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This paper considers the structure and linear stability of two-dimensional hollow vortex
equilibria. Equilibrium solutions for a single hollow vortex in linear and nonlinear
straining flows are derived in analytical form using free streamline theory. The linear
stability properties of this solution class are then determined numerically and a new
type of resonance-induced displacement instability is identified. It is found to be a
consequence of the fact that one of the shape distortion modes of a circular hollow
vortex has the same frequency as one of the modes corresponding to displacement of
the vortex centroid. The instability is observed in the case of an isolated hollow vortex
situated in straining flow of order three. We also revisit the hollow vortex row solution
due to Baker, Saffman & Sheffield (J. Fluid Mech., vol. 74, 1976, p. 1469), and since
it is currently lacking in the literature, we present a full linear stability analysis of this
solution using Floquet analysis.
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1. Introduction
Exact, analytically tractable solutions to the Euler equations describing vortices are

few and far between. Understanding the properties of such solutions gives precious
insight into the general dynamics of vortical flows. Many known exact solutions
correspond to singular, or non-differentiable, flows and several models of vorticity in
two dimensions have these properties: point vortices, vortex sheets and vortex patches
are the most common models. Saffman (1992) provides an overview of solutions of
this kind. He also mentions another class of two-dimensional vortices, hollow vortices,
but only in passing. In this paper we study the structure and stability of some basic
hollow vortex solutions in two dimensions.

Our definition of a hollow vortex is an incompressible vortex whose interior is at
rest in a frame that may itself be in motion with respect to the laboratory frame. This
includes vortices moving uniformly through a fluid, and vortices that rotate about a
point. No examples of the latter case are presently known. For the former, the pressure
in the vortices is constant, and this is usually the physical condition used to specify the
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Structure and stability of hollow vortex equilibria 179

boundary conditions determining the shape and properties of the vortex. The boundary
of a hollow vortex is a vortex sheet because it separates stationary fluid inside the
vortex from moving fluid outside it. Hollow vortices are special cases of Sadovskii
vortices (Sadovskii 1971; Moore, Saffman & Tanveer 1988) which have both uniform
vorticity in their interior as well as a vortex sheet on the boundary. Since the fluid
inside is at rest, its properties are not directly relevant to the basic state, but they will
affect its stability.

Only a limited number of hollow vortex solutions have been reported in the
literature and, since many of these are exact solutions of the incompressible Euler
equations, they are of great theoretical importance: in particular they have served
as the basis for constructing compressible solutions by means of a Rayleigh–Janzen
expansion with the incompressible solution providing the leading-order term. In this
way, Ardalan, Meiron & Pullin (1995) have extended the single hollow vortex row
(Baker, Saffman & Sheffield 1976, hereafter BSS), while Moore & Pullin (1987) and
Leppington (2006) extended the translating hollow vortex pair of Pocklington (1895).

The stability properties of hollow vortices are naturally of interest. One would
not expect to see strongly unstable vortices in physical situations, and the utility
of such model vortices might then be questionable. The study by BSS and the
Appendix of Saffman & Szeto (1981) (hereafter SS) appear to be the only works
that consider issues of stability of hollow vortex configurations. On the matter of
stability, it is important to distinguish between stagnant-core vortices that contain fluid,
possibly of a different density, and hollow vortices that contain vacuum. Baker (1980)
discusses the energetics of the single vortex row of BSS in terms of stagnant-core and
hollow vortices. A hollow vortex is not expected to be unstable to Kelvin–Helmholtz
instability because there is no fluid inside the vortex to support a pressure field. This is
not true for stagnant-core vortices.

It is a simple exercise to show that, for linearized perturbations having time
dependence exp(λt) of an isolated circular hollow vortex with strength Γ and radius a,
the eigenvalues λ= λ±m are

λ±m =
Γ

2πa2
σ±m , (1.1)

where m denotes a non-zero integer. These modes are neutrally stable and the non-
dimensionalized imaginary eigenvalues are

σ±m = i(m± |m |1/2), m 6= 0. (1.2)

This relation is interesting in two respects: first, notice that m = 1 is associated with
the two frequencies

σ+1 = 2i, σ−1 = 0, (1.3)

while m=−1 produces

σ+−1 = 0, σ−−1 =−2i. (1.4)

Thus, there are two distinct modes having a zero eigenvalue,

σ−1 = σ+−1 = 0, (1.5)

and these m = ±1 modes are both associated with displacement of the vortex centroid
with no change in the circular shape of the boundary vortex sheet.
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180 S. G. Llewellyn Smith and D. G. Crowdy

More intriguing, however, is the observation that when m = 4, the associated
eigenfrequencies are

σ+4 = 6i, σ−4 = 2i, (1.6)

while m=−4 is associated with

σ+−4 =−2i, σ−−4 =−6i. (1.7)

Hence, on comparison of (1.3) and (1.4) with (1.6) and (1.7) we notice

σ+1 = σ−4 = 2i, σ−−1 = σ+−4 =−2i. (1.8)

There are therefore two distinct modes with eigenvalue 2i, and another two modes
sharing the eigenvalue −2i. While the modes with m = ±1 are displacement modes,
those with m=±4 modes are associated with shape distortions of the vortex boundary.
The observation (1.8) therefore suggests the possibility that, when a hollow vortex is
forced in an appropriate way, a resonance might be excited between a displacement
mode and a shape distortion mode, both having a common eigenfrequency, that may
result in an overall displacement instability of the vortex. This forcing might be due
to some imposed ambient flow, or the presence of other vortices. In this paper we
demonstrate that such instabilities can indeed be generated. We will refer to any such
instabilities as ‘resonance-induced displacement instabilities’.

This notion of a displacement instability induced by finite-area effects has been
observed before. Dritschel (1985) finds a similar phenomenon in his studies of the
stability of finite-area generalizations of the polygonal point vortex arrays of Thomson
(1883): a rotating polygonal array of 7 vortices, which is neutrally stable when the
array is made up of point vortices, becomes unstable to a displacement instability
when the point vortices are replaced by vortex patches, even very small ones. This
is a finite-area effect because this displacement instability is absent for a point vortex
configuration. Dhanak (1992) argues that there are, in fact, two such instabilities. The
origin of the displacement instability studied here for hollow vortices is different
to that of Dritschel (1985): here it is due to a resonance between a point vortex
displacement mode and a shape distortion mode. For a circular Rankine vortex of
uniform vorticity, the analogue of (1.2) is (Saffman 1992)

σm = i
2
(|m| − 1)sgn m, m 6= 0, (1.9)

for which only the m = ±1 displacement modes share a common zero eigenfrequency,
so Dritschel’s finite-area instability is not caused by the type of resonance we explore
here.

The structure of this paper is as follows. In § 2, a single hollow vortex is placed in
an ambient straining flow of arbitrary order so that the far-field complex potential w(z)
has the form

w(z)→ γ zn − iΓ
2π

log z+ analytic function, n > 2. (1.10)

Equilibrium configurations are found. For n > 2, we are able to produce a class of
closed-form solutions to this problem using free streamline theory combined with
conformal mapping. Properties of the solution class for n= 2, 3 and 4 are described in
§ 2.3. The linear stability of the solutions is examined in § 2.4. The choice n = 3 is of
special interest because, in that case, the nature of the ambient strain flow is such that,
for any non-zero imposed strain, it incites a displacement instability between instability
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modes of the hollow vortex having the common eigenfrequency in (1.8). In § 3 we go
on to reappraise the analytical solution for a single hollow vortex row of BSS. While
the original authors comment on the linear stability properties, they restricted attention
to shape instabilities and disregarded any displacement modes. The paper by SS also
considers the single row stability, but focuses on a complementary, but still restricted,
class of disturbances. Since a full analysis of the linear stability problem for a single
hollow vortex row is currently lacking in the literature, we present such a treatment in
§ 3 by making use of the methods of Floquet theory.

2. Hollow vortex in an ambient strain
2.1. Formulation

First, in an attempt to find evidence of a resonance-induced instability associated with
modes with eigenfrequencies (1.8), we consider an isolated hollow vortex situated in
an ambient flow that might produce the resonance we seek. For maximum generality
we analyse a hollow vortex of circulation Γ , centred at the origin, situated in an nth
order straining flow (see figure 1). The flow exterior to the vortex is incompressible
and irrotational so it is determined by a complex potential w(z) where the associated
velocity field (u, v) is given, in complex form, by the relation

u− iv = dw

dz
. (2.1)

As |z| →∞, w(z) is assumed to have the behaviour

w(z)→ γ zn − iΓ
2π

log z+ analytic function, (2.2)

for some integer n > 2, where γ is a real positive parameter quantifying the imposed
rate of strain and the analytic function decays faster than the strain and circulation
terms. Together, (2.1) and (2.2) mean that

u− iv ∼ nγ zn−1, as |z| →∞. (2.3)

The interior of the hollow vortex is dynamically inactive and is assumed to be at
constant pressure. We seek solutions in which the vortex is in steady equilibrium.
The vortex sheet bounding the constant pressure region must be a streamline and, by
the steady form of Bernoulli’s theorem and the fact that pressure must be continuous
across the sheet (we assume there is no singular force distribution, such as surface
tension, on the sheet), the vortex sheet must have uniform strength (Saffman 1992).

The special case n= 2 corresponds to a single hollow vortex sitting in a linear strain.
A study of such a flow situation, attributed to F. M. Hill, is mentioned by BSS and
subsequent authors, but the present authors have not been able to find any permanent
record of that study. There is no evidence that any previous investigators have studied
the case with n > 2, so we believe the solutions we find below are new. It is worth
mentioning that exact solutions for a finite-area patch of uniform vorticity (a vortex
patch) situated in ambient nth-order straining flows of the form (2.2) have been found
by Burbea (1981) and generalize the n = 2 solutions due to Moore & Saffman (1971).
We will now show that exact solutions also exist for hollow vortices.

2.2. Conformal mapping
The problem here is a free boundary problem: the shape of the boundary vortex sheet
at equilibrium must be determined as part of the solution. It is therefore convenient
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Hollow vortex

Vortex sheet

Irrotational flow region

Constant pressure
region

FIGURE 1. Flow schematic: a single hollow vortex in an ambient irrotational strain. The
hollow vortex is a finite-area constant pressure region bounded by a vortex sheet.

to introduce a conformal mapping z(ζ ) from the interior of the unit ζ -disc to the
unbounded region exterior to the vortex. Without loss of generality, let ζ = 0 map to
the point at infinity so that

z(ζ )= a

ζ
+ analytic function, (2.4)

where a is some constant. The circle |ζ | = 1 will map to the vortex sheet making up
the boundary of the hollow vortex.

The mathematical problem is to find the complex potential w(z) as well as the
functional form of the conformal mapping function z(ζ ). To do this, we employ ideas
from free streamline theory. Define the two functions

W0(ζ )≡ w(z(ζ )), R(ζ )≡ dw

dz
. (2.5)

Given W0(ζ ) and R(ζ ), the conformal mapping is given by the indefinite integral

z(ζ )=
∫ ζ dW0(ζ

′)
dζ ′

dζ ′

R(ζ ′)
, (2.6)

which follows from the chain rule. In free streamline theory it is traditional to consider
the logarithmic function log(dw/dz), often referred to as the Joukowski function
(Sedov 1965), but here we consider R(ζ )= dw/dz directly.

The function W0(ζ ) must be analytic inside |ζ | < 1 except for singularities forced
by the far-field condition (2.3). Since the vortex sheet must be a streamline we also
require

Im[W0(ζ )] = constant on |ζ | = 1, (2.7)

where, because the domain is simply connected, the constant can be taken equal to
zero without loss of generality. Standard methods, such as the Milne–Thomson circle
theorem (Saffman 1992), can be used to deduce that the solution for W0(ζ ) is

W0(ζ )= an

(
γ

ζ n
+ γ ζ n

)
+ iΓ

2π
log ζ. (2.8)

The function R(ζ ) is analytic inside |ζ | < 1 except for a pole of order n − 1 forced
by the far-field condition (2.3). Since the fluid speed must be constant on the vortex
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Structure and stability of hollow vortex equilibria 183

sheet the modulus of R(ζ ) must be constant on |ζ | = 1. It is also expected, from a
simple analysis of a point vortex at the stagnation point of the same ambient straining
flow, that there will be n stagnation points in the flow (i.e. n zeros of dw/dz). We
therefore propose that

R(ζ )= A

ζ n−1

(
ζ n − αn

ζ n − α−n

)
, (2.9)

where |α| < 1. It is easy to check that the function R(ζ ) given in (2.9) has constant
modulus on |ζ | = 1, a pole of order n − 1 at ζ = 0 and n zeros at ζ = αωn, where ωn

denotes the nth roots of unity. Since dw/dz→ nγ zn−1 as z→∞, we must pick

A= nγ an−1

|α |2n . (2.10)

By the chain rule,

dw

dz
= dW0/dζ

dz/dζ
. (2.11)

Since dz/dζ cannot vanish in |ζ |< 1, it follows that any zeros of R(ζ ) in |ζ |< 1 must
also be zeros of dW0/dζ . Therefore dW0/dζ must have the same zeros as dw/dz. On
taking a derivative of (2.8) we find

dW0

dζ
= γ an

(
− n

ζ n+1
+ nζ n−1

)
+ iΓ

2πζ
, (2.12)

and, for this to vanish at ζ n = αn, we must have

nγ an

(
− 1
αn
+ αn

)
+ iΓ

2π
= 0. (2.13)

It is easy to check from (2.12) that dW0/dζ also vanishes when ζ n =−α−n. It follows
from the fact, easily seen from (2.12), that dW0/dζ is a rational function of ζ that we
can write

dW0

dζ
= nγ an

αnζ
(ζ n − αn)(ζ−n + αn), (2.14)

where the prefactor is determined by ensuring that the behaviour as ζ → 0 of (2.14)
is the same as the behaviour of (2.12). Equation (2.11), together with (2.9) and (2.14),
then implies that

dz

dζ
= dW0/dζ

R(ζ )
= a(−ζ−2 + (αn − αn)ζ n−2 + |α |2n ζ 2n−2), (2.15)

which can be integrated analytically to give

z(ζ )= a

[
1
ζ
+ α

n − αn

n− 1
ζ n−1 + |α |

2n

2n− 1
ζ 2n−1

]
. (2.16)

An integration constant has been set equal to zero to ensure that the vortex is centred
at the origin.
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FIGURE 2. Hollow vortex shapes for n= 2 with µ= 0.05, 0.245, 0.5 and µ= µ(2)c (a) and
n= 3 with µ= 0.1, 0.4, 0.8 and µ= µ(3)c (b). Each vortex has area π.

2.3. Characterization of the solutions
Motivated by an analysis of the simpler problem of a point vortex in the same ambient
strain, we set

αn = iβ, (2.17)

where β is real and |β|< 1. Define the non-dimensionalized strain rate parameter

µ= 4nπγ an

Γ
. (2.18)

Then (2.13) reduces to

αn + 2i
µ
− 1
αn
= 0. (2.19)

It follows that

β =− µ

1+√1− µ2
, (2.20)

where |µ|< 1 in order for β be real. The mapping can then be written as

z(ζ )= a

[
1
ζ
− 2iβ

n− 1
ζ n−1 + β2

2n− 1
ζ 2n−1

]
. (2.21)

For n = 2 it is found that hollow vortex equilibria exist for |µ| < µ(2)c =
(3 + 4

√
3)/13 = 0.7637079408. As shown in figure 2, at |µ| = µ(2)c , two distinct

parts of the hollow vortex boundary touch each other. For |µ| > µ(2)c the conformal
map (2.21) is no longer univalent and the solutions are not physically admissible.

The limiting states for higher values of n have similar properties. For n = 3 it is
found that hollow vortex equilibria exist for |µ| < µ(3)c = 0.8939873838, while for
n= 4 solutions exist for |µ|< µ(4)c = 0.9193987084. In all cases, the limiting solutions
arise when different points of the boundary vortex sheet come into contact so that the
conformal mapping loses univalence. Typical hollow vortex shapes for n= 3, including
the limiting shape, are also shown in figure 2. In appendix B, brief details are given as
to how the critical parameters µ(n)c are determined.
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FIGURE 3. (a) Graph of 2γA /Γ against µ for the n = 2 solution: there is a single solution
for 0 < 2γA /Γ < 0.0236, two solutions for 0.0236 < 2γA /Γ < 0.0889, and no solutions
for 2γA /Γ > 0.0889. (b) For comparison, a graph of the same quantity for an elliptical
vortex patch as a function of e, the ratio of the lengths of its semi-minor and semi-major axes.

The area A of each vortex is readily found to be

A = πa2

[
1− 4β2

n− 1
− β4

2n− 1

]
. (2.22)

Figure 3(a) shows a graph of the quantity

2γA

Γ
= µ

4

[
1− 4β2

n− 1
− β4

2n− 1

]
(2.23)

plotted as a function of µ for the case n = 2. It shows that there is a single
hollow vortex equilibrium for 0 < 2γA /Γ < 0.0236, there are two equilibria for
0.0236 < 2γA /Γ < 0.0889 and there are no solutions for 2γA /Γ > 0.0889. Baker
et al. (1976) report, based on the work of Hill, that there are two solutions in the
interval 0.03 < 2γA /Γ < 0.1, which is in rough agreement with the results found
here.

For purposes of comparison, it is interesting to juxtapose this graph with the
analogous one for a vortex patch of uniform vorticity ω0 in the same straining flow
(figure 3b). In that case, it is known (Saffman 1992) that the equilibrium vortex patch
assumes an elliptical shape with

|2γ |
ω0
= e− e2

(1+ e)(1+ e2)
, (2.24)

where e is the ratio of the semi-minor to semi-major axes of the ellipse. If the patch
has area A then its total circulation Γ is

Γ = ω0A , (2.25)
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186 S. G. Llewellyn Smith and D. G. Crowdy

so that

|2γ |A
Γ
= e− e2

(1+ e)(1+ e2)
(2.26)

which is the quantity plotted in figure 3(b). Relation (2.23) is the analogue, for a
hollow vortex, of the known relation (2.26) for an elliptical vortex patch in strain.

If one is interested in the hollow vortex and vortex patch as regularizations of a
point vortex of circulation Γ , figure 3 shows that, within both models, admissible
regularizations only exist provided the ambient strain rate is not too large, with vortex
patches able to sustain a wider range of possible strain rates. The maximum admissible
value of |2γ |A /Γ is around 0.1501 for vortex patches and 0.0889 for hollow vortices.
For a vortex patch, it is always the case that two possible equilibria exist for a given
value of |2γ |A /Γ in the range 0< |2γ |A /Γ < 0.1501.

2.4. Linear stability
We now study the linear stability properties of the solutions just found. Attention is
restricted to irrotational perturbations which introduce no new vorticity into the system;
this is predicated on the basis of Kelvin’s circulation theorem.

There are two ways to proceed. On the one hand, it is natural to write

z(ζ, t)= z0(ζ )+ εẑ(ζ, t), W (ζ, t)=W0(ζ )+ εŴ (ζ, t), (2.27)

where ε � 1, z0(ζ ) and W0(ζ ) are, respectively, the conformal map and complex
potential for the steady-state equilibria just found, and ẑ(ζ, t), Ŵ (ζ, t) are time-
dependent perturbations to them. In this way, the function z(ζ, t) encodes information
on how the equilibrium vortex shape is perturbed and the modified complex
potential W (ζ, t) gives the associated flow field perturbation. This method is a
direct generalization, to unsteady flows, of the method just used to derive the steady
solutions and is naturally related to the stability study of streets of finite-cored vortices
by Meiron, Saffman & Schatzman (1984). Further details are given in appendix A.
Hill (1998) gives other applications of this method. It turns out to be easy to examine
the linear stability of the circular case γ = 0 using this method, and the results are
given in § 2.4.1.

A second linear stability method, based on a generalization of the original
formulation of BSS, can also be employed and this is described in § 2.4.2 to follow.

All linear stability calculations have been performed independently, using both
methods, and the results have been compared for consistency. This lends confidence in
the correctness of our results.

2.4.1. The circular case γ = 0
The eigenvalues for the case of a circular hollow vortex with γ = 0 are readily

determined by perturbing the conformal map and complex potential. Let

ẑ(ζ, t)= âeλtζ p, ẑ∗(ζ, t)= â∗eλtζ−p,

Ŵ (ζ, t)= b̂eλtζ p+1, Ŵ (ζ, t)∗ = b̂∗eλtζ−p−1,

}
(2.28)

where p > 0 is an integer, λ is an eigenvalue to be determined and â, â∗, b̂ and b̂∗ are
independent complex constants. For this case,

z0(ζ )= a

ζ
, W0(ζ )=− iΓ

2π
log ζ. (2.29)
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Substituting all this into the linearized equations of motion (see appendix A) produces
only terms involving ζ p and ζ−p. On equating coefficients of ζ p we find

λâ= iκ(p+ 1)â− (p+ 1)b̂, λb̂= κ2â+ iκ(p+ 1)b̂, (2.30)

where κ ≡ Γ/(2πa2). If â is eliminated from both equations it is found that

λ= iΓ
2πa2

(p+ 1±√p+ 1), p > 0. (2.31)

Similarly, equating coefficients of ζ−p and performing analogous manipulations gives

λ= iΓ
2πa2

(−p− 1±√p+ 1), p > 0. (2.32)

On letting m=−p− 1, we retrieve results (1.1) and (1.2) reported in the Introduction.

2.4.2. Numerical method
BSS derive linearized equations to describe the stability of their basic state working

in the hodograph plane, i.e. they use the complex variable W = φ + iψ as the
independent variable. In this plane, the boundary of the vortex is at ψ = 0, so we
can denote the perturbation to it as ψ = δ(φ, t) and write the perturbation velocity
potential as Φ(φ,ψ, t). Φ is a harmonic function in ψ < 0, decaying as ψ→−∞. In
these coordinates, the dynamic and kinematic boundary conditions are

1
q2

0

∂δ

∂t
+ ∂δ

∂φ
= ∂Φ
∂ψ

,
1
q2

0

∂Φ

∂t
+ ∂Φ
∂φ
+
(
∂

∂ψ

1
2

q2

q2
0

)
ψ=0

δ = 0. (2.33)

The equations (5.4) and (5.5) of BSS are a special form of (2.33). To obtain (2.33),
we take the kinematic boundary condition in the W plane and the Bernoulli equation,
namely

D
Dt
(ψ − δ)= 0,

p

ρ
=−∂Φ

∂t
− 1

2
(∇φ +∇Φ)2, (2.34)

where D/Dt is the material derivative, and linearize them about the basic state on the
undisturbed boundary ψ = 0, with the disturbance pressure vanishing on the boundary.

Referring back to the complex variable ζ = ρeiθ , on the streamline |ζ | = ρ = 1, φ is
a function of θ and the normal derivative of ψ is a function of ρ, so it is convenient
to consider the perturbation equations written with θ and ρ as independent variables.
Applying the chain rule to (2.33) gives

1
q2

0

∂δ

∂t
+ 1
φθ

∂δ

∂θ
= 1
ψρ

∂Φ

∂ρ
,

1
q2

0

∂Φ

∂t
+ 1
φθ

∂Φ

∂θ
+
(

1
ψρ

∂

∂ρ

1
2

q2

q2
0

)
ρ=ρ0

δ = 0, (2.35)

where φθ ≡ ∂φ/∂θ and ψρ ≡ ∂ψ/∂ρ. From the Cauchy–Riemann equations ψρ =
−ρ−1φθ , so we only need the expression

φθ =− Γ2π(µ sin nθ + 1), (2.36)

which is valid on the vortex boundary and has been derived from the exact solutions.
Hence, on letting all coefficients have time dependence eλt, the boundary conditions
transform to

σΦ + Q
∂Φ

∂θ
= Gδ, σδ + Q

∂δ

∂θ
=−Q

∂Φ

∂ρ
, (2.37)
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where σ = 2πλa2/q0Γ is the non-dimensional growth rate, and

Q= 1
φθ
=− 1

1+ µ sin nθ
, G= Q

(
∂

∂ρ

1
2

q2

q2
0

)
ρ=ρ0

=− 1
1+ µ sin nθ

Re [ζS′S], (2.38)

where S denotes the complex velocity R defined in (2.9) but rescaled to have unit
magnitude on the vortex boundary. Indeed, it is straightforward to show from (2.9) that

S(ζ )= 1
ζ n−1

ζ n − iβ
βζ n − i

,

dS

dζ
=−β

[
(n− 1)ζ 2n − i[(2n− 1)β − β−1]ζ n − (n− 1)

ζ n (βζ n − i)2

]
.

 (2.39)

Since Φ is harmonic, the functions Φ and δ can be written in the fluid region as

Φ =
∞∑

n=−∞
Φneinθρ |n|, δ =

∞∑
n=−∞

δneinθ . (2.40)

On substitution of these expressions into the boundary conditions (2.37), we arrive at
the matrix equations

−i
∞∑

m=−∞
Q̂n−mmΦm +

∞∑
m=−∞

Ĝn−mδm = σΦn, (2.41)

−
∞∑

m=−∞
Q̂n−m|m|Φm − i

∞∑
m=−∞

Q̂n−mmδm = σδn. (2.42)

These have the truncated form(
−iQN G

−Q|N| −iQN

)
r= σ r (2.43)

in terms of the vector

r= [Φ−N, . . . , Φ0, . . . , ΦN, δ−N, . . . , δ0, . . . , δN]T . (2.44)

The function G has been expanded as a Fourier series according to

G(θ)=
∞∑

n=−∞
Ĝneinθ , Ĝn = 1

2π

∫ π
−π

G(θ)e−inθ dθ, (2.45)

with Q treated similarly. The matrices N, Q and G have the elements

Nnm = nδnm, Qnm = Q̂n−m, Gnm = Ĝn−m. (2.46)

2.4.3. Results
Henceforth we will write λ in the non-dimensional form

λ= λ±m =
Γ

2πa2
σ±m , (2.47)

so that, when γ = 0, the eigenvalues just determined are

σ±m = i(m± |m |1/2), m 6= 0, (2.48)
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where we have substituted m = p + 1 so that m = 1 now corresponds to the
displacement mode, and our notation is now consistent with the discussion in § 1.

The linear stability results for n = 2, 3, 4 will now be reported. For n = 2, when
µ > 0, the configuration for small µ is always unstable to a mode with growth rate
λ≈ 2γ . This corresponds to the same displacement mode of instability associated with
a point vortex situated at the stagnation point of a linear straining flow. To see this,
observe that the complex velocity field associated with a point vortex of circulation Γ
at position z0 in this ambient linear strain is

u− iv = dw

dz
= 2γ z− iΓ

2π(z− z0)
, (2.49)

so the equation of motion for the point vortex position is

dz0

dt
= 2γ z0. (2.50)

This equation is linear in z0 and, writing z0 = âeλt, it is clear that λ = 2γ . This
is the approximate relation for small µ in which the vortex is weakly disturbed by
strain. Focussing only on shape instabilities, and disregarding this displacement mode,
it is found that the hollow vortices are linearly stable for small µ but a range of
µ for which the shape modes become unstable occurs for an interval centred near
µ = 0.25. We refer to this as a ‘bubble of instability’ and, in this bubble, two modes
with imaginary part near 9.5 coalesce, producing eigenmodes with non-zero real part.
The shape of the vortex at µ = 0.245 is shown in figure 2. The vortices are found
to stabilize again as µ increases beyond this bubble, but two more modes coalesce
near µ = 0.305 with imaginary parts near 4.512. Beyond this value of µ, the hollow
vortices with n = 2 are linearly unstable to shape deformations. These results are
shown in figure 4. The bubbles of instability where two neutral modes merge is
characteristic of Hamiltonian systems (MacKay & Saffman 1986).

For n = 3 an analysis of the analogous point vortex problem shows that a point
vortex situated at the stagnation point of an n = 3 straining flow is linearly neutrally
stable. However, the numerical results for the linear stability of a hollow vortex reveals
that, for any µ > 0, there is always a quartet of unstable eigenvalues where the real
part of σ scales with µ for small µ, while the imaginary parts are close to ±2i.
Indeed, for small µ it is found numerically that

Re σ ≈√2µ. (2.51)

Inspection of the eigenvectors corresponding to these unstable eigenvalues reveals that,
for small µ, they are indeed a linear superposition of the m = ±1 and m = ±4 modes
sharing the same eigenfrequencies ±2i. This is evidence of the resonance-induced
displacement instability associated with the forced interaction of modes having the
common eigenfrequencies in (1.8). A perturbation analysis of these unstable modes is
given in appendix C. It should be emphasized that this displacement instability is very
different to that of the n = 2 vortex just discussed because, in that case, the finite-
area hollow vortex problem simply inherits the same linear displacement instability
exhibited by the analogous point vortex problem. For n = 3, the displacement
instability is a finite-area effect that vanishes as µ, which scales with the vortex
area, tends to zero. If we disregard displacement instabilities, we find that the vortices
for n = 3 are stable to shape perturbations for µ < 0.138, but these are of dubious
physical significance given that the configuration is not structurally stable.
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FIGURE 4. Imaginary and real parts of the eigenfrequency σ for the vortex in strain with
n = 2 (a), n = 3 (b) and n = 4 (c). Note the difference in the ranges of µ in each case;
the picture becomes very complicated for larger µ. The dots correspond to the analytic
small-µ limits of the displacement mode σ ≈ µ/2 for n = 2 and Re σ ≈ √2µ for n = 3.
The dashed lines indicate the displacement mode and the first three dominant shape modes.
The imaginary parts of σ can be related to the real parts by noticing where two curves
coalesce. These results were computed using the method of appendix A with N = 128 and
were cross-checked against the other method described in § 2.4.2.

In contrast, for n = 4 there is no linearly unstable displacement mode for small µ.
This is to be expected since a point vortex situated in the stagnation point of such
an ambient strain is neutrally stable and, unlike the m = 4 eigenmode, the m = 5
eigenmode of the single hollow vortex, which would be naturally incited by such
an ambient flow, is not resonant with the displacement modes (or, for that matter,
any other natural modes). Instead, the vortices become unstable to oscillatory shape
deformations at µ = 0.0291 when a quartet of eigenvalues is born with non-zero real
part and imaginary parts ±3.482i. This instability results from a collision of a pair of
purely imaginary eigenvalues at this critical value of µ. This unstable mode does not
restabilize before increasingly more modes become unstable for higher values of µ.

In summary, we have presented a detailed linear stability analysis of the equilibria,
found earlier in closed form, for an isolated hollow vortex in an nth-order straining
flow. The most interesting case is n = 3. In that case, distinct modes associated with
the natural oscillations of an isolated circular hollow vortex sitting in the absence of
strain, and having identical natural frequencies, are forced to resonate when even
a small ambient strain rate is switched on. This special resonance incites linear
displacement instabilities having growth rates that scale linearly with the ambient
strain rate.
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3. Single vortex row
Both BSS and SS have treated aspects of the linear stability of the exact solutions

of BSS for a single hollow vortex row, but both studies limit the class of perturbations
admitted in their analysis. For completeness, we present a complete linear stability
analysis of the single hollow vortex row.

First we present a brief review of the exact solutions. By using an approach based
on Schwarz–Christoffel mappings in a hodograph plane, BSS constructed a family
of exact solutions for a singly periodic row of hollow vortices of spatial period L.
BSS find a one-parameter family of solutions parametrized by the dimensionless ratio
R = U∞/q0 of the velocity at infinity to the fluid speed on the vortex boundary. The
shape of any hollow vortex in the singly-periodic row is given parametrically by

X = L

2π
(1+ R2)sin−1

(
2R sin λ
1+ R2

)
, Y = L

π
(1− R2)sinh−1

(
2R cos λ
1− R2

)
, (3.1)

where L is a length scale and 0 6 λ < 2π is a parameter. Small R corresponds to an
array of point vortices or a single vortex, while large R gives a vortex sheet. The
exterior of the vortex is mapped to the strip 0 < φ < Γ/4, ψ < 0, using symmetry in
φ. The perimeter length is a non-monotonic function of the distance between the cores
and is illustrated in figure 3 of BSS.

3.1. Approximation by isolated solutions in strain
Provided the vortices are not too large compared to their separation, it is reasonable to
expect that the shapes of typical vortices in this single row will be well approximated
by the n= 2 solution of § 2 with γ , the local strain rate, chosen so that

2γ = πΓ
6L2

. (3.2)

This is the leading-order approximation to the local strain rate, in the vicinity of any
given member of the row, due to the other vortices in the row. This approximation is
analogous to the so-called elliptical vortex approximation studied by SS for the case
of a single row of vortex patches. The orientation of the n = 2 solution (2.21) will
not be such that the major axis of the hollow vortex is aligned with the direction of
the row, but this is easily fixed by rotating the solution about its centroid. Figure 5
shows typical members of the hollow vortex row found by BSS for L = Γ = 1 and
various choices of hollow vortex area. Superposed on each figure is the solution
(2.21), with n = 2, having the same area. Condition (3.2), and the area condition, give
two equations for parameters µ and a; once these are found, the mapping (2.21) is
completely determined. Figure 5 shows that the agreement is good for areas equal to
0.0197 and 0.0758, but it has clearly started to deteriorate when the vortex area is
as large as 0.1378. This means that the effects of higher-order strain components are
becoming increasingly important. It should be noted that BSS also discuss the idea of
approximating the vortices in their row solutions with the solution (attributed to Hill)
of isolated vortices in strain.

3.2. Linear stability analysis
If the vortices in the row are placed too close together, there is no steady state.
BSS conclude that their solutions are unstable for β < 0.434 (more precisely
βc = 0.433990780 . . . , the solution to e−β[1 + log(cothβ/2) sinhβ] − coshβ = 0),
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FIGURE 5. Comparison of typical hollow vortices in the single row found by BSS (solid),
with L = Γ = 1, and the n = 2 isolated hollow vortex solution (dashed) with condition (3.2)
imposed and vortex areas 0.0197, 0.0758 and 0.1378.

where β and R are related by

coshβ = 1+ R4

2R2
. (3.3)

This condition gives precisely the value that separates the two branches of solutions,
and the less deformed shape is stable. BSS explicitly ignored ‘disturbances which alter
the positions of the vortices’. On the other hand, SS analysed a different restricted
class of perturbations, including modes in which alternate vortices move in an identical
fashion. They refer to these as ‘pairing modes’; when β =∞, this is precisely the
well-known pairing mode instability of a point vortex row. SS perform an analysis of
this instability as β decreases from infinity.

We start from (2.33). In BSS, only ‘disturbances with reflexional symmetry about
the centre of each vortex’ are considered. This corresponds to solutions with period
Γ/4π rather than Γ/2π. Alternatively, BSS consider only even modes. Odd modes are
considered in SS. We consider both as part of the Floquet analysis.

Our goal is to solve (2.33) without using the special properties of the basic state
that lead to the recurrence relations of BSS and SS. We non-dimensionalize using
ξ = (2π/Γ )φ, η = (2π/Γ )ψ and σ = λΓ/(2πq2

0), which is different from BSS. The
boundary conditions become

σΦ + ∂Φ
∂ξ
= G(ξ)δ, σδ + ∂δ

∂ξ
= ∂Φ
∂η

(3.4)

on η = 0 and Φ decays as η→−∞. The basic state determines the function

G(ξ)=− (b
2 − 1)1/2

b− cos 2ξ
. (3.5)

The Floquet analysis follows Deconinck & Kutz (2006). The solution for Φ and δ
can be written as

Φ =
∞∑

n=−∞
Φnei(s+n/P)ξ+|s+n/P|η, δ =

∞∑
n=−∞

δnei(s+n/P)ξ . (3.6)

The integer P is a dummy parameter, in the sense that the stability results are
independent of P, provided s is allowed to span the range (−π/P,π/P). As a result,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

46
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.467


Structure and stability of hollow vortex equilibria 193

on the boundary η = 0,

Φξ =
∞∑

n=−∞
i(s+ n/P)Φnei(s+n/P)ξ , Φη =

∞∑
n=−∞
|s+ n/P|Φnei(s+n/P)ξ . (3.7)

With νn = σ + n/P, the two boundary conditions can be rewritten as the matrix
equations

−iνnΦn +
∞∑

m=−∞
Ĝ(n−m)/Pδm = σΦn, (3.8)

|νn|Φn − iνnδn = σδn. (3.9)

If n − m is not divisible by P, the term G(n−m)/P is 0. The resulting truncated finite
eigenvalue problem is (

−iN G

|N| −iN

)
r= σ r. (3.10)

The matrix G has a diagonal structure with non-zero entries along the main diagonal
and P − 1 zero diagonals between non-zero diagonals. There are always two zero
eigenvalues corresponding to constant velocity potential; these are physically irrelevant.
Other formulations for the problem are possible; in particular the recurrence relation of
BSS comes from dividing one of the equations above by G.

Figure 6(a,b) shows the real and imaginary parts of σ for the vortex row for the
purely periodic case, i.e. with s = 0 and P = 1. The instability discussed by BSS
corresponds to the solid curve for the real part appearing at β = 0.434 as the frequency
of that mode vanishes. A bubble of instability is visible just to the left of this point.
The result of SS corresponds to the (only) dashed curve that exists for large β. This
is a resonant instability between the +1 and −1 modes with zero imaginary part, as
discussed in the Introduction. It is no longer the most unstable mode for β < 0.2743.

The large-b unstable mode with frequency behaving like b−1 is very clear, even
though β only goes up to 1. The result σ ∼ (4b)−1 is derived in appendix C. In
dimensional terms the growth rate is πΓ/4L2, recovering that of the pairing instability
of a line array of point vortices. We see, however, that the desingularized pairing
instability found here manifests itself as a resonance between modes 1 and −1. These
modes correspond to displacements of the centres of the vortices. For the full Floquet
calculation, one allows s to take all possible values in its range. The results are exactly
the same as before. The most unstable mode always corresponds to s = 0, and hence
to periodic solutions. This may seem different from the pairing instability observed
in the vortex patch single row discussed in Kamm (1987) and Saffman (1992) and
the statement of SS that the resonant instability of the row corresponds to the pairing
instability. However, the Floquet multiplier in the independent variables (φ, ψ) is not
the physical-space Floquet multiplier. The map from (φ, ψ) to (x, y) is two-to-one and
its symmetry properties are such that the odd modes, including the unstable mode, are
antisymmetric in the physical plane and look like the pairing mode of the vortex row.

To summarize our results, it has been verified, by means of a full Floquet analysis
with no approximations on the type of instability, that all prior partial results on
the stability of the single hollow vortex row deduced by SS and BSS using special
arguments, are indeed correct.
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FIGURE 6. Stability of the vortex row of BSS. (a) The imaginary part of λ, (b) the real
part. One half of the modes computed with N = 128 with smallest imaginary part in absolute
value are plotted. The method of BSS produces only the even modes (solid curves), with the
first instability arising around β = 0.43. The calculation of SS produces only the odd modes
(dashed curves), including the resonant mode. Note that Table 4 in Appendix B of SS is
limited to the displacement mode alone.

4. Discussion
This paper has studied the structure and stability of hollow vortex equilibria.

In particular, we have explicitly demonstrated the existence of a special kind of
displacement instability having its origin in the degeneracy of certain eigenfrequencies
of a circular hollow vortex. The resonant interaction of a displacement mode with a
shape deformation mode can lead to a net displacement instability that is a purely
finite area effect and cannot be found in an analogous point vortex problem. This
novel instability appears to be peculiar to the hollow vortex model and the authors
are not aware of any analogous instabilities in other vortex dynamics systems. Our
results offer a cautionary note: if a given point vortex equilibrium is regularized to a
‘nearby’ equilibrium by replacing all point vortices by small hollow vortices, it is not
necessarily the case that this neighbouring equilibrium will share the same structural
stability properties as the original point vortex system. The very act of employing
the hollow vortex regularization has the potential, as we have shown, to incite new
displacement instabilities.

In the last few decades the hollow vortex model has arguably been overtaken by
the vortex patch model as the most popular choice for desingularizing a point vortex
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in two dimensions. This is perhaps surprising given that, as we have shown here,
free streamline theory and conformal mapping can be combined to identify exact
solutions for many hollow vortex equilibria. This study is the first report on a wider
investigation by the authors on the properties of hollow vortex equilibria. Several other
configurations of theoretical interest include the travelling hollow vortex pair in a
channel (a generalization of the hollow vortex pair of Pocklington 1895); polygonal
hollow vortex arrays, including those with a central hollow vortex and polygonal
arrays of satellite vortices; a hollow vortex street; and others. Crowdy & Green (2011)
have recently found analytical solutions for a von Kármán vortex street that generalize
the single row solution of BSS. The vortex street is particularly interesting given
its importance in applications, and the large amount of existing work on the von
Kármán vortex street and its generalization to streets of vortex patches (e.g. Saffman &
Schatzman 1981; Kamm 1987).

While the equilibrium shapes of hollow vortices apply also to stagnant-core vortices,
the stability properties in the two cases are different: for stagnant-core vortices, the
dynamical boundary condition has to be modified because the pressure is no longer
constant on the boundary when the enclosed fluid is perturbed. Also, a new parameter
– the ratio of fluid densities inside and outside the vortex – appears in the formulation.
The developments presented in § 3 can be extended to cover this case. Furthermore,
stagnant vortices will be unstable to the Kelvin–Helmholtz instability. To regularize
this, the natural remedy is to add the effects of surface tension, which will stabilize
the interface for the high modes, which are the most unstable ones. However, the basic
states we have examined do not include surface tension, and new basic equilibrium
states need to be found. These would be generalizations of the isolated hollow
vortex solutions with surface tension first derived by Crowdy (1999) and subsequently
developed by Wegmann & Crowdy (2000).

The generalization of these vortices to incorporate regions of constant vorticity
bounded by vortex sheets is also of interest. Such structures are closely related to
Sadovskii vortices. The method of Saffman & Tanveer (1984), or Moore et al. (1988),
could be adapted to solve the resulting free-boundary problem. An obvious question
then is whether these vortices exist for all values of interior vorticity and fluid speed
on the boundary. Recent work on hollow vortex wakes behind bluff bodies by Telib &
Zannetti (2011) has contributed in this direction and shows the potential of the general
ideas.

Finally, given that large classes of hollow vortex equilibria appear to be available
in analytical form, it may be convenient to apply recent ideas based on variational
arguments, presented by Luzzatto-Fegiz & Williamson (2010), concerning the stability
properties of vortex equilibria.
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Appendix A. Alternative stability analysis of vortex in strain
This appendix outlines a method for studying the linear stability of the isolated

hollow vortex equilibria by perturbing the conformal map and complex potential. We
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assume that the equilibrium state undergoes small irrotational perturbations with the
same conditions maintained in the far field. It is useful to write the perturbed complex
potential as

w(z, t)= γ zn − iΓ
2π

log z+W(z, t), (A 1)

where W(z, t) is analytic as z→∞. In this way the far-field boundary condition will
always be enforced and, because the strain rate γ and circulation Γ are fixed in time,

∂w

∂t

∣∣∣∣
z

= ∂W

∂t

∣∣∣∣
z

,
∂w

∂z

∣∣∣∣
t

= nγ zn−1 − iΓ
2πz
+ ∂W

∂z

∣∣∣∣
t

. (A 2)

Defining W (ζ, t)≡W(z(ζ, t), t), we obtain

∂W

∂t

∣∣∣∣
z

= ∂W

∂t

∣∣∣∣
ζ

− ∂z/∂t|ζ
∂z/∂ζ |t

∂W

∂ζ

∣∣∣∣
t

. (A 3)

The kinematic condition on the hollow vortex boundary is

Vn = u ·n, (A 4)

where Vn is the velocity normal to the boundary. Since, on |ζ | = 1, we can write
dz/ds = −iζ zζ |zζ |−1, where zζ denotes the partial derivative with respect to the first
argument, (A 4) becomes

Re
[
∂z/∂t

ζ zζ

]
= Re

[
ζ zζ
|zζ |2

(
nγ zn−1 − iΓ

2πz
+ ∂W /∂ζ

∂z/∂ζ

)]
. (A 5)

The unsteady Bernoulli condition, in complex notation, takes the form

Re
[
∂W

∂t

∣∣∣∣
z

]
= H − 1

2

∣∣∣∣∂w

∂z

∣∣∣∣2. (A 6)

Using (A 2) and (A 3),

Re
[
∂W

∂t
− ∂z/∂t

∂z/∂ζ

∂W

∂ζ

]
= H − 1

2

∣∣∣∣nγ zn−1 − iΓ
2πz
+ ∂W /∂ζ

∂z/∂ζ

∣∣∣∣2. (A 7)

We now write

z(ζ, t)= z0(ζ )+ εẑ(ζ, t), W (ζ, t)=W0(ζ )+ εŴ (ζ, t), (A 8)

where

z0(ζ )= r

(
1
ζ
− 2iβ

n− 1
ζ n−1 + β2

2n− 1
ζ 2n−1

)
(A 9)

and

W0(ζ )≡
[

rn

(
γ

ζ n
+ γ ζ n

)
+ iΓ

2π
log ζ

]
−
[
γ z0 (ζ )

n− iΓ
π

log z0(ζ )

]
. (A 10)

We also let H0 + εĤ, but changes in the Bernoulli constant only result in constants
being added to the velocity potential and therefore do not affect the flow in any way.
Equations (A 5) and (A 7) are then linearized at O(ε). For brevity, these linearized
equations, which are not particularly instructive, will not be written explicitly here.
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Following the approach used by Meiron et al. (1984) in their linear stability study of
streets of finite-cored vortices, we now introduce the decompositions

ẑ(ζ, t)= eλtẑ(ζ ), ẑ(ζ, t)= eλtẑ (ζ )∗, (A 11)

where we treat ẑ(ζ ) and ẑ (ζ )∗ as independent functions, and similarly

Ŵ (ζ, t)= eλtŴ (ζ ), Ŵ (ζ, t)= eλtŴ (ζ )∗, (A 12)

where Ŵ (ζ ) and Ŵ (ζ )∗ are also taken to be independent.
For values of ζ on the unit circle we also write

ẑ(ζ )= â

ζ
+

N/2−2∑
k=0

âkζ
k, ẑ (ζ )∗ = â∗

ζ
+

N/2−2∑
k=0

â∗kζ
−k, (A 13)

where N is a truncation parameter and the N/2 coefficients {â, âk | k = 0, 1, . . . ,
N/2− 2} and the N/2 coefficients {â∗, â∗k | k = 0, 1, . . . ,N/2− 2} are to be determined.
Also, let

Ŵ (ζ )=
N/2−1∑

k=1

b̂kζ
k, Ŵ (ζ )∗ =

N/2−1∑
k=1

b̂∗kζ
−k, (A 14)

where the N/2 − 1 coefficients {b̂k | k = 1, . . . ,N/2 − 1} and the N/2 − 1 coefficients
{b̂∗k | k = 1, . . . ,N/2 − 1} are to be determined. Notice that we have truncated the
expansions of the perturbation to the mapping, and that of the complex potential, at
different orders; this is motivated by the analytical result for a circular hollow vortex
presented in § 2.4.1. Also, we have ignored the constant term in the potential because
this just determines Ĥ, and this is not physically significant. The total number of
complex unknowns is 2(N/2+ (N/2− 1))= 2N − 2.

To fix a rotational degree of freedom in the Riemann mapping theorem we set

â∗ = â. (A 15)

This represents one equation. Equating coefficients of ζ j for −(N/2)+ 1 6 j 6 N/2− 1
in the kinematic condition gives N − 1 additional equations. Finally, equating
coefficients of ζ j for −(N/2)+1 6 j 6 N/2−1 in the Bernoulli condition, but ignoring
the constant term, gives N−2 equations. In total we then have 1+ (N−1)+ (N−2)=
2N − 2 equations for the 2N − 2 unknowns.

The linear stability spectrum is found by rewriting the linearized equations, having
substituted the forms (A 13) and (A 14), in the matrix form

Ax= λBx, (A 16)

where x is a vector in which the 2N − 2 unknown coefficients are collected. A and
B are matrices dependent on the base state equilibrium solution, whose entries can be
conveniently determined with the aid of fast Fourier transforms.

Appendix B. Determination of critical parameters µ(n)c

To compute the critical value of µ at which the mapping (2.21) is no longer
univalent, we take advantage of the fact that (2.21) is a rational mapping. For each
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point ζc = eiφ on the boundary of the unit circle, we solve the polynomial equation

p(ζ )= ζ
(

z(ζ )− z(ζc)

ζ − ζc

)
= β2

2n− 1
(ζ 2n−1 + ζcζ

2n−2 + · · · + ζ 2n−2
c ζ )

− 2iβ
n− 1

(ζ n−1 + ζcζ
n−2 + · · · + ζ n−2

c ζ )− 1
ζc
= 0. (B 1)

By construction, this polynomial has roots outside the unit disc when the mapping
is univalent, and certainly for small µ. For each value of φ, we find the value of β
for which the roots of (B 1) with smallest modulus has modulus 1. We then minimize
β over all φ. The result is the value of β, and hence µ, at which a point of the
mapping has two pre-images on the unit circle, i.e. the value at which the mapping
is no longer univalent. This technique is guaranteed to work for rational mappings.
For transcendental mappings, the equation corresponding to (B 1) is no longer a
polynomial, and hence might have an infinity of roots. Provided one can identify
the smallest root in magnitude, the method will still work.

Appendix C. Resonant instability of near-circular vortices
The small-µ limit of the vortex in strain and the large-b limit of BSS both

correspond to near-circular vortices. From figure 4 it is clear that the growth rate
for n = 2 and n = 3 is proportional to µ for small µ, and that vortices with larger
n are stable for small µ, as predicted in § 1. An informal argument showed that for
n= 2, the result was σ ∼ (1/2)µ. SS shows, using their recurrence relation, that in the
large-b limit the growth rate for BSS goes as (4b)−1. We sketch the approach for BSS
using the governing equations and then give a general formulation in matrix form.

Expanding G(ξ) in b gives

G(ξ)=−1− b−1 cos 2ξ + O(b−2). (C 1)

At O(b−1) the governing equations become

σ0Φ1 + σ1Φ0 + ∂Φ1

∂ξ
=−δ1 − cos 2ξδ0, σ0δ1 + σ1δ0 + ∂δ1

∂ξ
= ∂φ1

∂η
. (C 2)

The basic-state flow leads to the cos 2ξδ0 term, which will couple modes. To obtain
the growth rate, we consider the two modes with σ = 0 and write

Φ0 = a+eiξ+η + a−e−iξ+η, δ0 =−ia+eiξ + ia−e−iξ . (C 3)

The O(b−1) solutions take the form

Φ1 = b+eiξ + b−e−iξ + · · · , δ1 = c+eiξ + c−e−iξ + · · · , (C 4)

where other harmonics have not been given explicitly. Substituting (C 4) into (C 2)
and enforcing a solvability condition leads to four homogeneous equations in the four
unknowns b+, b−, c+ and c−. The resulting determinant condition is σ 2

1 = 1/2, which
has real roots, so we have instability.

Formally, we can expand the matrix equation (3.10) and obtain[(
−iN −I

|N| −iN

)
+ b−1

(
0 C2

0 0

)
+ · · ·

]
r= (A+ b−1B + · · ·)r= σ r, (C 5)

where C2 is the matrix corresponding to the Fourier transform of cos 2ξ , namely
[C2]nm = (1/2)(δn,m+2 + δn,m−2). This is a perturbation eigenvalue problem of exactly
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the kind treated in § 1.6 of Hinch (1991), whose approach we follow. We make the
expansions

r= r0 + b−1r1 + · · · , σ = σ0 + b−1σ1 + · · · . (C 6)

The leading-order problem, Ar0 = σ0r0, is the circular vortex problem with eigenvalues
m ± |m |1/2 as discussed in § 1. The corresponding eigenvectors are e and the left
eigenvectors are e†. The σ0 = 0 eigenvalue is multiple, so to find σ1 we must construct
from the two eigenvectors e1 and e2 the matrix M with entries

Mij = e†
i ·Bej

e†
i · ej

, (C 7)

and then find its eigenvalues. The algebra is simple because the system can be
truncated at N = 1, giving the answer σ1 =±1/2.

The approach is the same for the vortex in strain with µ replacing b−1 and θ

replacing ξ . We need the results

Q(θ)=−1+ µ sin nθ + O(µ2), G(θ)=−1+ µ(n+ 1) sin nθ + O(µ2). (C 8)

The matrices become

A=
(

iN −I

|N| iN

)
, B =

(
SnN (n+ 1)SnN

Sn SnN

)
, (C 9)

where Sn is the matrix corresponding to sin nθ . For n = 2, the truncation is at N = 1
and the result is σ1 = ±1/2. For n = 4, the truncation is at N = 4 and the result is
σ1 =±

√
2.
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