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1. Introduction

Given a family of varieties over a number field k, a natural problem is to study the
distribution of the varieties in the family with a rational point. In general, such problems
are too difficult, due to needing to control failures of the Hasse principle. Even in simple
cases where the Hasse principle holds, such as for families of conics, these questions lead
to rich arithmetic problems.
Serre [35] considered such problems for families of conics parametrised by a projective

space, where he obtained upper bounds for the number of conics of bounded height in
the family with a rational point. He showed, for example, that the number of integers
|a0|, |a1|, |a2| 6 B for which the diagonal conic

a0x2
0 + a1x2

1 + a2x2
2 = 0 ⊂ P2

Q (1.1)

has a rational point is O(B3/(log B)3/2). He conjectured that his upper bounds were
sharp, and in the special case (1.1) this was confirmed by Hooley [13].
In this paper we answer more cases of Serre’s problem. One obtains a more general

conceptual framework by working with Brauer group elements, as opposed to families of
conics; this approach was also taken by Serre in [35]. One recovers the case of conics by
working with Brauer group elements coming from quaternion algebras (see [20, 35] for
further details; we also give some applications of this type later on).
The general setup for such problems is as follows. Let X be a smooth projective variety

over a number field k with a height function H . Let U ⊂ X be a dense open subset and
let B ⊂ Br U be a finite subgroup of the Brauer group of U . Let

U (k)B = {x ∈ U (k) : b(x) = 0 ∈ Br k for all b ∈ B},

denote the zero-locus of B. For B > 0, we are interested in the counting function

N (U, H,B, B) = #{x ∈ U (k)B : H(x) 6 B}. (1.2)

Serre [35] obtained upper bounds in the case X = Pn
Q and B has order 2. Here, for

example, on Pn
Q one can take the height function

H(x0, . . . , xn) =

√
|x0|2+ · · ·+ |xn|2, (1.3)

where we choose a representative such that xi ∈ Z and gcd(x0, . . . , xn) = 1. Serre’s upper
bounds were subsequently generalised to any finite collection of Brauer group elements
defined on any open subset of Pn

k in [21, Theorem 5.10], and state that

N (U, H,B, B)�
Bn+1

(log B)1Pn (B)
, where 1Pn (B) =

∑
D∈(Pn)(1)

(
1−

1
|∂D(B)|

)
.

Here we denote by X (1) the set of codimension one points of a smooth variety X , for
D ∈ X (1) by ∂D : Br X → H1(κ(D),Q/Z) the associated residue map, and by |∂D(B)| the
order of the group of residues ∂D(B). These upper bounds are conjecturally sharp, and
the problem is to obtain the correct lower bounds, or even asymptotic formulae, under
the necessary assumption that UB(k) 6= ∅.
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A programme of study on such problems was began by the first-named author in [20],
where versions of Serre’s question were answered for anisotropic tori. For example, this
gives results whenever U ⊂ Pn

k is the complement of a norm form for a field extension of
k of degree n+ 1. Another important case has been handled by Sofos [38], which obtains
the correct lower bounds whenever U is the complement of a collection of closed points
of P1

Q of total degree at most 3 and B consists of a single element of order 2.
Our first result answers Serre’s question when U is the complement of the determinant

hypersurface in Pn2
−1

Q .

Theorem 1.1. Let n > 1 and consider the determinant detn : Mn(Q)→ Q, viewed as
a homogeneous polynomial of degree n in n2 variables. Let U = Pn2

−1
Q \ {detn(x) = 0},

equipped with the height H from (1.3). Let b ∈ Br U be an element such that U (Q)b 6= ∅.
Then there exists cn,b,H > 0 such that

N (U, H, b, B) ∼ cn,b,H
Bn2

(log B)1−1/|b| , as B →∞,

where |b| is the order of b in the Brauer group.

Remark 1.2. For each rational point P ∈ U (Q), one may adjust b by a constant algebra
so that P ∈ U (Q)b. In this way, the condition U (Q)b 6= ∅ frequently happens as soon as
we have U (Q) 6= ∅.

This result has a classical interpretation in terms of Diophantine equations involving
matrices (note that the U from Theorem 1.1 may be naturally identified with PGLn).
Namely, Theorem 1.1 allows one to count the number of matrices of bounded height
whose determinant is a norm from a given cyclic extension.

Corollary 1.3. Let n > 1 and let K/Q be a cyclic extension of degree d | n. There exists
cn,K ,H > 0 such that the number of matrices g ∈ PGLn(Q) ⊂ Pn2

−1(Q) of height H less
than B for which the equation

NK/Q(x) = detn(g)

has a solution for some x ∈ K , is asymptotically

cn,K ,H
Bn2

(log B)1−1/d , B →∞.

The determinant of g ∈ PGLn(Q) is a well-defined element detn(g) ∈ Q∗/Q∗n ; in
particular, as d | n, asking whether detn(g) is a norm from K/Q is a well-posed question.
One proves Corollary 1.3 by applying Theorem 1.1 to the element b ∈ Br PGLn given by
the cyclic algebra (detn, K/Q). This has order d, and the zero-locus consists of exactly
those g ∈ PGLn(Q) for which detn(g) is a norm from K/Q. Given that the identity matrix
lies in PGLn(Q)b, one easily deduces Corollary 1.3 from Theorem 1.1.
In the special case K = Q(i), Corollary 1.3 gives an asymptotic formula for the number

of matrices whose determinant is a sum of two squares. This may be viewed as an analogue
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1470 D. Loughran et al.

for the determinant of the classical theorem of Landau [17] concerning the number of
integers which can be written as a sum of two squares.
Our results for projective space are proved using more general results for zero-loci of

Brauer group elements on wonderful compactifications of adjoint semi-simple algebraic
groups. The wonderful compactification of an adjoint semi-simple algebraic group G is a
particularly nice bi-equivariant compactification of G, first introduced over algebraically
closed fields by de Concini and Procesi in [8]. Favourable properties are that the boundary
divisor is geometrically a strict normal crossing divisor, and that the effective cone of
divisors is freely generated by the boundary divisors. We recall its construction and basic
properties in § 3. For technical reasons we work with height functions associated with
a choice of smooth adelic metric on the anticanonical bundle (see § 4.2 for details; the
(n+ 1)th power of (1.3) on Pn

Q is such a height function). Our result is as follows.

Theorem 1.4. Let G be an adjoint semi-simple algebraic group over a number field k with
wonderful compactification G ⊂ X . Let H be a height function associated with a choice
of smooth adelic metric on the anticanonical bundle of X . Let B ⊂ Br1 G be a finite
subgroup of algebraic Brauer group elements. Assume that G(k)B 6= ∅. Then there exists
cX,B,H > 0 such that

N (G, H,B, B) ∼ cX,B,H B
(log B)ρ(X)−1

(log B)1X (B)
, as B →∞,

where

1X (B) =
∑

D∈X (1)

(
1−

1
|∂D(B)|

)
, ρ(X) = rank Pic X.

Here Br1 G = ker(Br G → Br G) denotes the algebraic Brauer group of G, where G is
the base change of G to the algebraic closure. Theorem 1.4 is proved using a similar
strategy to the proof of Manin’s conjecture for wonderful compactifications [37] (this
corresponds to the case B = 0 in Theorem 1.4). We study the analytic properties of the
associated height zeta function ∑

g∈G(k)B

1
H(g)s

using harmonic analysis, namely the spectral theory of automorphic forms. This
yields a spectral decomposition into parts coming from cuspidal, continuous, and
1-dimensional automorphic representations (i.e. automorphic characters of G). The
leading singularity comes from the automorphic characters. The resulting height integrals
are not meromorphic in general, but have branch point singularities; this is reflected in
the fact that the exponent of log B in Theorem 1.4 is a non-integral rational number, in
general. Our proof has many parallels to the case of anisotropic toric varieties [20].
The harmonic analysis approach is not suited to transcendental (i.e. non-algebraic)

Brauer group elements (see Remark 2.7). This hypothesis was also necessary in the case
of anisotropic tori [20] (note however, contrary to loc. cit., we are able to deal with
arbitrary adjoint groups, rather than just anisotropic groups).
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For an absolutely simple adjoint semi-simple algebraic group G, the transcendental
Brauer group is non-trivial only if G has type D2n (Remark 2.2). In particular,
Theorem 1.4 gives a complete answer to Serre’s question for most such G (e.g. for PGLn).
Many of the results in the literature on Serre’s problem (e.g. [13], [14], and [38]) only

give lower bounds for the counting problem. On the other hand, in Theorem 1.4 we are
able to obtain a precise asymptotic formula for the counting problem. We also obtain in
Theorem 4.20 an explicit expression for the leading constant cX,B,H in terms of a certain
Tamagawa measure.
Note that Theorem 1.1 does not follow immediately from Theorem 1.4, as the given

compactification PGLn ⊂ Pn2
−1 is not wonderful when n > 2 (the boundary divisor is

geometrically irreducible but singular, hence not strict normal crossings). We prove
Theorem 1.1 using the explicit construction of the wonderful compactification of PGLn
as a blow-up X → Pn2

−1, and then use the functoriality of heights to relate the counting
problem to one on the wonderful compactification. To resolve the corresponding counting
problem we require a more general version of Theorem 1.4 for counting rational points of
bounded height with respect to height functions attached to arbitrary big line bundles.
This is Theorem 4.19, which is the main theorem in this paper.
The layout of the paper is as follows. In § 2 we study Brauer groups of semi-simple

algebraic groups. Our main result here is Theorem 2.9, which gives a description
of the Brauer group of a semi-simple algebraic group of a number field in terms
of its automorphic characters. In § 3 we recall various properties of the wonderful
compactification. In § 4 we prove Theorem 1.4, together with its generalisation to big
line bundles (Theorem 4.19). In § 5 we prove Theorem 1.1 using Theorem 4.19.

1.1. Notation and conventions

For a topological group G, we denote by G∧ = Hom(G, S1) its group of continuous
unitary characters and by G∼ = Hom(G,Q/Z) its group of continuous Q/Z-characters.
We choose an embedding Q/Z ⊂ S1, so that G∼ ⊂ G∧. We commit the following abuse of
notation: For a closed (not necessarily normal) subgroup H ⊂ G, we denote by (G/H)∧

the collection of characters of G which are trivial on H . We use the notation (G/H)∼

analogously.
For a finite group G, we denote its order by |G|. For an element g ∈ G, we also denote

by |g| its order.
Let D ⊂ C be a subset and f : D→ C. We say that f is holomorphic on D if there exist

an open subset D ⊂ U ⊂ C and a holomorphic function g : U → C such that g|D = f .
Let U ⊂ C be a connected open subset and a ∈ C a point on the boundary of U .

Let f : U → C be holomorphic and let q ∈ {q ∈ R : q /∈ Z>0}. We say that f admits a
branch point singularity of order q at a if lims→a(s− a)−q f (s) exists and is non-zero.
Here we interpret (s− a)−q with its usual branch cut, namely as a holomorphic function
on C \ {σ ∈ R : σ 6 a}.
All cohomology is taken with respect to the étale topology. For a smooth variety X over

a field k, we denote by X = X ⊗k k the base change to a fixed choice of algebraic closure k
of k and by Br X = H2(X,Gm) its Brauer group. We denote by Br1 X = ker(Br X → Br X)
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the algebraic part of the Brauer group of X . We say that an element of Br X is constant
if it lies in the image of the map Br k → Br X (this map need not be injective in general,
however it is injective if X (k) 6= ∅). An element of Br X which does not lie in Br1 X is
called transcendental.
Let k be a number field. We denote by Val(k) the set of places of k and kv the completion

at a place v; if v is non-archimedean Ov denotes the ring of integers of kv. Let G be a
linear algebraic group over k or a Gal(k/k)-module. Then we denote by

X(k,G) = ker

H1(k,G)→
∏

v∈Val(k)

H1(k,G)


the Tate–Shafarevich set of G. (If G is non-abelian we use non-abelian Čech cohomology
[25, page 122].)

2. Brauer groups

In this section we gather results on the Brauer groups of semi-simple algebraic groups.

2.1. Generalities
Let G be a semi-simple algebraic group over a field k of characteristic 0 with identity
element e ∈ G(k).

2.1.1. Calculating the Brauer group. We shall be primarily interested in the
algebraic Brauer group Br1 G of G. By translating by an element of Br k, it suffices
to study the subgroup

Bre G = {b ∈ Br1 G : b(e) = 0 ∈ Br k}. (2.1)

Lemma 2.1. There is a functorial isomorphism

Bre G ∼= H1(k,Pic G).

We also have an isomorphism

Br G ∼= H3(Pic G,Z).

In particular Br G = 0 if and only if Pic G is cyclic.

Proof. The first part is [34, Lemma 6.9(iii)]. This is proved using the Hochschild–Serre
spectral sequence; the functoriality of the isomorphism therefore follows from the
functoriality of this spectral sequence. The second part is a result of Iversen [15,
Corollary 4.6] (see also [15, Remark 4.7]). For the last part, see [15, Corollary 4.3].

Note that this result implies that the adjoint case is in many respect the most interesting
case (e.g. simply connected semi-simple algebraic groups have constant Brauer group).

Remark 2.2. Let G be a split adjoint absolutely simple semi-simple algebraic group. Then
we have the following possibilities for the Picard group of G (this can be obtained from
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[24, Table 9.2.]).

Type An (n > 1) Bn,Cn, E7 (n > 2) D2n+1 (n > 1) D2n (n > 2) G2, F4, E8
Pic G Z/(n+ 1)Z Z/2Z Z/4Z Z/2Z×Z/2Z 0

Using Lemma 2.1, one finds that only groups of type D2n may have non-trivial
transcendental Brauer group, that groups of type G2, F4, E8 have constant Brauer group,
and that the remaining types have non-constant Brauer group in general. Of course more
possibilities arise for non-simple groups, as Pic(G1×G2) = Pic(G1)×Pic(G2).

2.1.2. The Brauer pairing. Recall that one can evaluate an element b of the Brauer
group of a variety X over k at a rational point x ∈ X (k) to obtain an element b(x) ∈ Br k.
We focus on algebraic Brauer groups, as in this case the induced pairing is much better
behaved on G, due to the following result of Sansuc [34, Lemma 6.9(i)].

Lemma 2.3. The pairing

Bre G×G(k)→ Br k, (b, g) 7→ b(g)

is bilinear.

2.1.3. Residues. Let G ⊂ X be a smooth projective compactification of G with
boundary divisor D = X \G. We have the exact sequence [34, (9.0.2)]

0→ DivD X → Pic X → Pic G → 0 (2.2)

where DivD X denotes the group of divisors of X which are supported on D. Applying
Galois cohomology, we obtain the map

H1(k,Pic G)→ H2(k,DivD X).

However, the group DivD X is a permutation module. In particular, applying Shapiro’s
lemma and using Lemma 2.1 we obtain a map

∂ : Bre G →
∏

α∈X (1)∩D

H1(kα,Q/Z), (2.3)

where kα denotes the algebraic closure of k in the residue field of α. A result of Sansuc
[34, Lemma 9.1] states that the maps from (2.3) agree with the usual residue maps
Bre G → H1(kα,Q/Z) [33, § 6.8], up to sign. We take (2.3) to be the definition of the
residue map attached to G ⊂ X . This possible sign will not cause problems, as ultimately
in Theorem 1.4 we only care about the subgroup generated by the residues of B, which
is unaffected by a sign change.

2.1.4. Inner forms and transfers. Denote by Inn G the inner automorphism group
of G; this is naturally an adjoint semi-simple algebraic group over k which acts on G
by conjugation. We can twist by (a 1-cocycle representing) an element of H1(k, Inn G) to
obtain a so-called inner form of G. There is a unique (up to isomorphism) quasi-split
inner form of G; we denote this by G ′.
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To assist with the harmonic analysis, we will need to perform a transfer between the
Brauer group of G and G ′. Recall from Lemma 2.1 that we have a canonical isomorphism

Bre G ∼= H1(k,Pic G).

However G and G ′ differ by an inner twist, and inner automorphisms act trivially on the
Picard group as Inn G is connected. It follows that there is a canonical isomorphism

tr : Bre G → Bre G ′, (2.4)

which we call the transfer map. We show that this is compatible with taking residue maps
with respect to bi-equivariant compactifications, i.e. those compactifications G ⊂ X for
which both the natural left and right actions of G on itself extend to X . Note that Inn G
naturally acts on such a compactification, so we can twist by the relevant cohomology
class to obtain a natural bi-equivariant compactification G ′ ⊂ X ′.

Lemma 2.4. Let G ⊂ X be a smooth projective bi-equivariant compactification of G
with boundary divisor D. Let G ′ be the quasi-split inner form of G with associated
bi-equivariant compactification G ′ ⊂ X ′ and boundary divisor D′. Then the transfer for
the Brauer group respects the residue maps, i.e. we have a commutative diagram

Bre G

��

// Bre G ′

��∏
α∈X (1)∩D H1(kα,Q/Z) // ∏

α′∈X ′(1)∩D′ H
1(kα′ ,Q/Z)

Proof. As Inn G is connected it acts trivially on the boundary divisors and on Pic G. We
thus find that

0→ DivD X → Pic X → Pic G → 0

and
0→ DivD′ X

′
→ Pic X

′
→ Pic G

′
→ 0

are canonically isomorphic as exact sequence of Galois modules. The result then follows
from Sansuc’s description of the residue map given in (2.3).

2.2. Brauer groups over number fields
Let now G be a semi-simple algebraic group over a number field k. We fix an integral
model of G over Ok where Ok is the ring of algebraic integers for k. Taking the sum of the
local pairings over each completion kv of k, combined with the embeddings Br kv ⊂ Q/Z,
we obtain a global Brauer pairing

Br G×G(Ak)→ Q/Z, (2.5)

which is right continuous [33, Corollary 8.2.11].
By an automorphic character of G, we mean a continuous homomorphism G(Ak)→ S1

which is trivial on G(k). For such a character χ , we denote by χv its local component
at a place v. Following our conventions from § 1.1, we denote the group of automorphic
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characters of G by (G(Ak)/G(k))∧. Note that there is little difference between this and
the group of Q/Z-characters (G(Ak)/G(k))∼, as every element of (G(Ak)/G(k))∧ has
finite order (in fact there exists n ∈ N, depending only on G, such that χn

= 1 for all
χ ∈ (G(Ak)/G(k))∧, cf. [37, Remark 2.2]).

Lemma 2.5. Let b ∈ Bre G. The map

G(Ak)→ Q/Z ⊂ S1,

induced by pairing with b, is an automorphic character of G.
Proof. That it is continuous follows from the continuity of the Brauer pairing. That the
induced map is a homomorphism follows from Lemma 2.3. Its triviality on G(k) follows
from the exact sequence

0→ Br k →
∏

v∈Val(k)

Br kv → Q/Z→ 0 (2.6)

from class field theory [33, Theorem 1.5.36].

We use this to obtain the following, which is crucial for the harmonic analysis. Let
þB,v : G(kv)→ {0, 1} be the indicator function of the zero-locus G(kv)B of B in G(kv).

Lemma 2.6. Let B ⊂ Bre G be a finite subgroup and v a place of k.

(1) For any place v of k, the indicator function þB,v is locally constant.
(2) For any non-archimedean place v of k, the indicator function þB,v is bi-invariant

under some compact open subgroup Kv ⊂ G(kv). Moreover, one may take Kv =
G(Ov) for all but finitely many non-archimedean v.

Proof. Part (1) follows from the right continuity of the Brauer pairing Br Gv ×G(kv)→
Q/Z. Let R be the group of automorphic characters attached to B by Lemma 2.5. Note
that þB,v is the indicator function of ∩ρ∈R ker ρv. Character orthogonality yields

þB,v(gv) =
1
|R|

∑
ρ∈R

ρv(gv), for all gv ∈ G(kv). (2.7)

As each ρv has finite order, the existence of Kv easily follows from (2.7). Moreover, as
each ρ is an automorphic character, for all but finitely many v we see that ρv is trivial
on G(Ov), whence the result.

Remark 2.7. The conclusion of Lemma 2.6 fails for transcendental Brauer group elements
in general. This is why we focus on the algebraic Brauer group in this paper; the harmonic
analysis tools are not suited for transcendental Brauer group elements.
Consider G = PGL2×PGL2 over Q with the quaternion algebra

b = (det2, det2)

on G. A simple Hilbert symbol calculation shows that þb,p is bi-invariant under the
image of SL2(Zp)×SL2(Zp) in G(Qp) for all odd primes p, but not bi-invariant under
PGL2(Zp)×PGL2(Zp) for any prime p. A similar phenomenon occurred in the case of
algebraic tori (see [20, Remark 5.5]).
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2.2.1. Calculating the Brauer group. We now calculate the algebraic Brauer group
over number fields. To do so, we require the following theorem due to Chernousov, Harder
and Kneser (see [32, Theorems 6.4, 6.6]).

Theorem 2.8. Let Gsc be a simply connected semi-simple algebraic group over k. Then
for non-archimedean v we have H1(kv,Gsc) = 0. Moreover, the natural map

H1(k,Gsc)→
∏
v|∞

H1(kv,Gsc)

is a bijection.

We combine this with an application of Poitou–Tate duality to obtain the following.
An analogous result for algebraic tori can be found in [20, Theorem 4.5]. In the statement
of the theorem, we denote

B(G) = ker

Bre G →
∏

v∈Val(k)

Bre Gv


(here B is the Cyrillic Be). It is well known that B(G) is finite (see e.g. [34,
Proposition 9.8]).

Theorem 2.9. The Brauer pairing

Bre G×G(Ak)→ Q/Z

induces a short exact sequence

0→ B(G)→ Bre G → (G(Ak)/G(k))∼→ 0.

Proof. Step 0: Generalities: Let Gsc
→ G be the simply connected cover of G, with

scheme-theoretic kernel F , so that we have the exact sequence of group schemes

1→ F → Gsc
→ G → 1. (2.8)

Note that F is the Cartier dual of the Picard scheme of G (see [34, Lemma 6.9(iii)]).
For any field extension k ⊂ L we will also require the diagram

Bre GL ×

��

G(L) // Br L

H1(L ,Pic G) × H1(L , F) ^ // Br L

(2.9)

The top arrow is the Brauer pairing, the left-hand vertical arrow is the isomorphism from
Lemma 2.1, the right hand vertical arrow comes from the sequence (2.8), and the bottom
arrow is the cup product. By [34, Lemma 8.11], this diagram is anticommutative.
Step 1: Local fields: Let v be a non-archimedean place of k. Applying Galois cohomology

to (2.8) we obtain the exact sequence

1→ F(kv)→ Gsc(kv)
jv
→ G(kv)→ H1(kv, F)→ 1, (2.10)
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of pointed topological spaces, where we have used the vanishing H1(kv,Gsc) = 0 of
Theorem 2.8. Note that jv(Gsc(kv)) ⊂ G(kv) is a closed normal subgroup of finite index
and the topological quotient G(kv)/jv(Gsc(kv)) has the discrete topology. Local Tate
duality [28, Theorem 7.2.6] implies that the cup-product pairing

H1(kv,Pic G)×H1(kv, F)→ Q/Z (2.11)

is perfect. It follows from this, (2.9), (2.10), and the above topological considerations,
that the pairing

Bre Gv ×G(kv)→ Q/Z

induces an isomorphism

Bre Gv
∼= (G(kv)/jv(Gsc(kv)))∼, (2.12)

for any non-archimedean place v.
Step 2: The kernel: Next, consider the homomorphism

ε : Bre G → G(Ak)
∼

from Lemmas 2.3 and 2.5. Clearly B(G) ⊂ ker ε. To prove the converse, let b ∈ ker ε. By
definition, we see that b induces the trivial character at all places v. From (2.12), we have
bv = 0 ∈ Bre Gv for all non-archimedean places v. Hence from Lemma 2.1 we deduce that,
with respect to the isomorphism Bre G ∼= H1(k,Pic G), we have

ker ε ⊂X∞(k,Pic G) := ker

H1(k,Pic G)→
∏
v-∞

H1(k,Pic G)

 .
However, as the decomposition group at an archimedean place is cyclic, it follows from [34,
Lemma 1.1] that we in fact have X(k,Pic G) =X∞(k,Pic G). Another result of Sansuc
[34, Corollary 7.4] yields B(G) ∼=X(k,Pic G), thus | ker ε| 6 |B(G)| and so ker ε = B(G),
as claimed.
Step 3: Surjectivity: We finish by showing the required surjectivity using the

Poitou–Tate exact sequence (see for example (8.6.10) in [28]). As usual, for a finite abelian
group scheme M over k we let

P1(k,M) =
∏
v

′

H1(kv,M)

be the restricted direct product with respect to the subgroups H1(Ov,M) (these
subgroups are well defined for all but finitely many non-archimedean v). This has the
topology of a locally compact abelian group. The part of Poitou–Tate relevant to us is

H1(k,M)→ P1(k,M)→ H1(k, M̂)∼,

which is an exact sequence of topological groups. We apply this with M = F , and use
Lemma 2.1 to deduce that the natural map

P1(k, F)/H1(k, F)→ (Bre G)∼ (2.13)
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is injective and that its image has the subspace topology (here we abuse notation slightly,
as the map H1(k,M)→ P1(k,M) need not be injective in general).
We now apply étale cohomology to (2.8). Recall that the restricted direct product

of exact sequences is again exact (as direct products and direct limits preserve exact
sequences). By Theorem 2.8 we therefore obtain the commutative diagram

Gsc(Ak)
j // G(Ak) // P1(k, F) // ∏

v|∞ H1(kv,Gsc)

Gsc(k) //

OO

G(k) //

OO

H1(k, F) //

OO

H1(k,Gsc)

OO
(2.14)

whose rows are exact sequences of pointed topological spaces. By Theorem 2.8, the
rightmost arrow is a bijection. Using this, a chase through (2.14) shows that

Im(G(Ak)→ P1(k, F))∩ Im(H1(k, F)→ P1(k, F)) = Im(G(k)→ P1(k, F)).

As H1(kv,Gsc) is finite for v | ∞, we thus see that

G(Ak)/j (Gsc(Ak))G(k) ⊂ P1(k, F)/H1(k, F),

is an open subgroup of finite index. Hence, using (2.13), the natural map

G(Ak)/j (Gsc(Ak))G(k)→ (Bre G)∼

is an injection whose image is equipped with the subspace topology. Applying Pontryagin
duality, we deduce that the map

Bre G → (G(Ak)/j (Gsc(Ak))G(k))∼

is surjective. Thus to complete the proof, it suffices to show that the map

(G(Ak)/j (Gsc(Ak))G(k))∼→ (G(Ak)/G(k))∼ (2.15)

is an isomorphism of topological groups. It is clearly injective. To show surjectivity, let
χ ∈ (G(Ak)/G(k))∼. As Gsc is simply connected, any automorphic character of Gsc is
trivial [37, Proposition 2.1]. Thus the restriction of χ to j (Gsc(Ak)) is also trivial, and
so (2.15) is an isomorphism, as required.

Remark 2.10. The analogue of (2.12) is false for real places in general. For a real place
v, the map

Bre Gv → (G(kv)/jv(Gsc(kv)))∼,

is surjective, but need not be injective. For example, consider SOn over R. From
Lemma 2.1 we have Bre SOn ∼= µ2, but the map Spinn(R)→ SOn(R) is surjective. Of
course the problem here is that the analogue of Theorem 2.8 does not hold; the set
H1(R,Spinn) is non-trivial.

Corollary 2.11. Suppose that G is adjoint. Then the map

Bre G → (G(Ak)/G(k))∼

is an isomorphism.
Proof. It suffices to note that B(G) = 0 in this case (see [34, Proposition 9.8]).
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2.2.2. Compatibility of transfers. In the case that G is adjoint and k is a number
field, a transfer map

tr : (G(Ak)/G(k))∼→ (G ′(Ak)/G ′(k))∼

on automorphic characters was constructed in [37, § 2], where G ′ denotes the quasi-split
inner form of G (we recall this construction in the proof of Lemma 2.12). We next show
that this transfer is compatible with our transfer, as defined in § 2.1.4.

Lemma 2.12. Assume that G is adjoint with quasi-split inner form G ′. The transfer
map on Brauer groups and automorphic characters commute, i.e. they give rise to a
commutative diagram

Bre G

tr
��

// (G(Ak)/G(k))∼

tr
��

Bre G ′ // (G ′(Ak)/G ′(k))∼

Proof. The transfer on automorphic characters is built from a collection of local transfers.
We first recall the definition of these local transfers for a non-archimedean place v, as
defined in [37, § 2.2]. As explained in the proof of Theorem 2.9 (see (2.12)), the natural
map

H1(kv,Pic G)→ (G(kv)/jv(Gsc(kv)))∼

is an isomorphism. The left-hand side does not change upon twisting by an inner
automorphism, hence we obtain an isomorphism

trv : (G(kv)/jv(Gsc(kv)))∼→ (G ′(kv)/j ′v(G
′sc(kv)))∼

which is the definition of the local transfer from [37, § 2.2]. In the light of Lemma 2.1, we
see that the local transfer trv and the transfer map Bre Gv → Bre G ′v on Brauer groups
commute for all non-archimedean places v.
We have shown that the automorphic characters agree at all non-archimedean places.

This in fact implies that they agree at all places. Indeed, if χ is an automorphic character
of G whose local components χv are trivial for all but finitely many v, then a simple
application of weak approximation for G implies that χ is actually trivial.

2.3. The case of PGLn

We now explain the above theory in the special case where G = PGLn . We have the
following explicit description of the Brauer group in terms of cyclic algebras (see [33,
§ 1.5.7] for a general treatment of cyclic algebras).

Proposition 2.13. Let n ∈ N and let k be a field of characteristic 0. Then

Br PGLn = 0, Bre PGLn ∼= Hom(Gal(k/k),Z/nZ).

Explicitly, every element of Bre PGLn has a representative by a cyclic algebra of the
form (detn, α) for some α ∈ Hom(Gal(k/k),Z/nZ), where detn denotes the determinant
on PGLn ⊂ Pn2

−1
k viewed as a homogeneous polynomial of degree n.
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Proof. As Pic PGLn ∼= Z/nZ, Lemma 2.1 implies that the transcendental Brauer group is
trivial. One could also use Lemma 2.1 for the explicit description of the algebraic Brauer
group, but we give a direct proof instead. We use the exact sequence (2.2) with respect
to the compactification PGLn ⊂ Pn2

−1
k . This sequence here is just

0→ Z→ Z→ Z/nZ→ 0.

Applying Galois cohomology, we obtain the exact sequence

0 = H1(k,Z)→ Bre PGLn → H2(k,Z)[n] → 0. (2.16)

The residue map ∂ : Bre PGLn → H1(k,Q/Z) is given by composing this map with the
canonical isomorphism H2(k,Z)[n] ∼= H1(k,Q/Z), thus ∂ is an isomorphism. However, the
residue of the cyclic algebra (detn, α) is simply α; the result follows.

When k is a number field, under the isomorphism of Corollary 2.11 the cyclic algebra
(detn, α) corresponds to the automorphic Q/Z-character

PGLn(Ak)→ Z/nZ, g 7→ χ(detn g),

where χ : A∗k → Z/nZ is the automorphic character attached to α via class field theory.

3. Wonderful compactifications

In this section we recall the construction of wonderful compactifications for adjoint
semi-simple groups and their basic properties. The wonderful compactification was
introduced by de Concini and Procesi in [8] over algebraically closed fields of characteristic
0. We work over an arbitrary field k of characteristic 0, and explain the construction in
this setting.
Let G be an adjoint semi-simple algebraic group over k. There are many ways to

construct the wonderful compactification of G. We use the following, as it is clear that
it works over non-algebraically closed fields and avoids the choice of a maximal torus.

Definition 3.1. Let g be the Lie algebra of G and L the variety of Lie subalgebras of
g⊕ g, viewed as a closed subscheme of a Grassmannian.
We define the wonderful compactification X of G to be the closure of the G×G-orbit

of the point of L corresponding to the diagonally embedded g ⊂ g⊕ g.

Note that X (k) 6= ∅. As proved in [8, §6.1] over k, the wonderful compactification is
a smooth projective bi-equivariant compactification of G. That the same holds over k
follows from Galois descent. We denote by A the set of boundary divisors of X , and for
α ∈ A the corresponding divisor by Dα. We let A be the set of boundary divisors over
k. The geometric boundary divisor D = ∪

α∈A Dα = X \G is a simple normal crossings
divisor over k (see [8, § 3.1] or [5, § 2.1]).
Now suppose that G is quasi-split, let B ⊂ G be a Borel subgroup and T ⊂ B ⊂ G a

maximal torus. Let B− be the opposite Borel subgroup (i.e. B− ∩ B = T ) and consider
the open orbit B−B ⊂ G. Its complement in X consists of (B−× B)-stable divisors. Those
(B−× B)-stable divisors which are not (G×G)-stable are called colours. Let X◦ be the
complement of the colours in X and let Z be the Zariski closure of T in X◦.
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Lemma 3.2. Assume that G is quasi-split with Borel subgroup B and let T ⊂ B be a
maximal torus.

(1) The variety Z , as defined above, is a smooth toric variety with respect to T .
(2) For each α ∈ A , the scheme-theoretic intersection Eα = Dα ∩ Z is an integral

divisor in Z . Moreover Dα and Z intersect transversely at every smooth point of
Dα.

(3) Let f be a simple root of T with respect to B, viewed as a regular function on T .
Then div f = Eα ⊂ Z for some α ∈ A .

(4) These constructions give Galois equivariant bijections between the following:
• The simple roots of G with respect to B and T .
• The boundary divisors of G ⊂ X .
• The boundary divisors of T ⊂ Z .

Proof. We first assume that k is algebraically closed. In this case, we use some of the
descriptions given in [8] (see also [5, § 2.1]). As explained in the proof of [8, Theorem 3.1]
(cf. [8, Lemma 2.2] and [8, Proposition 2.3]), there is an isomorphism

U−×A|A |×U ∼= X◦,

where U ⊂ B is the unipotent radical of B, and Z is identified with the linear subspace
A|A | as a toric variety (this in particular shows part (1)). Moreover, let xα be the
coordinates on A|A | for α ∈ A . Then for a boundary divisor Dα, the intersection Dα ∩ X◦

is identified with the hyperplane xα = 0 in X◦. As the affine subspace A|A | ⊂ X◦ clearly
intersects these transversely in a smooth divisor, this shows part (2). Part (3) follows
from the explicit description of the Dα given in the proof of [10, Lemma 2.7].
Part (4) easily follows from the above, and the case of a non-algebraically closed field

follows from a simple Galois descent argument.

Returning to the case of general adjoint G, we have the following.

Proposition 3.3. The following hold.

(1) We have the exact sequence:

0→⊕α∈A ZDα → Pic(X)→ Pic(G)→ 0. (3.1)

(2) The closed cone of effective divisors 3eff(X) is generated by the boundary
components of X , i.e.,

3eff(X) = ⊕α∈A R>0 Dα.

(3) There exist κα > 0 such that the anticanonical divisor is given by

−K X =
∑
α∈A

(κα + 1)Dα. (3.2)

Proof. We first assume that k is algebraically closed. Part (1) holds for any
smooth projective compactification of a semi-simple algebraic group (see [34, §9.0]).
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The second part is a well-known property of the wonderful compactification (see [5,
Examples 2.2.4, 2.3.5]). For the last part, a general formula of Brion [5, Theorem 4.2]
states that

−K X =
∑
α∈A

Dα +
∑

colours D

m D D, (3.3)

for some m D > 0. The result follows.
Now assume that k is non-algebraically closed. For part (1), we apply Galois

cohomology to the sequence (3.1) over k to obtain

0→ H0(k,⊕
α∈A ZDα))→ H0(k,Pic(X))→ H0(k,Pic(G))→ H1(k,⊕

α∈A ZDα)).

By Shapiro’s lemma we have H0(k,⊕
α∈A ZDα) = ⊕α∈A ZDα and H1(k,⊕

α∈A ZDα) =
H1(k,⊕α∈A ZDα) = 0. Moreover, as G and X both have no non-constant invertible
functions and ∅ 6= G(k) ⊂ X (k), we have H0(k,Pic(X)) = Pic(X) and H0(k,Pic(G)) =
Pic(G) (see e.g. [34, Lemma 6.3(iii)]). Part (1) now easily follows. Part (2) similarly
follows by taking Galois invariants. Part (3) follows immediately from (3.3).

4. Zero-loci of Brauer group elements

In this section we prove our main result (Theorem 4.19), which is a generalisation of
Theorem 1.4 to height functions attached to arbitrary big line bundles.

4.1. Setup
Throughout G is an adjoint semi-simple algebraic group over a number field k. We choose
Haar measures dgv on each G(kv) such that G(Ov) has measure 1 for all but finitely many
v. The product of these measures converges to a well-defined measure dg on G(Ak). We
choose our measures so that vol(G(Ak)/G(k)) = 1 for the induced quotient measure. We
let G ′ denote the quasi-split inner form of G.
Let B ⊂ Br1 G be a finite subgroup such that G(k)B 6= ∅. By changing the group law

of G if necessary, we may take any element of G(k)B to be the identity element. We
may therefore assume that e ∈ G(k)B, i.e. that B ⊂ Bre G (see (2.1)). We denote by R
the group of automorphic characters of G attached to B via Theorem 2.9. For a place
v of k, we denote by þv : G(kv)→ {0, 1} the indicator function of G(kv)B = ∩ρ∈R ker ρv.
We let þ =

∏
v þv : G(Ak)→ {0, 1} be the product of the local indicator functions with

zero-locus G(Ak)B. Note that the Hasse principle for Br k (see (2.6)) implies that G(k)B =
G(k)∩G(Ak)B.
We let G ⊂ X be the wonderful compactification of G with set of boundary divisors A

(see § 3). For α ∈ A we let κα be as in Proposition 3.3 and let kα be the field of constants
of Dα (i.e. the algebraic closure of k inside the function field of Dα).
We have the following description for a maximal torus of G ′ via the Weil restriction.

Lemma 4.1. Let B ′ ⊂ G ′ be a Borel subgroup and T ′ ⊂ B ′ a maximal torus. Then

T ′ ∼=
∏
α∈A

Rkα/k Gm. (4.1)
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Proof. As G ′ is quasi-split and adjoint, the simple roots form a basis of the character
group X∗(T

′
). However, the simple roots are permuted by the Galois action in the same

way as the divisors Dα (see Lemma 3.2); the result easily follows.

4.2. Heights
We assume that the reader is familiar with the theory of heights attached to adelic metrics
on line bundles, as can be found, for example, in [6, § 2.1, 2.2]. Denote by T = CA

the complex vector space with basis given by the elements of A . We define an adelic
complexified height pairing

H(s, g) : CA
×G(Ak)→ C

as well as local height pairings, as follows. Choose smooth adelic metrics ‖ · ‖α on the line
bundles OX (Dα) and let dα be a choice of global section of OX (Dα) which vanishes on
Dα. We define

Hv(s, gv) =
∏
α∈A

‖dα(gv)‖−sα
v , H(s, (gv)v) =

∏
v

Hv(s, gv). (4.2)

Note that Hv depends on the choice of the dα, but the adelic height H is independent
of the dα by the product formula. From Proposition 3.3, the natural map ZA

→ Pic(X)
has finite cokernel, hence induces an isomorphism CA ∼= Pic(X)C := Pic(X)⊗ZC. This
therefore yields an adelic complexified height pairing Pic(X)C×G(Ak)→ C.
For example, define κ = (κα + 1)α∈A (see Proposition 3.3). Then H(κ, ·) is a choice of

anticanonical height function on X . For c ∈ R, we let

Tc = {(sα) ∈ CA
: Re sα > κα + 1+ c,∀α ∈ A }. (4.3)

We use this notation since, as we shall prove, the height zeta function is absolutely
convergent on T0 and has singularities along the hyperplanes Re sα = κα + 1.

Remark 4.2. Note that given a line bundle L, every smooth adelic metric on L arises
via (4.2). Explicitly, choose a basis of Pic(X)Q which contains [L] together with adelic
metrics on each basis element. Expressing each Dα in terms of this new basis yields, via
the above construction, the original metric on L.

We next consider the bi-invariance of the height and þ.

Lemma 4.3. For any non-archimedean place v of k, there exists a compact open subgroup
Kv ⊂ G(kv) such that both Hv and þv are bi-Kv-invariant. Moreover, one may take Kv =
G(Ov) for all but finitely many v.

Proof. This property of the height is shown in [37, Proposition 6.3], whilst the analogue
for þv is Lemma 2.6.

For every non-archimedean place v of k, we now fix the choice of such a Kv satisfying
Lemma 4.3 and let K0 =

∏
v-∞ Kv.
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4.3. Review of automorphic forms
Here we review some notation and results from the theory of automorphic forms, following
Arthur’s exposition [1, § 1–3].

4.3.1. Notation and basic definitions. Fix a minimal parabolic subgroup B of G.
We denote standard parabolic subgroups of G by P. For such a parabolic subgroup, let
• MP , the Levi factor,
• NP , the unipotent radical,
• AP , the split component of the centre of MP ,
• X∗(MP )k , the group of characters of MP defined over k,
• aP = Hom(X∗(MP )k,R), a∗P = X∗(MP )k ⊗R,
• (aP )C = aP ⊗R C, (a∗P )C = a∗P ⊗R C,
• 1P , the set of the simple roots of (P, AP ),
• a+P = {H ∈ aP ;α(H) > 0 for all α ∈ 1P },
• (a∗P )

+
= {3 ∈ a∗P ;3(α̌) > 0 for all α ∈ 1P }, where in this expression α̌ is the coroot

associated with α,
• n(AP ), be the number of chambers in aP .
If there is no confusion, we drop the subscript P. Also, recall our choices of the groups

Kv following Lemma 4.3. For each archimedean place v of k, we choose a maximal compact
subgroup Kv ⊂ G(kv) such that

G(kv) = KvAB(kv)Kv.

We set K =
∏
v Kv, K0 =

∏
v non-arch. Kv, K∞ =

∏
v arch. Kv.

Let W be the restricted Weyl group of (G, AB). The group W naturally acts on aB
and a∗B . For any s ∈W, fix a representative ws in the intersection of G(k) with the
normaliser of AB . For parabolic subgroups P1, P2, let W(aP1 , aP2) be the collection of
distinct isomorphisms aP1 → aP2 obtained by restricting elements of W to aP1 . A pair of
parabolic subgroups P1, P2 are called associated if W(aP1 , aP2) is not empty. This is an
equivalence relation.
Let P be a parabolic subgroup with Levi factor M and unipotent radical N . For m =

(mv)v ∈ M(Ak), we define an element HM (m) ∈ aP by

e〈HM (m),χ〉 = |χ(m)| =
∏
v

|χ(mv)|v (4.4)

for all χ ∈ X∗(M)k . This is a homomorphism

M(Ak) −→ aP . (4.5)

We let M(Ak)
1 be the kernel. By Iwasawa decomposition, any x ∈ G(Ak) can be written

as nmaκ with n ∈ N (Ak),m ∈ M(Ak)
1, a ∈

∏
v arch.AP (kv)0, κ ∈ K. Set HP (x) := HM (a) ∈

aP . There is a vector ρP ∈ (a
∗

P )
+ such that

δP (p) = |det(Ad p|nP (Ak ))| = e2ρP (HP (p)) (4.6)

for all p ∈ P(Ak).
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We now explain the normalisation of measures. Recall that we chose a Haar measure on
G(Ak) in § 4.1. For any subgroup V of NB , the unipotent radical of the minimal parabolic
subgroup B, we choose a Haar measure on V (Ak) so that V (k)\V (Ak) has volume one.
We equip K with the Haar measure with total volume one. Fix Haar measures on each
of the vector spaces aP so that the lattice Hom(X∗(MP )k,Z) ⊂ aP has covolume 1, and
use the dual measures on a∗P . For any standard parabolic P, there is a unique measure
on MP (Ak) such that∫

G(Ak )

f (x) dx =
∫

NP (Ak )

∫
MP (Ak )

∫
K

f (nmκ)e−2ρP (HP (m)) dn dm dκ.

The map HM : MP (Ak)→ aP determines an isomorphism MP (Ak)/MP (Ak)
1
→ aP . Since

we already have a Haar measure on the group MP (Ak), there is a unique Haar measure
on the group MP (Ak)

1 such that the quotient measure on MP (Ak)/MP (Ak)
1 is the one

obtained by transport of structures from aP .

4.3.2. Eisenstein series. We now recall the definition of Eisenstein series in general.
We will do this in several stages.
1. Let M be the Levi factor of some standard parabolic subgroup P of G. Let

L2
cusp(M(k)\M(Ak)

1) be the space of functions φ in L2(M(k)\M(Ak)
1) such that for any

parabolic Q $ P we have∫
NQ(k)∩M(k)\NQ(Ak )∩M(Ak )

φ(nm) dn = 0 (4.7)

for almost all m. It is known ([2, Lemma 5 and its corollary]) that

L2
cusp(M(k)\M(Ak)

1) =
⊕
%

V% (4.8)

where % ranges over all irreducible unitary representations of M(Ak)
1, and V% is the

%-isotypic component of % consisting of finitely many copies of % (possibly zero).
2. We define an equivalence relation on the set of pairs (M, %) with M a Levi

factor of some standard parabolic subgroup of G and % an irreducible unitary
representation of M(Ak)

1 occurring in L2
cusp(M(k)\M(Ak)

1). For two such pairs (M, %)
and (M ′, %′), set (M, %) ∼ (M ′, %′) if there are parabolic subgroups P, P ′ with Levi factors
M,M ′, respectively, such that there is an s ∈W(aP , aP ′) with the property that the
representation

(s%)(m′) = %(w−1
s m′ws) (m′ ∈ M ′(Ak)

1) (4.9)

is unitarily equivalent to %′. Let X be the set of equivalence classes. For any χ ∈ X we
have a class Pχ of associated parabolic subgroups consisting of those parabolic subgroups
P with a Levi subgroup M and a representation ρ such that (M, ρ) ∈ χ .
3. If M is the Levi factor of some parabolic subgroup and χ ∈ X, set

L2
cusp(M(k)\M(Ak)

1)χ =
⊕

(%:(M,%)∈χ)

V%. (4.10)
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This is a closed subspace of L2
cusp(M(k)\M(Ak)

1), and zero if P /∈ Pχ for every parabolic
subgroup P that has M as a Levi factor. Then we have

L2
cusp(M(k)\M(Ak)

1) =
⊕
χ∈X

L2
cusp(M(k)\M(Ak)

1)χ . (4.11)

4. Let M be the Levi factor of some parabolic subgroup P, and fix an equivalence class
χ ∈ X. Suppose there is a P1 ∈ Pχ such that P1 ⊂ P. Let ψ be a smooth function on
NP1(Ak)MP1(k)\G(Ak) such that

9a(m, κ) = ψ(amκ), κ ∈ K,m ∈ MP1(k)\MP1(Ak), a ∈ AP1(k)\AP1(Ak) (4.12)

vanishes outside a compact subset of AP1(k)\AP1(Ak), transforms under K∞ according
to an irreducible representation, and as a function of m belongs to the space
L2

cusp(MP1(k)\MP1(Ak)
1). Then the function

ψ̂M (m) =
∑

γ∈P1(k)∩M(k)\M(k)

ψ(γm), m ∈ M(k)\M(Ak)
1 (4.13)

is square integrable on M(k)\M(Ak)
1. Define L2(M(k)\M(Ak)

1)χ to be the span of all
such ψ̂M . If no such P1 exist, the latter space is defined to be the zero space. By [18,
Lemma 2] for Q, and [26, Proposition II.2.4] for the general case, we have

L2(M(k)\M(Ak)
1) =

⊕
χ

L2(M(k)\M(Ak)
1)χ . (4.14)

5. If M is the Levi factor of some standard parabolic subgroup P, let 5(M) be the set
of equivalence classes of irreducible unitary representations of M(Ak). For ζ ∈ (a∗P )C and
π ∈ 5(M) let πζ be the product of π with the quasi-character

x 7→ eζHP (x) (x ∈ G(Ak)). (4.15)

If ζ ∈ ia∗P then πζ is again unitary. This gives 5(M) the structure of a differentiable
manifold, with infinitely many connected components, which carries an action of ia∗P .
Since the connected components are identified with ia∗P , we also obtain a measure dπ on
5(M) .
6. Let P be a standard parabolic subgroup. For π ∈ 5(MP ) we let V0

P (π) be the space
of smooth functions

φ : NP (Ak)MP (k)\G(Ak)→ C (4.16)

satisfying

(1) φ is right K-finite;
(2) for every x ∈ G(Ak) the function

m 7→ φ(mx), m ∈ MP (Ak)

is a matrix coefficient of π ;
(3) ‖φ‖2 =

∫
K
∫

MP (k)\MP (Ak )1
|φ(mk)|2 dm dκ < +∞.
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Let VP (π) be the completion of V0
P (π) with respect to ‖ · ‖. For φ ∈ VP (π) and ζ ∈ (a∗P )C

set
φζ (x) = φ(x)eζ(HP (x)), x ∈ G(Ak) (4.17)

and
(IP (πζ , y)φζ )(x) = φζ (xy)δP (xy)

1
2 δP (x)−

1
2 . (4.18)

Then IP (πζ ) is a unitary representation if ζ ∈ ia∗P . Note that IP (πζ ) is the global
parabolically induced representation of πζ from P to G.
7. Given χ ∈ X, let VP (π)χ be the closed subspace of VP (π) consisting of those φ such

that for all x the function m 7→ φ(mx) belongs to L2(MP (k)\MP (Ak)
1)χ . Then

VP (π) =
⊕
χ

VP (π)χ . (4.19)

Let VP (π)χ,K0 be the subspace of functions in VP (π)χ which are invariant under K0. Let
W be an equivalence class of irreducible representations of K∞, and define VP (π)χ,K0,W to
be the space of those functions in VP (π)χ,K0 which transform under K∞ according to W .
By [19, § 7] each of the spaces VP (π)χ,K0,W is finite-dimensional. We fix an orthonormal
basis BP (π)χ for VP (π)χ , for each π and each χ , such that for all ζ ∈ ia∗ we have

B(πζ )χ = {φζ : φ ∈ BP (π)χ } (4.20)

and such that every φ ∈ BP (π)χ belongs to one of the spaces VP (π)χ,K0,W .
8. Let M be the Levi factor of some standard parabolic subgroup P. Suppose π ∈ 5(M),

φ ∈ BP (π)χ . We would like to define an Eisenstein series E(x, φ). If we formally set

E(x, φ) =
∑

γ∈P(k)\G(k)

φ(γ x)δP (γ x)
1
2 , (4.21)

then the series does not converge. For this reason we have to use analytic continuation.
For φ ∈ V0

P (π), and ζ ∈ (a
∗

P )C with Re(ζ ) ∈ ρP + (a
∗

P )
+ we define

E(x, φζ ) =
∑

γ∈P(k)\G(k)

φζ (γ x)δP (γ x)
1
2 . (4.22)

For such ζ the series is absolutely convergent. The function E(x, φζ ) can be analytically
continued to a meromorphic function on (a∗P )C. For ζ ∈ ia∗P , the analytically continued
E(x, φζ ) is a smooth function of x . The value of this analytically continued function at
ζ = 0 is what we denote by E(x, φ). The map that sends a form φζ to the Eisenstein
series E(·, φζ ), when defined, gives an intertwining map from IP (πζ ) to L2(G(k)\G(Ak)).

4.4. Spectral expansion
Let F be a function on G(k)\G(Ak). By the spectral expansion of F we mean

S(F, x) :=
∑
χ∈X

∑
P

n(AP )
−1
∫
5(MP )

∫
G(k)\G(Ak )

 ∑
φ∈BP (π)χ

E(x, φ)E(y, φ)

 F(y) dy dπ.

(4.23)
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For P = G, the space 5(G) is a discrete space parametrising automorphic characters,
irreducible cuspidal representations and other residual representations; moreover our
normalisations imply that the measure dπ is simply the counting measure in this case. In
general, if F is an arbitrary L2 function, there is no reason that S(F, x) should be equal
to F ; in fact, in a lot of cases, S(F, x) does not even converge. One of the main technical
theorems of [37] is concerned with describing a set of conditions for a function F so that
S(F, x) = F(x), with S(F, x) interpreted appropriately, for all x .
We now describe the relevant result from [37]. Let f be a smooth function on G(Ak),

and suppose that f is right invariant under a compact open subgroup K0 of G(A f ).
Define a function on G(k)\G(Ak) by

F(g) :=
∑

γ∈G(k)

f (γ g).

Suppose that f is such that the function F is convergent for all g, and defines a smooth
and bounded function.

Theorem 4.4 (Lemma 3.1 of [37]). Let H = H(κ, ·) be the adelic anticanonical height
function on G(Ak) from § 4.2. There is a differential operator 1, chosen as in [1,
Lemma 4.1], and natural numbers u, v, such that if∫

G(Ak )

| f (g)| · H(g)u dg (4.24)

and ∫
G(Ak )

|1v f (g)| · H(g)u dg (4.25)

converge, then
F(x) = S(F, x) for all x ∈ G(k)\G(Ak). (4.26)

Remark 4.5. Arthur uses the notation Z for the operator 1. Since Arthur works only over
Q we explain the construction for an arbitrary number field. Let G∞ =

∏
v arch. G(Fv) and

K∞ =
∏
v arch. Kv. Let�G and�K be the Casimir operators of the Lie groups G∞ and K∞,

respectively. We define 1, sometimes called the Laplacian, to be the operator �G − 2�K.
It is not hard to see that 1 is elliptic, and so all of its eigenvalues are non-negative real
numbers. Much of the theory of automorphic forms is concerned with understanding the
discrete part of the spectrum of 1. Once the discrete part is understood, the theory of
Eisenstein series provides the tools to understand the continuous part of the spectrum.

We will also need the following proposition:

Proposition 4.6 (Proposition 3.5 of [37]). For φ ∈ BP (π)χ define 3(φ) by 1 ·φ = 3(φ) ·φ.
Then there is an ` > 0 such that

∑
χ∈X

∑
P

n(AP )
−1
∫
5(MP )

 ∑
φ∈BP (π)χ

3(φ)−`|E(e, φ)|2

 dπ (4.27)
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is convergent. The outermost summation is only over those classes χ for which there is a
K0-fixed φ with 3(φ) 6= 0 and the inner most summation is over such φ. Note 3(φ) > 0.

4.5. Bounds for matrix coefficients
One of the key ingredients of the proof of the main theorem of [37] was certain bounds
for matrix coefficients of admissible representations of the group of rational points of a
semi-simple group of adjoint type over a local field. If the local rank of the group is 1,
these bounds follow from estimates towards the Ramanujan conjecture for automorphic
representations; whereas, for rank larger than 1, the estimates are purely local, [29]. The
way these estimates make an appearance in [37] is via the connection of integrals of the
form ∫

K

∫
K
φ(κgκ ′) dκ dκ ′,

for φ an automorphic form on the group G, to products of local spherical functions. For
simplicity this connection was made explicit only for a special case in [37, Corollary 4.1].
In the present work, however, we cannot make the simplifying assumption made in [37].
Here we explain the necessary modifications to the argument of [37, § 4.1].
Let H(G(Ak)) be the global Hecke algebra of the group G(Ak), and let ξ ∈ H(G(Ak))

be a non-trivial idempotent. (For basic material on Hecke algebras see [16, Chapter III]
or [11].) We assume that ξ = ⊗′vξv where for each v the local idempotent ξv is chosen as
follows:
• For v non-archimedean, ξv = vol(Kv)−1chKv with Kv the compact open subgroup of
Lemma 4.3, where here chKv is the characteristic function of the set Kv.
• For each archimedean place v, let Wv be a finite-dimensional smooth representation of

Kv, and let trWv be its character extended as a function on G(kv) by defining it to be
zero outside Kv. We let ξv = (dim Wv) · trWv . Let W = ⊗v arch.Wv.

Let φ ∈ V0
P (π) be a vector of norm 1, and suppose that φ ∗ ξ = φ, with ∗ the convolution

action of H(G(Ak)) on V0
P (π).

We wish to find a bound for

Mξ (g, φ) := (ξ ∗ E)(g, φ).

We will explain the details for the case where the semi-simple rank of G is larger than or
equal to 2 over every localisation of the ground field. The extension to the general case
works along the lines of [37], especially Theorem 4.5.
We need a piece of notation from [29]. Suppose H is a reductive group defined over a

local field F , A a maximal F-split torus in H , and K a good maximal compact subgroup
such that we have the Cartan decomposition H(F) = K A+�K , with A+ a closed positive
Weyl chamber and � a finite subset of H(F). Let 8 be the set of non-multipliable roots
of A and 8+ the set of positive roots. We call a set S ⊂ 8+ a strongly orthogonal system
if for every two distinct α, β ∈ S, neither α±β is an element of 8. Let 4PGL2(F) be the
Harish-Chandra function of PGL2(F) defined as follows:
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• If F = R and x > 1,

4PGL2(R)(x) =
2

π
√

x

∫ π/2

0

(
cos2 t

x2 + sin2 t

)−1/2

dt.

For other values of x , 4PGL2(R)(x) = 4PGL2(R)(max{|x |, |x |−1
});

• If F = C and x > 1,

4PGL2(C)(x) =
2
πx

∫ π/2

0

(
cos2 t

x2 + sin2 t

)−1/2

sin(2t) dt.

Again, for an arbitrary x , 4PGL2(C)(x) = 4PGL2(C)(max{|x |, |x |−1
});

• If F is non-archimedean with uniformizer $ and |$ | = q−1 then for n ∈ N,

4PGL2(F)($
n) =

1
qn/2

(
n(q − 1)+ (q + 1)

q + 1

)
.

Furthermore, 4PGL2(F)(x
−1) = 4PGL2(F)(x) for each x , and for every unit ε,

4PGL2(F)(εx) = 4PGL2(F)(x).
By [29, § 2.2], 4PGL2(F) takes values in (0, 1], and for any ε > 0, there are constants
c1, c2(ε) such that for all x ∈ F×,

c1 max{|x |, |x |−1
}
−1/2 6 4PGL2(F)(x) 6 c2(ε)max{|x |, |x |−1

}
−1/2+ε. (4.28)

For a ∈ A+, k1, k2 ∈ K , and ω ∈ �, we set

ξS(k1aωk2) =
∏
α∈S

4PGL2(F)(α(a)).

Lemma 4.7. Let the notations be as above. For each place v, pick a strongly orthogonal
system in G(kv). There is a constant Cξ , depending only on the idempotent ξ , such that

|Mξ (g, φ)| 6 Cξ
√

dimVP (π)χ,K0,W max
φ∈BP (π)χ∩VP (π)χ,K0,W

{|E(e, φ)|} ·
∏
v

ξSv (gv).

Proof. We set
λξ (φ) = (ξ ∗ E)(e, φ).

Then λξ is a smooth functional on the space V0
P (π). Since V0

P (π) ' ⊗
′
v IP (πv), we have

λξ ∈ Ṽ0
P (π) := ⊗

′
v ĨP (πv),

with ĨP (πv) the contragradient of the local representation IP (πv).
Without loss of generality we may assume that λξ = ⊗vλv,ξ where for almost all v, λv,ξ

is the Kv-fixed vector in ĨP (πv). Next, if via the identification V0
P (π) ' ⊗

′
v IP (πv), φ is a

pure tensor ⊗vφv, then, if g = (gv)v, we have

Mξ (g, φ) =
∏
v

〈πv(gv)φv, λv,ξ 〉v
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with 〈·, ·〉v the pairing IP (πv)× ĨP (πv)→ C. Now we invoke the main theorem of [29], or
[37, § 4.2] for a summary, to obtain the bound

〈πv(gv)φv, λv,ξ 〉v 6 (dim Kvφv)1/2(dim Kvλx,v)
1/2
‖φv‖ · ‖λx,v‖ · ξS(gv)

for any strongly orthogonal set S. We note that for almost all v,

(dim Kvφv)1/2(dim Kvλx,v)
1/2
= 1,

so we may safely multiply all of these inequalities to obtain

|Mξ (g, φ)| 6 C ′ξ (dim Kφ)1/2‖λξ‖ · ‖φ‖ ·
∏
v

ξS(gv), (4.29)

with C ′ξ a constant depending only on ξ .
Next we estimate ‖λξ‖. The important point to keep in mind is that ‖λξ‖ depends

on the space on which λξ is acting. Fix χ ∈ X and π and consider the restriction of
λξ to VP (π)χ . We have λξ (φ) = ξ ∗ E(e, φ) = E(e, ξ ∗φ). Since convolution with ξ is a
projection VP (π)χ → VP (π)χ,K0,W , we conclude that

‖λξ‖ 6
√

dimVP (π)χ,K0,W max
φ∈BP (π)χ∩VP (π)χ,K0,W

{|E(e, φ)|}. (4.30)

Here we have used the following statement: If V is a finite-dimensional complex Hilbert
space and λ : V → C is a linear functional, then for any orthonormal basis B of V the
linear map norm of λ is bounded by

√
dim V maxv∈B{|λ(v)|}. For convenience, we include

a proof. Let w ∈ V . Then w =
∑

c∈B cvv for complex numbers cv. Then

|λ(w)| =

∣∣∣∣∑
v

cvλ(v)
∣∣∣∣ 6∑

v

|cv| · |λ(v)| 6 max
v∈B
{|λ(v)|}

∑
v

|cv|.

By the Cauchy–Schwarz inequality we get∑
v

|cv| 6
√

dim V ·
√∑

v

|cv|2 =
√

dim V · ‖w‖.

Consequently, we have showed

|λ(w)| 6
√

dim V ·max
v∈B
{|λ(v)|} · ‖w‖.

This proves the assertion.

4.6. The spectral decomposition for the height zeta function
We now return to the proof of Theorem 1.4 by applying the above spectral analysis to
the height zeta function. For g ∈ G(Ak) we set

ZB(s, g) =
∑

γ∈G(k)

þ(γ g)H(s, γ g)−1, ZB(s) := ZB(s, e), (4.31)

where e the identity element of G. This is absolutely convergent for s ∈ TC for some
sufficiently large C (see (4.3)). For any fixed s in the domain of absolute convergence
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ZB(s, g) defines a continuous function which is bounded on G(Ak) and square integrable
on G(Ak) (this can be shown using a minor variant of the proof of [36, Proposition 2.3],
using the fact that |þ| 6 1). As the height function is right invariant under K0, we therefore
have

ZB(s, g) ∈ L2(G(k)\G(Ak))
K0 .

Lemma 4.8. There exists C > 0 such that for s ∈ TC the function ZB(s, ·) satisfies the
conditions of Theorem 4.4, and as such has a spectral decomposition.

Proof. Since |þ| 6 1, this is a consequence of [37, Proposition 8.2].

We therefore obtain the spectral expansion

ZB(s) =
∑

χ∈(G(Ak )/G(k))∧

∫
G(Ak )

H(s, g)−1χ(g)þ(g)dg+ S[(s). (4.32)

Here, as in [37, § 8.1], we denote by S[(s) the contribution of the non-one dimensional
representations to the spectral decomposition after putting g = e.

4.7. Continuous and cuspidal spectrum
We now handle the contribution S[ from the continuous and cuspidal spectrum. The
analysis here is very similar to that in [37], so we will be brief.
Let ξ be an idempotent chosen as in § 4.5 in the global Hecke algebra such that ξ ∗ (H ·

þ) = (H · þ) ∗ ξ = H . With the notations of § 4.5 set W = ⊗v arch.Wv, ξ0 = ⊗
′

v non-arch.ξv,
and ξW = ⊗v arch.ξv. Let P be a standard parabolic subgroup. For π ∈ 5(MP ), χ ∈ X,
and φ ∈ B(π)χ , with φ ∗ ξ = φ we consider the integral

Ĥξ (B, s, E(φ)) =
∫

G(Ak )

ξ ∗ (H(s, ·)−1þ(·))(g)E(g, φ) dg, s ∈ TC ,

for some large C > 0. It is easy to see that for s ∈ TC ,

Ĥξ (B, s, E(φ)) =
∫

G(Ak )

H(s, g)−1þ(g)(ξ ∗ E)(g, φ) dg.

Once we use Lemma 4.7, the same argument as in the proof of [37, Corollary 7.4], which
uses the bounds from (4.28), gives the following theorem.

Theorem 4.9. The function Ĥξ (B, s, E(φ)) has an analytic continuation to a function
which is holomorphic on T−c, with c > 0 as in [37, Theorem 4.5]. For each integer r > 0,
all ε > 0, and every compact subset U ⊂ T−c+ε, there exists a constant C = C(ε, r,U, ξ0),
independent of φ, such that

|Ĥξ (B, s, E(φ))| 6 C3(φ)−r
|E(e, φ)|

√
dimVP (π)χ,K0,W max

ϕ∈BP (π)χ∩VP (π)χ,K0,W
{|E(e, ϕ)|}

for all s ∈ U .

The following theorem is the analogue of [37, Theorem 8.3] in our context:

https://doi.org/10.1017/S1474748018000440 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000440


Zero-loci of Brauer group elements on semi-simple algebraic groups 1493

Theorem 4.10. The function S[(s) has an analytic continuation to a holomorphic function
on T−c.

Proof. Since þ and H are invariant on the left and right under the compact open
subgroup Kv for each non-archimedean place v, there is an associated idempotent
ξ0 = ⊗

′

v non-arch.ξv in the Hecke algebra ⊗′
v non-arch.H(G(kv)) such that ξ0 ∗ (þ · H) =

(þ · H) ∗ ξ0 = þ · H . By a theorem of Harish-Chandra [40, Proposition 4.4.3.2] we know
that

∑
W∈K̂∞

ξW ∗ (þ∞ · H∞) converges in the topology of C∞(G∞) to þ∞ · H∞, c.f. [40,

Appendix 2] for a description of the topology. Following the proof of [37, Theorem 8.3]
and after using Theorem 4.9 we need to show the convergence of∑
χ∈X

∑
P

n(AP )
−1

∑
W∈K̂∞

∫
5(MP )

( ∑
φ∈BP (π)χ∩VP (π)χ,K0,W

3(φ)−r
|E(e, φ)|

√
dimVP (π)χ,K0,W

× max
ϕ∈BP (π)χ∩VP (π)χ,K0,W

{|E(e, ϕ)|}
)

dπ (4.33)

for r large. The outermost summation is only over those classes χ for which there is a
K0-fixed φ with 3(φ) 6= 0. Note for all φ, φ′ ∈ BP (π)χ ∩VP (π)χ,K0,W , 3(φ) = 3(φ′). Let
us denote this common value with 3(π, χ, P,K0,W ). We have√

dimVP (π)χ,K0,W
∑

φ∈BP (π)χ∩VP (π)χ,K0,W

|E(e, φ)| max
ϕ∈BP (π)χ∩VP (π)χ,K0,W

{|E(e, ϕ)|}

6 (dimVP (π)χ,K0,W )
3/2 max

ϕ∈BP (π)χ∩VP (π)χ,K0,W
{|E(e, ϕ)|2}

6 (dimVP (π)χ,K0,W )
3/2

∑
φ∈BP (π)χ∩VP (π)χ,K0,W

|E(e, φ)|2.

Consequently, the expression (4.33) is majorized by∑
χ∈X

∑
P

n(AP )
−1

∑
W∈K̂∞

∫
5(MP )

×

 ∑
φ∈BP (π)χ∩VP (π)χ,K0,W

3(φ)−r (dimVP (π)χ,K0,W )
3/2
|E(e, φ)|2

 dπ

which, by Proposition 4.6 and [27, Corollary 0.3], is convergent for large r .

4.8. Automorphic characters
We next handle the contribution to the spectral decomposition (4.32) coming from the
automorphic characters. We are interested in the following height integrals

Ĥ(B, s, χ) =
∫

G(Ak )

H(s, g)−1þ(g)χ(g) dg, (4.34)

where χ is an automorphic character of G. First note that þv, χv, and Hv take the constant
value 1 on G(Ov) for all but finitely many v (this follows from Lemma 4.3). We have also
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normalised our measures so that G(Ov) has volume 1 for all but finitely many v, thus
there is an Euler product decomposition

Ĥ(B, s, χ) =
∏
v

Ĥv(B, s, χ), Ĥv(B, s, χv) =
∫

G(kv)
Hv(s, gv)−1þv(gv)χ(gv) dgv. (4.35)

In the case where B is trivial, a regularisation of such integrals was obtained in [37,
Theorem 7.1], whereas in the toric case a regularisation was obtained in [20, Lemma 5.10].
In this section, we obtain an analogue of these results in our setting.

4.8.1. Local height integrals. We let Kv be as in Lemma 4.3.

Lemma 4.11. Let v be a place of k and χv a character of G(kv).

(1) The local height integral Ĥv(B, s, χv) is absolutely convergent and holomorphic in
the domain T−1.

(2) The local height integral Ĥv(B, s, 1) for the trivial character is non-zero for any
real s in the domain T−1.

(3) If v is non-archimedean and χv is non-trivial on Kv, then Ĥv(B, s, χv) = 0.

Proof. As |þvχv| 6 1, part (1) follows from the proof of [37, Theorem 6.7]. Part (2) follows
simply from the fact that the integral of a continuous function that is positive on the
support of a measure is non-zero.
For (3), choose κv ∈ Kv such that χv(κv) 6= 1. Recall that þv and Hv are bi-Kv-invariant,

by the construction of Kv (cf. Lemma 4.3). Using this and the fact that dgv is a Haar
measure, we find that

Ĥv(B, s, χv) =
∫

G(kv)
Hv(s, gvκv)−1þv(gvκv)χv(gvκv) dgv

=

∫
G(kv)

Hv(s, gv)−1þv(gv)χv(gv)χv(κv) dgv

= χv(κv)Ĥv(B, s, χv),

whence Ĥv(B, s, χv) = 0, as claimed.

Remark 4.12. Part (3) of Lemma 4.11 is one of the crucial places in the argument where
we use the fact that the Brauer group elements under consideration are algebraic. This
will mean that only finitely many characters have non-zero height integral in the spectral
decomposition (4.32). For transcendental elements, many more height integrals appear
(a similar phenomenon occurred in the case of toric varieties [20, Remark 5.5]).

4.8.2. Partial Euler products. We shall regularise the height integrals using the
partial Euler products from [20, § 3.2]. We briefly recall their definition and basic
properties.
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Let X be a finite group of Hecke characters of k and let χ : A∗/k∗→ S1 be a Hecke
character of k. The partial Euler product of interest to us is

LX (χ, s) =
∏

v∈Val(k)
ρv(πv)=1
∀ρ∈X

(
1−

χv(πv)

qs
v

)−1

, Re s > 1, (4.36)

where the Euler product is only taken over those non-archimedean places v for which χv
and ρv are unramified for all ρ ∈X . Here πv denotes a uniformiser of kv and qv the size
of the residue field.

Lemma 4.13. Assume that χ has finite order. If χ 6∈X , then LX (χ, s) admits a
holomorphic continuation to Re s = 1. If χ ∈X , then (s− 1)1/|X |LX (χ, s) admits a
holomorphic continuation to the line Re s = 1; in particular LX (χ, s) has a branch point
singularity of order −1/|X | at s = 1.

See § 1.1 for our conventions regarding holomorphicity and branch point singularities.

Proof. In [20, Lemma 3.2] it is shown that

LX (χ, s)|X | = G(X , χ, s)
∏
ρ∈X

L(ρχ, s), Re s > 1,

where G(X , χ, s) is holomorphic and non-zero on Re s > 1/2. If χρ is non-trivial then the
Hecke L-function L(ρχ, s) is holomorphic and non-zero on some open neighbourhood of
Re s > 1, so we can take its |X |th-root in this domain. Otherwise we obtain the Dedekind
zeta function ζk(s); in this case ((s− 1)ζk(s))1/|X | admits a holomorphic continuation to
Re s > 1 and is non-zero at s = 1 (this follows from a minor adaptation of the arguments
given in [39, § II.5.2]). The result follows.

4.8.3. Regularisation. We next recall how to associate a collection of Hecke
characters to an automorphic character (see [37, § 2.8]). To construct these Hecke
characters, one first performs a transfer to reduce to the quasi-split case G ′ (see § 2.2.2).
By Lemma 4.1, the restriction of an automorphic character χ of G ′ to T ′ is a collection of
automorphic characters of the tori Rkα/k Gm. But by the definition of the Weil restriction,
an automorphic character of Rkα/k Gm is exactly an automorphic character of Gm,kα , i.e. a
Hecke character χα over kα. For α ∈ A , we denote by Rα the collection of Hecke characters
induced by R from this construction. We also let κα be as in (3.2).

Theorem 4.14. Let χ be an automorphic character of G and let Ĥ(B, s, χ) be as in
(4.34). Then we have

Ĥ(B, s, χ) = f (s, χ)
∏
α∈A

LRα
(χα, sα − κα), for s ∈ T0,

where f (s, χ) is holomorphic on T−ε for some ε > 0 and f (s, 1) is non-zero for any real
s in this domain.
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Proof. It suffices to study the local height integrals Ĥv(B, s, χv). Character orthogonality
yields

þv(gv) =
1
|R|

∑
ρ∈R

ρv(gv).

Applying this to our local height integrals, we obtain

Ĥv(B, s, χv) =
1
|R|

∑
ρ∈R

Ĥv(0, s, ρvχv). (4.37)

We can handle the Ĥv(0, s, ρvχv) using [37, Theorem 7.1] (note that whilst the proof of
loc. cit. is correct there is a typo in the statement; the relevant L-functions need to be
shifted by −κα).
We now introduce some notation. Let Av be the set of boundary divisors of Xkv . For

αv ∈ Av and α ∈ A , we say that αv | α if Dαv is an irreducible component of (Dα)kv ; the
set of such αv can be identified with the set of places of kα which divide v. For αv ∈ Av, we
denote by kαv the algebraic closure of kv in the residue field κ(Dαv ). Let fαv = [kαv : kv]
and let παv be a uniformising parameter of kαv . Denote by sαv the complex number sα,
where αv | α (we define καv similarly). Then in the proof of [37, Theorem 7.1] (see in
particular (7.7) of ibid.), it is shown that for all but finitely many v we have

Ĥv(0, s, χ) =
∏
αv∈Av

(
1−

χαv (παv )

q fαv (sαv−καv )
v

)−1 (
1+ Oε

(
1

q1+ε
v

))
.

Expanding this out, applying (4.37) and using character orthogonality, we obtain

Ĥv(þv, χv;−s) = 1+
1
|R|

∑
ρ∈R

∑
αv∈Av

ραv (παv )χαv (παv )

q fαv (sαv−καv )
v

+ Oε

(
1

q1+ε
v

)

=

∏
αv∈Av

ραv (παv )=1
∀ρ∈R

(
1−

χαv (παv )

q fαv (sαv−καv )
v

)−1 (
1+ Oε

(
1

q1+ε
v

))
. (4.38)

Recalling that the set of αv | α can be identified with the set of places of kα dividing v,
we can compare Euler products to get the result. Finally, the non-vanishing of f (s, 1)
in the stated domain follows from the non-vanishing of the local height integrals from
Lemma 4.11.

4.9. Continuation of the height zeta function
4.9.1. Residues and Hecke characters. By Theorem 4.14, the order of the
singularity of the height zeta function can be expressed in terms of the Hecke characters
attached to B. To deduce a result in terms of the original set of Brauer group elements
B, we need to relate these Hecke characters to the residues of B (namely obtain an
analogue of [20, Lemma 4.7] in our setting). We achieve this by reducing to the case of
toric varieties, as treated in loc. cit., using the following.
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Proposition 4.15. Let f : V1 → V2 be a morphism of smooth varieties over a field F
of characteristic 0. Let D2 ⊂ V2 be a smooth irreducible divisor and assume that the
scheme-theoretic preimage D2 := f −1(D1) is also a smooth irreducible divisor. Let V ◦i =
Vi \ Di . Then the diagram

Br V ◦2

∂D2
��

// Br V ◦1

∂D1
��

H1(D2,Q/Z) // H1(D1,Q/Z)

obtained by pulling back along f and taking residues, is commutative.

Proof. For the proof we use an alternative construction [7, Remark 3.3.2] for the residue
map coming from the Gysin exact sequence. To do so we recall some facts about the
Gysin exact sequence and purity from [7, § 3] and [4, § 1, § 2].
We first work in slightly more generality than the statement of the proposition. Let

f : V1 → V2 be a morphism of F-varieties, let Z2 ⊂ V2 be a closed subscheme and Z1 :=

f −1(Z2) its scheme-theoretic preimage. Let n ∈ N and V ◦i = Vi \ Zi . Then one has a
commutative diagram with exact rows

· · · // Hi (V2, µn)

��

// Hi (V ◦2 , µn)

��

// Hi+1
Z2
(V2, µn)

��

// · · ·

· · · // Hi (V1, µn) // Hi (V ◦1 , µn) // Hi+1
Z1
(V1, µn) // · · ·

(4.39)

for étale cohomology with supports (see [4, Definition 1.1], [4, § 2.1], and [7, (3.3)]).
Let now V be a smooth variety over F , let D ⊂ V be a smooth irreducible divisor and

V ◦ = V \ D. In this case cohomological purity [7, (3.5) & Theorem 3.4.1] gives a functorial
isomorphism Hi

D(V, µn) ∼= Hi−2(D,Z/nZ). Applying this to the exact sequence (4.39), we
obtain the map

H2(V ◦, µn)→ H1(D,Z/nZ). (4.40)

To study this, consider the Kummer sequence

1→ µn → Gm→ Gm→ 1.

Applying étale cohomology we obtain the exact sequence

0→ Pic(V ◦)/n→ H2(V ◦, µn)→ Br(V ◦)[n] → 0.

The map in (4.40) is trivial on Pic(V ◦)/n, so we obtain Br(V ◦)[n] → H1(D,Z/nZ). As V
is smooth the Brauer group is torsion [33, Proposition 6.6.7], thus we can combine these
maps for all n together to obtain a map

Br V ◦→ H1(D,Q/Z). (4.41)

As explained in [7, Remark 3.3.2], this differs from the usual residue map by a sign.
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Let now V1, D1, V2, D2 be as in the statement of the proposition. As D1 and D2 are
both smooth irreducible divisors, we may use (4.39) and (4.40) to obtain a commutative
diagram

H2(V ◦2 , µn)

��

// H2(V ◦1 , µn)

��
H1(D2,Z/nZ) // H1(D1,Z/nZ)

(4.42)

As the Kummer sequence is functorial, combining the above construction of the residue
map (4.41) with the commutativity of (4.42) yields the result.

Using this we obtain the following.

Lemma 4.16. The diagram

Bre G

��

// (G(Ak)/G(k))∼

��⊕
α∈A

H1(kα,Q/Z) //
⊕
α∈A

(Gm(Akα )/Gm(kα))∼

commutes up to sign. Here the top arrow comes from Lemma 2.5. The left arrow is given
by the residues maps attached to the boundary divisors Dα ⊂ X . The bottom arrow is
an isomorphism, and comes from class field theory and the identification H1(k,Q/Z) =
Hom(Gal(k/k),Q/Z). The right arrow is the Hecke character construction explained in
§ 4.8.3.

Proof. By applying a transfer on Brauer groups and automorphic characters, we may
assume that G is quasi-split (see Lemmas 2.4 and 2.12).
Let B be a Borel subgroup of G and let x0 be a point on G such that Bx0 B is an

open orbit on G. Let T ⊂ B ⊂ G be a maximal torus; this has the form (4.1). We denote
the closure of T inside X◦ by Z ; this is a smooth toric variety by Lemma 3.2. Then
Lemma 3.2 tells us that for any α ∈ A the scheme-theoretic intersection Eα = Dα ∩ Z is
integral and has the same field of constants as Dα (namely kα). Consider the following
diagram:

Bre G //

∂α
��

Bre T //

∂α
��

(T (Ak)/T (k))∼

��
H1(kα,Q/Z) // H1(kα,Q/Z) // (Gm(Akα )/Gm(kα))∼

Applying Proposition 4.15 to the inclusion Z → X and the open subset of X given by
removing the singular locus of Dα and Eα, we see that the left-hand square commutes.
That the right hand square commutes up to sign is shown in [20, Lemma 4.7] (this is
proved using [34, Lemma 9.1]). Note that loc. cit. is stated for complete toric varieties,
but we can apply this to a compactification of Z . The result now easily follows.
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4.9.2. The height zeta function. We now address the main term in the spectral
expansion (4.32). By Theorem 4.10, this has the shape∑

χ∈(G(Ak )/G(k))∧
Ĥ(B, s, χ),

where Ĥ(B, s, χ) is as in (4.34). We first show that this sum is in fact finite.

Lemma 4.17. Let K0 be as at the end of § 4.2. Let

XK0 = {χ ∈ (G(Ak)/G(k))∧ : χ(K0) = 1}.

Then XK0 is finite and for all automorphic characters χ 6∈ XK0 we have Ĥ(B, s, χ) = 0.

Proof. By Lemma 4.3, the group K0 has finite index inside some maximal compact
subgroup of the group G(Ak, f ) of finite adeles. The finiteness of XK0 thus follows from
[22, Lemma 4.7]. The second part was shown in Lemma 4.11.

We now restrict our attention to a complex line inside CA corresponding to a given
choice of line bundle. Let L ∈ (Pic X)⊗R be the class of a big divisor. By Proposition 3.3
we may write uniquely L =

∑
α∈A aαDα for some aα ∈ R>0. Let

a(L) = max
α∈A

1+ κα
aα

, A (L) =
{
α ∈ A :

1+ κα
aα

= a(L)
}
, mB(L) =

∑
α∈A (L)

1
|Rα|

.

One easily checks using Proposition 3.3 that a(L) agrees with the a-constant from the
Batyrev–Manin conjecture [3, Definition 2.1]. We also let a = (aα)α∈A and consider the
finite group

XK0(L) = {χ ∈ XK0 : χα ∈ Rα ∀α ∈ A (L)} (4.43)

of automorphic characters (note that R ⊂ XK0(L)). The relevant height zeta function is
given by

ZB,L(s) := ZB(sa), (4.44)

where ZB is as in (4.31). Our result on ZB,L is the following.

Theorem 4.18. We have

ZB,L(s) = (s− a(L))−mB(L)g(s)+
∑
i∈I

(s− a(L))−λi gi (s)+ h(s), Re s > a(L),

for some finite index set I , some rational numbers 0 < λi < mB(L), and some functions
g, gi , h which are holomorphic on Re s > a(L). Furthermore, we have

lim
s→a(L)

(s− a(L))mB(L)ZB,L(s) = lim
s→a(L)

(s− a(L))mB(L)
∑

χ∈XK0 (L)

∫
G(Ak )B

H(sa, g)−1χ(g) dg,

and this limit is a positive real number. In particular ZB,L(s) admits a branch point
singularity of order −mB(L) at s = a(L).
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Proof. It follows from Theorem 4.10 that the contribution to the spectral decomposition
(4.32) from the continuous and cuspidal spectrum is holomorphic on Re s > a(L). Hence
Lemma 4.13, Theorem 4.14, Lemma 4.16 and Lemma 4.17 imply that it is the characters
in XK0(L) which give rise to the singularity of highest order, and that the height integrals
have a branch point singularity of order at least −mB(L) at s = a(L). (Here the lower
order terms (s− a(L))−λi come from those characters χ ∈ XK0 \XK0(L).)
To finish it suffices to show that the leading constant does not vanish, which we do

using a variant of the proof of [20, Lemma 5.14]. By character orthogonality, we see that
the limit in the statement equals

|XK0(L)| lim
s→a(L)

(s− a(L))mB(L)
∫

G(Ak )
XK0

(L)

B

H(sa, g)−1dg. (4.45)

Let B(L) ⊂ Bre G be the finite group attached to the automorphic characters XK0(L) by
Corollary 2.11. The expression (4.45) is bounded below by

lim
s→a(L)

(s− a(L))mB(L)
∫

G(Ak )B(L)

H(sa, g)−1dg.

However this integral is exactly equal to Ĥ(B(L), sa, 1). It thus suffices to show that

lim
s→a(L)

(s− a(L))mB(L) Ĥ(B(L), sa, 1) > 0.

As a(L) is independent of B, this will follow from Theorem 4.14 provided we show that

mB(L) = mB(L)(L).

However this is clear from the definition (4.43) of XK0(L). This completes the proof.

4.10. The asymptotic formula
We now come to our main theorem, of which Theorem 1.4 is a special case. For
completeness we give the full statement.

Theorem 4.19. Let G be an adjoint semi-simple algebraic group over a number field k
with wonderful compactification X . Let B ⊂ Br1 G be a finite subgroup of algebraic Brauer
group elements. Assume that G(k)B 6= ∅. Let L be a big line bundle on X . Then for all
height functions HL associated with some choice of smooth adelic metric on L, we have

N (G, HL ,B, B) ∼ cX,B,HL Ba(L) (log B)b(L)−1

(log B)1X (L ,B)
, as B →∞,

for some cX,B,HL > 0. Here
• a(L) = inf{a ∈ R : aL + K X ∈ 3eff(X)}.

• b(L) is the codimension of the minimal face of 3eff(X) containing a(L)L + K X .

•

1X (L ,B) =
∑
D⊂X

(
1−

1
|∂D(B)|

)
,

where the sum is over those divisors D which do not appear in the support of any
effective Q-divisor Q-linearly equivalent to a(L)L + K X .
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The factors a(L), b(L) which appear are the usual factors from the Batyrev–Manin
conjecture [3, Conjecture C’]. The factor 1X (L ,B) is new and takes into account the
collection of Brauer group elements B.

Proof of Theorem 4.19. By Remark 4.2, the height zeta function attached to HL may be
written in the form (4.44). Given Theorem 4.18, we may thus apply Delange’s Tauberian
theorem [9, Theorem III] to deduce an asymptotic formula of the shape

N (G, HL ,B, B) ∼ cX,B,HL Ba(L)(log B)mB(L)−1, as B →∞,

for some cX,B,HL > 0. To address mB(L), by Proposition 3.3 the effective cone is
simplicial and generated by the Dα, hence b(L) = #A (L). Moreover, it follows from
Lemma 4.16 that |Rα| = |∂Dα (B)|. We find that

mB(L) =
∑

α∈A (L)

1
|Rα|

= b(L)−
∑

α∈A (L)

(
1−

1
|∂Dα (B)|

)
.

The adjoint divisor here is given by

a(L)L + K X =
∑
α∈A

(a(L)aα − (1+ κα))Dα =
∑

α/∈A (L)

(a(L)aα − (1+ κα))Dα

where the coefficients are positive. From this, it easily follows that

A \A (L) = {α ∈ A : ∃D ∼ a(L)L + K X , Dα ⊂ Supp(D)},

as required.

4.10.1. The case of the anticanonical divisor. We now make the above more
explicit in the case of the anticanonical divisor. The answer we obtain is similar to
the case of anisotropic tori [20, Theorem 5.15]. The calculation of the leading constant
requires some of the theory of subordinate Brauer group elements, as defined in [20, § 2.6],
together with the Tamagawa measure τB introduced in [20, §5.7].
We first describe the Tamagawa measure τB. This is defined in a similar manner to

Peyre’s Tamagawa measure [31, § 2], except that different convergence factors are used.
Choose Haar measures dxv on each kv such that vol(Ov) = 1 for all but finitely many v.
These thus give rise to a Haar measure dx on Ak ; we choose our Haar measures so that
vol(Ak/k) = 1 with respect to the induced quotient measure. Let ω be a left invariant top
degree differential form on G. By a classical construction [6, § 2.1.7], for any place v of k
we obtain a measure |ω|v which depends on the choice of dxv. Peyre’s local Tamagawa
measure is then given by

τv =
|ω|v

‖ω‖v
.

For the convergence factors, we use the following virtual integral Artin representation

PicB(X) = Pic(X)−
∑
α∈A

(
1−

1
|∂Dα (B)|

)
Indkα/k Z,

https://doi.org/10.1017/S1474748018000440 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000440


1502 D. Loughran et al.

with associated virtual Artin L-function L(PicB(X)C, s) (cf. [20, §5.7.1]). The relevant
measure is then defined to be

τB = L∗(PicB(X)C, 1)
∏
v

(
τv · Lv(PicB(X)C, 1)−1

)
.

Here
L∗(PicB(X)C, 1) = lim

s→1
(s− 1)ρ(X)−1X (B)L(PicB(X)C, s)

and Lv(PicB(X)C, s) denotes the corresponding local Euler factor when v is
non-archimedean, and Lv(PicB(X)C, s) = 1 otherwise. Note that we do not include a
discriminant factor like Peyre, as we have normalised our measures so that vol(Ak/k) = 1.
It follows from Theorem 4.14 that these are a family of convergence factors (see the proof
of Theorem 4.20 for details).

Theorem 4.20. Under the same assumptions as Theorem 1.4, we have

N (G, H,B, B) ∼ cX,B,H B
(log B)ρ(X)−1

(log B)1X (B)
, as B →∞.

Here

cX,B,H =
|Sub(X,B)/Br k| · τB(G(Ak)

Sub(X,B)

B )

|Pic G| ·0(ρ(X)−1X (B)) ·
∏
α∈A (1+ κα)

1/|∂Dα (B)|
,

where 0 is the usual Gamma-function, κα are as in (3.2), and

Sub(X,B) = {b ∈ Br G : ∂D(b) ∈ 〈∂D(B)〉 ∀D ∈ X (1)},

denotes the associated group of subordinate Brauer group elements. We also denote by
G(Ak)

Sub(X,B)

B the subset of G(Ak)B orthogonal to Sub(X,B) with respect to the global
Brauer pairing (2.5).

Proof. The asymptotic formula follows from Theorem 4.19, as we have a(−K X ) = 1 and
b(−K X ) = ρ(X). One also easily sees that 1X (−K X ,B) = 1X (B), as the adjoint divisor
is trivial in this case.
It thus suffices to calculate the leading constant cX,B,H , which we do using the

expression from Theorem 4.18. An application of Delange’s Tauberian theorem [9,
Theorem III] shows that

cX,B,H =
|XK0(−K X )|

0(ρ(X)−1X (B))
lim
s→1

(s− 1)ρ(X)−1X (B)

∫
G(Ak )

XK0
(−K X )

B

H(g)−sdg.

Note that we have A (−K X ) = A . It therefore follows easily from Corollary 2.11 and
Lemma 4.16 that

XK0(−K X ) ∼= Sub(X,B)∩Bre G,

and thus |XK0(−K X )| = |Sub(X,B)/Br k| (note that Sub(X,B) ⊂ Br1 X by [20,
Lemma 2.14]).
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Next, by Proposition 3.3 we have Pic(X)C ∼= ⊕α∈A Indkα/k C; hence the associated
virtual Artin L-function has the form

L(s,PicB(X)) =
∏
α∈A

ζkα (s)
1/|∂Dα (B)|. (4.46)

Using this, we find that

lim
s→1

(s− 1)ρ(X)−1X (B)

∫
G(Ak )

XK0
(−K X )

B

H(g)−sdg

= lim
s→1

(s− 1)ρ(X)−1X (B)

∏
α∈A ζkα ((κα + 1)s− κα)1/|∂Dα (B)|∏
α∈A ζkα ((κα + 1)s− κα)1/|∂Dα (B)|

∫
G(Ak )

Sub(X,B)
B

H(g)−sdg

=
L∗(PicB(X)C, 1)∏

α∈A (1+ κα)
1/|∂Dα (B)|

∫
G(Ak )

Sub(X,B)
B

∏
v

Lv(PicB(X)C, 1)−1 H(g)−1dg.

Here one justifies taking the limit inside the integral using the dominated convergence
theorem, which applies due to the explicit expressions for the local height integrals given
in the proof of Theorem 4.14 (cf. (4.38)).
It remains to express the above integral in terms of the Tamagawa measure τB. Recall

that dg is a choice of Haar measure on G(Ak) normalised so that vol(G(Ak)/G(k)) = 1.
However, as G is semi-simple, the measure |ω| =

∏
v |ω|v is the classical (i.e. Weil’s)

Tamagawa measure on G(Ak). Denote by ω(G) the Tamagawa number of G, i.e. the
measure of G(Ak)/G(k) with respect to |ω|. A theorem of Ono [30] (see also [34,
Theorem 10.1]) states that

ω(G) =
|Pic G|
|X(G)|

.

However, as G is adjoint we have X(G) = 0 [34, Corollary 5.4]. Thus ω(G) = |Pic G|
and so by properties of Haar measures we obtain

dg =
1

|Pic G|
|ω|. (4.47)

Using this we obtain

L∗(PicB(X)C, 1)
∫

G(Ak )
Sub(X,B)
B

∏
v

Lv(PicB(X)C, 1)−1 H(g)−1dg

=
1

|Pic G|
τB

(
G(Ak)

Sub(X,B)

B

)
.

Combining everything together gives the result.

Remark 4.21. Let us consider the leading constant in Theorem 4.20 in the classical case
B = {0}, and explain how one recovers Peyre’s constant cPeyre = α(X)β(X)τ (X) [31,
Definition 2.5]. Clearly τB = τ is Peyre’s Tamagawa measure in this case. We also have

Sub(X, 0) = Br X.
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However β(X) = |Sub(X, 0)/Br k| = |H1(k,Pic X)| = 1 for wonderful compactifications
(see the proof of [37, Theorem 9.2]). Using the explicit description of the effective cone
given in Proposition 3.3, a simple calculation also shows that Peyre’s effective cone
constant is equal to

α(X) =
1

|Pic G| · (ρ(X)− 1)! ·
∏
α∈A (1+ κα)

.

This agrees with the denominator in Theorem 4.20 when B = {0}.

5. The wonderful compactification of PGLn

We now prove Theorem 1.1 using Theorem 4.19.

5.1. The construction of the wonderful compactification
We have the standard compactification of PGLn in

X (0) = Pn2
−1
= Proj(k[xi, j : 1 6 i, j 6 n]).

This compactification is bi-equivariant, but not a wonderful if n > 3. We construct the
wonderful compactification of PGLn by blowing up X (0). To this end, we consider the
sequence of loci:

Y (0)2 ↪→ Y (0)3 ↪→ · · · ↪→ Y (0)n ↪→ X (0),

where Y (0)r is the vanishing locus of the determinants of r × r minors of (xi, j )16i, j6n .
The wonderful compactification is given by blowing up each of the loci Y (0)r in turn, for
2 6 r 6 n− 1.
Namely, we inductively construct X (m) and Y (m)r for 1 6 m 6 n− 2 as follows: the variety

X (m) is the blow-up of X (m−1) along Y (m−1)
m+1 . We let Y (m)r be the strict transform of Y (m−1)

r ,
except when r = m+ 1 where we let Y (m)m+1 be the pullback of Y (m−1)

m+1 . Let X = X (n−2) and
Yr = Y (n−2)

r . Note that Yn is the strict transform of the divisor D : detn = 0 ⊂ X (0).

Proposition 5.1. [23, §8] The variety X is the wonderful compactification of PGLn with
boundary components Yr (2 6 r 6 n).

5.2. Proof of Theorem 1.1
Let b ∈ Br U be such that U (Q)b 6= ∅. By Proposition 2.13 we have b ∈ Br1 U . Let L be
the pullback of the hyperplane class via π : X → X (0) = Pn2

−1. As shown in [12, § 2] the
invariants a(L), b(L) are birational invariants, so computing these on X (0) gives a(L) = n2

and b(L) = 1. Next smooth varieties have terminal singularities, hence

π∗(−K X (0)) = −K X +

n−1∑
r=2

ar Yr

for some ar > 0. It follows that Yn is the only boundary component which does not appear
the effective divisor linearly equivalent to a(L)L + K X . So by Theorem 4.19 it suffices to
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show that the residue of b along Yn has order |b|. However, as Yn is the strict transform of
D, we have |∂Yn (b)| = |∂D(b)|. Since the residue map is injective in this case (see (2.16)),
we find that |∂D(b)| = |b|, as required.
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