

Mobile robot society for distributed operations in closed aquatic
environment
M. Vainio, P. Appelqvist and A. Halme
Automation Technology Laboratory, Helsinki University of Technology, P.O. Box 5400, FIN-02015 HUT (Finland)
www.automation.hut.fi
E-mail: mika.vainio@hut.fi

SUMMARY
In this paper a multirobot system consisting of small size
ball-shaped mobile underwater robots is introduced. Robots
form a cooperative society operating together for a common
goal. This is made possible by inter-member communica-
tion and control architecture allowing cooperation. The test
environment is a closed aquatic process containing tanks,
pipes, and a jet pump. The task considered is cleaning of
biologically contaminated spots in the process. Detailed
hardware structure of a robot-member as well as the control
architecture are introduced. Behaviour of the cooperative
system is demonstrated in a test environment where
contamination caused by biological algae growth is emu-
lated by infrared panels behaving like a living biomass.

KEYWORDS: Underwater robots; Robot society; Cooperation.

1. INTRODUCTION
The research results in the following are inspired by the
societal structures developed in the biological world by
evolution. In those systems, as is usually the case in Nature,
the goal is never to find optimal or very accurate solution,
but rather to come up with feasible solutions. Efficiency in
energy consumption and utilization of materials along with
amazing fault tolerance are obtained through distributed
cooperative functions. Cooperative systems are formed by
micro-organisms, cells, and animals like ants. In order to get
successful cooperation, these systems need some kind of
basic rules to minimize or at least reduce the unnecessary
interference and competition between system members.1 If
these rules could be found and formulated, then, a real life-
like society of robots with the same kind of astonishing
robustness and adaptivity could be constructed. Such system
is called robot society, see Halme et al.,2 where a detailed
presentation of the concept can be found. Robots in the
society might be also called (physical) autonomous agents
according to the meaning given to this term usually in the
literature.3,4 The term “robot society” is quite rarely used in
the literature. Instead, terms like “robot colony”, “distrib-
uted autonomous robotic systems”, “cellular robotics”,
“collective robotics” are frequently used to describe sys-
tems, where multiple agents are working more or less
together towards a common goal.5,6 The effect of social
relationships to the performance of the whole system can be
significant.7,8

All functions of a robot society are obviously realized
through its members. Members’ behaviors are the results of
their own needs as well as the stimulus received from the
environment and other members. Constraints set by the
society or directly by the operator define the frame of
operation. In the case presented here, a member utilizes the
information accumulated in the whole society. This is
realized through the inter-member communication, which
allows a member to update its environment model by
utilizing observations done by other members.

Some valuable benefits are automatically built-in to the
concept of robot society. If a large number of homogenous
member are used at the same time for the same purposes,
the level of redundancy becomes very high. The benefits and
drawbacks of homogenous multi-robot systems compared to
heterogeneous systems are under extensive study.9,10 In
homogeneous system, the volume of the society, i.e. the
capacity of the system, can be adjusted simply by increasing
or decreasing the number of robots in the system. No
reconfiguration is needed, due to the implemented control
and communication structures, which in fact does not have
to recognize the number of members.

2. SUBMAR ROBOT SOCIETY
In the process industry the question of monitoring the
internal state of the process in real-time and making local
adjustments in mixing, flow or reaction conditions is one of
the major problems. Normally the sensors used in monitor-
ing are fixed and provide information only from certain
areas of the process. Local adjustments are often difficult to
implement, if not totally impossible, and thus the control
policy is based more or less on the overall control of the
system. This may lead e.g. to an extensive use of chemicals,
which is both expensive and causes often unwanted
residuals and pollution. To make sensors and actuators
mobile inside a process has been one of the motivations
for designing the SUBMAR robot society, illustrated in
Figure 1.

2.1. Society member
The society consists of ball-shaped small-sized (diameter
11 cm) robots called SUBMARs (Smart Underwater Ball
for Measurement and Actuation Routines). These robots
move passively along liquid flow or actively by controlling
their specific weights. SUBMAR, shown in Figures 2a-2c, is

Robotica (2000) volume 18, pp. 235–250. Printed in the United Kingdom © 2000 Cambridge University Press

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

equipped with a micro-controller, several sensors, tank
actuators and a short range radio. The figures represent the
latest generation of SUBMARs.11,12 The sensors imple-
mented depend on the application at hand. Typically,
sensors for temperature, pressure, pH, and conductivity are
useful in many applications. Inertia sensors could be used
for measuring accelerations and for navigation purposes.
The tanks used for controlling the specific weight, taking
samples, and carrying cleaning agent. Energy is carried in a

battery back. Due to the fact that motion energy is taken
mainly from process flow, consumption of energy is
relatively small and the operation time long, in practice
several hours. Energy and cleaning agent could be refuelled
in a recharging station, which is, however, not realized in
the test system.

Because of limited maneuverability SUBMARs move
relatively stochastically. This affects their task performing
capabilities, too. “Group power” included in the controlled
behaviour of the multirobot society, however, compensates
this weakness effectively. Tasks like collecting, harvesting,
cleaning or searching and destroying are typical ones where
group power can be utilised.13–15 Nature has created many
types of group behaviours with different social features for
this purpose. Typical are social insect communities formed,
for example, by ants or bees.16,17 Even simple organisms,
like bacteria, are known to form social communities with
simple communication mechanisms.18 The society formed

Fig. 1. SUBMAR robot society in test environment.

Fig. 2b. Cross-section view.

Fig. 2a. SUBMAR cover opened.

Robot society236

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

by SUBMAR robots is inspired by those biological
communities, although communication by radio makes it
possible to create more complex messaging system than in
biological communities. The idea is, however, to follow
minimalistic approach where communication as well as
other features are kept at the minimal level.

2.2. Communication
Communication in a robot society can be divided into two
categories; communication between the operator and
robots, and communication among the robots. The former
enables the user to control the society, while the latter is
needed to turn a group of robots into a cooperative society.
Since all data exchange in the society is carried out under
the same frequency, some sort of communication protocol is
essential. As a solution, an Ethernet (CSMA/CD) type of
protocol was developed and implemented to SUBMARs.
The protocol frame is presented in Figure 3.

Some inbuilt features in the protocol support an effective
communication: messages can be sent only to certain
members, or broadcast to all in the range. In addition, the
most important messages can be sent with acknowledge
request, to ensure that the message was received correctly.
CRC checksums are calculated separately for the message
title and for actual message, payload. To minimize the
amount of transferred data, only a collection of fixed
messages are used. The protocol does not determine the
format of messages.

There are some parameters which can be adjusted to tune
communication to the existing environment conditions.
Automatic resends are used in context with info type of
messages; the probability of correctly received messages
increases radically, if each message is always resent a
couple of times. Also, the number of Acknowledge retries
can be set, as well as Acknowledge time-outs, the time
before next retry. Carrier signal detection is used to prevent
overlapping transmissions; in a very noisy environment it
may be useful to switch it off.

Despite efficient communication protocol, it is evident
that some part of the information is always lost. However, if
the communication structure is well designed it does not
harm the functioning of the society. In the worst case some
actions are just delayed.

2.3. User interface
An operator’s communication station is an important part of
the system facilities. Base station software provides user
interface, which allows the operator to control the society
and obtain on-line information from the robots. Figure 4
shows a screenshot of the base station running in NT
workstation. This software features protocol settings, differ-
ent types of sendings, and logging of all the received data to
files. Each robot has also its own log file for communica-
tion; this allows detailed performance analysis of

Fig. 2c. Electronics block diagram.

Fig. 3. Message frame for communication.

Robot society 237

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

the communication network in the society during task
execution. Physically, a base station communicates through
a small half-duplex radio modem of the same type as used
in robots. The radio module is connected to a PC via RS-
232 port.

Automatic mission control is a software client for the base
station software. It allows pre-programmed mission controls
for task execution, i.e. the messages are automatically sent
at a given time. A TCP/IP connection to the user interface
enables also the running of the programs from distant
location through the Internet.

2.4. Test environment
Practical testing of the SUBMAR society has been carried
out in a special laboratory test environment, called here as
demo process. This fully transparent process environment
consists of typical process parts, like pipes and tanks (see
Figure 1). The total volume of 700 litres is filled with water.
In order to imitate process flow, water is circulated with a
jet-flow pump. The instrumentation includes several tem-
perature sensors, pressure sensors, and an ultrasonic
flow-speed meter. Magnetic valves control hot and cold
water inputs to generate plug flows and temperature
gradients. Instrumentation is controlled from a PC-based
standard automation system.

3. TASK DEFINITION
The task studied in the demo process is an exploration and
exploitation task: searching and destroying of distributed
targets. The distributed targets are supposed to be microbial
algae growth spots inside the water system. Each taget has
dynamic behaviour; if an algae growth is not completely
destroyed in a certain location, it continues to grow. This
leads to an interesting problem: what is the optimal strategy
to complete successfully such task? Should the society first
try to locate all the algae growth spots before starting to
remove them, or should it operate immediately as soon as
the first growth has been detected? Both environmental
(only active vertical movement and strong currents with
turbulences) and hardware constraints (energy and chemical
resources) have their effect on the decision.

The cleaning task considered deserves some comments
from the practical point of view. Algae growth occurs
usually in a location where the water stands still. A standard
solution to the problem is to insert as much cleaning agent
as is needed to guarantee a minimum concentration over the
whole volume of liquid. Needless to say, this approach is
ineffective. The SUBMAR society provides an alternative
solution where multiple small robot cooperate and transport
the minimum amount of chemical needed straight to the
areas where algae growths have been detected. This kind of

Fig. 4. User interface running in NT environment.

Robot society238

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

policy can save a large amount of chemicals and it can be
also very effective provided that the algae are not too widely
distributed.

3.1. Emulated biomass growth
Because working with real algae in laboratory conditions is
impractical, a special infrared system was developed for the
demo process. The system can be used to describe the
growth of biomass, e.g. bacteria, or algae, which tends to
occur in closed water systems. In this system the growth
spots are represented by infrared LED and phototransistor
matrix panels, illustrated in Figure 5.

Light emitted from LEDs represent oxygen or some other
gas produced by the microbial growth, which in reality
could be detected by robots with an appropriate sensor. The
emulated organism reacts to the presence of any cleaning
agent through its phototransistors. Respectively, robots have
infrared phototransistors as dissolved gas sensors, while
lighting their LEDs robots emulates spreading of the
cleaning agent in algae removal. There are three independ-
ent growth agglomerations installed to different locations in
the demo process. This enables the analysis and evaluation
of parallel multi-tasking in spatially distributed task execu-
tion. Each algae growth spot consists of four phototransistor
panels. The electronics driving and sampling the actual
emulated spots are controlled via I/O-card. Transmission of
infrared light can be analog or frequency modulated. An
analog case is more realistic, since a signal level is
dependent of the measuring distance, which is a usual real-
life situation.

Calculation of the current level of biomass and its growth
rate in each spot is carried out in a remote PC. The
behaviour of biomass is modeled with a generalized growth
curve typical of most biological growth processes. The
status of an algae growth, A, (i.e. the biomass) is based on
formula which indicates how the derivative of the algae is
related to the growth and natural death of the cells as
follows:

dA
dt

= (m2D)*A (1)

where m is the growth rate and D is the death rate of the
organism. The value of m depends on the limiting substrate
(e.g. nitrogen). The death rate becomes meaningful when
the age of the cells increase or when poisonous substrates
(i.e. cleaning agent) are released into the environment. The
actual equation used in our model, is discretized from (1):

A(t + 1) = A(t)*e(m2D)Dt (2)

In case of a cleaning agent release, the value of D is related
to the concentration of the cleaning agent (Poison). This
value can be detected through the four inputs from the
phototransistor panels. Poison.max is the maximum concen-
tration of the cleaning agent in the liquid (i.e. the maximum
value of the phototransistor panel ≈ 4.7 Volts). If Poison
reaches Poison.max value, it indicates that the release of the
agent had the maximum effect. The value of D is thus a
function of Poison and Poison.max.

In a single robot attack the duration of this action is rather
short. It equals the time that it takes for a robot to release the
contents of its cleaning agent tank and for the agent to
dissolve into the aquatic environment. If several robots
release their chemical agents approximately at the same
time, the value of Poison is naturally high, but the duration
of the attack is short. On the other hand, if robots release
their cleaning agents one after another, the value Poison is
smaller, but the duration of the attack is respectively
longer.

A generalized growth curve of a bacterial culture consists
of four separate phases. These include a lag phase,
exponential phase, stationary phase and death phase. These
phases are shown in Figure 6, where the biomass (A) value,
produced by the model, is plotted. During the exponential
phase, there is an attack made by a single robot.

As a result, the value of biomass drops for a while, but it
starts to grow immediately after the poison is dissolved. In

Fig. 5. Emulated algae system.

Robot society 239

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

our tests the lag phase is omitted, because during that phase
the volume of the biomass is so small, that the robot cannot
detect it with its sensors.

4. MAPPING OF THE ENVIRONMENT
In order to perform the task above, the members of the
society, with a very limited ability to move actively, have to
have some kind of spatial representation model of their
environment. In a complex underwater environment any
obsolute localization method is difficult to construct and
requires some sort of an active beacon system or a highly
sophisticated inertia navigation system.

The concept of robot society provides a simple way to
solve this problem. An individual member’s map need not to
be highly accurate. It is enough that different process parts
can be clearly recognized. The cooperation between society
members will then make their maps more detailed.
Mataric19 pointed out, that even though fixing and finding of
landmarks is usually based on vision, this isn’t obligatory.
Animals are known to use various types of landmarks,
including tactile and auditory. Mataric presented a neu-
robiologically-feasible cognitive mapping implemented in
an autonomous mobile robot, where landmarks were
defined as combinations of the robot’s motion and sensory
inputs. The map produced by the robot contained nodes (i.e.
landmarks) and topological links between different nodes,
which indicate their spatial adjacency. We chose to represent
the environment with a related method by using a directed
graph.

4.1. Mapping algorithm
Mapping is based on processing a single variable, pressure.
This value is used to detect events (i.e. nodes) where the
motion character changes. An event indicates, that motion
changes from downwards to certain level, from level to
downwards, from upwards to level, or from level to upwards
(see Figure 7). The data obtained by this way is naturally
limited and open to errors.

To be able to deal with errors some kind of adaptive
method had to be used. In literature20 a concept called APN
(Adaptive Place Network) was introduced; it provided a

way to obtain a spatial representation and learning capa-
bility for a mobile autonomous robot. A modified version of
this method was implemented to our system and it is shortly
described below.

When a new link is created it is labeled with a confidence
value cP[0, 1]. This value basically estimates how realistic
the link is, i.e. does it really exist, or has it occured due to
a collision between robots. At the beginning of the lifespan
of a link the value c is set to cbirth. If the robot travels through
a link then the value of that link is increased with the
following equation:

ct+1 = l + (12l)*ct (3)

where l is the learning rate. After Nnodes nodes have been
detected the values of all links are reduced according to the
following formula:

ct+1 = (12l)*ct (4)

When this value goes below a threshold (Tkill), a link
disappears from the adjacency matrix. If all links connect-
ing the node to the graph are deleted, then also the node is
removed from the graph. Collisions with other members
create nodes which are, however, eventually removed from
the graph. The pseudocode of the make.map-algorithm21 is
shown in Table I.

4.2. Common environment representation
In a certain phase the map built by the make,map-algorithm
in each robot reaches a stable form, where only small
temporary perturbations can emerge. The size of the map
stays within reasonable limits due to the reinforcement
algorithm presented above. The maturation of the map can
be easily detected by following the amount of new nodes vs.
the old nodes. In a matured map the old nodes dominate
clearly and only occasionally a new node is detected. At this
point a robot will fix it’s map and notify the operator. In
order to be useful, every member of the society should have
the same map. The combination of maps can be done in
various ways, ranging from a fully automatic method to a
map created by the operator (see Figure 8).

Fig. 6. Growth curve of the emulated biomass. It illustrates the
four characteristic phases. Also, the effect of an attack is visible at
the time of 3800 seconds.

Fig. 7. Node types.

Robot society240

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

The automatic combination is done through inter-robot
communication. Several methods are available for this
combination. For example, when all the members (or at
least most of them) have reached the point where the map
has matured, each robot transmits the map to the other
robots. After receiving the maps a robot uses an algorithm
that combines maps according to certain rules. The rules
contain factors, like matching particular nodes, checking the
confidence values for particular links, etc. As a result, each
robot has the same map that contains the information from
the distributed perception of the society. Another way to
perform the map fusion is to allow the individual who
obtains its basic map ready first to give its map to the others.
This approach is fast and easy to implement, but it does not
guarantee that the society has obtained the best possible
map.

The map fusion task can be given also to the operator.
After receiving the maps through radio, the operator can
either use a special algorithm to do the combination or do it
manually. The operator can also include some additional
features to the map even though the robots haven’t noticed
them. Whatever of the previous method is used, after this
phase, the society members have a common representation,
a Common Basic Map (CBM), of the environment; this map
enables cooperation. The quality of the map is verified time
to time through a checking procedure. During the sequence
each robot tracks how well CBM respresents the current
situation of the environment. If lots of new nodes are
detected, then a make.map-algorithm is run again and the
old CBM is replaced with an updated CBM. In the case

of the demo process a CBM has the form illustrated in
Figure 9.

4.3. Using a Common Basic Map
The map is given to the robots in the form of a matrix L
(links) and array N (nodes). Starting from a known location
the robots are immediately on the map. After that they just
follow the possible routes on the map. There are usually no
more than three possible links from a particular node. When
a node is detected the robot compares the node type and
pressure value to the possible nodes in the map. Usually
there is a match, and the robot stays on the map (Old node
in Figure 10). Sometimes, however, no match can be
detected. This means, that the robot has either collided with
another robot or it has moved in a unusual way, e.g.
interrupted a dive before it reached the node on the bottom
of a tank. In case of a mismatch, the robot neglects also the
following node, because non-matching nodes come always
in pairs, as can be seen in Figure 10. After that the robot
tries to match the next node to any node on the map. In most
cases, the node is unambiguous (New match in Figure 10).
There are some nodes, however, which are ambiguous. In
those cases the robot has more than one possible match, and
it cannot know for sure where it is, e.g. R2 initial location
(troubles) in Figure 10. Based on a Common Basic Map,
shown in Figure 9, when a robot arrives to node 2, there is
no way to tell for sure to which node it will end up next, if
it has emptied the diving tanks. Possible nodes include 3, 11
and 15. This is due to the water flow which may either suck
it into the vertical pipe or let it rise up in some of the tanks.
The problem is solved by checking the next node. The main
principles of this algorithm called follow.map are illustrated
in Figure 10.

5. NAVIGATION
Path planning of an individual robot is based on the fact,
that a Common Basic Map is a strongly connected directed
graph, i.e. from every node there is an access to all other
nodes. The structure of the map makes it possible to use
Floyd’s algorithm22 to calculate the shortest path between
each node. These calculations can be done in advance based
on the Common Basic Map’s link L. The algorithm takes L
as input and provides output in the form of same-sized
matrix D. The matrix D is used in another algorithm, which
calculates the shortest node trail from a start node to a goal
node. This algorithm used depth-first search; it is also run in
advance at the beginning of the mission after a Common
Basic Map has been obtained. This information is stored in
a struct called ROUTE.

The navigation method must take into account robot’s
limitations in maneuverability and must thus be very
straightforward. It is based on the status of the diving tanks
while traveling from one node to another on the map. There
are three different modes for a link usage: full(F), empty(E)
and don’t care(\). Full means, that the link represents
diving. Empty indicates, that the robot is moving upwards
going up based on its buoyancy. Don’t care means that the
status of the tanks is irrelevant for the use of the link. Such
link represents, for example, vertical pipes, where a strong

Table I: make.map -algorithm

1. Take a new pressure measurement (pi).
2. Create input vector, i.e. three consecutive pressure

measurements I j = [pi, pi21, p i22].
3. From I i calculate: Si = (pi 2pi22)
4. IF two consecutive S values are on the opposite side of

threshold (T or 2T)
THEN a new node (a new event) has been found.

5. The new node is compared to the linked nodes of the
current node.
IF matching node is found (i.e. the type of event is the
same, and the difference between pressure values is
smaller than T)
THEN it is considered as the current node.
ELSE the new node is compared to all known nodes.

IF matching node is found
THEN it is considered as the current node.

6. IF on at least two previous algorithm cycles a link from
the current node to the new node has been found
THEN update current node data by averaging the
pressure value and return the current node
ELSE add a new node to the graph and return it.

7. IF a link exists from the previous to returned node
THEN increase the link confidence (Eq. 3)
ELSE add a new link with confidence value cbirth

8. Decrease all link confidences after every Nnodes found
nodes (Eq. 4)

9. IF a link confidence drops below Tkill

THEN remove the link.
10. IF a node is left without links

THEN remove the node.
11. Go to step 1

Robot society 241

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

flow moves the robot in any case. All this information is
stored into matrix L indicating how the robot can move from
one node to another.

The actual navigation is based on combined use of struct
ROUTE, matrix L and array N. As an example, consider the
case where the robot has to get from it’s current node (6) to
a goal node (12), see Figure 11. It fetches the route trail
(6⇒12) from the struct ROUTE. The trail contains nodes
6, 7, 2, 3, 12. After that the robot uses matrix L to check
what is the motor status from one node on the trail to the
next. As a result, it obtains the following information (6⇒7:
F), (7⇒2: F), (3⇒12: \), and (3⇒12: E). Next, the robot
tracks backwards from the goal node(12) to find out where
the status of the actuators should change. In this particular
case this happens when the robot reaches node 2. The link

between nodes 2 and 3 is marked as don’t care(\) and it can
be considered to represent E. Hence, the navigation
procedure for this case is to start with a dive in order to
move from node 6 through node 7 to node 2. In node 2 the
robot should empty the tanks; this should take the robot to
the goal node 12.

If the robot detects that it has lost the trail, i.e. it finds
itself in some other node than those listed in the node trail,
it simply plans again starting from the current node. Losing
the trail for a while is something that has to be accepted due
to the limited maneuverability.

The navigation task (from node 6 to node 12) shown in
Figure 11 was tested with a single robot. Twelve separate
runs were performed and the duration and the routes of
these runs were recorded. In five cases out of those runs, the

Fig. 8. Flowchart for the creation of a Common Basic Map (CBM). At first, individual robots use make.map-algorithm to get their basic
maps. These maps are combined either through inter-robot communication or by the operator. As a result, every robot gets the same
CBM.

Robot society242

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

robot was able to navigate directly to the goal location.
Three times the robot was unable to rise directly to target
location due to strong current that sucked it into the vertical
tube. After that, the robot replanned and succeeded in
navigation, as is illustrated in Figure 12.

Three times the robot got stuck on the zero current zone
of the tall tank. After it had ejected the water out of its tanks,
it raised to the surface where it noticed a failure in the
navigation task. After replanning, the navigation was
successful, as is illustrated in Figure 13. The complete
navigation algorithm is illustrated in Figure 14.

6. CONTROL ARCHITECTURE
The used control architecture for SUBMARs (see Figure
15) is a hierarchical three-layer architecture23,24 which

contains behavioural, task and cooperative layers. It is based
on the FSA (Finite State Automaton) structure and behav-
ioural action model. The theory of FSA is well-known and
several studies using this method for describing relations in
robotics have been done previously.25,26 A FSA can be
specified by the quadruple (Q, d, q0, F), where Q is the set
of possible states for a robot, d is the transition function
mapping the current state qi to the next state qi+1 using
various types of inputs (sensors, communication, computa-
tions), q0PQ is the initial state, and F#Q consisting of
states indicating the completion of the task. In the model
developed here each of these states includes a certain
behavioural pattern, which the robot performs when it
enters the state. The state transitions are determined by
“desires” or “needs” of the robot. These, in turn, are
conducted by single logical variables or more complicated
performance evaluation functions.

6.1. Behavioural layer
The lowest layer is the most vital for the robot’s survival.
The core of the layer is a FSA which determines how to
respond to certain stimuli from the environment, operator,
and internal sensors in order to keep the robot “alive”.
Furthermore, it also states for the actual task performing,
but these states have a lower priority than those serving self-
sufficiency and the operator’s direct commands.

In the case of search and destroy mission considered here,
the number of states included to the design of the
behavioural layer FSA is rather small. There are six states,
Q = {recover, explore, exploit, load, notepad, end} as shown
in Figure 16. States load and recover represent low level
behaviours with the highest priority. The actual task
achieving behaviours include only explore and exploit
states. The recover-state is the initial state, q0, where the
robot enters, when the power is turned on. It is also a kind
of an emergency state, which is active when the robot
detects that something is wrong with its mobility, e.g. its
location has not changed even though it should have been.
In this state the robot starts to use its actuators extensively.

Fig. 9. The basic map drawn on top of the demo process lay-out. Nodes are represented as circles and arrow heads indicate the directions
of links. Gray boxes describe data structures in node array N and link matrix L.

Fig. 10. Main features of follow,map-algorithm. The operation of
the algorithm is based on the Common Basic Map (CBM). See
text for details.

Robot society 243

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

The robot changes its status to notepad, if recover has failed
to make it mobile again. In this state the robot does not
move anymore, and its only useful feature is to operate as a
kind of beacon or message mediator until its energy
resources are used up (i.e. abnormal termination). The robot
enters the load-state, when detecting, that either its energy
or poison level has reached some threshold value. In the
end-state, the robot has completed the mission, or the
operator has given the command to abort the mission (i.e.
normal termination). Then the robot navigates to a defined
location waiting to be removed from the demo process.

6.2. Task layer
In certain states of the behavioural layer the robot performs
the actual tasks. These states are determined more precisely
at the higher, so-called task layer. Functions in this layer
define how the robot should proceed when doing its tasks.
At this level the robot tries to optimize its work by choosing
the most plausible strategy. In this case, two tasks are
described on the task layer: explore and exploit.

In the explore-state the robot moves around the process
trying to locate algae growth spots. The robot uses a
Common Basic Map of the process and information about
the location of the recharging site included to the map.
Exploring evaluation is done by using CBM. A robot detects
when it passes through a node in the map. By following the
sequence of visited nodes it can estimate its exploring
performance according to a piece-wise equation:

explore(t) = w1*a_nodes(t) + w2*diff(t) (5)

w1, w2 coefficients
a_nodes(t) the total number of visited nodes on the

Common Basic Map

diff(t)=
0
1

a_nodes(t)-n_nodes(t)

if a_nodes(t) = n_nodes(t)

otherwise

n_nodes(t) the number of consecutive nodes traveled
on CBM

Fig. 11. Navigation is based on the use of tank actuators in particular nodes.

Fig. 12. The robot was forced to do an extra round.

Fig. 13. Zero current conditions in certain area of the bottom of
the largest tank caused the robot to miss the target at the first
attempt. A second attempt was successful.

Robot society244

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

The number of found nodes on the Common Basic Map,
a_nodes, increases initially, but at some stage this value
starts to remain basically constant. The other parameter n_
nodes, on the other hand, stays at zero for quite a while until
it starts to grow. A collision with another robot drops the
robot from the map, but gradually the value of this
parameter starts to increase and finally passes a_nodes. At
this point the robot is traveling through the detected CBM
nodes.

Due to long time delays in the system, the performance
evaluation cycle is rather long. Fortunately, this also
prevents unwanted oscillations between different opera-
tional states. The time step is set to be equivalent to an
average time it takes for a robot to circulate the process
environment passively with the flow (~ 60 seconds). Hence,
the actual explore performance evaluation function is the
following:

Dexplorerobot = explore(t)2explore(t21) (6)

This equation rewards exploring of the environment, but
when this task has been accomplished and the robot starts to
go around through the same locations, the value of the
function turns to negative. This indicates the fact that the
robot should change its state to another task performing
state, exploit.

In the exploit state the robot performs the poison release
to a specific target location. While operating in the explore
state a robot can detect an arbitrary number of growth spots.
Each spot is registered with information field containing its
location on the Common Basic Map and its volume. The
behaviour of the robot is based on a selected strategy.
Naturally, there exist several possible operational strategies,
but here only four plausible strategies are considered:
attacking the first detected algae growth (S1), attacking the
fastest dying algae growth (S2), attacking the fastest
growing algae growth (S3), and attacking the fastest dying
algae growth (S4). S1 acts as a reference case. In this
strategy, a robot releases its chemical agent to the first algae

Fig. 14. Path planning and navigation algorithm is based on the Common Basic Map and route information available from it. It also uses
follow.map-algorithm to keep robot on the map and to recognize when the target has been reached.

Robot society 245

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

growth after the decision to shift to the exploit state. S4 is
also a special strategy, because the total removal of a growth
is very appealing. On the other hand, S2 and S3 are
obviously also feasible selections, because large growths are
naturally difficult to eliminate with small doses of a
chemical. In the exploit state the robot monitors the status of
chosen algae by storing the sensory value of the target algae
growth, i.e. exploit = algaenode(i). The location of the growth
is always connected (directly to some node or temporally

related to two consecutive nodes) to the basic map. Thus the
exploit performance evaluation function is as follows:

Dexploitrobot = (exploit(t21)2exploit(t))/dt (7)

In other words, the robot follows how a selected algae
growth behaves during the performance evaluation cycle. At
the beginning of the mission, the robot tests all available
strategies in a row, it receives Dexploit value for each of the
strategies. After this the robot chooses the most profitable
one as its next strategy. Each strategy’s Dexploit value is
updated after testing it. Furthermore, if the chosen algae
growth is already terminated, the robot forgets the chosen
strategy and selects the next best strategy instead.

6.3. Cooperative layer
Even though there would be no direct communication
between the robots in the society, the members can still
obtain information about the others through the environ-
ment. For example, if a robot detects that the volume of an
algae growth is decreasing without its own active operation
upon it, it concludes that there must be other robots
performing the removal task to the same growth. This kind
of indirect communication is common in Nature.27 Never-
theless, when an active communication, no matter how
simple, is allowed the performance of the society improves
through cooperation.28 An individual robot uses task related
information received from the others. The communication
used in the system is critical for the distance between sender
and receiver, and locations of the robots in the process. The
robot either receives the whole message or otherwise it is
omitted due to the protocol. An inherent property of the
society concept is incomplete communication between
members.

In this research, the message between members contains
only two types of information: strategy information and
corresponding Dexploit value. Robots in certain strategy (Si)
are considered to form a group(i). Thus there can be as
many groups as there are available strategies, and the
number of robots (Ni) in a group can vary from one to the
total number of robots in operation. For each of these
groups the robot is aware of, an average value of
performance is calculated. The equation form is

Dexploitgroup(i) = (Dexploitj)/Ni (8)

This way the robot has a comparable value for each of the
known active states. The bigger the strategy’s Dexploitgroup(i)

value is, the better the group in that strategy has performed.
Thus the strategy with the highest Dexploitgroup(i) value is
considered to represent the society’s strategy as follows:

Ssociety = max(Dexploitgroup(i)) (9)

Next the individual robot compares this best group’s (i.e.
strategy’s) average performance Dexploitgroup(i) (8) to all of
its own Dexploitrobot (7) values. If Dexploitgroup(i) is bigger
than all the Dexploitrobot values then the next strategy chosen
is Ssociety. Otherwise, the robot chooses the next strategy
based on its own highest Dexploit value.

Fig. 15. Simplified illustration of the control architecture.

Fig. 16. The behavioural FSA.

Robot society246

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

7. RESULTS

7.1. Simulations
The described control architecture was implemented first
into a 3D-simulator, shown in Figure 17. The simulator was
coded with Open GL in Silicon Graphics Indigo2 to
represent the demo process with a complex flow and
diffusion dynamics. Due to the simple environment sensing
(i.e. only pressure and algae detection sensors) the “reality
gap” between simulation and real world does not grow too
wide. The results are quite comprable.29

The aim of the simulation studies was to study how the
performance of the society changes when the size of the
society is varied. The performance of the society was
evaluated based on three parameters: status of the algae
growth, survival of the robots, and duration of the mission.
These parameters give the operator a possibility to guide the
society into a preferable action by altering the weight of the
parameters. In some missions the accomplishment of the
task has the utmost importance. In some other “hard to
reach” application (e.g. space, underwater), the unit cost for
a robot is so substantial both financially and mission-wise
that every robot must stay functional throughout the
mission. Furthermore, in some other cases time is the most
valuable resource, e.g. in nuclear power plant accidents.

Throughout testing the environmental conditions (initial
algae volumes and growth rates, distance related commu-
nication probabilities, flow, etc.) were kept constant. The

interference caused mainly by the competition of space was
studied by varying the size of the society (3, 5, 7, 10, 15
robots). Three robots were clearly too small a group to
finish the task but, on the other hand, 15 always caused a
deadlock situation. This “traffic jam” was caused by a large
group of robots simultaneously trying to enter an up-going
narrow pipe. When comparing societies with 5, 7 and 10
members, it became obvious, that there were no significant
differences in task performing nor in elapsed time, as can be
seen in Figure 18.

Nevertheless, the increase in the number of robots in
operation had a correlation to the untimely “death” of some
robots. Consistently, out of 10 robots 2–3 run out of energy,
and out of 7 robots 1–2 “died”. When the size of the society
was 5, all survived and performed the required task.
Considering the status of biomass, the survival of the robots,
and the duration of the mission it seems that the optimum
number of robots for the task in hand would be 5.

7.2. Tests with real robots
Even though the simulator was considered to give compara-
ble results, the real value would only be obtained through
testing with a physical robot society. When writing this
paper, there are 7 robots in operation. Full scale testing of
ideas presented in this paper is yet to be done, but most of
the features have already been verified. The mapping and
navigation systems are in full use as well as the emulated
algae growth system. Actually, the only part, which has not

Fig. 17. The simulator.

Robot society 247

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

been fully implemented, is the cooperative layer of the
model.

In the preliminary tests shown below, the members of the
society have obtained their basic maps. These maps are then
combined by the operator into a Common Basic Map, which
is then given to the members. After that the robots use CBM
and follow.map -algorithm in order to perform the exploit
task. In Figure 19 a member is shown in one of the emulated
algae growth spots (Node 6 in CBM). After detecting the
growth, the member releases its cleaning agent to the
environment, i.e. lights its IR LEDs. The result of this attack
is shown in Figure 20. As can be seen, the volume of the
biomass drops quite fast, but due to the limited amount of
cleaning agent onboard the member cannot wipe out the
whole growth.

In order to find out whether a member of the society
could single-handed remove a medium size algae growth, a
long term test was performed. In this test, the robot attacks
only one growth spot. After releasing the cleaning agent, the
robot leaves the growth spot and goes to a location, where
its cleaning agent storage is refilled. The results of the test

are shown in Figure 21. It can be clearly seen, that a single
robot cannot destroy the algae growth. At the beginning of
the test, just after the first attack, there is a long delay before
a new attack. This is due to the poor maneuverability of the
robot, i.e. it could not get back to the algae growth location
at the first try. Delay in navigation resulted to a large growth
in algae volume. After that, the robot was able to repeat
attacks. Even though there was an extremely successful
attack at time 800 seconds, and another soon after that, no
complete elimination could be demonstrated.

Next, a group of three robots were used to attack the same
growth spot, shown in Figure 22. The initial volume of the
biomass and growth rate were naturally identical as in the
single robot case. The results shown in Figure 23 demon-
strate that three robots are enough to kill the growth totally.
In the case shown here, the three robots released their
cleaning agents sequentially, one after another. Small delays
between attacks are visible in the form of small growing
phases in an otherwise down-going trend.

The results shown here are only preliminary, and not from
a complete system; they nevertheless indicate that the
system is operational and ready for the final testing. Final
results will be published in near future in the form of two
doctoral theses

Fig. 18. The task performing of various sized societies. It
illustrates how too large (15 robots) or too small (3 robots)
societies fail in the exploiting task, whereas medium size societies
(5, 7, 10) are able to finish the task approximately at the same
time. Time scale is in seconds.

Fig. 19. A single member has found an emulated algae growth.

Fig. 20. The effect of attack made by a single member. The
dashed line illustrates the normal growth of the biomass.

Fig. 21. Long-term test with a single robot. The robot fails to
destroy the algae growth.

Robot society248

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

8. CONCLUSIONS
The robot society formed by small-scale underwater
SUBMAR robots and a generic three-layer control archi-
tecture for their cooperative functioning have been
developed. To enable practical testing and optimization of
the control structures, emulated algae removal was defined
as their task. Performance evaluation of the system has been
carried out both as a simulator study and by experimenting
with real robots in a test environment.

The simulated results demonstrated that in a closed,
restricted environment, including narrow pipes, junctions
and tanks, the robots having minimalistic mobility and
perception, were able to complete the task using their
control structure, but spatial interference of multiple robots
affect their task performing strongly. This indicates, that in
a distributed system an optimal number of robots for a given
task could be found.

Testing with real robots has not reached a fully opera-
tional level. Two levels out of three (i.e. behavioural- and

task performing level) in the control architecture structure
have been implemented and tested. In practice, mapping of
the environment, navigation, task execution against multiple
targets, and behaviour of the emulated algae growth have
been verified with real robots already. In the near future, the
cooperative layer will be completed. This allows full-scale
testing of the robot society concept.

References
1. M.S. Fontan and M.J. Mataric, “A Study of Territoriality: The

Role of Critical Mass in Adaptive Task Division”, Proc. From
Animals to Animats 4 (4th Int. Conf. on Simulation of
Adaptive Behavior) (P. Maes, M. Mataric, J.-A. Meyer, J.
Pollack and S.W. Wilson; eds.) (MIT Press/Bradford Books,
1996) pp. 553–561.

2. A. Halme, P. Jakubik, T. Schönberg and M. Vainio, “The
concept of robot society and its utilization”, Proc. IEEE/
Tsukuba Int. Workshop on Advanced Robotics, Tsukuba,
Japan (1993) pp. 29–35.

3. M.J. Mataric, “Issues and Approaches in the Design of
Collective Autonomous Agents”, Robotics and Autonomous
Systems 16, Nos. 2–4, 321–331 (Dec., 1995).

4. P. Maes, “Modeling Adaptive Autonomous Agents”, In:
Artificial Life- An Overview, (c. Langton, Ed.) (The MIT
Press, Cambridge, Mass, 1995) pp. 135–162.

5. T. Fukuda, S. Nakagawa, T. Kawauchi and M. Buss,
“Structure Decision Method for Self Organizing Robots based
on Cell Structure - CEBOT”, Proc. IEEE Int. Conf. on
Robotics and Automation (1989) pp. 695–700.

6. H. Asama, A. Matsumoto and Y. Ishida, “Design of an
Autonomous and Distributed Robot System: “ACTRESS0”,
Proc. IEEE/RSJ Int. Workshop on Intelligent Robots and
Systems, Tsukuba, Japan, (1989) pp. 282–290.

7. K. Dautenhahn, “Getting to Know Each Other- Articifical
Social Intelligence for Autonomous Robots”, Robotics and
Autonomous Systems 16, Nos. 2–4, 333–356 (Dec., 1995).

8. M.J. Mataric, “Learning to Behave Socially”, Proc. of From
Animals to Animats 3, (3rd Int. Conf. on Simulation and
Adaptive Behavior), (D. Cliff, P. Husbands, J.-A. Meyer and
S.W. Wilson; Eds.) (MIT Press, (1994) pp. 453–462.

9. L.E. Parker, “Heterogeneous Multi-Robot Cooperation”,
Ph.D. Thesis (Massachusetts Institute of Technology, Artifi-
cial Intelligence Laboratory, MA. MIT-AI-TR 1465, 1994).

10. T. Balch, “Behavioral Diversity in Learning Robot Teams”,
Ph.D. Thesis (College of Computing, Georgia Institute of
Technology, 1998).

11. P. Appelqvist, A. Halme, T. Schönberg, M. Vainio and Y.
Wang, “Designing simple cooperative sensor/actuator robots
for liquid process environments”, Proc. IEEE/ASME Int.
Conf. on Advanced Intelligent Mechatronics (CD-ROM),
Tokyo, Japan (1997) pp. ???

12. P. Appelqvist, M. Vainio and A. Halme, “Mechanical design
of underwater sensor/actuator robots for cooperative task
execution”, Proc. Mechatronics ’98 (The 6th UK Mecha-
tronics Forum Int. Conf.), Skövde, Sweden (1998)
pp. 249–254.

13. C.R. Kube, “Collective Robotics: From Local Perception to
Global Action”, Ph.D. Thesis (Computing Science, University
of Alberta, 1997).

14. D.C. MacKenzie, R.C. Arkin and J.M. Cameron, “Multiagent
mission specification and execution”, Autonomous Robots 4,
No. 1, 29–52 (1997).

15. S. Goss, J.-L. Deneubourg, R. Beckers and J.L. Henrotte,
“Recipes for Collective Movement”, Proc. 2nd European
Conf. on Artificial Life (preprints) (1993) pp. 400–410.

16. J.H. Sudd and N.R. Franks, The Behavioural Ecology of Ants
(Chapman and Hall, New York, USA, 1987).

17. T.D. Seelay, Honeybee Ecology – A Study of Adaption in
Social Life (Princeton University Press New Jersey, USA,
1985).

Fig. 22. Group power. Three robots attacking the same algae
growth location.

Fig. 23. The effect of an attack made by three robots in a row. The
mission is completed and the algae growth is eliminated.

Robot society 249

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

18. J.A. Shapiro, “Bacteria as Multicellular Organisms”, Scien-
tific American 258, No. 6, 62–69 (1988).

19. M.J. Mataric, “Navigating With a Rat Brain: A Neurobio-
logically-Inspired Model for Robot Spatial Representation”,
Proc. From Animals to Animats (1st Int. Conf. on Simulation
of Adaptive Behavior) (J.-A. Meyer and S. Wilson; Eds.)
(MIT Press, Cambridge, MA, 1991) pp. 169–175.

20. B.M. Yamauchi, “Exploration and Spatial Learning in
Dynamic Environments”, Ph.D. Thesis (Case Western
Reserve University, 1995).

21. A. Halme, P. Appelqvist, P. Jakubik, P. Kähkönen, T.
Schönberg and M. Vainio, “Bacterium robot society – a
biologically inspired multi-agent concept for internal mon-
itoring and controlling of processes”, Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, Osaka, Japan (1996)
pp. 1707–1714.

22. R. Sedgewick, Algorithms (2nd edition), (Addison-Wesley,
New York, USA, 1988).

23. M. Vainio, P. Appelqvist, T. Schönberg and A. Halme, “Group
behavior of a mobile underwater robot society destroying
distributed targets in a closed process environment”, Proc. 3rd
IFAC Conf. on Intelligent Autonomous Vehicles, Madrid,
Spain (1998) pp. 112–117.

24. M. Vainio, P. Appelqvist and A. Halme, “Generic Control
Architecture for a Cooperative Robot System”, Proc. IEEE/
RSJ Int. Conf. on Intelligent Robots and Systems, Victoria,
Canada (1998) pp. 1119–1125.

25. R.A. Brooks, “Robust Layered Control System For a Mobile
Robot”, IEEE Journal of Robotics an Automation RA-2, No.
1, 14–23 (1986).

26. R.C. Arkin and D.C. MacKenzie, “Temperal coordination of
perceptual algorithms for mobile robot navigation”, IEEE
Transactions on Robotics and Automation 10, No. 3, 276–286
(1994).

27. R. Becker, O.E. Holland and J.L. Deneubourg, “From Local
Actions to Global Tasks: Stigmergy and Collective Robotics”,
Artificial Life IV (R.A. Brooks and P. Maes; Eds.) (MIT Press,
Cambridge, MA, 1995) pp. 181–189.

28. T. Balch, R.C. Arkin, “Communication in reactive multiagent
robotic systems”, Autonomous Robots 1, No. 1, 27–52
(1994).

29. M. Vainio, A. Halme, P. Appelqvist, P. Kähkönen, P. Jakubik,
T. Schönberg and Y. Wang, “An application concept of an
underwater robot society”, Distributed Autonomous Robotic
Systems 2 (H. Asama, T. Fukuda, T. Arai and I. Endo; Eds.)
(Springer-Verlag, Tokyo, 1996) pp. 103–114.

Robot society250

https://doi.org/10.1017/S0263574799002222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002222

