5.5).

Let

Pj (t) = det(1− Fa t | H j (s P)K ) =
∏

l
(1− a j,l t).

(a) We have Ext j (M, N (r)) = Ext j (M, N (r))(k), where Ext j (M, N (r)) is a pro-algebraic

group such that the identity component of Ext j (M, N (r)) is algebraic and the quotient of

Ext j (M, N (r)) by its identity component is a pro-étale group (D j
m)m such that lim

←−m
D j

m(k)

is a finitely generated Zp-module (see 4.7, 4.8). Hence the Zp-modules Ext j (M, N (r))Γ

and Ext j (M, N (r))Γ are finitely generated. Now

rankZp (Ext j (M, N (r))) = rankZp (Ext j−1(M, N (r))Γ )+ rankZp (Ext j (M, N (r))Γ ).

The hypothesis on the action of the Frobenius element implies that

Ext j (M, N (r))Γ ⊗Q ' Ext j (M, N (r))Γ ⊗Q
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for all j , and so

rankZp (Ext j (M, N (r))) = rankZp (Ext j−1(M, N (r))Γ )+ rankZp (Ext j (M, N (r))Γ ).

Therefore, ∑
j
(−1) j rankZp (Ext j (M, N (r))) = 0.

(b) Let ρ j be the multiplicity of qr as an inverse root of Pj . Then

ρ j = rankZp Ext j (M, N (r))Γ = rankZp Ext j (M, N (r))Γ ,

and so ∑
j
(−1) j+1

· j · rankZp (Ext j (M, N (r))) =
∑

j
(−1) j+1

· j · (ρ j−1+ ρ j )

=

∑
j
(−1) jρ j

= ρ.

(c) From Lemma 5.2 applied to the diagram (48), we find that

χ(M, N (r)) =
∏

j
z( f j )(−1) j

.

According to Proposition 5.7,

z( f j ) =

∣∣∣∣∣∣
∏

a j,l 6=qr

(
1−

a j,l

qr

)∣∣∣∣∣∣
p

∣∣∣∣∣∣
∏

ordq (a j,l )<r

qr

a j,l

∣∣∣∣∣∣
p

qT r−1, j−r (P)..

where (a j,l)l is the family of eigenvalues of Fa acting on H j (s P(r))Q. Note that∏
a j,l 6=qr

(
1−

a j,l

qr

)
= lim

t→q−r

Pj (t)
(1− qr t)ρ j

.

According to (5.4), ∣∣∣∣∣∣
∏

ordq (a j,l )<r

qr

a j,l

∣∣∣∣∣∣
−1

p

=

∑
l (λ j,l<r)

r − λ j,l ,

where (λ j,l)l is the family of slopes H j (s P(r))Q. Because of the degeneration of the slope

spectral sequence (8) at E1 modulo torsion, the family of slopes of H j (s P(r))Q is the

same as the family of slopes of the groups H i (P) j
Q, used in the definition er (P). Using

this, we find that

χ(M, N (r)) =
∣∣∣∣ lim
t→q−r

Z(M, N , t) · (1− qr t)ρ
∣∣∣∣−1

p
q−er (P).

Theorem 2.9 completes the proof.
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6. Applications to algebraic varieties

Throughout, S = Spec(k), where k is a perfect field of characteristic p > 0.

Recall that the zeta function of an algebraic variety X over a finite field Fq is defined

to be the formal power series Z(X, t) ∈ Q[[t]] such that

log(Z(X, t)) =
∑
n>0

Nn tn

n
, Nn = #(X (Fqn )), (49)

and that Dwork (1960) proved that Z(X, t) ∈ Q(t).

Smooth complete varieties

Let X be a smooth complete variety over k, and let

M(X) = RΓ (X,W�•X ) ∈ Db
c(R)

(see 1.15). For all j > 0,

H j (s (M(X))) ' H j
crys(X/W ) (50)

(isomorphism of F-isocrystals; see 1.15), and so

Z(M(X), t) =
∏

j

det(1− Fa t | H j
crys(X/W )

(−1) j+1

Q .

That this equals Z(X, t) is proved in Katz and Messing (1974) for X projective, and

the complete case can be deduced from the projective case by using de Jong’s theory of

alterations (Nakkajima, 2005, Remark 2.2 (4); Suh, 2012; see also Chiarellotto and Le

Stum, 1998). Moreover, H j
crys(X/W )Q can be replaced by H j

rig(X) (see 6.2 below). Finally,

H j
abs(X,Zp(r)) is the group H j (X,Zp(r)) defined in (4.1) (Milne and Ramachandran,

2005), and

hi, j (M(X)) = hi, j (X) def
= dim H j (X, �i

X ),

because R1⊗
L
R M(X) ' RΓ (X, �•X ) (see 1.15). Therefore, when X is projective,

Theorem 0.2 becomes the p-part of Theorem 0.1 of Milne (1986).

Rigid cohomology

Before considering more general algebraic varieties, we briefly review the theory of

rigid cohomology. This was introduced in the 1980s by Pierre Berthelot as a common

generalization of crystalline and Washnitzer–Monsky cohomology. The book Le Stum

(2007) is a good reference for the foundations. We write H i
rig(X) (respectively, H i

rig,c(X))
for the rigid cohomology (respectively, rigid cohomology with compact support) of a

variety X over a perfect field k.

6.1. Both H i
rig(X) and H i

rig,c(X) are F-isocrystals over k; in particular, they are

finite-dimensional vector spaces over K . Cohomology with compact support is

contravariant for proper maps and covariant for open immersions; ordinary cohomology

is contravariant for all regular maps. The Künneth theorem is true for both cohomology

theories. (See Berthelot (1997a,b), and Grosse-Klönne (2002).)
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6.2. When X is smooth complete variety,

H i
rig(X) ' H i

crys(X)Q

(canonical isomorphism of F-isocrystals) (Berthelot, 1986).

6.3. Let U be an open subvariety of X with closed complement Z ; then there is a long

exact sequence

· · · → H i
rig,c(U )→ H i

rig,c(X)→ H i
rig,c(Z)→ · · ·

(Berthelot, 1986, 3.1).

6.4. Rigid cohomology is a Bloch–Ogus theory. In particular, there is a theory of rigid

homology and cycle class maps (Petrequin, 2003).

6.5. Rigid cohomology is a mixed-Weil cohomology theory, and hence factors through

the triangulated category of complexes of mixed motives (Cisinski and Déglise, 2012a,b).

6.6. Rigid cohomology satisfies proper cohomological descent (Tsuzuki, 2003).

6.7. Rigid cohomology (with compact support) can be described in terms of the

logarithmic de Rham–Witt cohomology of smooth simplicial schemes (Lorenzon,

Mokrane, Tsuzuki, Shiho, Nakkajima). We explain this below.

6.8. When k is finite, say, k = Fpa ,

Z(X, t) = det(1− Fa t | H j
rig,c(X))

(−1) j+1

(Étesse and Le Stum, 1993).

6.9. When k is finite, the F-isocrystals H i
rig(X) and H i

rig,c(X) are mixed; in particular,

the eigenvalues of 8 = Fa are Weil numbers.

The functors X  H i
rig(X) and X  H i

rig,c(X) arise from functors to Db
iso(Kσ [F

′
]),

which we denote hrig(X) and hrig,c(X) respectively.

Varieties with log structure

Endow S with a fine log structure, and let X be a complete log-smooth log variety of

Cartier type over S (Kato, 1989). In this situation, Lorenzon (2002, Theorem 3.1) defines

a complex M(X) def
= RΓ (X,W�•X ) of graded R-modules, and proves that it lies in Db

c (R).
Therefore, Theorem 0.2 applies to X .

Smooth varieties

Let V = X r E be the complement of a divisor with normal crossings E in a smooth

complete variety X of dimension n, and let m X be the canonical log structure on X
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defined by E :

m X = { f ∈ OX | f is invertible outside E}

(Kato, 1989, 1.5). Then (X,m X ) is log-smooth (ibid. § 3).

Define M(V ) ∈ Db
c(R) to be the complex of graded R-modules attached to (X,m X ) as

above:

M(V ) = RΓ ((X,m X ),W�•X ) = RΓ (X,W�•X (log E)).

We caution that this definition of M(V ) uses the presentation of V as X r E ; it is not

known at present that M(V ) depends only on V . However,

H i (s(M(V ))Q ' H i
rig(V )

(Nakkajima, 2012, 1.0.18, p. 13), and so s(M(V ))Q is independent of the compactification

X of V .

We define Mc(V ) to be the Tate twist of the dual of M(V ):

Mc(V ) = D(M(V ))(−n)

(see 4.10). From Berthelot’s duality of rigid cohomology (Berthelot, 1997a; Nakkajima

and Shiho, 2008, 3.6.0.1), we have the following isomorphism of F-isocrystals:

H j
rig,c(V ) ' HomK (H

2n− j
rig (V ), K (−n)).

It follows that

H j (s(Mc(V ))Q ' H j
rig,c(V ). (51)

We define

H j
c (V,Zp(r)) = Hom(W,Mc(V )(r)[ j]).

Now take k = Fpa . It follows from (6.8) and (51) that

Z(V, t) = Z(Mc(V ), t).

Moreover,

R1⊗
L
R M(V ) ' RΓ (X, �•X (log E)).

(Lorenzon, 2002, 2.17, or Nakkajima and Shiho, 2008, p. 184). Therefore, in this case,

Theorem 0.2 becomes the following statement.

Theorem 6.10. Assume that qr is not a multiple root of the minimum polynomial of Fa

acting on H j
rig(V ) for any j .

(a) The groups H j
c (V,Zp(r)) are finitely generated Zp-modules, and the alternating

sum of their ranks is zero.

(b) The zeta function Z(V, t) of X has a pole at t = q−r of order

ρ =
∑

j
(−1) j+1

· j · rankZp

(
H j

c (V,Zp(r))
)

.
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(c) The cohomology groups of the complex

E(V, r) : · · · → H j−1
c (V,Zp(r))→ H j

c (V,Zp(r))→ H j+1
c (V,Zp(r))→ · · ·

are finite, and the alternating product of their orders χ(V,Zp(r)) satisfies∣∣∣∣ lim
t→q−r

Z(V, t) · (1− qr t)ρ
∣∣∣∣−1

p
= χ(V,Zp(r)) · qχ(V,r),

where χ(V, r) =
∑

i6r, j (−1)i+ j (r − i)hi, j (V ).

We caution the reader that it is not known that every smooth variety U can be

expressed as the complement of a normal crossings divisor in a smooth complete variety.

General varieties

Philosophy. With each variety V over k, there should be associated objects M(V ),
Mc(V ), M B M (V ), and Mh(V ) in Db

c(R) arising as the p-adic realizations of the various

motives of V . See the discussion in Voevodsky et al. (2000, pp. 181–182).

At present, it does not seem to be known whether there exists a W -linear cohomology

theory underlying Berthelot’s rigid cohomology, i.e., a cohomology theory that gives

finitely generated W -modules H j
c (V ) stable under F with Q⊗Z H j

c (V ) = H j
rig,c(V ) for

each variety V .

Deligne’s technique of cohomological descent in Hodge theory has been transplanted

to rigid and log-de Rham–Witt theory by the brave efforts of N. Tsuzuki, Y. Nakkajima,

and A. Shiho. While their results do not provide the invariants of V above, they are

still sufficient for applications to zeta functions. Even though Mc(V ) is the only relevant

object for zeta values, we consider both M(V ) and Mc(V ).

The ordinary cohomology object M(V ). Let V be a variety of dimension n over k
equipped with an embedding V ↪→ V ′ of V into a proper scheme V ′. Then (see Nakkajima

(2012), especially 1.0.18, p. 13), there is a simplicial proper hypercovering (U•, X•) of

(V, V ′) with X• a proper smooth simplicial scheme over k and U• the complement of a

simplicial strict divisor with normal crossings E• on X•; moreover,

H i
rig(V ) ' H i (X•,W�•X•(log E•))Q.

For each j > 0,

RΓ (X j ,W�•X j (log E j )) ∈ Db
c (R)

(Lorenzon, 2002). As Db
c(R) is a triangulated subcategory of D(R), this implies that

RΓ (X6d ,W�•X6d
(log E6d)) ∈ Db

c(R)

for each truncation X6d of the simplicial scheme X•. The inclusion X6d → X• induces

an isomorphism

τ62n H i (X•,W�•X•(log E•))Q ' τ62n H i (X6d ,W�•X6d
(log E6d))Q

for all i provided that d > (n+ 1)(n+ 2), because both terms are isomorphic to H i
rig(V ).

Here, τ62n is the usual truncation functor in the derived category. For the left-hand
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side, this follows from 1.0.8 or 12.9.1 of Nakkajima (2012). For the right-hand side, we

apply Theorem 3.5.4, p. 243, of Nakkajima and Shiho (2008): H i
rig(V ) = 0 for i > 2n and

the spectral sequence 3.5.4.1 degenerates at E1, implying that only finitely many X j
contribute to the rigid cohomology of V . The bound on d comes from the arguments

following the isomorphism 3.5.0.4 on p. 242 ibid. See also pp. 122–125 of Nakkajima

(2012).

We let

M(V ) = τ62n RΓ (X6d ,W�•X6d
(log E6d))

for any integer d > (n+ 1)(n+ 2). While M(V ) may depend on d, X•, and the embedding

into V ′, the object s(M(V ))Q is independent of these choices up to canonical isomorphism,

because H i (s(M(V ))Q) ' H i
rig(V ). Recall that H i

rig(V ) = 0 for i > 2n.

We need to truncate, because it is not clear that the object RΓ (X•,W�•X•(log E•)) lies

in Db
c(R).

The cohomology object with compact support Mc(V ). Let V ↪→ V ′ be as in the

last subsubsection. Let ι : Z ↪→ V ′ denote the inclusion of the reduced closed complement

Z of V . One can find a proper hypercovering Y•→ Z and a morphism f : Y•→ X•
lifting ι. Applying the results of the previous subsubsection to Z and fixing an integer

d > (n+ 1)(n+ 2), we get M(Z) and a map f ∗ : M(V ′)→ M(Z). We define Mc(V )[1] to

be the mapping cone of f ∗. This is an object of Db
c(R).

Lemma 6.11. For all V ↪→ V ′ as above,

H i (s(Mc(V )) ' H i
rig,c(V ).

Proof. As the map f lifts ι, the map

f ∗ : H i (s(M(V ′))Q)→ H i (s(M(Z))Q)

can be identified with the map ι∗ : H i
rig(V

′)→ H i
rig(Z). But as V ′ and Z are proper, rigid

cohomology is the same as rigid cohomology with compact support. The lemma now

follows from the long exact sequence (6.3). 2

Combining the lemma with the result of Etesse and Le Stum above (6.8), we obtain

that the zeta function Z(V, t) of V is equal to the zeta function of Mc(V ). Therefore,
from Theorem 0.1, we obtain Theorem 6.10 for V .

Application of strong resolution of singularities

Geisser (2006) has shown how the assumption of a strong form of resolution of

singularities leads to a definition of groups H i
c (V,Z(r)) for an arbitrary variety V over

k, which, when k is finite, are closely connected to special values of zeta functions. His

definition involves the eh-topology, where the coverings are generated by étale coverings

and abstract blow-ups (ibid. 2.1).

We now sketch how his argument provides an object Mc(V ) ∈ Db
c(R). For a complete

V , we define M(V ) = RΓ (Veh, ρ
∗W�•V ), where ρ∗ denotes pullback from eh-sheaves on

the category of smooth varieties over k to eh-sheaves on all varieties over k. We show that
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M(V ) ∈ Db
c(R) by using induction on the dimension of V . Resolution of singularities gives

us a proper map V ′→ V inducing an isomorphism from an open subvariety U ′ of the

smooth variety V ′ onto an open subvariety U of V . Moreover, U ′ is the complement in V ′

of a divisor with normal crossings, and so we can define M(U ′) ∈ Db
c(R) as above (using

the eh-topology). Now M(V ) ∈ Db
c(R), because M(U ) def

= M(U ′) ∈ Db
c(R) and M(V rU ) ∈

Db
c(R) (by induction).

To define Mc(V ) for an arbitrary V , choose a compactification V ′ of V , and let

Mc(V ) = Cone(M(V ′)→ M(Z))[−1], Z def
= V ′r V .

Clearly, Mc(V ) ∈ Db
c(R). The eh-topology is crucial for proving that this definition is

independent of the compactification (ibid. 3.4). Given Mc(V ), we define

H i
c (V,Zp(r)) = HomDb

c (R)
(W,Mc(V )(r)[i]).

This agrees with Geisser’s group tensored with Zp, because the two agree for smooth

complete varieties and satisfy the same functorial properties.

Deligne-Mumford Stacks

Olsson (2007, first three chapters) extends the theory of crystalline cohomology to certain

algebraic stacks. He also shows (ibid. Chapter 4) that the crystalline definition (Illusie,

1983, 1.1(iv)) of the de Rham–Witt complex can be extended to stacks. Let S/W be a flat

algebraic stack equipped with a lift of the Frobenius endomorphism from S0 compatible

with the action of σ in W . Let X → S be a smooth morphism of algebraic stacks with

X a Deligne–Mumford stack. Then W�•X /S is a complex of sheaves of R-modules on X ,

and there is a canonical isomorphism

H j (s(RΓ (W�•X /S)))Q ' H j
crys(X /W )Q (52)

(Olsson, 2007, 4.4.17). Under certain hypotheses on S and X (ibid. 4.5.1), Ekedahl’s

criterion (see 1.5) can be used to show that RΓ (W�•X /S) ∈ Db
c(R) (ibid. 4.5.19) and that

(52) is an isomorphism of F-isocrystals.

Now assume that k = Fq , q = pa . The zeta function Z(X , t) of a stack X over k is

defined by (49), but with

Nm =
∑

x∈[X (Fqm )]

1
# Autx Fqm

(see Sun, 2012, p. 49). Assume that X is a Deligne–Mumford stack over S satisfying

Olsson’s conditions, and let M(X ) = RΓ (W�•X /S) ∈ Db
c(R). From (52), we see that

Z(M(X ), t) =
∏

j
det(1− Fa t | H j

crys(X /W )Q)
(−1) j+1

.

We expect that the two zeta functions agree (see ibid. 1.1 for the `-version of this). Then

Theorem 6.10 will hold for X with

H j (X ,Zp(r))
def
= HomDb

c (R)
(W,M(X )(r)[ j]).
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Crystals

Let X be a smooth scheme over S, and let E be a crystal on X . Étesse (1988a, II, 1.2.5)

defines a de Rham–Witt complex E ⊗W�•X/S on X , and, under some hypotheses on X
and E , he proves that M(X, E) ∈ Db

c(R) (ibid., II, 1.2.7) and that there is a canonical

isomorphism

H j (RΓ (E ⊗W�•X/S)) ' H j
crys(X/S, E)

(ibid. II, 2.7.1). Let

M(X, E) = RΓ (E ⊗W�•X/S).

When k is finite, Theorem 0.2 for M(X, E) becomes Theorem (0.1)′ of Étesse (1988b).
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Berthelot, P., Le théorème de dualité plate pour les surfaces (d’après J. S. Milne), in Algebraic
surfaces (Orsay, 1976–78), Lecture Notes in Math, Volume 868, pp. 203–237 (Springer, Berlin,
1981).
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