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Abstract

Granitoid stocks crop out in the Ghahan and Sarbadan areas near Tafresh city, which is situated
in the central part of the Urumieh–Dokhtar Magmatic Arc, Iran. The stocks, consisting of por-
phyritic and sub-granular diorite and granular granodiorite, intruded into Eocene volcano-
sedimentary units. Normalized multi-element diagrams indicate that the analysed rocks are
enriched in large-ion lithophile elements and depleted in high field strength elements. These
geochemical features are typical of subduction-related calc-alkaline arc magmas. The stocks
belong to the ferromagnetic and I-type granitoid series. Anisotropy of magnetic susceptibility
provides information about the internal fabric of the granitoids. Susceptibility values range
from 5.6 × 10−3 to more than 71.6 × 10−3, averaging 27.9 × 10−3 SI. Relatively low anisotropy
values (P%) rarely exceed 10 %. Shape parameters (T) vary between−0.48 andþ0.74, averaging
þ 0.2. Each stock is interpreted to contain a distinct feeder zone in which magnetic lineation
plunges steeply (> 60°), suggesting that the magma ascended mainly in a NW–SE conduit and,
to a lesser extent, in an E–W direction. Integration of magnetic fabric data, field observations
and tectonic setting indicates that the shear zone that was developed between the Indes and
Talkhab faults had created an opening into which the Ghahan and Sarbadan stocks were
emplaced by way of creating a suitable tensional space for the ascent of magma.

1. Introduction

The Urumieh–Dokhtar Magmatic Arc (UDMA), as a part of the Alpine–Himalayan orogenic
belt, strikes NW–SE and lies parallel to themain Zagros Folded Thrust Belt in Iran (Fig. 1a). This
magmatic arc, developed during subduction of the Neo-Tethys oceanic crust beneath the
Iranian plate (Ricou et al. 1977; Dercourt et al. 1986; Alavi, 1994, 2004; Agard et al. 2011),
has been active from Late Jurassic time up to the present (Berberian & King, 1981;
Berberian et al. 1982). It comprises distinct linear, voluminous magmatic complexes along
the formerly active margin of the Iranian plate (Stöcklin, 1968; Berberian et al. 1982; Alavi,
2007; Rezaei-Kahkhaei et al. 2011; Shafaii Moghadam & Stern, 2011). The UDMA contains
a large number of batholiths, discrete plutons and sub-volcanic rocks of calc-alkaline affinity,
similar to those of Andean-type magmatism (Förster et al. 1972; Berberian et al. 1982; Alavi,
2004). Although the relationship to subduction is clear (e.g. Berberian & King, 1981; Agard
et al. 2005), the tectono-magmatic processes of magma emplacement in the UDMA have
not been investigated to date. In general, understanding granite emplacement and deformation
is challenging, because not all granitic rocks develop mesoscopic-scale deformation fabrics
(Yakeu Sandjo et al. 2016). Of importance is the ‘space problem’, which may be resolved in sit-
uations where motion on faults and shear zones creates space for magma emplacement (see
reviews by Hutton, 1988; De Saint-Blanquat et al. 2001). In the instance of the Tafresh gran-
itoids, similar to the well-studied Papoose Flat pluton (De Saint-Blanquat et al. 2006), there is no
evidence for this kind of structural control. In the latter case, the anisotropy of magnetic sus-
ceptibility (AMS) technique offers a suitable means to clarify the space problem. Indeed, numer-
ous AMS studies of mafic and felsic rocks, both intrusive and extrusive, have demonstrated that
this technique efficiently describes flow, strain fabrics and emplacement mechanisms (e.g.
Tarling & Hrouda, 1993; Bouchez, 2000), and it is especially effective for igneous rocks whose
foliation and lineation are difficult to observe and measure (e.g. the Tafresh granitoids), where
no clear signs of deformation are present at the mesoscopic and field scales (Ellwood et al. 1980;
Guillet et al. 1983; Bouchez et al. 1990; Tarling & Hrouda, 1993; Cruden & Launeau, 1994;
Aranguren, 1997; Bouchez, 1997; Cruden et al. 1999; Yakeu Sandjo et al. 2016). Through mag-
netic techniques, precise and reproducible measurements of foliation and lineation can be
applied to any outcrop in a pluton (Bouchez, 1997), from which magmatic flow directions
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Fig. 1. (Colour online) (a) Simplified geological map of Iran (Aghanabati, 2004) and (b) geological map of the Tafresh area (modified after Hajian, 1977). The star
shows the position of the plutons in Iran on which AMS was carried out. 1 – Urumieh (Ghalamghash et al. 2009); 2 – Tafresh (this study); 3 – Boroujerd and Gousheh
(Rasouli et al. 2012); 4 – Shir-Kuh (Sheibi et al. 2012); 5 – Shah-Kuh (Esmaeily et al. 2007); 6 – Zahedan (Sadeghian et al. 2005).
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can be reconstructed via the orientation of the magnetic ellipsoids
(e.g. Ellwood, 1978; Cañón-Tapia et al. 1996, 1997; Dragoni et al.
1997; Rochette et al. 1999).

In Iran, magnetic fabric studies by AMS have been in progress
for more than 15 years. The first study focused on the emplace-
ment mechanisms of the Zahedan pluton (Sadeghian et al. 2005),
followed by studies of other plutons by other researchers
(Shah-Kuh pluton, Esmaeily et al. 2007; Urumieh pluton,
Ghalamghash et al. 2009; Shir-Kuh pluton, Sheibi et al. 2012;
Boroujerd pluton, Rasouli et al. 2012; Gol-e-Zard pluton,
Sadeghian et al. 2014; Challu pluton, Sheibi & Majidi, 2015;
Panj-Kuh pluton, Sheibi & Pooralizadeh Moghadam, 2015).
Most of these studies are in the Sanandaj–Sirjan Zone (SSZ), cen-
tral Iran and SE Iran (Fig. 1). This paper is the first application
of AMS in the UDMA. We combine AMS with structural, petro-
graphic and geochemical observations as a basis to relate the
emplacement of the Tafresh granitoids (Sarbadan and Ghahan
stocks) to developing tectonic stress/strain fields in Late
Miocene time. AMS is used because fabric measurements in

granites are rather difficult to obtain directly in the field
(Bouchez, 1997). This enables us to constrain the kinematics of
magmatism in the UDMA.

2. Regional geology

The Tafresh area (35.00°–34.30° N, 50.00°–50.30° E) within the
central UDMA, located ∼180 km southwest of Tehran, occupies
an area of ∼150 km2. It contains plutonic, volcano-sedimentary
and sub-volcanic units (Fig. 1b). The Sarbadan and Ghahan stocks
were intruded into an Eocene volcano-sedimentary series. In map
view, these shallow-level intrusions exhibit stretching in an E–W
direction (Fig. 1b). The Sarbadan and Ghahan stocks are of Late
Miocene age (respectively, 19.07 ± 0.25 Ma and 20.37 ± 0.41
Ma), based on U–Pb zircon data (McFarlane, pers. comm.).
Based on field evidence (Fig. 2) and petrographic observations
(Fig. 4), the stocks consist of granodiorite (Sarbadan) and dio-
rite–quartz diorite (Ghahan). Outcrops of the Sarbadan stock
are blocky to massive, covering an area of 20 km2 extending in
an E–Wdirection from northeast of Tafresh city to Ghahan village.
This stock is in contact with younger pyroclastic units and a thick
Eocene sequence of volcanic rocks (andesitic basalt, andesite,
dacite). In these light grey host rocks, minerals visible in hand
specimen are mainly hornblende, feldspar and quartz (Fig. 2a).
Outcrop of the shallow-level Ghahan stock is in the form of a dome
whose areal extent of ∼18 km2 displays a marked W–E elongation.
Grey to light grey Ghahan rocks are characterized by porphyritic to
sub-granular textures in which hornblende and feldspar are promi-
nent (Fig. 2b). These are enclosed by Eocene pyroclastic rocks,
which include tuffs and dacitic to andesitic lavas. Microdioritic
enclaves, occurring mainly in the coalescence zone between the
Ghahan and Sarbadan stocks, vary from 5 to 10 cm and exhibit
circular to ellipsoidal shapes (Fig. 2c). Regionally, the study area
was affected by reverse and dextral faulting associated with thrust-
ing of the Eocene volcano-sedimentary series over the Oligocene
Qom Formation and Pliocene conglomerates (Hajian, 1977).
Most faults are parallel to the regional tectonic fabric of the
UDMA (e.g. the Tafresh, Indes, Tabarteh and Talkhab faults).
The dominant trends are NW–SE, although subordinate fault
and fracture systems with E–W and SW–NE trends are also
common (Fig. 3). The mean strike of a Tafresh fault varies from
N130 to N150W, with an average dip of 50° to the southwest.
To the north and parallel to the Tafresh fault, the Indes fault of
120 km length has a similar geometry with a∼75° dip to the south-
west. To the south, and parallel to the Tafresh and Indes faults, the
Talkhab fault dips ∼75° to the northeast (Morley et al. 2009). The
Talkhab and Indes faults have both thrust and strike-slip move-
ments (Rajabioun, 2000).

3. Methods

Oriented cylindrical cores were obtained from 31 sites: 15 gran-
odiorite stations and 16 diorite–quartz diorite stations. Two or
three oriented cores were collected per station, each yielding at
least two samples, thus providing five (or more) samples per sta-
tion. In all, 182 samples were analysed for magnetic parameters.
All samples were sliced in order to obtain cylinders that fit in the
sample holders of the Kappabridge instrument. Each sample was
shaped to 22 mm length and 25 mm diameter: the standard size
for magnetic measurements. Magnetic fabric was measured at the
Geomagnetic Laboratory, Shahrood University of Technology,
using an AGICO Kappabridge MFK1-FA susceptometer operat-
ing at low field (4× 10−4 T; 920 Hz). Orientations andmagnitudes

Fig. 2. (Colour online) Field relationships in the Tafresh granitoids. (a) Granodiorite
with granular texture, Sarbadan stock. Hornblende (Hbl) and biotite (Bt) crystals
are set in a matrix mainly composed of feldspar crystals. (b) Hand specimen of diorite,
Ghahan. Hornblende (Hbl) in a matrix mainly composed of plagioclase crystals. (c)
Fine-grained microdiorite enclaves in the diorite rock. Mineral abbreviations after
Whitney & Evans (2010).
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Fig. 3. (Colour online) Tectonic map of the Tafresh area showing the main faults. 1:250000 geological maps of Iran (www.gsi.ir).
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of the three principal axes of the AMS ellipsoids (K1 ≥ K2 ≥ K3)
were obtained for each sampling station using the rotating mode.
The long axis of the ellipsoid, K1, defines the magnetic lineation;
K3, the short axis, defines the pole of the magnetic foliation (the
plane formed by K3 and K2 axes). The anisotropy percentage
P% = 100((K1/K3) − 1) and the shape parameter T = ln(K2/
(K1/K3))/ln(K1/K3) (Jelínek & Kropáček, 1978) were calculated
for each sampling station. Table 1 records magnetic data for each
of the 31 stations.

Electron microprobe analysis of magnetite grains was accom-
plished at the Iranian Mineral Processing Research Centre using
a Cameca SX 100 electron microprobe analyser equipped with a
wavelength-dispersive spectrometer. Accelerating voltage was 15
kV, with a beam current of 20 nA and a 0–2 μm focused electron
beam. Table 2 provides representative magnetite analyses.

Fifty-one thin-sections were examined by optical microscopy,
and ten representative fresh samples of intrusive rocks in the
region were selected for whole-rock geochemical analysis.
Major and trace elements were measured using inductively
coupled plasma optical emission spectrometry (ICP-OES) and
inductively coupled plasma mass spectrometry (ICP-MS),
respectively, at the Department of Geology and Environmental
Earth Sciences, Miami University, Ohio (Table 3). Two kilograms
of each sample were powdered, and analyses were obtained by
fusing 50 mg of sample powder with 75 mg LiBO2 and dissolving
in 125 ml of 0.3NHNO3. For major elements, analytical precision
is better than ± 2–5 %; for most trace elements and rare earth ele-
ments (REEs), the analytical error was less than 2 % and the pre-
cision was greater than 10 %.

4. Petrography and geochemistry

Sarbadan granodiorite has a medium-grained granular texture
(Fig. 4a, b) and consists of plagioclase, K-feldspar, quartz, biotite
and hornblende. Opaque minerals, pyroxene, zircon and titanite
are conspicuous accessory minerals. Plagioclase forms euhedral

to subhedral and tabular crystals (2.7 to 0.2 mm) with optical zona-
tion. Most of the quartz occurs as small interstitial grains (0.1 to
0.64 mm). Opaque minerals (mainly magnetite), as inclusions in
plagioclase or as forming small grains in the groundmass, occur
mainly around the hornblende and biotite (Fig. 4b).

Ghahan diorite to quartz diorite has a granular to porphyritic
texture with a microgranular groundmass (Fig. 4c). Plagioclase, K-
feldspar and hornblende constitute the essential rock-forming
minerals, whereas quartz ± biotite and opaque minerals, zircon
and titanite form the accessory minerals. Plagioclase is euhedral
to subhedral and commonly shows compositional zoning (Fig. 4d).

In the TiO2–Fe2O3–FeO diagram, the opaque minerals of the
Ghahan and Sarbadan stocks plot within the field of magnetite
(Fig. 5). SiO2 in the Ghahan stock is lower (SiO2 = 58.58–60.82
wt %) than SiO2 in the Sarbadan stock (SiO2 = 62.77–65.07 wt %).
According to the K2OþNa2O versus SiO2 diagram ofMiddlemost
(1991), the analysed samples are classified as diorite (Ghahan) and
granodiorite (Sarbadan) (Fig. 6a). The data define a calc-alkaline
trend on the AFM diagram (Fig. 6b). A/CNK ((Al2O3/(CaO þ
Na2O þ K2O)) ranges between 0.75 (Ghahan) and 0.96
(Sarbadan), indicating metaluminous magma (Fig. 7a). On the
Na2O versus K2O diagram, samples are classified as I-type gran-
itoids (Fig. 7b). On the plot of FeOt/MgO versus Zr þ Nb þ Ce
þ Y (Whalen et al. 1987), all data correspond to unfractionated
I- and S-type granitoids (Fig. 7c). Trace-element discrimination
diagrams can be employed as a means to ‘fingerprint’ the tectonic
environments in which granitoids formed (Pearce et al. 1984).
Accordingly, in a plot of Rb versus TaþYb, all samples correspond
to volcanic arc granitoids (Fig. 7d). A high Rb/Nb ratio, between
1.56 and 12.62, is consistent with a subduction zone setting
(Pearce, 1983). Harker diagrams (Fig. 8) exhibit ascending linear
trends for Na2O, but negative trends for TiO2, Al2O3, FeO,
MnO and CaO, suggestive of fractionation of amphibole, biotite
and magnetite. K2O versus SiO2 is positive, and K2O versus
SiO2 does not show a clear trend.

Fig. 4. (Colour online) Petrographic characteris-
tics of different rocks from the Tafresh granitoids.
(a, b) Granular to sub-granular granodiorite with
plagioclase (Pl), quartz (Qz), K-feldspar (Kfs), bio-
tite (Bt) and hornblende (Hbl) minerals, Sarbadan
stock. (c) Sub-granular diorite containing plagio-
clase, hornblende and opaque minerals (Opq),
Ghahan stock. (d) Euhedral plagioclase with oscil-
latory zoning, Ghahan stock. Mineral abbrevia-
tions after Whitney & Evans (2010).
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Chondrite-normalized REE patterns (Sun & McDonough,
1989) show relative enrichment of light rare earth elements
(LREE), and relatively flat heavy rare earth element (HREE) pat-
terns, with an absent Eu anomaly (Fig. 9a). On amulti-element dia-
gram normalized to primitive mantle (Sun & McDonough, 1989),
Nb, P and Ti show distinctly negative anomalies, whereas large-ion
lithophile elements (LILEs, such as Cs, Rb, K and Pb) exhibit pro-
nounced positive anomalies (Fig. 9b).

5. Magnetic fabric

The AMS technique provides a rapid quantitative description of
the crystal shape fabric in magmatic rocks (e.g. Gleizes et al. 1993;

Cruden & Launeau, 1994; Bouchez, 1997; Cruden et al. 1999; De
Saint-Blanquat et al. 2001; Cañón-Tapia & Coe, 2002; Cañón-
Tapia & Chávez-Álvarez, 2004; Archanjo & Launeau, 2004;
Eriksson et al. 2011; Archanjo et al. 2012; Schöpa et al. 2015).
It also helps in determining the bulk internal structure of plutons
in situations where macroscopic foliation and lineation are weak
or absent (Sheibi et al. 2012). In anisotropic rocks, the magnetic
susceptibility is represented by a second-order symmetric tensor,
an ellipsoid with three principal susceptibility axes (Bouchez,
2000). The relationship between preferred mineral orientation
and magnetic fabric depends on the nature of the magnetic min-
erals, and on the textural relationships among the mineral grains
(Stacey, 1962; Khan, 1962; Uyeda et al. 1963; Rochette et al. 1992;

Table 1. Anisotropy of magnetic susceptibility data for the Ghahan and Sarbadan stocks

Mean AMS parameters Mean eigenvectors

K1 K2 K3

Station N X Y Km (μSI) P% T Decl Incl Dec Incl Decl Incl

G1 6 427961 3842796 9846 6.0 −0.30 166.80 9.90 267.24 45.88 67.76 42.26

G2 6 428296 3842504 12966 5.2 −0.47 204.76 16.69 193.11 30.56 113.87 53.27

G3 5 428285 3841867 5815 7.1 0.34 140.76 64.58 160.62 17.11 230.49 13.83

G4 6 428974 3841424 12921 3.4 0.71 214.30 42.84 204.48 40.98 134.82 15.60

G6 6 430055 3841862 19785 2.2 −0.09 85.37 86.59 154.93 2.84 167.79 1.07

G7 7 430912 3841518 23564 2.1 −0.41 204.96 42.52 92.08 43.78 231.34 10.76

G8 5 427412 3844124 5620 9.4 0.02 265.38 59.70 143.95 20.38 141.83 18.88

G11 5 423201 3843246 26341 4.2 0.25 209.83 80.43 131.97 8.93 161.57 3.03

G12 6 430481 3842256 23590 2.5 0.29 110.64 66.74 296.64 22.10 204.52 6.40

G13 6 429261 3842143 27175 3.1 −0.47 177.26 65.70 122.12 20.88 312.66 7.08

G14 6 428083 3840826 9021 1.2 0.45 258.42 73.14 88.38 16.68 213.80 1.90

G16 7 427508 3841774 22384 6.2 0.33 343.10 39.75 168.85 46.60 159.20 13.60

G17 6 426854 3843604 15820 3.2 −0.09 148.94 35.04 122.12 28.14 231.00 37.34

G20 6 426538 3840663 17576 1.7 0.31 208.75 19.20 206.05 40.58 110.33 41.50

G21 6 426554 3841966 16679 2.4 −0.28 109.54 32.52 226.04 47.96 144.22 17.80

G22 6 425576 3843153 56387 2.0 0.00 159.34 36.94 123.06 47.32 294.32 13.66

S1 6 417248 3842584 11486 7.1 0.14 191.33 27.98 280.15 17.85 139.78 51.67

S2 5 418322 3845101 36394 2.3 0.22 109.35 63.63 284.10 24.60 105.03 8.58

S3 6 417731 3844646 23809 2.1 −0.48 134.93 76.68 230.93 8.98 185.65 7.65

S4 6 416869 3843916 31856 6.0 0.40 203.10 7.53 135.33 74.97 171.93 12.20

S5 7 415266 3843458 17271 5.3 0.71 229.26 25.18 94.40 40.70 202.48 32.84

S6 7 420929 3843612 65476 8.0 0.33 162.50 69.65 274.95 18.73 182.75 6.90

S7 6 422309 3843193 46733 3.9 0.33 144.93 25.57 226.37 44.03 183.13 33.63

S8 6 422131 3844267 40361 4.4 0.25 147.33 25.24 133.10 34.03 272.16 41.71

S9 6 420333 3844282 12975 1.6 0.29 115.83 12.10 208.55 11.03 248.48 73.48

S10 5 419517 3844383 71591 7.3 0.62 244.56 5.27 181.14 13.04 131.41 75.23

S13 5 419673 3842841 48111 9.9 0.74 203.18 16.78 216.45 39.02 125.42 43.87

S14 5 419603 3841949 43187 6.2 0.62 160.35 22.93 254.50 12.03 191.75 61.47

S15 5 418626 3841793 33592 8.7 0.40 105.03 15.20 158.96 33.86 212.69 49.19

S16 6 419778 3841157 32879 11.4 0.73 151.88 19.50 36.48 48.00 254.53 33.83

S17 6 420838 3841451 43542 5.1 0.32 143.24 48.48 32.64 18.24 288.92 34.50

Locations (X (x-coordinate) / Y (y-coordinate) in Universal Transverse Mercator (UTM) zone; Km = (K1 þ K2 þ K3)/3 mean magnetic susceptibility in 10−6 SI; P% = 100 × ((K1/K3) − 1) is the total
anisotropy percentage; T = (2ln(K2/K3)/(ln(K1/K3) − 1) is the Jelinek’s shape parameter (Jelínek, 1981). Decl – declination; Incl – inclination in degrees.
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De Saint-Blanquat et al. 2006). Maximum, intermediate andmin-
imum susceptibilities are designated as Kmax =K1> Kint =K2 >
Kmin = K3, respectively, representing the maximum, intermedi-
ate and minimum axes of the magnetic susceptibility ellipsoid.
The ellipsoid long axis, K1, defines the magnetic lineation and
the short axis, K3, defines the pole to the magnetic foliation
(Tcheumenak Kouémo et al. 2014). Magnetic lineation (K1) is
often inferred to indicate the stretching direction of magmatic
flow (Owens, 1974; Guillet et al. 1983; Bouchez et al. 1990;
Bouchez, 1997; Cañón-Tapia et al. 1997; Bella Nké et al. 2014).
The average value of Km = 1/3(K1þK2þ K3), known as the bulk
susceptibility, varies according to the relative proportions of
ferromagnetic, paramagnetic and diamagnetic minerals present
in the rock (Tarling & Hrouda, 1993). The intensity of anisotropy
(degree of eccentricity) of the AMS ellipsoid is studied through
P% (Jelínek, 1981). The shape of the AMS ellipsoid is
illustrated by the T parameter, which varies from þ1 for a per-
fectly oblate ellipsoid to −1 for a perfectly prolate ellipsoid
(Jelínek, 1981).

5.a. Bulk magnetic susceptibility (Km)

The classic subdivision into ‘paramagnetic’ and ‘ferromagnetic’
granites was recognized early on by Ishihara (1977) in order to sort
Japanese granites into magnetite-absent and magnetite-bearing
facies, as evidenced by low-field magnetic susceptibility and
anisotropy measurements, respectively. In magnetite-absent gran-
ites, the susceptibility carriers are the iron-bearing silicates (i.e. bio-
tite, chlorite, amphibole, tourmaline, etc) and Km does not exceed
0.5 × 10−3 SI. In the ferromagnetic type, the presence of magnetite

in addition to the iron-bearing silicates is responsible for high Km
(>5 × 10−3 SI). Since magnetite has a strong intrinsic susceptibility,
the added effect of the paramagnetic and diamagnetic minerals
is modest and the magnetic susceptibility of a rock is largely con-
trolled by the magnetite content (Gleizes et al. 1993; Bouchez,
1997). The magnetic susceptibility varies from 11.5 × 10−3 SI (sta-
tion S1) to 71.6 × 10−3 SI (station S10) (mean value 37.3 × 10−3 SI)
for Sarbadan, and 5.6× 10−3 SI (stationG8) to 56.4× 10−3 SI (station
G22) (mean value 19.1 × 10−3 SI) for Ghahan (Figs 10, 11).
Susceptibility is highly variable across the stocks, and the average
bulkmagnetic susceptibility of the Sarbadan stock is higher than that
of the Ghahan.

5.b. Magnetic anisotropy percentage (P%)

Since the anisotropy percentage is usually related to the intensity of
deformation, this parameter is often used to distinguish magmatic
flow from solid-state deformation (De Saint-Blanquat et al. 2001).
In some cases, P% may be correlated with strain intensity
(Bouchez, 1997). P% is equal to 1 when K1= K2= K3 and the mag-
netic ellipsoid is a sphere. In any case, an increase in the magnetic
susceptibility results in augmenting the differences among the axes
and resultant degree of anisotropy. AMS depends upon several fac-
tors such as temperature, deformation and chemical composition
of rocks, etc (Bouchez, 2000). The measured P% for the Sarbadan
and Ghahan stocks (Table 1) is shown as contours in Figure 12a.
P% is low throughout the pluton, varying from 1 % to 11 % (mean
4.74 %), rarely exceeding 10 %. High values of P% are located at
sites on the southern margin of the Sarbadan stock. Occasional
undulose extinction in quartz and minor mechanical twining
in plagioclase are the only evidence of solid-state deformation
in the western margin of the Ghahan stock. Owing to the sub-
granular texture of the two stocks, it is possible that traces of defor-
mation are not recorded.

5.c. Shape parameter (T)

The magnetic shape parameter (T) characterizes the shape of the
magnetic susceptibility ellipsoid (Jelínek, 1981; Borradaile, 1988)
and delineates the direction and arrangement of the magnetite crys-
tals during emplacement (Jelínek&Kropáček, 1978). If T is negative,
the shape of the magnetic ellipsoid is prolate or linear, whereas for
positive T the ellipsoid is oblate or disc shaped (Lanza & Meloni,
2006). Shape parameters for the Sarbadan and Ghahan stocks range
from−0.48 (station S3) to 0.74 (station S13) and −0.47 (station G2)
to 0.71 (station G4), respectively (Fig. 12b). Stations with negative
values may represent the locus of feeder zones.

A plot of P% and T versus Km has been used in AMS studies
to correlate specific shape fabrics with either susceptibility or
anisotropy. Figure 13a, b shows P% versus Km and T versus Km,
respectively. The relationship between P% and Km suggests the
Sarbadan stock is both richer in magnetite and more deformed
(Fig. 13a). No apparent correlation exists between T versus Km
(Fig. 13b), but most stations of the Sarbadan stock are in the domain
of an oblate ellipsoid, and 44 % of stations of the Ghahan granitoid
are in the domain of a prolate-shaped ellipsoid. The T versus P%
diagram reveals that the ellipsoids show a priority from oblate to
prolate (Fig. 13c).

5.d. Patterns of magnetic fabrics

Mineral lineations are crucial in understanding flow mechanism
and emplacement history. Figure 14a, b displays magnetic

Table 2. Selected electron microprobe analyses of magnetites from the Tafresh
granitoids

Point. No T1 T2 T3 T4

SiO2 0.040 0.030 0.080 0.020

TiO2 0.230 0.080 0.130 0.140

Al2O3 0.120 0.000 0.500 0.290

FeO 92.720 91.880 92.600 90.960

MnO 0.090 0.060 0.010 0.000

CaO 0.020 0.020 0.010 0.030

Na2O 0.110 0.080 0.000 0.100

K2O 0.020 0.000 0.000 0.010

P2O5 0.020 0.000 0.040 0.000

Total 93.370 92.150 93.370 91.550

Si 0.012 0.009 0.025 0.006

Ti 0.053 0.019 0.030 0.033

Al 0.044 0.000 0.181 0.107

Fe(iii) 15.825 15.944 15.710 15.814

Fe(ii) 8.035 8.006 8.049 8.029

Mn 0.023 0.016 0.003 0.000

Ca 0.007 0.007 0.003 0.010

Fe2O3 68.340 67.975 68.045 67.044

FeO 31.225 30.713 31.370 30.630
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Table 3. Major (wt %), trace and rare earth element (ppm) data of representative rock samples from the Tafresh granitoids

Rock type Granodiorite Diorite

Sample S1 S2 S3 S4 G1 G2 G3 G4 G5 G6

SiO2 63.55 63.26 62.77 65.07 59.68 59.41 58.59 59.48 60.36 60.83

TiO2 0.57 0.58 0.59 0.56 0.53 0.68 0.65 0.60 0.60 0.40

Al2O3 16.73 16.36 16.42 16.73 17.38 18.39 17.93 17.43 17.75 16.66

FeO(t) 4.92 5.33 5.18 4.32 4.35 5.95 5.95 5.44 5.49 5.54

MnO 0.10 0.13 0.13 0.11 0.11 0.12 0.12 0.12 0.12 0.06

MgO 2.21 2.27 2.16 2.78 2.78 2.61 2.55 2.64 2.73 2.60

CaO 5.67 5.64 5.52 4.88 7.67 7.44 7.31 6.79 7.04 5.14

Na2O 3.54 3.85 3.83 2.98 3.98 3.94 3.85 3.54 3.66 3.89

K2O 1.82 2.19 2.17 1.63 0.23 0.94 0.89 1.16 1.16 2.06

P2O5 0.12 0.13 0.12 0.18 0.13 0.14 0.14 0.10 0.11 0.09

LOI 1.77 1.27 0.64 1.85 2.47 0.97 1.65 1.94 0.37 1.84

Total 101.00 101.00 99.53 101.10 99.30 100.60 99.65 99.24 99.39 99.10

Cs 1.59 1.37 0.50 2.00 0.12 0.20 0.19 0.84 0.31 0.53

Rb 61.85 63.99 56.50 36.12 6.12 19.21 17.21 17.18 27.38 35.82

Ba 486.19 482.28 486.06 462.00 139.83 388.35 376.29 390.35 394.02 623.77

Th 5.25 8.26 8.61 4.22 5.12 2.82 2.47 2.05 3.81 5.97

U 1.51 2.17 3.34 0.70 0.80 1.27 1.26 0.68 1.61 2.87

Nb 4.90 6.54 5.02 4.10 3.92 4.46 5.12 2.95 3.25 5.40

Ta 0.55 0.50 0.43 0.41 0.41 0.30 0.28 0.28 0.32 0.41

La 21.90 13.34 16.19 12.00 12.45 9.72 9.24 11.66 11.32 9.50

Ce 43.18 29.60 31.14 25.00 19.25 21.98 20.82 17.61 19.33 22.72

Pb 10.77 11.57 4.21 11.00 0.45 7.36 10.54 9.10 12.57 10.41

Sr 264.99 370.10 358.64 225.40 525.24 453.10 443.82 424.22 445.19 329.15

P 530.89 585.62 534.70 345.02 548.70 632.40 631.89 420.18 479.11 385.91

Nd 16.86 15.68 7.21 12.60 6.11 15.18 14.24 3.89 13.46 6.58

Hf 2.83 3.90 5.32 0.40 3.84 3.27 2.52 2.61 1.16 1.84

Zr 126.62 162.04 175.55 7.00 108.84 153.91 129.79 58.60 68.42 106.60

Sm 2.19 3.03 2.19 2.46 1.68 1.63 1.50 0.78 0.99 1.65

Tb 0.48 0.53 0.38 0.44 0.51 0.52 0.50 0.54 0.44 0.36

Y 18.31 22.15 19.27 14.60 18.34 20.85 20.42 14.97 17.69 13.48

Er 2.05 3.59 1.49 1.67 0.80 1.31 2.32 0.62 0.75 0.69

Tm 0.25 0.32 0.19 0.22 0.30 0.29 0.28 0.30 0.24 0.19

Yb 1.73 2.23 2.46 2.00 2.23 2.09 2.03 2.04 1.75 1.16

Co 33.07 12.66 14.19 14.00 13.44 13.92 12.14 16.28 13.74 5.93

Cr 22.98 27.89 19.54 10.00 7.03 17.37 16.17 15.32 17.95 33.19

Cu 6.62 24.53 23.07 22.00 2.08 7.52 6.53 35.90 39.79 4.12

Dy 2.73 3.24 1.91 2.81 1.89 3.35 2.95 1.13 1.71 2.03

Mo 0.22 1.25 1.54 0.10 1.36 0.77 0.98 0.59 1.22 0.68

Ni 62.82 109.42 49.97 3.00 6.19 106.77 18.48 9.16 13.94 137.51

Sc 11.41 11.37 10.54 11.20 13.89 13.30 13.10 13.00 13.76 7.86

V 103.57 118.39 110.48 110.00 122.80 133.58 134.53 138.87 137.82 81.02

Zn 44.60 46.07 38.86 52.00 42.62 34.78 28.47 22.98 36.19 20.60

Ga 16.24 15.16 12.83 16.24 15.65 17.25 16.97 15.23 16.56 13.02

As 0.49 1.39 1.15 9.50 6.00 −0.07 −0.01 4.95 0.15 0.84

(Continued)
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lineation and foliation maps for the Tafresh granitoids, and stereo-
plots of the foliation and lineation poles. In general, the magnetic
lineations are radially distributed from steep to gentle plunges from
north to south in each stock. It is evident from the geometry of the
lineation trajectories that the magma flowed outward radially from
the northern entry point, towards the southern margins. In stereo-
plots, the magnetic lineations are widely spread (Fig. 14a, b). The
average trend/plunge of magnetic lineation in the Sarbadan and
Ghahan stocks is 142°/36° and 205°/48°, respectively (Fig. 14a).
Seven stations having steep lineation plunges (>60°) are consid-
ered to be probable feeder zones. In 11 of the stations, magnetic
foliation dips are greater than 70° with various strikes. The average
foliation poles for the Sarbadan and Ghahan stocks are 221°/58°
and 128°/30°, respectively (Fig. 14b). Most of the magnetic folia-
tions are vertical or close to vertical, outlining a circular pattern
on the Earth’s surface.

6. Discussion

6.a. Constraint on petrogenesis

The Tafresh granitoids have arc-like, calc-alkaline signatures with
similar REE patterns (especially in theHREEs), with Nb, Ta, Ti and

Ba depletion, and with LREE and LILE enrichment (Fig. 9).
Although negative anomalies in high field strength elements
(HFSEs) might be linked to crustal contamination, we favour an
interpretation that these anomalies typify subduction-related

Fig. 5. (Colour online) Chemical composition ofmagnetite on TiO2–Fe2O3–FeO ternary
diagram (Buddington & Lindsley, 1964).

Fig. 6. (Colour online) Chemical classification of rocks from the Ghahan and Sarbadan
stocks. (a) K2OþNa2O v. SiO2 plot (Middlemost, 1991); composition of studied samples
ranges from diorite (Ghahan stock) to granodiorite (Sarbadan stock). (b) AFM
(A = Na2O þ K2O; F = FeOt; M = MgO) diagram with differentiation lines of Irvine &
Barager (1971), showing a calc-alkaline affinity for the granitoids (Irvine & Baragar,
1971).

Table 3. (Continued)

Rock type Granodiorite Diorite

Sample S1 S2 S3 S4 G1 G2 G3 G4 G5 G6

Sn 0.90 1.06 1.04 1.00 0.68 0.95 0.92 0.76 0.99 0.99

Sb 0.90 1.04 1.00 0.43 0.35 0.88 0.97 0.08 0.94 0.94

Pr 4.79 3.73 3.05 3.06 2.92 3.13 3.07 2.80 2.96 3.07

Eu 0.95 1.05 1.14 0.76 1.14 1.14 1.10 1.10 0.94 0.73

Gd 3.22 3.41 2.33 2.07 3.04 3.26 3.19 3.19 2.78 2.21

Dy 2.58 3.10 1.90 2.66 3.03 2.98 2.86 3.29 2.45 1.85

Ho 0.61 0.75 0.47 0.63 0.68 0.71 0.69 0.71 0.59 0.46

Lu 0.26 0.33 0.21 0.25 0.32 0.30 0.28 0.32 0.25 0.20

A/CNK 0.92 0.86 0.88 0.75 0.84 0.87 0.87 0.90 0.88 0.91

A/NK 2.15 1.88 1.90 1.76 2.56 2.45 2.46 2.46 2.44 1.70
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magmas; they originate from LILE enrichment in the sub-
ducting slab (Borg et al. 1997). The Nb–Ta trough is considered
to characterize arc-related I-type granitoids (e.g. Rogers &
Hawkesworth, 1989; Sajona et al. 1996). On the chondrite-normal-
ized diagram, the samples are LREE-enriched relative to enrich-
ment in middle rare earth elements (MREE) and HREEs, but
with relatively flat or upward-sloping MREE–HREE patterns,
and with Eu anomalies absent. Second-order variations in LREE
enrichment could be attributed to varying source compositions
or degree of partial melting (Langmuir et al. 1977; Le Roex,
1987; Kamenetsky et al. 2000). The absence of negative Eu anoma-
lies can be ascribed to the oxidizing conditions, such that Eu is
present as Eu3þ, and not Eu2þ. The common occurrence of mag-
netite (Fig. 5) and hornblende in the Tafresh intrusive rocks indi-
cates a high oxidation state and elevated water contents of the
parent magmas (Hanson, 1980), which likely explains the lack
of a distinct Eu anomaly. The profiles of REEs and the unfractio-
nated HREE (and Y) patterns (Fig. 9) suggest that the magmas
were produced outside the garnet stability field, likely in an
amphibole-bearing mantle source, overlain by a relatively thin
crust. On the tectonic discrimination diagram of Pearce et al.
(1984) (Fig. 7d), all sample data fall in the domain of volcanic
arc granitoids.

6.b. Emplacement model

Petrological studies and the results obtained from the AMSmeth-
odology indicate that the Sarbadan and Ghahan stocks are I-type,
ferromagnetic granitoids emplaced at shallow crustal depth in
the central part of the UDMA. The two stocks share genetic

relationships imposed during a single tectonic event. Micro-
structural analyses and consistently low anisotropy values across
the Ghahan and Sarbadan stocks point to the dominance of mag-
matic flow rather than solid-state deformation. Occasional occur-
rence of weak solid-state deformation within the western margin
of the Ghahan stock, the presence of microdioritic enclaves in the
zone of convergence of these two stocks, the growth and south-
ward expansion of the stocks and similar U–Pb ages all point to
the coalescence of two magma chambers. The magnetic fabric of
the Ghahan and Sarbadan stocks was created with a circular pat-
tern and vertical foliation, and a high-dip lineation with a gradual
distribution from an almost E–Wvertical foliation and a horizon-
tal southward lineation. In each stock, a distinct feeder zone with
a steep magnetic lineation plunge (>60°) suggests that magma
ascended dominantly along a NW–SE direction. Feeder zones
are tentatively identified as being tectonically developed in exten-
sional gashes. In separated feeder zones, magma conduits formed
in the lower parts of a brittle crust. According to recent studies,
most plutons are not ‘big-tank’magma chambers but, rather, they
are constructed by amalgamation of small magma pulses
(Glazner et al. 2004; Sheibi et al. 2012). For the Sarbadan and
Ghahan granitoids, the E–W trend was located in a shear zone
developed between the Indes and Talkhab faults (Fig. 15a).
Minimum stresses, which are perpendicular to the main stress,
act in a tensional manner. At Tafresh, the main NE–SW stress
was parallel to the compression of Eurasian–Arabian block con-
vergence (Fig. 15b). In this regard, we suggest that the Sarbadan
and Ghahan granitoids were emplaced in a shear zone during
an extensional opening phase. Evidence such as the pattern of

Fig. 7. (Colour online) (a) Classification of the
Ghahan and Sarbadan stocks on A/NK v. A/
CNK diagram (ANK = molar Al2O3/(Na2O þ
K2O) and ACNK = molar Al2O3/(CaO þ Na2O þ
K2O)) (Shand, 1943). (b) Na2O v. K2O classifica-
tion diagram for discrimination of I- and S-type
granitoids (Chappell & White, 2001); all samples
fall in the field of I-type granitoids. (c) FeOt/MgO
v. Zr þ Nb þ Ce þ Y diagram. (d) Tectonic
classification diagram Rb v. Ta þ Yb (Pearce
et al. 1984). WPG – within-plate granites; VAG
– volcanic arc granites; syn-COLG – syn-collision
granites; ORG – oceanic ridge granites.
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emplacement of the Ghahan and Sarbadan stocks indicates that
the main stress in the study area had a NE–SW trend and is par-
allel to the compressional stress induced by Eurasian–Arabian
block convergence. Therefore, the Indes and Talkhab faults in
Miocene time were active by left-lateral strike-slip movement
(Fig. 15b). Coming back to the geological context and the AMS
results obtained from the present study, we infer that the dextral
shear zone tectonics in the UDMA might have given rise to local
extensional voids or tensional gashes, into which the magma was
emplaced. A simple shearing system created trends of individual
plutons that are similar to the trend of widespread UDMA mag-
matism. We infer that the younger, more fractionated Sarbadan
stock was emplaced later than the older, less fractionated
Ghahan stock.

6.c. Structural significance

Structural investigation andmodelling suggest a direct relationship
between magma movement and emplacement along strike-slip
(Corti et al. 2005), tensional (Hutton, 1988), transpressional

(De Saint-Blanquat et al. 1998) and transtensional (Guineberteau
et al. 1987) faults. Study of internal fabrics of plutonic complexes
provides insight into regional tectonics, since magmatism can be
associated with both compressional and extensional phases of an
orogeny (Brown & Solar, 1998; De Saint-Blanquat et al. 1998).

Iran is located within the convergence domain between the
Arabian and Eurasian plates (Regard et al. 2005). Movement of
the Arabian plate was directed approximately N–S to N010E on
average, relative to Eurasia (Masson et al. 2007; Agard et al.
2011). Shortening occurred in a SW–NE direction across the oro-
gen during Mesozoic and Cenozoic times. Convergence between
Arabia–Eurasia resulted in NW-trending parallel tectono-meta-
morphic and magmatic belts, among these being the SSZ and
the UDMA (Berberian & Berberian, 1981; Berberian & King,
1981; Berberian et al. 1982). Subduction of the Neo-Tethys oceanic
plate beneath the Eurasian plate was accompanied by Triassic–
Jurassic Andean-like arc magmatism in the SSZ that had therefore
been active at least 150 Ma prior to collision. The NW-trending
SSZ, one of the youngest continental collision zones on Earth, is
characterized by an extensive magmatic history. The collision

Fig. 8. (Colour online) Harker diagrams for
major elements of the Tafresh granitoids.
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occurred during closure of the Neo-Tethys Ocean between the
Arabian and Eurasian plates (Berberian, 1995; Golonka, 2004).

T versus P%, T versus Km, and Frequency versus Km plots on
the different granitoids from Iran are shown in Figure 16.
Compilations of AMS data for Iranian granitoids (Table 4) show
that although the plutons differ in age and structural andmagmatic
type, they are emplaced by similar mechanisms. Strike-slip move-
ments within or close to most of the oblique magmatic arcs and
contraction structures are often found in fore-arc and back-arc
environments (De Saint-Blanquat et al. 2001). Strike-slip faulting
is observed in many volcanic structures of magmatic arcs (Beck,
1983). In central Andean arcs (Mégard, 1987) and Japan
(Lallemand & Jolivet, 1986), for example, strike-slip deformation
occurs on the surface. Strike-slip tectonics can be associated with
a subduction zone in two ways: (1) the linear trend parallel to the
margin of the magmatic arc, and (2) high heat flow in an arc due
to magma transfer that forms a weak zone along with the
continental lithosphere (Jarrard, 1986). Shear displacements indi-
cate the intensity and importance of regional fractures and associ-
ated magmatism.

7. Conclusions

(1) Sub-intrusive and intrusive rocks of the diorite–quartz diorite
Sarbadan and granodiorite Ghahan stocks in the Tafresh area
show porphyritic, granular to sub-granular textures. Enriched

LREE patterns, high abundances of LILEs and depletion in
HFSEs with significant negative Nb and Ta anomalies suggest
that Early Miocene magma at Tafresh formed during subduc-
tion activity.

(2) High values of the Km (>5 × 10−3 SI) and geochemical data
indicate that the Tafresh stocks are classified as ferromagnetic
and I-type granitoids.

(3) Magnetic lineations indicate that each stock contains distinct
feeder zones that were opened as a consequence of extension.

(4) Magnetic data and structural evidence show that shear zones
had caused an opening, facilitating consequent migration,
ascent and emplacement of granitoid magmas in the
Tafresh area during an extensional phase.

(5) The E–W trend of the Sarbadan and Ghahan stocks and their
emplacement in the middle part of the UDMA developed
between the Indes fault and Talkhab fault as a product of
tensional stress in a brittle tectonic regime, ancillary to com-
pressional stresses induced by Eurasian–Arabian block
convergence.

(6) Compilation of several studies dealing with mechanisms of
magma emplacement in Iran confirms that magma was
emplaced during a transpressive to transtensional episode
during oblique subduction of the western Neo-Tethys beneath
central Iran. Structural investigation of these studies empha-
sizes a direct relationship between the faults and magma
movements and emplacement along strike-slip faults. This
shear deformation along the main faults of Iran can be attrib-
uted to the convergence between the major Arabian–Eurasian
continental blocks.
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Table 4. A summary of the AMS results on intrusive rocks in Iran

Pluton
Age
(Ma) Long/Lat

Structural
zone Composition Type

Km
(× 10−3 SI) P% T

Model of
emplacement References

Zahedan 32 60.71 29.33 Southeast
Iran

Diorite
to
granite

I-type 0.075–8.1
(mean 2.3)

0.3–38.4
(mean
9.5)

Oblate Syntectonic sill in a
transtensional setting

Sadeghian
et al. (2005)

Shah-Kuh 176 59.22 31.72 Central
Iran

Granodiorite
and
syenogranite

S-type 0.034–0.317
(mean
0.166)

0.3–8.6
(mean
2.78)

Oblate Shear zone Esmaeily
et al. (2007)

Urumieh 80 45.15 37.15 SSZ Diorite and
biotite-granite

I-type 0.022–34
(mean 3.4)

0.15–26
mean
3.75

Oblate Dextral transpressive Ghalamghash
et al. (2009)

Shir-Kuh 136 54.01 31.67 Central
Iran

Granodiorite
to
leucogranite

S-type 0.02–0.332
(mean
0.193)

0.4–5.7
(mean
1.79)

Oblate Dextral shear along
back-arc environment
above the subducting
Neo-Tethys

Sheibi
et al. (2012)

Boroujerd
and
Gousheh

175
and
35

48.78 33.94 SSZ Monzogranite,
granodiorite,
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Fig. 13. (Colour online) Magnetic parameter diagrams. (a) P% v. Km; (b) T v. Km;
(c) T v. P%.
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Fig. 14. (Colour online) (a) Magnetic lineation and (b) foliation maps
of the Sarbadan and Ghahan stocks. Stereoplots represent the line-
ations (K1) and pole to foliation planes (K3).

Fig. 15. (Colour online) (a) Location and movement of the Indes and Talkhab faults in
the Tafresh area, and (b) the idealizedmodel for emplacement of the Tafresh granitoids.

Fig. 16. (Colour online) Magnetic parameter diagrams. (a) Frequency v. Km;
(b) T v. Km; (c) T v. P%.
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