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On the stability of attachment-line boundary layers.
Part 2. The effect of leading-edge curvature

By RAY-SING LIN  MUJEEB R. MALIK

High Technology Corporation, PO Box 7262, Hampton VA 23666, USA

(Received 17 April 1996 and in revised form 26 September 1996)

The stability of the incompressible attachment-line boundary layer has been studied by
Hall, Malik & Poll (1984) and more recently by Lin & Malik (1996). These studies,
however, ignored the effect of leading-edge curvature. In this paper, we investigate this
effect. The second-order boundary-layer theory is used to account for the curvature
effects on the mean flow and then a two-dimensional eigenvalue approach is applied to
solve the linear stability equations which fully account for the effects of non-parallelism
and leading-edge curvature. The results show that the leading-edge curvature has a
stabilizing influence on the attachment-line boundary layer and that the inclusion of
curvature in both the mean-flow and stability equations contributes to this stabilizing
effect. The effect of curvature can be characterized by the Reynolds number R

a
(based

on the leading-edge radius). For R
a
¯ 10%, the critical Reynolds number R{ (based on

the attachment-line boundary-layer length scale, see §2.2) for the onset of instability is
about 637; however, when R

a
increases to about 10' the critical Reynolds number

approaches the value obtained earlier without curvature effect.

1. Introduction

In a swept-wing boundary layer, various instability mechanisms may initiate the
transition from laminar to turbulent flow. However, evidence acquired from various
experiments (cf. Maddalon et al. 1989) shows that maintaining a laminar attachment
line is crucial to the application of laminar-flow-control technology to modern aircraft.
Therefore, understanding of the attachment-line boundary-layer stability represents a
problem of primary importance in the design of advanced laminar-flow-control swept
wings.

The linear stability of the attachment-line boundary layer was studied by Hall, Malik
& Poll (1984, hereafter referred to as HMP) ignoring the surface-curvature effect. HMP
considered a special class of two-dimensional disturbances :

²u«, �«,w«´¯ ²xuW (y), �W (y),wW (y)´ ei[βz−ωt], (1.1)

where β is the spanwise wavenumber and ω is the disturbance frequency. Based on the
temporal stability theory, they found the critical Reynolds number R{ (see §2.2) to be
583±1 (the equivalent momentum-thickness Reynolds number is about 235), which for
the first time agreed well with the experimental data of Pfenninger & Bacon (1969) and
Poll (1979). The validity of this special form of disturbance was later confirmed by the
direct numerical simulation of Spalart (1988) and Joslin (1995). Theofilis (1995)
considered the spatial stability problem using the HMP equations. The results yielded
the same dominant instability studied by HMP.

Recently, Lin & Malik (1996, hereafter referred to as Part 1) developed a generalized
approach for determining the stability of attachment-line boundary layers by solving
the two-dimensional eigenvalue problem resulting from the linearized partial-
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126 R.-S. Lin and M. R. Malik

differential stability equations. In this approach, the restriction imposed by (1.1) is
lifted; therefore, disturbances of general structure are admitted. The analysis yields
global information regarding both two- and three-dimensional disturbances. As in
HMP, the mean flow considered in Part 1 was swept Hiemenz flow. In Part 1 the effect
of the leading-edge curvature was also ignored in the stability equations. The results
of Part 1 confirmed that, in an incompressible attachment-line boundary layer, the
two-dimensional disturbances described by (1.1) always have the highest growth rate
and dictate the instability. They also showed, however, the existence of unstable modes
in addition to the one found by HMP. In this paper, we extend the work in Part 1 to
study the effect of curvature on the attachment-line boundary-layer stability.

An accurate mean-flow solution must be obtained before embarking on the task of
stability analysis. In the limit of large Reynolds number, the classical first-order
boundary-layer solution is considered a reasonable approximation to the solution of
the Navier–Stokes equations. Within the framework of Prandtl’s theory, effects of
surface curvature and displacement of the external flow by the boundary layer are
considered as higher-order terms and are neglected. At finite Reynolds numbers and in
regions of high curvature, however, boundary-layer flows cannot be accurately treated
by first-order theory. The attachment-line flow on a highly swept wing with a small
leading-edge radius of curvature is one of those situations. In order to address the issue
of surface curvature, Prandtl’s classical boundary-layer theory is extended to include
the second-order correction terms, based on the work of Gersten & Gross (1973) ; the
extension is known as higher-order boundary-layer theory, and an excellent review on
this subject has been given by Van Dyke (1969).

In order to account for the leading-edge curvature effect in the stability equations,
we adopt the approach of Part 1 which solves a two-dimensional eigenvalue problem
governed by partial differential equations. The effect of leading-edge curvature is fully
accounted for when these equations are written in body-intrinsic coordinates.

The rest of this paper is organized as follows: in §2 we first present the second-order
boundary-layer theory and a discussion of the effect of curvature on the mean flow
followed by a formulation of the two-dimensional partial-differential eigenvalue
problem governing the stability of general disturbances. In §3 we give the results for
the effect of leading-edge curvature on stability. Some discussion on the results is given
in §4. Finally, in §5 we give the conclusions.

2. Problem formulation

In this paper, our main goal is to examine the effects of leading-edge curvature on
attachment-line boundary-layer stability. To adequately address this problem, the
correct laminar flow must be obtained. In addition, all effects associated with the
surface curvature, such as the centrifugal force and the streamline divergence, must be
incorporated into the stability formulation. For small leading-edge radius, one way to
obtain mean flow is to solve the Navier–Stokes equations. Alternatively, second-order
boundary-layer theory can be used for flows with a leading-edge Reynolds number
above a certain limit. Here, we employ the latter approach.

2.1. Second-order boundary layer

For three-dimensional incompressible flows near the attachment line, two kinds of
second-order effects have been recognized: surface curvature (local), and displacement
(global). The local effects are those determined from the inner solution only; global
effects are those which require the second-order outer solution to the flow around the
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F 1. Coordinate system for attachment-line boundary-layer flow.

entire body. The second-order outer solution is tedious to obtain and often not possible
for complex flows involving separation, wake, etc. Therefore, only a few higher-order
boundary-layer solutions have ever been computed; for example, the uniform flow
over a parabola by Van Dyke (1964a) and the Rankine half-body by Devan (1964).
Later, Gersten & Gross (1973) extended Van Dyke’s work to include the effects of
sweep and mass transfer. Since the work of Gersten & Gross is most relevant to swept
wings, we will use their analysis to compute the basic state for the present application.
The technique of matched asymptotic expansions is used to find the higher-order
approximation to the singular-perturbation problem. Here, we only give a brief
description; details may be found in Van Dyke (1964b).

The body-intrinsic coordinate system used here is shown schematically in figure 1.
The x*-axis is taken to be the chordwise direction along the surface, the y*-axis is in
the wall-normal direction, and the z*-axis is in the spanwise direction. The velocity
components along the x*, y* and z* coordinates are denoted by u*, �* and w*,
respectively, and the pressure is denoted by p*. For the boundary-layer solution, we
non-dimensionalize the velocities u* and �* with U¢,w* with W¢ and pressure with
ρU #¢. Here, ρ is the density and subscript ¢ refers to the free-stream conditions. The
leading-edge sweep angle λ is given by

tanλ¯W¢}U¢. (2.1)

The radius of curvature of the leading edge is denoted by a, while the local radius of
curvature of the wall (in the chordwise direction) is indicated by r*(r*U a as x*U 0).
We use a as the length scale, so that xa ¯x*}a, ya ¯ y*}a, za ¯ z*}a. A Reynolds number
R

a
, which we call the leading-edge Reynolds number, is defined as

R
a
¯U¢ a}ν, (2.2)

where ν is the kinematic viscosity. To construct the asymptotic expansions for the
solution to the Navier–Stokes equations, the small perturbation parameter is chosen as

ε¯ 1}R"/#
a

. (2.3)

Outer expansions

We assume that the outer expansions of the solutions are in the following form:

u*}U¢ ¯U
"
(xa , ya )εU

#
(xa , ya )… , (2.4a)

�*}U¢ ¯V
"
(xa , ya )εV

#
(xa , ya )… , (2.4b)

w*}W¢ ¯W
"
(xa , ya )εW

#
(xa , ya )… , (2.4c)

(p*®p¢)}ρU #¢ ¯P
"
(xa , ya )εP

#
(xa , ya )… . (2.4d )
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Geometry U
""

U
#"

Reference

Parabola 1 ®0.61 Van Dyke (1964a)
Rankine body 1.5 ®0.62 Devan (1964)

T 1. First and second outer solutions near the leading edge

Substituting these expressions into the steady Navier–Stokes equations and collecting
terms of the same order yields a sequence of systems of equations. It is observed that
up to O(ε#) viscous effects do not appear. Thus, outer solutions of first and second
order correspond to inviscid flows.

With a uniform-flow upstream, the first-order outer expansion represents a potential
flow whose solution leads to the Bernoulli equation:

P
"
(xa , 0)¯ "

#
®"

#
(U #

"
(xa , 0)V #

"
(xa , 0)). (2.5)

The above equation defines the wall pressure P
"

when U
"

and V
"

are known. The
boundary conditions that the first-order solution must satisfy are :

ya ¯ 0, V
"
(xa , 0)¯ 0, (2.6a)

ya U¢, U #

"
V #

"
¯ 1. (2.6b)

Similarly, the solution of the second-order outer expansion also leads to an equation
analogous to (2.5) :

P
#
U

"
U

#
V

"
V
#
¯ 0. (2.7)

The boundary conditions at the wall for the outer expansions are determined by
matching with the inner solution. The boundary condition for V

#
(xa , 0) turns out to be:

V
#
(xa , 0)¯ [U

""
β
"
]"/#, (2.8)

where U
""

and β
"
are constants which will be defined later. For the spanwise velocity

component, the first and second outer solutions are simply

W
"
¯ 1, W

#
¯ 0. (2.9a, b)

Since only the solutions near the attachment line are of interest here, the solution for
u* on the wall can be further expanded for small values of xa :

u*(xa , 0)

U¢

¯U
""

xa U
"$

xa $…ε(U
#"

xa U
#$

xa $…)

¯U
""

xa 01
U

#"

U
""

ε…1 . (2.10)

The coefficient for the first-order velocity, U
""

, is a constant which depends on the
geometry of the body. The coefficient for the second-order velocity, U

#"
, is also a

constant which depends only on the displacement effect of the first-order inner
solution. Their values are available for two bodies, as listed in table 1. Note that Davis
(1972) performed Navier–Stokes computations for a parabolic cylinder and his skin-
friction results agreed with those obtained by Van Dyke (1964a) at R

a
& 10%.

It is also worth noting that the determination of the coefficient U
#"

involves the
global solution to the potential flow over the effective body which consists of the solid
body and the displacement thickness. In general, for a closed body, it is almost
impossible to find this coefficient, since the separation and the wake can have a
profound effect on the effective body.
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Inner expansions

For solutions in the boundary layer, the normal coordinate ya is replaced by a
stretched inner variable

η¯ ya }ε. (2.11)

The inner solutions are formulated such that the continuity equation is satisfied
automatically, similar to the formulation of the Falkner–Skan family. The first term in
each equation is the first-order approximation and the last two terms represent the
second-order approximation. The first of these latter two terms represents the
curvature effect which is the subject of our investigation, and the second is the
displacement-effect term. The inner expansions are as follows:

u*}U¢ ¯xa [ f «(η)εF !
c
(η)εU

#"
F !

d
(η)… ], (2.12a)

�*}U¢ ¯
®ε

1ya
[ f (η)εF

c
(η)εU

#"
F
d
(η)… ], (2.12b)

w*}W¢ ¯ h(η)εH
c
(η)εU

#"
H

d
(η)… , (2.12c)

(p*®p¢)}ρU #¢ ¯ "

#
®"

#
xa #[p(η)εP

c
(η)εU

#"
P
d
(η)… ]. (2.12d )

Substituting these expressions into the Navier–Stokes equations and collecting terms
of the same order of ε, yields the following set of ordinary differential equations.

The equations for u* are:
f¨f f§p®f «#¯ 0, (2.13a)

F#
c
fF"

c
®2f «F !

c
f§F

c
¯®P

c
®ηf¨®f§®f f «, (2.13b)

F#
d
fF"

d
®2f «F !

d
f§F

d
¯®P

d
. (2.13c)

The equations for w* are:

h§f h«¯ 0, H"
c
fH !

c
¯ (η f®1®F

c
) h«, H"

d
fH !

d
¯®F

d
h«. (2.14a–c)

The equations for p* are:

p«¯ 0, P!
c
¯®2f «#, P !

d
¯ 0. (2.15a–c)

The far-field (ηU¢) boundary conditions are determined by direct matching. The
detailed matching procedure will not be given here but can be found in Gersten &
Gross (1973). The results of the asymptotic matching at ηU¢ and the physical
considerations at η¯ 0 yield boundary conditions for the above system of ordinary
differential equations. They are:

for η¯ 0
f¯ 0, f «¯ 0, F

c
¯ 0, F !

c
¯ 0, F

d
¯ 0, F !

d
¯ 0, (2.16a)

h¯ 0, H
c
¯ 0, H

d
¯ 0; (2.16b)

and ηU¢
f «¯ 1, F"

c
¯®1, F !

d
¯ 1, h¯ 1, H

c
¯ 0, H

d
¯ 0, (2.17a)

p¯ 1, P
c
¯®2η, P

d
¯ 2. (2.17b)

From the boundary conditions and governing equations, one obtains the following
analytical solutions for pressure:

p¯ 1, P
c
¯®β

"
®η®f§®f f «, P

d
¯ 2, (2.18a–c)

where β
"
¯ limηU¢(η®f ). (2.18d )
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è

u*/U∞ u*/U∞u*/U∞

F 2. Comparison of first- and second-order chordwise velocity profiles for R
a
¯ 10%, 10&,

and 10'. First-order : dashed; second-order : solid.

f § 1.232588 h« 0.570465
β
"

0.647900 H !
c

®0.160182
F"

c
®1.913256 H !

d
0.285233

F"
d

1.848881

T 2. Function values of the inner expansions at the wall

We solve the above system of equations, (2.13)–(2.15), with prescribed boundary
conditions, (2.16)–(2.17), by Runge–Kutta integration coupled with Newton’s
iterations. Table 2 gives f§,F"

c
,F"

d
and associated quantities on the wall. These values

agree with those reported by Gersten & Gross (1973).
In figure 2, comparisons for the chordwise velocity profile (u*}U¢) between the

classical swept-Hiemenz (first-order) solution and the second-order solution are made
for three different leading-edge Reynolds numbers, R

a
¯ 10%, 10& and 10'. It is clear

that the difference between the first- and second-order solution increases as the leading-
edge Reynolds number decreases. This indicates that the effect of surface curvature
becomes stronger as the leading-edge Reynolds number, R

a
, becomes smaller. It is also

noticed (not given here) that the effect of curvature leads to decreasing values of wall
shear stress. This behaviour results from the stretching of the boundary layer in the
direction normal to the wall by centrigual forces due to the convex surface curvature.
In the next subsection, we will investigate how this convex surface curvature affects the
stability of the attachment-line boundary layer.

2.2. Stability equations

With the mean flow computed, we will now proceed to develop the theoretical
framework for the investigation of the attachment-line boundary-layer stability. To do
that, we rescale all the velocity components by W¢. Thus, the mean flow whose stability
is the subject of this paper is given by Q{ ¯ (U{ ,V{ ,W{ ,P{ ) where

U{ ¯
u*

W¢

, V{ ¯
�*

W¢

, W{ ¯
w*

W¢

, P{ ¯
p*

ρW #¢

. (2.19a–d )

We consider a general infinitesimal disturbance propagating along the attachment
line, so that the instantaneous flow quantities can be expressed as:

q(x, y, z, t)¯Q{ (x, y)q«(x, y, z, t), (2.20)
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where q«¯ (u«, �«,w«, p«) represents the disturbance. We non-dimensionalize the
disturbance velocity components (u«, �«,w«) by W¢ and p« by ρW #¢. The length scale is
chosen as:

∆¯ (aν}U¢ U
""

)"/#. (2.21)

Thus, x¯x*}∆, y¯ y*}∆, z¯ z*}∆ (2.22)

and r¯ r*}∆. (2.23)

Substituting (2.20) into the incompressible Navier–Stokes equations, subtracting the
basic-state information, and linearizing with respect to small perturbations, we obtain
a set of linearized stability equations.

Without making any further assumptions, the resuting problem consists of a set of
coupled three-dimensional partial-differential equations with variable coefficients. For
an infinite swept wing, these coefficients, which depend on the basic flow, change
strongly in both the wall-normal (y) and the chordwise (x) directions, but not in the
spanwise (z) direction. Consequently, the solutions are separable in the variables z and
t, and can be expressed in the form:

q«(x, y, z, t)¯ qW (x, y) ei[βz−ωt]c.c. (2.24)

where c.c. represent complex conjugate. Under this normal-mode assumption, the set
of non-dimensional linear stability equations can be written as:

r

ry

¥uW
¥x


¥�W
¥y


�W

ry
iβwW ¯ 0, (2.25)

®iωuW 
r

ry
U{ ¥uW

¥x


r

ry
uW
¥U{

¥x
V{ ¥uW

¥y
�W

¥U{

¥y


V{

ry
uW 

U{

ry
�W iβW{ uW

¯®
r

ry

¥pW
¥x


1

R{ (0 r

ry1
# ¥#uW
¥x#


ry

(ry)$

dr

dx

¥uW
¥x


¥#uW
¥y#


1

ry

¥uW
¥y


2r

(ry)#

¥�W
¥x

®
r

(ry)$

dr

dx
�W ®

uW
(ry)#

®β#uW * , (2.26)

®iω�W 
r

ry
U{ ¥�W

¥x


r

ry
uW
¥V{

¥x
V{ ¥�W

¥y
�W

¥V{

¥y
®

2U{

ry
uW iβW{ �W ¯®

¥pW
¥y


1

R{ (0 r

ry1
# ¥#�W
¥x#


ry

(ry)$

dr

dx

¥�W
¥x


¥#�W
¥y#


1

ry

¥�W
¥y

®
2r

(ry)#

¥uW
¥x


r

(ry)$

dr

dx
uW ®

�W
(ry)#

®β#�W * , (2.27)

®iωwW 
r

ry
U{ ¥wW

¥x


r

ry
uW
¥W{

¥x
V{ ¥wW

¥y
�W

¥W{

¥y
iβW{ wW

¯®iβpW 
1

R{ (0 r

ry1
# ¥#wW
¥x#


ry

(ry)$

dr

dx

¥wW
¥x


¥#wW
¥y#


1

ry

¥wW
¥y

®β#wW * . (2.28)

The Reynolds number R{ is defined as:

R{ ¯W¢ ∆}ν. (2.29)

Combining (2.1) and (2.2) with (2.29) yields

R{ ¯R"/#
a

tanλ}U "/#
""

. (2.30)
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Note that (2.25)–(2.28) are a set of two-dimensional partial-differential equations in the
(x, y)-plane. This is the set of equations which best describes the stability characteristics
of small perturbations because these equations fully incorporate the effects of
streamline divergence and surface curvature. We note that while the above stability
equations are valid at all non-zero values of R{ and R

a
, the mean flow computed in §2.1

is valid only for R
a
( 1.

The boundary conditions for (2.25)–(2.28) in the y-direction are:

uW ¯ �W ¯wW ¯ 0 at y¯ 0, and as yU¢. (2.31)

In the x-direction, the boundary conditions are prescribed at x¯ 0 and rxr¯x
max

.
Here, two types of solutions are possible : symmetric and antisymmetric. In Part 1, it
was shown that symmetric modes are more unstable and only these modes will be
considered in this paper. For symmetric modes, the boundary conditions are :

¥wW
¥x

¯
¥�W
¥x

¯ uW ¯ 0, x¯ 0, (2.32a)

uW (x, y)¯®uW (®x, y), �W (x, y)¯ �W (®x, y), wW (x, y)¯wW (®x, y), x¯x
max

. (2.32b)

For computational purposes, the semi-infinite domain in y is truncated at y¯ y
max

,
and y

max
¯ 20δ is found adequate for the least-stable mode considered here and is used

throughout this paper. Similarly, the physical domain in the x-direction is truncated at
rxr¯x

max
. The selection of x

max
may appear to be arbitrary. However, based upon

numerical experiments, it was shown in Part 1 that as long as x
max

is greater than 2δ,
a domain-independent converged solution can be achieved.

Equations (2.25)–(2.28) along with the boundary conditions (2.31)–(2.32) constitute
a partial-differential eigenvalue problem which we solve by using a double Chebyshev-
collocation method. In the discrete sense, a temporal eigenvalue problem can be
represented as a generalized algebraic eigenvalue problem of the form

Ax¯ωBx, (2.33)

where A is a complex non-Hermitian matrix and B is a diagonal matrix. The order of
the matrices is 2N

y
N

x
, where N

y
and N

x
are the number of collocation points in the

y- and x-directions, respectively. The above eigenvalue problem can be solved by the
QR algorithm which yields all the eigenvalues of the discretized system. It may be
noted that, by including the effect of curvature, the order of matrices A and B does not
increase from that in Part 1. Therefore, the eigenvalue problem can be solved in the
same amount of computer time with and without curvature.

3. Stability results

This section contains results of linear stability calculations using different order
boundary-layer solutions and different stability formulations. To demonstrate the
effect of surface curvature, the following comparisons are made at R{ ¯ 700:

(i) first-order boundary layer (swept Hiemenz flow), Cartesian coordinates (x, y, z),
R

a
¯¢ ;

(ii) second-order boundary layer, body-intrinsic coordinates (body), R
a
¯ 10' ;

(iii) same as (ii), except R
a
¯ 10& ;

(iv) same as (ii), except R
a
¯ 10%.

We first note from (2.30) that R
a

and R{ can be independently varied. Varying R
a
,
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F 3. Comparison of temporal growth rates for R{ ¯ 700, and R

a
¯¢, 10', 10&, and 10%.
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F 4. Effect of surface curvature on neutral curves.

while holding R{ fixed, implies that the sweep angle in (2.1) is being varied. In figure 3,
temporal growth rates are plotted �s. the spanwise wavenumber β of the most unstable
two-dimensional travelling disturbances. The difference between curves (i) and (ii), (iii),
(iv) clearly shows that the effect of surface curvature is stabilizing. As one would expect,
when R

a
increases, the stability results approach that of the swept-Hiemenz flow. The

difference between curves (i) and (iv) is substantial : the maximum growth rate of curve
(iv) is 50% of that of curve (i).

To illustrate the stabilizing effect of convex surface curvature on the critical
Reynolds number, the neutral curves associated with the two-dimensional travelling
mode are computed and are given in figure 4 for the leading-edge Reynolds numbers
R

a
of 10%, 10&, 10', and ¢ (swept Hiemenz flow). The critical Reynolds numbers from

these curves are listed in table 3.
The increase in the critical Reynolds number is about 10% for R

a
changing from

infinite to 10%. Further reducing the leading-edge Reynolds number might produce an
even higher critical Reynolds nubmer; however, the accuracy of the second-order
boundary-layer theory itself may become questionable. For even lower leading-edge
Reynolds-number (R

a
) flows, to obtain an accurate basic state, one might have to
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F 5. Temporal growth rate computed by different strategies for R{ ¯ 700, R
a
¯ 10%.

R
a

BL order Coordinate Crit. R{

(i) ¢ First xyz 583.1
(ii) 10' Second Body 588.2
(iii) 10& Second Body 599.5
(iv) 10% Second Body 637.6

T 3. Effect of convex leading-edge curvature on attachment-line critical Reynolds number, R{

appeal to a boundary-layer theory including even higher-order corrections, or, in a
more practical sense, to the direct Navier–Stokes calculation.

To delineate the overall effect of curvature coming from mean flow and stability
equations, a comparison of solutions using different approximations is made in figure
5. These calculations are performed based on the following different strategies : (i) 1st-
xyz : the first-order boundary-layer solution is taken as the basic state and the stability
equations are cast in the Cartesian coordinate system, i.e. the curvature effects are
totally ignored; (ii) 1st-body: the curvature effect is retained in the stability equations
only, see (2.25)–(2.28), although the first-order basic state is used; (iii) second-body:
the curvature effects are fully incorporated into both the basic state and the stability
analysis. Of course, as one would expect, strategy (iii) would ultimately give the most
accurate results. The comparison shows that even without the second-order boundary-
layer solutions, the error associated with the stability analyses can be reduced by
performing the analysis using the stability formulation of (2.25)–(2.28).

4. Discussion

In (2.25)–(2.28), it is noticed that the surface curvature appears explicitly in two
distinct forms: r}(ry) and 1}(ry). In order to distinguish the stabilizing
contribution made by various curvature terms, we manipulate the stability equations
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Variation ω
r

ω
i
¬10$

(i) 0.100797 0.4941
(ii) 0.100801 0.4944
(iii) 0.101799 0.7153
(iv) 0.101802 0.7158
(v) 0.101802 0.7158

T 4. Comparison for stability calculations for β¯ 0.275, R
a
¯ 10% with different variations,

defined in the text

Equation ω
r

ω
i
¬10$

continuity 0.101775 0.6984
x-momentum 0.100792 0.5002
y-momentum 0.100797 0.4957
all equations 0.101799 0.7153

T 5. Effect of setting 1}(ry)¯ 0 in the stability equations (β¯ 0.275, R
a
¯ 10%)

systematically and perform a series of calculations in both body-intrinsic and Cartesian
coordinates. Calculations are conducted for a wavenumber of 0.275 with a fixed
boundary-layer solution at R

a
¯ 10%. A comparison is made for calculations with

following variations :

(i) body-intrinsic coordinatesfull set of equations (no variations),
(ii) body-intrinsic coordinatesset r}(ry)U 1 only,
(iii) body-intrinsic coordinatesset 1}(ry)U 0 only,
(iv) body-intrinsic coordinatesset r}(ry)U 1 and 1}(ry)U 0,
(v) Cartesian coordinates (equations of Part 1).

Results of these calculations are summarized in table 4. As expected, by letting both
r}(ry)U 1 and 1}(ry)U 0 as in case (iv), the result of case (v) (stability equations
of Part 1) is fully recovered. The differences in growth rates given in table 4 clearly
show that the prime stabilizing curvature effect comes from terms associated with
1}(ry). Among these terms, only those appearing in the inviscid part of the
momentum equations and continuity equation can be expected to contribute to the
stabilization effect found here. An order-of-magnitude analysis for the Go$ rtler
problem (Hall 1983) shows that only the centrifugal acceleration term 2U{ uW }(ry) in
the normal momentum equation gives rise to the Go$ rtler instability on a concave wall.
Masad & Malik (1994) found that this same term produces the dominant stabilizing
effect of convex surface curvature on crossflow instability. However, since the
attachment-line problem is focused on a region of small x, U{ is small ; consequently,
2U{ uW }(ry) is a small term and should not be the main contributing term to the
stabilizing effect found above. In order to understand this stabilizing effect, we give in
table 5 results of calculations done by letting 1}(ry)U 0 in each of the continuity, x-
momentum, and y-momentum equations in turn. The difference between these results
shows that the dominant stabilizing curvature effect comes from the �W }(ry) term in
the continuity equation, and the centrifugal acceleration terms in both the x- and y-
momentum equations (2.26)–(2.27) have very little influence on the stability. It follows
that, for R

a
( 1, all curvature terms can be dropped except the one appearing in the

continuity equation. An order-of-magnitude analysis of (2.25)–(2.28) may also reach
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the same conclusion. However, as pointed out earlier, keeping all the terms does not
increase the computational effort.

Now we discuss the practical implications of our results. Assuming an aircraft flying
at a unit Reynolds number of about 2¬10'}ft, with a wing sweep angle of 30° and a
leading-edge radius of about 4 in., the leading-edge Reynolds number R

a
will be about

5.8¬10&. Based on the results presented above, the effect of leading-edge curvature will
be small. For the conditions of Poll’s (1979) experiment, R

a
E 4¬10&, and this is why

the results of HMP are in good agreement with the experimental results. However, for
supersonic aircraft with small leading edge, this effect may not be negligible.

On a tapered swept wing, the leading-edge radius of curvature a decreases from the
root to the tip. As a result, the attachment-line Reynolds number R{ will also decrease
from the wing–fuselage juncture to the outboard section of the wing. On the other
hand, as shown above, the critical Reynolds number will become higher at the outboard
section. The combined effect might inhibit, or even reverse the transition process.
In the context of leading-edge contamination, the phenomenon of reverse transition
has been observed by Poll & Paisley (1985) in their wind tunnel experiments on a
tapered model.

5. Conclusions

This paper addresses issues related to the incompressible attachment-line boundary-
layer stability using a two-dimensional eigenvalue approach. The stability equations
are kept in the partial-differential form and are written in a body-intrinsic coordinate
system; thus the effects of the streamline divergence and surface curvature are exactly
formulated. The effect of leading-edge curvature in the mean flow is accounted for in
the framework of second-order boundary-layer theory.

Results indicate that the effect of leading-edge curvature is stabilizing. The critical
Reynolds number gradually increases as R

a
(Reynolds number based on leading-edge

radius) decreases. The reduction in R
a

can be achieved either by using a smaller
leading-edge radius or by increasing sweep; however, increasing the sweep angle
enhances the crossflow instability as well as the Reynolds number R{ based on W¢ and
∆. It is also found that the main stabilizing effect of curvature comes from the
perturbation equation for conservation of mass and not momentum.

This work was supported by National Aeronautics and Space Administration under
NASA Contracts NAS1-19299 and NAS1-20059.

REFERENCES

D, R. T. 1972 Numerical solution of the Navier–Stokes equations for symmetric laminar
incompressible flow past a parabola. J. Fluid Mech. 51, 417.

D, L. 1964 Second order incompressible laminar boundary layer development on a two
dimensional semi-infinite body. PhD thesis, University of California at Los Angeles.

G, K. & G, J. F. 1973 Mass-transfer effects on higher-order boundary layer solutions :
The leading edge of a swept cylinder. Intl J. Heat Mass Transfer 16, 65.

H, P. 1983 The linear development of Go$ rtler vortices in growing boundary layer. J. Fluid Mech.
130, 41.

H, P., M, M. R. & P, D. I. A. 1984 On the stability of an infinite swept attachment line
boundary layer. Proc. R. Soc. Lond. A 395, 229 (referred to herein as HMP).

J, R. D. 1995 Direct simulation of evolution and control of three-dimensional instabilities in
attachment-line boundary layers. J. Fluid Mech. 291, 369.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

42
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096004260


Stability of attachment-line boundary layers. Part 2 137

L, R.-S. & M, M. R. 1996 On the stability of attachment-line boundary layers. Part 1. The
incompressible swept Hiemenz flow. J. Fluid Mech. 311, 239 (referred to herein as Part 1).

M, J. A. & M, M. R. 1994 Effects of body curvature and nonparallelism on the stability
of flow over a swept cylinder. Phys. Fluids 6, 2363.

M, D. V., C, F. S., M, L. C. & L, C. K. 1989 Transition flight
experiments on a swept wing with suction. AIAA Paper 89-1893.

P, W. & B, J. W. 1969 Amplified laminar boundary layer oscillations and transition
at the front attachment line of a 45 flat-nosed wing with and without boundary layer suction. In
Viscous Drag Reduction (ed. C. S. Wells). Plenum.

P, D. I. A. 1979 Transition in the infinite swept attachment line boundary layer. Aero Q 30, 607.

P, D. I. A. & P, D. J. 1985 On the effect of wing taper and sweep direction on leading edge
transition. Aero. J. March, 109.

S, P. R. 1988 Direct numerical study of leading-edge contamination. In AGARD Conf. Proc.
438, Fluid Dynamics of Three-Dimensional Turbulent Shear Flows and Transition, Cesme, Turkey,
pp 5-1–5-13.

T, V. 1995 Spatial stability of incompressible attachment-line flow. Theoret. Comput. Fluid
Dyn. 7, 159.

V D, M. 1964a Higher approximations in boundary layer theory. Part 3. Parabola in uniform
stream. J. Fluid Mech. 19, 145.

V D, M. 1964b Perturbation Methods in Fluid Mechanics. Academic.

V D, M. 1969 Higher-order boundary-layer theory. Ann. Re�. Fluid Mech. 1, 265.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

42
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096004260

