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Radius of comparison and mean
topological dimension: Zd-actions
Zhuang Niu

Abstract. Consider a minimal-free topological dynamical system (X ,Zd). It is shown that the radius
of comparison of the crossed product C*-algebra C(X) ⋊ Zd is at most half the mean topological
dimension of (X ,Zd). As a consequence, the C*-algebra C(X) ⋊ Zd is classified by the Elliott
invariant if the mean dimension of (X ,Zd) is zero.

1 Introduction

Let (X , Γ) be a topological dynamical system, where X is a compact Hausdorff space
and Γ is a discrete amenable group. The mean (topological) dimension of (X , Γ),
denoted by mdim(X , Γ), was introduced by Gromov [11], and then was developed and
studied systematically by Lindenstrauss and Weiss [26]. It is a numerical invariant,
taking values in the range [0,+∞], to measure the complexity of (X , Γ) in terms
of dimension growth with respect to partial orbits. Applications of mean dimension
theory can be found in the theory of topological dynamical systems (see [12, 13, 15,
16, 22, 24, 26]), geometric analysis (see [3, 27, 39, 40]), operator algebras (see [7, 23,
28–30]), and information theory (see [25]).

On the other hand, for a general unital stably finite C*-algebra A, the radius of
comparison, introduced by Toms [36] and denoted by rc(A), is also a numerical
invariant, to measure the regularity of the C*-algebra A. It can be regarded as an
abstract measure of the dimension growth of A. A heuristic example is Mn(C(X)),
the C*-algebra of (complex) n × n matrix valued continuous functions on a finite CW-
complex X; its radius of comparison is around 1

2
dim(X)

n , half the dimension ratio of
Mn(C(X)).

For the given topological dynamical system (X , Γ), the canonical C*-algebra to
be considered is the transformation group C*-algebra, C(X) ⋊ Γ. A natural question
to ask then is how the radius of comparison of the C*-algebra is connected to the
mean dimension of the dynamical system. Phillips and Toms have made the following
conjecture:

Conjecture (Phillips–Toms). Let (X , Γ) be a minimal and free topological dynamical
system, where X is a compact Hausdorff space, and Γ is a discrete amenable group.
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Then

rc(C(X) ⋊ Γ) = 1
2

mdim(X , Γ).

This conjecture is closely related to the classification of C*-algebras. In general, the
C*-algebra C(X) ⋊ Γ can be wild and not determined by (i.e., classified by) the Elliott
invariant (even with Γ = Z; see [8]). So, an important question in the classification
program for C*-algebras is to determine which transformation group C*-algebras
are classifiable. Now, a special case of this conjecture is that mdim(X , Γ) = 0 implies
rc(C(X) ⋊ Γ) = 0, which is the same as strict comparison of positive elements; by the
Toms–Winter conjecture, this should imply that the C*-algebra C(X) ⋊ Γ is Jiang–Su
stable; and hence belongs to the classifiable class of [2, 4, 6, 9, 10, 35].

Many researches have been done on the classifiability of transformation group C*-
algebras. Under the assumption that X is finite dimensional (in which case the mean
dimension is automatically zero), it was shown in [38] that the algebra C(X) ⋊Z has
finite nuclear dimension, and therefore is Jiang–Su stable. Using Rokhlin dimension,
this result was generalized to C(X) ⋊Zd by [33], and then to the actions of residually
finite groups with box spaces of finite asymptotic dimension (see [34]). And recently,
substantial progresses have been made on the Jiang–Su stability using almost finiteness
and dynamical comparison (see [18–20]).

In the case that X is not necessary finite dimensional, which this paper mainly
focuses on, so far the only result is [7] where Z-actions were considered, and zero
mean dimension was shown to imply zero radius of comparison (classifiability of the
C*-algebra). Note that this result in particular covers all strictly ergodic dynamical
systems. Beyond the case of mean dimension zero, Phillips considered Z-actions in
[30] and showed that (in the minimal case) the radius of comparison of C(X) ⋊Z is
at most 1 + 36mdim(X ,Z).

In this paper, the results of [7] are both strengthened and generalized to minimal
and free Zd -actions.

Theorem A (Theorem 5.6). Let (X , T ,Zd) be a minimal-free dynamical system. Then

rc(C(X) ⋊Zd) ≤ 1
2

mdim(X , T ,Zd).(1.1)

As a consequence, one obtains classifiability of C(X) ⋊Zd if (X , T ,Zd) has mean
dimension zero.

Theorem B (Theorem 5.8). Let (X , T ,Zd) be a minimal-free dynamical system with
mean dimension zero. Then C(X) ⋊Zd absorbs the Jiang–Su algebra tensorially, and
hence is classified by its Elliott invariant. In particular, if dim(X) < ∞, or (X , T ,Zd) has
at most countably many ergodic measures, or (X , T ,Zd) has finite topological entropy,
then C(X) ⋊Zd is classified by its Elliott invariant.

The argument in [7, 30, 38] relies on Putnam’s orbit-cutting algebra (or what
Phillips termed the large subalgebra) Ay , associated with a point y ∈ X. In the case
of zero mean dimension, the argument in [7] also heavily depends on the small
boundary property (which is equivalent to mean dimension zero in the case of
Z-actions). However, beyond the case of Z-actions, it is not clear in general how to
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1242 Z. Niu

construct large subalgebras; moreover, once the dynamical system does not have mean
dimension zero, the small boundary property does not hold any more. So, instead
of large subalgebra and small boundary property, the proofs of Theorems A and B
depend on the Uniform Rokhlin Property (URP) and Cuntz-comparison of open sets
(COS).

Definition 1.1. (Definitions 3.1 and 4.1 of [29]) A topological dynamical system
(X , Γ), where Γ is a discrete amenable group, is said to have the URP if, for any ε > 0
and any finite set K ⊆ Γ, there exist closed sets B1 , B2 , . . . , BS ⊆ X and (K , ε)-invariant
sets Γ1 , Γ2 , . . . , ΓS ⊆ Γ such that the sets

Bsγ, γ ∈ Γs , s = 1, . . . , S ,

are mutually disjoint and

ocap(X/
S
⊔
s=1
⊔

γ∈Γs

Bsγ) < ε,

where ocap denotes the orbit capacity (see, for instance, Definition 5.1 of [26]).
The dynamical system (X , Γ) is said to have (λ, m)-COS, where λ ∈ (0, 1] and m ∈

N, if for any open sets E , F ⊆ X with

μ(E) < λμ(F), μ ∈M1(X , Γ),

where M1(X , Γ) is the simplex of all invariant probability measures on X, then

φE ≾ φF ⊕ ⋅ ⋅ ⋅ ⊕ φF
���

m

in (C(X) ⋊ Γ) ⊗K,

where φE and φF are continuous functions supported on E and F, respectively (see
Example 2.1).

The dynamical system (X , Γ) is said to have COS if it has (λ, m)-COS for some λ
and m.

Remark 1.2. If Γ is monotilable, e.g., Γ = Zd , then one can take S = 1 in the definition
of URP.

These properties were introduced in [29], and it was shown (Theorem 4.8 of [29])
that the URP and COS together imply

rc(C(X) ⋊ Γ) ≤ 1
2

mdim(X , Γ),

if (X , Γ) is free and minimal. It was shown in [28] (Theorem 4.8) that if, in addition,
(X , Γ) has mean dimension zero, then the C*-algebra C(X) ⋊ Γ is classifiable. Thus,
both Theorems A and B follow from the following result.

Theorem C (Theorems 4.2 and 5.5). Any dynamical system (X , T ,Zd) with the
marker property (see Definition 3.1) has the URP and COS.

The proof of the theorem above uses the adding-one-dimension and going-down
arguments of [14]. With these arguments, one constructs a Rokhlin tower with base
set open, such that the tower almost cover the whole space in the sense that the its

Downloaded from https://www.cambridge.org/core. 11 Feb 2025 at 10:06:22, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Radius of comparison and mean topological dimension: Zd -actions 1243

complement is uniformly small under all the invariant probability measures. This
implies the property URP, and is essentially contained in [14].

For the property COS, one actually uses the adding-one-dimension and going-
down arguments to construct two Rokhlin towers. Although these two Rokhlin towers
do not in general even taken together cover the space X (even approximately), they can
be constructed so that the complement of the first tower can be broken into finitely
many pieces so that each piece can be translated into the support of the second tower,
in such a way that the (order of the) overlaps of the translations of those pieces can
be bounded by a constant which only depends on the group Z

d . Together with other
things, this eventually leads to the property COS.

Remark 1.3. In [21], it is shown that the URP and COS imply that the C*-algebra
C(X) ⋊ Γ always has stable rank one (classifiable or not), and satisfies the Toms–
Winter conjecture (i.e., it is classifiable if, and only if it has strict comparison of
positive elements) if (X , Γ) is free and minimal. Thus, by Theorem C, the C*-algebra
C(X) ⋊Zd always has stable rank one (classifiable or not), and satisfies the Toms–
Winter conjecture. (In [1], stable rank one was established in the case d = 1.)

2 Notation and preliminaries

2.1 Topological dynamical systems

In this paper, we shall only consider Zd -actions on a metrizable compact Hausdorff
space X.

Definition 2.1. Consider a topological dynamical system (X , T ,Zd). A closed set
Y ⊆ X is said to be invariant if T n(Y) = Y , n ∈ Zd , and (X , T ,Zd) is said to be
minimal if ∅ and X are the only invariant closed subsets. The dynamical system
(X , T ,Zd) is free if for any x ∈ X, {n ∈ Zd ∶ T n(x) = x} = {0}.

Remark 2.2. The dynamical system (X , T ,Zd) is induced by d commuting homeo-
morphisms of X, and vice versa.

Definition 2.3. A Borel measure μ on X is invariant under the action σ if μ(E) =
μ(T n(E)), for any n ∈ Zd and any Borel set E ⊆ X. Denote by M1(X , T ,Zd), the
collection of all invariant Borel probability measures on X. It is a Choquet simplex
under the weak* topology.

Definition 2.4. (See [11, 26]) Consider a topological dynamical system (X , T ,Zd),
and let E be a subset of X. The orbit capacity of E is defined by

ocap(E) ∶= lim
N→∞

1
N d sup

x∈X
∑

n∈{0,1,. . . ,N−1}d

χE(T n(x)),

where χE is the characteristic function of E. The limit always exists.

Definition 2.5. (See [26]) Let U be an open cover of X. Define

D(U) =min{ord(V) ∶ V ⪯ U},

where ord(V) ∶= −1 + supx∈X ∑V∈V χV(x).
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1244 Z. Niu

Consider a topological dynamical system (X , T ,Zd). Then the topological mean
dimension of (X , T ,Zd) is defined by

mdim(X , T ,Zd) ∶= sup
U

lim
N→∞

1
N d D( ⋁

n∈{0,1,. . . ,N−1}d

T−n(U)),

where U runs over all finite open covers of X.

Remark 2.6. It follows from the definition that if dim(X) < ∞, then
mdim(X , T ,Zd) = 0. By [26], if (X , T ,Zd) has at most countably many ergodic
measures, then mdim(X , T ,Zd) = 0. Also by [24], if (X , T ,Zd) has finite topological
entropy, then mdim(X , T ,Zd) = 0.

Definition 2.7. (Definition 3.1 of [29] and Remark 1.2) A topological dynamical
system (X , T ,Zd) is said to have the URP if for any ε > 0 and any N ∈ N, there exists
a closed set B ⊆ X such that the sets

T n(B), n ∈ {0, 1, . . . , N − 1}d ,

are mutually disjoint and

ocap(X/ ⊔
n∈{0,1,. . . ,N−1}d

T n(B)) < ε.

In this paper, we shall show that all minimal and free dynamical systems (X , T ,Zd)
have the property URP (Theorem 4.2).

2.2 Crossed product C*-algebras

Let (X , T ,Zd) be a topological dynamical system. Then the crossed product
C*-algebra C(X) ⋊Zd is the universal C*-algebra

A = C*{ f , un ; un f u∗n = f ○ T n , umu∗n = um−n , u0 = 1, f ∈ C(X), m, n ∈ Zd}.

The C*-algebra A is nuclear, and if T is minimal and free, the C*-algebra A is simple.
Moreover, the simplex of tracial states of C(X) ⋊σ Γ is canonically homeomorphic to
the simplex of invariant probability measures of (X , T ,Zd).

2.3 Cuntz comparison of positive elements of a C*-algebra

Definition 2.8. Let A be a C*-algebra, and let a, b ∈ A+. Then we say that a is Cuntz
subequivalent to b, denoted by a ≾ b, if there are x i , y i , i = 1, 2, . . ., such that

lim
n→∞

x i by i = a.

We say that a is Cuntz equivalent to b if a ≾ b and b ≾ a. This is an equivalence relation;
let us denote the equivalence class of a by [a].

Let K denote the algebra of compact operators on a separable Hilbert space. Then
the equivalence classes of positive elements of A⊗K form an ordered semigroup
under the addition

[a] + [b] ∶= [(a
b)] , a, b ∈ (A⊗K)+
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(independent of the isomorphism K ≅K⊗M2). It is called the Cuntz semigroup
of A.

Let τ ∶ A→ C be a trace. Define the rank function

dτ(a) ∶= lim
n→∞

τ(a 1
n ) = μτ(sp(a) ∩ (0,+∞)),

where μτ is the Borel measure induced by τ on the spectrum of a. It is well known that

dτ(a) ≤ dτ(b), if a ≾ b.(2.1)

Example 2.1. Consider h ∈ C(X)+ and let μ be a probability measure on X. Then

dτμ(h) = μ(h−1(0,+∞)),
where τμ is the trace of C(X) induced by μ.

Let f , g ∈ C(X) be positive elements. Then f and g are Cuntz equivalent if and only
if f −1(0,+∞) = g−1(0,+∞). That is, their equivalence classes are determined by their
open supports.

With this example, let us introduce the following notation.

Definition 2.9. For each open set E ⊆ X, pick a continuous function

φE ∶ X → [0,+∞) such that E = φ−1
E (0,+∞).

For instance, one can pick φE(x) = d(x , X/E), where d is a compatible metric on X.
This notation will be used throughout this paper. Note that the Cuntz equivalence class
of φE is independent of the choice of the individual function φE .

In general, the converse of (2.1) fails (e.g., A =M4(C(S2 × S2))). But one can
measure it by the radius of comparison.

Definition 2.10. (Definition 6.1 of [36]) Let A be a C*-algebra. Denote by Mn(A),
the C*-algebra of n × n matrices over A. Regard Mn(A) as the upper-left corner of
Mn+1(A), and consider the union

M∞(A) =
∞
⋃
n=1

Mn(A),

the algebra of all finite matrices over A.
The radius of comparison of a unital C*-algebra A, denoted by rc(A), is the

infimum of the set of real numbers r > 0 such that if a, b ∈ (M∞(A))+ satisfy

dτ(a) + r < dτ(b), τ ∈ T(A),
then a ≾ b, where T(A) is the simplex of tracial states. (In [36], the radius of com-
parison is defined in terms of quasitraces instead of traces; but since all the algebras
considered in this note are nuclear, by [17], any quasitrace actually is a trace.)

Example 2.2. Let X be a compact Hausdorff space. Then (see [37])

rc(Mn(C(X))) ≤ 1
2

dim(X) − 1
n

,(2.2)

where dim(X) is the topological covering dimension of X (a lower bound for
rc(C(X)) in terms of cohomological dimension is given in [5]).
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1246 Z. Niu

The C*-algebra C(X) is canonically contained in the crossed product C*-algebra
C(X) ⋊Zd . Thus, one can compare positive elements of C(X) not only inside C(X),
but also inside the larger C*-algebra C(X) ⋊Zd .

Definition 2.11. (Definition 4.1 of [29]) A dynamical system (X , T ,Zd) is said to
have (λ, m)-COS, where λ ∈ (0, 1] and m ∈ N, if for any open sets E , F ⊆ X with

μ(E) < λμ(F), μ ∈M1(X , T ,Zd),
then

φE ≾ φF ⊕ ⋅ ⋅ ⋅ ⊕ φF
���

m

in (C(X) ⋊Zd) ⊗K,

where φE and φF are continuous functions given by Definition 2.9.
The dynamical system (X , Γ) is said to have COS if it has (λ, m)-COS for some λ

and m.

In this paper, we shall show that all minimal and free dynamical systems (X , T ,Zd)
have the property COS (Theorem 5.5). Together with the property URP, we obtain a
dynamical version of (2.2); that is,

rc(C(X) ⋊Zd) ≤ 1
2

mdim(X , T ,Zd)

if (X , T ,Zd) is minimal and free (Corollary 5.6).
The following notation and lemma will be frequently used.

Definition 2.12. Let a ∈ A+, where A is a C*-algebra, and let ε > 0. Define

(a − ε)+ = f (a) ∈ A,

where f (t) = max{t − ε, 0}.

Lemma 2.13. (Section 2 of [31]) Let a, b be positive elements of a C*-algebra A. Then
a ≾ b if and only if (a − ε)+ ≾ b for all ε > 0.

3 Adding-one-dimension, going-down arguments, R-boundary
points, and R-interior points

The adding-one-dimension and going-down arguments are introduced in [14], and
they play a crucial role in the paper. Let us first make a brief review.

Definition 3.1. (Definition 1.2 of [14]) A topological dynamical system (X , T , Γ) is
said to have the marker property if, for any finite set F ⊆ Γ, there is an open set U ⊆ X
such that X = ⋃n∈Γ T n(U) and U ∩ T n(U) = ∅ for all nonidentity n ∈ F.

Any topological dynamical system with the marker property is free; any minimal
and free dynamical system has the marker property.

Let (X , T ,Zd) be a dynamical system with the marker property. Let M be an
arbitrary natural number. Then there exist open set U ⊆ X, a compact set K ⊆ U , an
integer L > M, and a continuous function φ ∶ X → [0, 1] with

φ∣K = 1 and φ∣X/U = 0,
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such that:
(1) if φ(x) > 0 for some x ∈ X, then φ(T n(x)) = 0 for all nonzero n ∈ Zd with ∣n∣ ≤

M, and
(2) for any x ∈ X, there is n ∈ Zd with ∣n∣ ≤ L such that φ(T n(x)) = 1.
See Section 4 of [14] for the proof.

Let x ∈ X be arbitrary. Following [14], one considers the set

{(n, φ(T n(x))−1) ∶ n ∈ Zd , φ(T n(x)) ≠ 0} ⊆ Rd+1 ,

and defines the Voronoi cell V(x , n) ⊆ Rd+1 with center (n, φ(T n(x))−1) by

V(x , n) = {ξ ∈ Rk+1 ∶ ∥ξ − (n, φ(T n(x))−1)∥ ≤ ∥ξ − (m, φ(T m(x))−1)∥ , m ∈ Zd} ,

where ∥⋅∥ is the �2-norm on R
d+1. If φ(T n(x)) = 0, then put

V(x , n) = ∅.

One then has a tiling

R
d+1 = ⋃

n∈Zd

V(x , n).

Pick H > (L +
√

d)2. For each n ∈ Zd , define

WH(x , n) = V(x , n) ∩ (Rd × {−H}).

One then has a tiling

WH ∶ Rd = ⋃
n∈Zd

W(x , n).

The following are some basic properties of this construction, and the proofs can be
found in [14].

Lemma 3.2. (Lemma 4.1 of [14]) With the construction above, one has:
(1) WH is continuous on x in the following sense: Suppose that W(x , n) has nonempty

interior. For any ε > 0, if y ∈ X is sufficiently close to x, then the Hausdorff distance
between WH(x , n) and WH(y, n) is less than ε.

(2) WH is Zd -equivariant: WH(T m(x), n −m) = −m +WH(x , n).
(3) If φ(T n(x)) > 0, then

B M
2
(n, φ(T n(x))−1) ⊆ V(x , n).

(4) If WH(x , n) is nonempty, then

1 ≤ φ(T n(x))−1 ≤ 2.

(5) If (a,−H) ∈ V(x , n), then

∥a − n∥ < L +
√

d .

Moreover, if one considers different horizontal cuts, at levels −sH and −H for some
s > 1, then one has the following lemma.
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1248 Z. Niu

(Lemma 4.1(4) of [14] and its proof) Let s > 1 and r > 0. One can choose M
sufficiently large such that if (a,−sH) ∈ V(x , n), then

Br (
a
s
+ (1 − 1

s
) n) ⊆ WH(x , n)

and

∥ a
s
+ (1 − 1

s
) n − (a + (s − 1)H

sH + t
(n − a))∥ ≤ 4

L +
√

d
,

where t = φ(T n(x))−1 and ∥⋅∥ is the l 2-norm on R
d . ∎

Definition 3.4. Note that the point (a + (s−1)H
sH+t (n − a),−H) is the image of (a,−sH)

in the plane Rd × {−H} under the projection toward the center (n, t). Let us call a +
(s−1)H

sH+t (n − a) the H-projective image of a (with the center (n, t)).

This construction can be illustrated by the following picture.

The following result concerns convex bodies inR
d ; the author is indebted to Tyrrell

McAllister for discussions related to this.

Lemma 3.5. Consider the Euclidean space R
d . For any ε > 0 and any r > 0, there is

N0 > 0 such that if N ≥ N0, then, for any convex body V ⊆ Rd , one has
1

N d ∣{n ∈ Zd ∶ dist(n, ∂V) ≤ r, n ∈ IN}∣ < ε,

where IN = [0, N]d .
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Proof Pick N0 sufficiently large that

2
vol(∂r+

√
d(Ir

N))
vol(IN)

< ε, N > N0 ,

where ∂E(K) denotes the E-neighborhood of the boundary of a convex body K and
Ir

N denotes the r-neighborhood of IN . Then N0 verifies the conclusion of the lemma.
Indeed, for any N ≥ N0, denote by ∂+

r+
√

d
(V ∩ Ir

N), the outer (r +
√

d)-
neighborhood of the convex body V ∩ Ir

N (i.e., ∂+
r+
√

d
(V ∩ Ir

N) = (V ∩ Ir
N)r+

√
d/V ∩

Ir
N , where (V ∩ Ir

N)r+
√

d denotes the (r +
√

d)-neighborhood of V ∩ Ir
N ). It follows

from Steiner’s formula (see, for instance, (4.1) of [32]) and the fact that W0(V ∩ Ir
N) =

vol(V ∩ Ir
N) that

vol(∂+r+√d(V ∩ Ir
N)) =

d
∑
j=1

C j
d Wj(V ∩ Ir

N)(r +
√

d) j ,

where C j
d =

d !
j!(d− j)! and Wj(⋅) is the jth quermassintegral which can be written as

Wj(K) = V(K , . . . , K
���

d− j

, B, . . . , B
���

j

)

for a convex body K with V(⋅) the mixed volume and B the unit ball ofRd (see (5.31) of
[32]). Since the mixed volume is monotonic (see (5.25) of [32]), the quermassintegrals
Wj , j = 1, . . . , d, are monotonic. Hence,

Wj(V ∩ Ir
N) ≤ Wj(Ir

N), j = 1, 2, . . . , d ,

and

vol(∂+r+√d(V ∩ Ir
N)) =

d
∑
j=1

C j
d Wj(V ∩ Ir

N)(r +
√

d) j

≤
d
∑
j=1

C j
d Wj(Ir

N)(r +
√

d) j

= vol(∂+r+√d(I
r
N)).

Since vol(∂r+
√

d(V ∩ Ir
N)) ≤ 2vol(∂+

r+
√

d
(V ∩ Ir

N)), one has

vol(∂r+
√

d(V ∩ Ir
N))

vol(IN)
≤ 2

vol(∂+
r+
√

d
(V ∩ Ir

N))
vol(IN)

≤ 2
vol(∂r+

√
d(Ir

N))
vol(IN)

< ε.

On the other hand, note that,

(∂V) ∩ Ir
N ⊆ ∂(V ∩ Ir

N),

and (∂rV) ∩ IN is contained in the closed r-neighborhood of (∂V) ∩ Ir
N , one has that

(∂rV) ∩ IN is contained in the the closed r-neighborhood of ∂(V ∩ Ir
N); that is,

(∂rV) ∩ IN ⊆ ∂r(V ∩ Ir
N).
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Hence,

∣{n ∈ Zd ∶ dist(n, ∂V) ≤ r, n ∈ IN}∣
≤ ∣∂r(V ∩ Ir

N) ∩Zd ∣
≤ vol(∂r+

√
d(V ∩ Ir

N)),

so that

1
N d ∣{n ∈ Zd ∶ dist(n, ∂V) ≤ r, n ∈ IN}∣ ≤

vol(∂r+
√

d(V ∩ Ir
N))

vol(IN)
< ε,

as desired. ∎

Definition 3.6. Consider a continuous function X ∋ x ↦W(x) with W(x) an R
d -

tiling. For each R ≥ 0, a point x ∈ X is said to be an R-interior point if dist(0, ∂W(x)) >
R, where ∂W(x) denotes the union of the boundaries of the tiles of W. Note that, in
this case, the origin 0 ∈ Rd is an interior point of a (unique) tile of W(x). Denote this
tile by W(x)0, and denote the set of R-interior points by ιR(W).

Otherwise (if dist(0, ∂W(x)) ≤ R), the point x is said to be an R-boundary point.
Denote by βR(W) the set of R-boundary points.

Note that βR(W) is closed and ιR(W) is open.

Lemma 3.7. Let (X , T ,Zd) be a dynamical system with the marker property.
Fix 1 < s < 2. Let R0 > 0 and ε > 0 be arbitrary. Let N > N0, where N0 is the constant

of Lemma 3.5 with respect to ε and 2R0 + 4 +
√

d/2, and let R1 > max{R0 , N
√

d}.
Then the open sets U ′ and U in the construction can be chosen to be sufficiently small

that M is large enough that there exist a finite open cover

U1 ∪U2 ∪ ⋅ ⋅ ⋅ ∪UK ⊇ βR0(WsH),

and n1 , n2 , . . . , nK ∈ Zd , such that:
(1) T n i (U i) ⊆ ιR1(WH) ⊆ ι0(WH), i = 1, 2, . . . , K,
(2) the open sets

T n i (U i), i = 1, 2, . . . , K ,

can be rearranged into m families as
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T n1(U1), . . . , T ns1 (Us1),
T ns1+1(Us1+1), . . . , T ns2 (Us2),
⋅ ⋅ ⋅
T nsm−1+1(Usm−1+1), . . . , T nsm (Usm),

with m ≤ (⌊2
√

d⌋ + 1)d , in such a way that the open sets in each family are mutually
disjoint, and

(3) for each x ∈ ι0(WH) and each c ∈ int(WH(x)0) ∩Zd with dist(c, ∂WH) > N
√

d,
where int(WH(x)0) denotes the set of interior points of the cell WH(x)0, one has

1
N d ∣{n ∈ {0, 1, . . . , N − 1}d ∶ T c+n(x) ∈

K
⋃
i=1

T n i (U i)}∣ < ε.
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Proof By Lemma 4.1(4) of [14] (see Lemma 3.3), one can choose M to be sufficiently
large that for a fixed H > (L +

√
d)2, if (a,−sH) ∈ V(x , n) for some a ∈ Rd , then

BR1+2R0+1+
√

d
2
(as−1 + (1 − s−1)n) × {−H} ∈ V(x , n)

and

∥ a
s
+ (1 − 1

s
) n − (a + (s − 1)H

sH + t
(n − a))∥ ≤ 4

L +
√

d
< 4,(3.1)

where t = φ(T n(x))−1 (so that a + (s−1)H
sH+t (n − a) is the H-projective image of a).

For each n ∈ Zd , define

Un = {x ∈ X ∶ dist(0, ∂WsH(x , n)) < 2R0 , intWsH(x , n) ≠ ∅}.

Note that Un is open. For the same n, pick hn ∈ Zd such that

∥(1 − s−1)n − hn∥ ≤
√

d/2.(3.2)

For each x ∈ Un , there is a ∈ ∂WsH(x , n) ⊆ Rd with

∥a∥ < 2R0 .

By the choice of M (and hence H), one has

BR1+2R0+1+
√

d
2
(as−1 + (1 − s−1)n) ⊆ WH(x , n).(3.3)

Since

∥hn − (as−1 + (1 − s−1)n)∥ ≤ ∥as−1∥ + ∥(1 − s−1)n − hn∥ < 2R0 +
√

d/2,(3.4)

by (3.3), one has

BR1+1(hn) ⊆ WH(x , n),

which implies

BR1(0) ⊂ BR1+1(0) ⊆ −hn +WH(x , n) = WH(T hn(x), n − hn).(3.5)

In particular, T hn(x) ∈ ιR1(WH), which implies

T hn(Un) ⊆ ιR1(WH),

and this shows the property (1).
Note that by (3.1) and (3.4),

∥hn − (a + (s − 1)H
sH + t

(n − a))∥ < 2R0 + 4 +
√

d/2.(3.6)

Since a ∈ ∂WsH(x , n), this implies that hn is in the (2R0 + 4 +
√

d/2)-neighborhood
of the the H-projective image of ∂WsH(x , n) (with respect to (n, t)).

On the other hand, if x ∈ βR0(WsH), then dist(0, ∂WsH(x , n)) ≤ R0 for some n ∈
Z

d with int(WsH(x , n)) ≠ ∅, which implies that x ∈ Un . Therefore, the collection of
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sets {Un ∶ n ∈ Zd} forms an open cover of βR0(WsH). Since βR0(WsH) is a compact
set, there is a finite subcover

Un1 , Un2 , . . . , UnK .

(In fact, {Un ∶ ∥n∥ < L +
√

d + 2R0} already covers βR0(WsH) by (5) of Lemma 3.2.)
Assume that n i and n j satisfy

T hni (Un i ) ∩ T hn j (Un j) ≠ ∅.

Then there are x i ∈ Un i and x j ∈ Un j with

T hni (x i) = T hn j (x j).

Since x i ∈ Un i and x j ∈ Un j , by (3.5), one has

BR1(0) ⊆ WH(T hni (x i), n i − hn i )

and

BR1(0) ⊆ WH(T hn j (x j), n j − hn j)
= WH(T hni (x i), n j − hn j).

Therefore, n i − hn i = n j − hn j , and so

n i − n j = hn i − hn j .

Together with (3.2) and noting that s < 2, one has

∥n i − n j∥ = ∥hn j − hn j∥
≤ (1 − s−1) ∥n i − n j∥ +

√
d

< ∥n i − n j∥ /2 +
√

d ,

i.e.,

∥n i − n j∥ < 2
√

d .(3.7)

Note that the set Z
d can be divided into (⌊2

√
d⌋ + 1)d families (Zd)1, . . .,

(Zd)(⌊2√d⌋+1)d such that any pair of elements inside each family has distance between
them at least 2

√
d, and therefore, by (3.7),

T hn(Un) ∩ T hn′ (Un′) = ∅, n, n′ ∈ (Zd)m , m = 1, . . . , (⌊2
√

d⌋ + 1)d .

Then the rearrangement of Un1 , . . . , UnK as

{Un i ∶ i = 1, . . . , K , n i ∈ (Zd)1}, . . . , {Un i ∶ i = 1, . . . , K , n i ∈ (Zd)(⌊2√d⌋+1)d}

possesses the property (2).
Let x ∈ ι0(WH) (then WH(x)0 is well defined). Write

WH(x)0 = WH(x , n(x)) = V(x , n(x)) ∩ (Rd × {−H}), where n(x) ∈ Zd .
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Assume, there is m ∈ int(WH(x)0) ∩Zd such that

T m(x) ∈ T hnk (Unk)(3.8)

for some nk , k = 1, 2, . . . , K.
Since m ∈ int(WH(x)0) ∩Zd , one has

0 ∈ int(−m +WH(x , n(x))) = intWH(T m(x), n(x) −m).

Hence, T m(x) ∈ ι0(WH) and

WH(T m(x))0 = WH(T m(x), n(x) −m).(3.9)

By the assumption (3.8), there is xnk ∈ Unk such that

T m(x) = T hnk (xnk).

Then, with (3.5), one has

BR1(0) ⊆ WH(T hnk (xnk), nk − hnk) = WH(T m(x), nk − hnk);

that is, the tile WH(T m(x), nk − hnk) contains 0 as an interior point. By (3.9), the tile
WH(T m(x), n(x) −m) contains 0 as an interior point, and therefore, these two tiles
are same, i.e.,

WH(T m(x), n(x) −m) = WH(T hnk (xnk), nk − hnk),

and hence,

V(T m(x), n(x) −m) = V(T hnk (xnk), nk − hnk).

Therefore, at the −sH level, one also has

WsH(T m(x), n(x) −m) = WsH(T hnk (xnk), nk − hnk) = −hnk +WsH(xnk , nk).
(3.10)

By (3.6), hnk is in the (2R0 + 4 +
√

d/2)-neighborhood of the H-projective image
of ∂WsH(xnk , nk) (see Definition 3.4), and therefore, 0 is in the (2R0 + 4 +

√
d/2)-

neighborhood of the H-projective image of

−hnk + ∂WsH(xnk , nk) = ∂WsH(T hnk (xnk), nk − hnk).

Thus, by (3.10), the origin 0 is in the (2R0 + 4 +
√

d/2)-neighborhood of the H-
projective image of ∂WsH(T m(x), n(x) −m), and hence, m is in the (2R0 + 4 +√

d/2)-neighborhood of the H-projective image of ∂WsH(x , n(x)), which is denoted
by ∂W H

sH(x , n(x)), i.e.,

∂W H
sH(x , n(x)) ∶= {a + (s − 1)H

sH + t
(n(x) − a) ∶ a ∈ ∂WsH(x , n(x))} ,

where t = φ(T n(x))−1 (see Definition 3.4).
Therefore, for any c ∈ int(WH(x)0) ∩Zd with dist(c, ∂WH) > N

√
d, since

c + n ∈ int(WH(x)0), n ∈ {0, 1, . . . , N − 1}d ,
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one has

{n ∈ {0, 1, . . . , N − 1}d ∶ T c+n(x) ∈
K
⋃
i=1

h i(U i)}

⊆ {n ∈ {0, 1, . . . , N − 1}d ∶ dist(c + n, ∂W H
sH(x , n(x))) < 2R0 + 4 +

√
d/2} .

Hence, by the choice of N and Lemma 3.5 (applied to the H-projective image of
WsH(x , n(x))),

1
N d ∣{n ∈ {0, 1, . . . , N − 1}d ∶ T c+n(x) ∈

K
⋃
i=1

h i(U i)}∣

≤ 1
N d ∣{n ∈ c + {0, 1, . . . , N − 1}d ∶ dist(n, ∂W H

sH(x , n(x))) < 2R0 + 4 +
√

d/2}∣

< ε.

This proves the property (3). ∎

4 Two towers

4.1 Rokhlin towers

Let x ↦W(x) = ⋃n∈Zd W(x , n) be a map with W(x) a tiling of Rd , where W(x , n)
is the cell with label n. Assume that the map x ↦W(x) is continuous in the sense that
for any ε > 0 and any W(x , n) with nonempty interior, if y ∈ X is sufficiently close to
x, then the Hausdorff distance between W(x , n) and W(y, n) is less than ε. One also
assumes that the map x ↦W(x) is equivariant in the sense that

W(T−m(x), n +m) = m +W(x , n), x ∈ X , m, n ∈ Zd .

The tiling functionsWH andWsH constructed in the previous section clearly satisfy
the assumptions above. With such a tiling function, one actually can build a Rokhlin
tower as follows:

Let N ∈ N be arbitrary. Put

Ω = {x ∈ X ∶ dist(0, ∂W(x)) > N
√

d and W(x)0 =W(x , n) for some n ≡ 0 (mod N)},

where by n ≡ 0 (mod N), one means n i ≡ 0 (mod N), i = 1, 2, . . . , d, if
n = (n1 , n2 , . . . , nd) ∈ Zd . Note that Ω is open.

Let m ∈ {0, 1, . . . , N − 1}d . Pick an arbitrary x ∈ Ω and consider T−m(x). Note that
0 ∈ W(x , n) for some n ≡ 0 (mod N) and dist(0, ∂W(x , n)) > N

√
d. Since

W(T−m(x), n +m) = m +W(x , n),

one has

0 ∈ intW(T−m(x), n +m) and n +m ≡ m (mod N).

Hence,

T−m(Ω) ⊆ Ω′m ,(4.1)
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where

Ω′m ∶= {x ∈ X ∶ 0 ∉ ∂W(x) and W(x)0 = W(x , n), n ≡ m (mod N)}.

For the same reason, if one defines

Ω′′m ∶= {x ∈ X ∶ dist(0, ∂W(x)) > 2N
√

d and W(x)0 = W(x , n), n ≡ m (mod N)},

then

Ω′′m ⊆ T−m(Ω).(4.2)

Since the sets

Ω′m , m ∈ {0, 1, . . . , N − 1}d ,

are mutually disjoint, it follows from (4.1) that the sets

T−m(Ω), m ∈ {0, 1, . . . , N − 1}d ,

are mutually disjoint. That is, they form a Rokhlin tower for (X , T ,Zd).
On the other hand, by (4.2) and the construction of Ω′′m , one has

⊔
m∈{0,1,. . . ,N−1}d

T−m(Ω) ⊇ ⊔
m∈{0,1,. . . ,N−1}d

Ω′′m = {x ∈ X ∶ dist(0, ∂W(x)) > 2N
√

d}.
(4.3)

In particular, one has

ocap
⎛
⎝

X/ ⊔
m∈{0,1,. . . ,N−1}d

T−m(Ω)
⎞
⎠
≤ ocap({x ∈ X ∶ dist(0, ∂W(x)) ≤ 2N

√
d}).

(4.4)

Lemma 4.1. For any E > 0, one has

ocap({x ∈ X ∶ dist(0, ∂W(x)) ≤ E}) ≤ lim sup
R→∞

1
vol(BR)

sup
x∈X

vol(∂E+
√

dW(x) ∩ BR+
√

d),

where ∂E+
√

dW(x) = {ξ ∈ Rd ∶ dist(ξ, ∂W(x)) ≤ E +
√

d}.

Proof Pick an arbitrary x ∈ X and an arbitrary strictly positive number R, and
consider the partial orbit

T m(x), ∥m∥ < R.

Note that if dist(0, ∂W(T m(x))) ≤ E (i.e., 0 ∈ ∂EW(T m(x))) for some m, then

−m ∈ ∂EW(x).

Therefore,

{m ∶ ∥m∥ < R and 0 ∈ ∂EW(T m(x))} ⊆ {m ∶ ∥m∥ < R and m ∈ ∂EW(x)}.
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One has
1

∣BR ∩Zd ∣ ∣{∥m∥ < R ∶ 0 ∈ ∂EW(T m(x))}∣

≤ 1
∣BR ∩Zd ∣ ∣{∥m∥ < R ∶ m ∈ ∂EW(x)}∣

≤ 1
∣BR ∩Zd ∣vol(∂E+

√
dW(x) ∩ Br+

√
d).

Since

lim
R→∞

∣BR ∩Zd ∣
vol(BR)

= 1 and lim
R→∞

vol(BR+
√

d)
vol(BR)

= 1,

lim sup
R→∞

1
∣BR ∩ Zd ∣

∣{∣m∣ < R ∶ 0 ∈ ∂EW(T m(x))}∣ ≤ lim sup
R→∞

1
vol(BR)

vol(∂E+
√

dW(x) ∩ BR).

Since x is arbitrary, this proves the desired conclusion. ∎

Theorem 4.2. Let (X , T ,Zd) be a dynamical system with the marker property. Then,
for any ε > 0 and N ∈ N, there is an open set Ω ⊆ X such that the sets

T−n(Ω), n ∈ {0, 1, . . . , N − 1}d ,

are mutually disjoint (and hence form a Rokhlin tower), and

ocap
⎛
⎝

X/ ⋃
n∈{0,1,. . . ,N−1}d

T−n(Ω)
⎞
⎠
< ε.

In other words, the system (X , T ,Zd) has the Uniform Rohklin Property (see Definition
2.7 and Lemma 3.2 of [29]).

Proof By Lemma 4.2 of [14], there is an equivariant Rd -tiling x ↦W(x) such that

lim sup
R→∞

1
vol(BR)

sup
x∈X

vol(∂(2N+1)
√

dW(x) ∩ BR) < ε.

The conclusion of the theorem follows by (4.4) and Lemma 4.1 (with E = 2N
√

d). ∎

4.2 The two towers

The Rokhlin tower constructed above, in general, does not cover the whole space X.
Now, consider the two continuous tiling functions WsH and WH of Section 3, and
the Rokhlin towers T0 and T1 constructed from them, respectively. It is still possible
that T0 and T1 together do not cover the whole space X. However, in the following
theorem, one can show that the complement of the tower T0 can be cut into pieces
and then each piece can be translated into the tower T1 in such a way that the orders
of the overlaps of the translations are bounded by (⌊2

√
d⌋ + 1)d , and the intersections

of these translations with each T1-orbit are small. This eventually leads to Cuntz
comparison of open sets for minimal-free Zd -actions (Theorem 5.5).
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Theorem 4.3. Consider a dynamical system (X , T ,Zd) with the marker property. Let
N ∈ N and ε > 0 be arbitrary. There exist two Rokhlin towers

T0 ∶= {T−m(Ω0) ∶ m ∈ {0, 1, . . . , N0 − 1}d} and T1 ∶= {T−m(Ω1) ∶ m ∈ {0, 1, . . . , N1 − 1}d},

with N0 , N1 ≥ N and Ω0 , Ω1 ⊆ X open, an open cover {U1 , U2 , . . . , UK} of
X/⋃m T−m(Ω0), and h1 , h2 , . . . , hK ∈ Zd such that:
(1) T hk(Uk) ⊆ ⋃m T−m(Ω1), k = 1, 2, . . . , K;
(2) the open sets

T hk(Uk), k = 1, 2, . . . , K ,

can be rearranged into m families as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T h1(U1), . . . , T hs1 (Us1),
T hs1+1(Us1+1), . . . , T hs2 (Us2),
⋅ ⋅ ⋅
T hsm−1+1(Usm−1+1), . . . , T hsm (Usm),

for some m ≤ (⌊2
√

d⌋ + 1)d , such that the open sets in each family are mutually
disjoint;

(3) for each x ∈ Ω1, one has

1
N d

1
∣{m ∈ {0, 1, . . . , N1 − 1}d ∶ T m(x) ∈

K
⋃
k=1

T nk(Uk)}∣ < ε.

Proof Applying Lemma 3.7 with R0 = 2N
√

d, ε, and some 1 < s < 2, together with
some N1 > max{N(R0 , ε), N} (in place of N) and R1 >max{R0 , 2N1

√
d}, where

N(R0 , ε) is the constant of Lemma 3.5 with respect to ε and 2R0 + 4 +
√

d/2 (so
N(R0 , ε) is the constant N0 of Lemma 3.7; but N0 will be reserved for the height of
the first Rokhlin tower in this proof), we obtain two continuous equivariantRd -tilings
WsH and WH for some (sufficiently large) H > 0, a finite open cover

U1 ∪U2 ∪ ⋅ ⋅ ⋅ ∪UK ⊇ βR0(WsH),

and n1 , n2 , . . . , nK ∈ Zd such that:
(1) T n i (U i) ⊆ ιR1(WH) ⊆ ι0(WH), i = 1, 2, . . . , K;
(2) the open sets

T n i (U i), i = 1, 2, . . . , K ,

can be rearranged as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T n1(U1), . . . , T ns1 (Us1),
T ns1+1(Us1+1), . . . , T ns2 (Us2),
⋅ ⋅ ⋅
T nsm−1+1(Usm−1+1), . . . , T nsm (Usm),

with m ≤ (⌊2
√

d⌋ + 1)d , such that the open sets in each family are mutually
disjoint;
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(3) for each x ∈ ι0(WH) and each c ∈ int(WH(x)0) ∩Zd with dist(c, ∂WH) >
N1
√

d, one has

1
N d

1
∣{n ∈ {0, 1, . . . , N1 − 1}d ∶ T c+n(x) ∈

K
⋃
i=1

T n i (U i)}∣ < ε.

Put

Ω0 = {x ∈ X ∶ dist(0, ∂WsH(x)) > N
√

d and WsH(x)0 =WsH(x , n), n ≡ 0 (mod N)}.

Then the sets

T−m(Ω0), m ∈ {0, 1, . . . , N0 − 1}d ,

form a Rokhlin tower with N0 = N , and by (4.3),

X/ ⊔
m∈{0,1,. . . ,N0−1}d

T−m(Ω0) ⊆ {x ∈ X ∶ dist(0, ∂WsH(x)) ≤ 2N
√

d} = β2N
√

d(WsH).
(4.5)

Thus, U1 , U2 , . . . , UK form an open cover of X/⊔m∈{0,1,. . . ,N0−1}d T−m(Ω0).
Put

Ω1 = {x ∈ X ∶ dist(0, ∂WH(x)) > N1
√

d and WH(x)0 = WH(x , n), n ≡ 0 (mod N1)}.

Then the sets

T−m(Ω1), m ∈ {0, 1, . . . , N1 − 1}d ,

form a Rokhlin tower, and by (4.3) (and the assumption that R1 > 2N1
√

d),

⊔
m∈{0,1,. . . ,N1−1}d

T−m(Ω1) ⊇ {x ∈ X ∶ dist(0, ∂WH) > 2N1
√

d} ⊇ ιR1(WH).(4.6)

Thus, T−h i (U i) ⊆ ⊔m∈{0,1,. . . ,N1−1}d T−m(Ω1).
If x ∈ Ω1 (whence x ∈ ι0(WH) and dist(0, ∂WH) > N1

√
d), it then follows from (3)

(with c = 0) that

1
N d

1
∣{m ∈ {0, 1, . . . , N1 − 1}d ∶ T m(x) ∈

K
⋃
k=1

T nk(Uk)}∣ < ε,

as desired. ∎

5 Cuntz comparison of open sets, radius of comparison, and the
mean topological dimension

With the two-tower construction in the previous section, let us show that the
C*-algebra C(X) ⋊Zd has Cuntz comparison of open sets (Theorem 5.5), and there-
fore, the radius of comparison of C(X) ⋊Zd is at most half of the mean dimension of
(X , T ,Zd).

As a preparation, one has the following two simple observations on the Cuntz
semigroup of a C*-algebra.
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Lemma 5.1. Let A be a C*-algebra, and let a1 , a2 , . . . , am ∈ A be positive elements.
Then

[a1] + [a2] + ⋅ ⋅ ⋅ + [am] ≤ m[a1 + a2 + ⋅ ⋅ ⋅ + am].
Proof The lemma follows from the observation:

⎛
⎜⎜⎜
⎝

a1
a2

⋱
am

⎞
⎟⎟⎟
⎠
≤
⎛
⎜⎜⎜
⎝

a1 + ⋅ ⋅ ⋅ + am
a1 + ⋅ ⋅ ⋅ + am

⋱
a1 + ⋅ ⋅ ⋅ + am

⎞
⎟⎟⎟
⎠

.

∎
For any open set U ⊆ X, recall that φU is a positive continuous function on X such

that U = φ−1
U (0,+∞) (see Example 2.9).

Lemma 5.2. Let U1 , U2 , . . . , UK ⊆ X be open sets which can be divided into M families
in such a way that each family consists of mutually disjoint sets. Then

[φU1] + ⋅ ⋅ ⋅ + [φUK ] ≤ M[φU1∪ ⋅ ⋅ ⋅ ∪UK ] = M[φU1 + ⋅ ⋅ ⋅ + φUK ].
Proof Write U1 , U2 , . . . , UK as

{U1 , . . . , Us1}, {Us1+1 , . . . , Us2}, . . . , {Usm−1+1 , . . . , UsM},

so that the open sets in each family are mutually disjoint. Then
[φUsi+1 ] + ⋅ ⋅ ⋅ + [φUsi+1

] = [φUsi+1 + ⋅ ⋅ ⋅ + φUsi+1
] = [φUsi+1∪ ⋅ ⋅ ⋅ ∪Usi+1

], i = 0, 1, . . . , M − 1,

and together with the lemma above, one has

[φU1] + ⋅ ⋅ ⋅ + [φUK ] = [φU1 + ⋅ ⋅ ⋅ + φUs1
] + ⋅ ⋅ ⋅ + [φUsm−1+1 + ⋅ ⋅ ⋅ + φUsM

]
= [φU1∪ ⋅ ⋅ ⋅ ∪Us1

] + ⋅ ⋅ ⋅ + [φUsm−1+1∪ ⋅ ⋅ ⋅ ∪UsM
]

≤ M[φU1∪ ⋅ ⋅ ⋅ ∪UK ],
as desired. ∎
Definition 5.3. Consider a topological dynamical system (X , Γ), where X is a
compact metrizable space and Γ is a discrete group acting on X on the right, and
consider a Rokhlin tower

T = {Ωγ, γ ∈ Γ0},

where Ω ⊆ X is open and Γ0 ⊆ Γ is a finite set containing the unit e of the discrete
group Γ. Define the C*-algebra

C*(T) ∶= C*{uγC0(Ω), γ ∈ Γ0} ⊆ C(X) ⋊ Γ.

By Lemma 3.11 of [29], C*(T) is canonically isomorphic to M∣Γ0 ∣(C0(Ω)), and

C0( ⋃
γ∈Γ0

Ωγ) ∋ ϕ ↦ diag{ϕ∣Ωγ1 , ϕ∣Ωγ2 , . . . , ϕ∣Ωγ∣Γ0 ∣
} ∈ M∣Γ0 ∣(C0(Ω))}

under this isomorphism.

The following comparison result is essentially a special case of Theorem 7.8 of [29].
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Lemma 5.4. (Theorem 7.8 of [29]) Let Z be a locally compact metrizable space, and
consider the C*-algebra Mn(C0(Z)). Let a, b ∈ Mn(C0(Z)) be two positive diagonal
elements, i.e.,

a(t) = diag{a1(t), a2(t), . . . , an(t)} and b(t) = diag{b1(t), b2(t), . . . , bn(t)}

for continuous functions a1 , . . . , an , b1 , . . . , bn ∶ Z → [0,+∞). If

rank(a(t)) ≤ 1
4

rank(b(t)), t ∈ Z ,

and

4 < rank(b(t)), t ∈ Z ,

then a ≾ b in Mn(C0(Z)).

Proof It is enough to show that (a − ε)+ ≾ b for arbitrary ε > 0. For a given ε > 0,
there is a compact subset D ⊆ Z such that (a − ε)+ is supported inside D. Denote by
π ∶ Mn(C0(Z)) →Mn(C(D)) the restriction map. One then has

rank(π((a − ε)+)(t)) ≤
1
4

rank(π(b)(t)), t ∈ D,

and
1
n
< 1

4n
rank(b(t)), t ∈ D.

By Theorem 7.8 of [29], one has π((a − ε)+) ≾ π(b) in Mn(C(D)), i.e., there is a
sequence (vk) ⊆ Mn(C(D)) such that vk(π(b))v∗k → π((a − ε)+) as k →∞. Extend
each vk to a function in Mn(C0(Z)), and still denote it by vk . It is clear that the
new sequence (vk) satisfies vk bv∗k → (a − ε)+ as k →∞, and hence (a − ε)+ ≾ b, as
desired. ∎

Theorem 5.5. Let (X , T ,Zd) be a dynamical system with the marker property, and let
E , F ⊆ X be open sets such that

μ(E) < 1
4

ν(F), μ ∈M1(X , T ,Zd).

Then,

[φE] ≤ ((2⌊
√

d⌋ + 1)d + 1)[φF]

in the Cuntz semigroup of C(X) ⋊Zd , where φE and φF are continuous functions
supported on E and F, respectively (see Example 2.9). In other words, the C*-algebra
C(X) ⋊Zd has ( 1

4 , (2⌊
√

d⌋ + 1)d + 1)-COS (see Definition 2.11).

Proof Let E and F be open sets satisfying the condition of the theorem. Let ε > 0 be
arbitrary. In order to prove the statement of the theorem, it is enough to show that

(φE − ε)+ ≾ φF ⊕ ⋅ ⋅ ⋅ ⊕ φF
���
(2⌊
√

d⌋+1)d+1

.
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For the given ε, pick a compact set E′ ⊆ E such that

(φE − ε)+(x) = 0, x ∉ E′ .(5.1)

By the assumption of the theorem, one has

μ(E′) < 1
4

μ(F), μ ∈M1(X , T ,Zn).(5.2)

It follows that there is N ∈ N such that for any M > N and any x ∈ X,

1
Md
{m ∈ {0, 1, . . . , M − 1}d ∶ T−m(x) ∈ E′} <

1
4

1
Md
{m ∈ {0, 1, . . . , M − 1}d ∶ T−m(x) ∈ F}.

(5.3)

Otherwise, there are sequences Nk ∈ N, xk ∈ X, k = 1, 2, . . . , such that Nk →∞ as k →
∞, and for any k,

1
N d

k

{m ∈ {0, 1, . . . , Nk − 1}d ∶ T−m(xk) ∈ E′} ≥
1
4

1
N d

k

{m ∈ {0, 1, . . . , Nk − 1}d ∶ T−m(xk) ∈ F}.

That is,

4δNk ,xk(E′) ≥ δNk ,xk(F), k = 1, 2, . . . ,(5.4)

where δNk ,xk = 1
N d

k
∑m∈{0,1,. . . ,Nk−1}d δT−m(xk) and δy is the Dirac measure concen-

trated at y. Let δ∞ be a limit point of {δNk ,xk , k = 1, 2, . . .}. It is clear that δ∞ ∈
M1(X , T ,Zd). Passing to a subsequence of k, one has

δ∞(F) ≤ lim inf
k→∞

δNk ,xk(F) (F is open)

≤ 4 lim inf
k→∞

δNk ,xk(E′) (by (5.4))

≤ 4 lim sup
k→∞

δNk ,xk(E′)

≤ 4δ∞(E′) (E′ is closed),

which contradicts (5.2).
By (5.1) and (5.3), for any M > N and any x ∈ X,

1
Md {m ∈ {0, 1, . . . , M − 1}d ∶ (φE − ε)+(T−m(x)) > 0}(5.5)

≤ 1
Md {m ∈ {0, 1, . . . , M − 1}d ∶ T−m(x) ∈ E′}

< 1
4

1
Md {m ∈ {0, 1, . . . , M − 1}d ∶ T−m(x) ∈ F}

= 1
4

1
Md {m ∈ {0, 1, . . . , M − 1}d ∶ φF(T−m(x)) > 0}.

Note that, by the assumption,

μ(F) > 0, μ ∈M1(X , T ,Zd).

Downloaded from https://www.cambridge.org/core. 11 Feb 2025 at 10:06:22, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1262 Z. Niu

The compactness argument same as above shows that N can be chosen sufficiently
large so that there is δ > 0 such that for any M > N ,

1
4Md ∣{m ∈ {0, 1, . . . , M − 1}d ∶ φF(T−m(x)) > 0}∣ > δ, x ∈ X .(5.6)

Let

T0 = {T−m(Ω0), m ∈ {0, 1, . . . , N0 − 1}d}

and

T1 = {T−m(Ω1), m ∈ {0, 1, . . . , N1 − 1}d}

denote the two towers obtained from Theorem 4.3 with respect to max{N , d
√

1
δ }

and δ. Denote by U1 , U2 , . . . , UK and n1 , n2 , . . . , nK ∈ Zd , the open sets and group
elements, respectively, obtained from Theorem 4.3.

Pick χ0 ∈ C(X)+ such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

χ0(x) = 1, x ∉ ⋃K
k=1 Uk ,

χ0(x) > 0, x ∈ ⊔m∈{0,1,. . . ,N0−1}d T−m(Ω0),
χ0(x) = 0, x ∉ ⊔m∈{0,1,. . . ,N0−1}d T−m(Ω0).

(5.7)

Note that then (1 − χ0) is supported in the set U1 ∪U2 ∪ ⋅ ⋅ ⋅ ∪UK . Consider

(φE − ε)+ = (φE − ε)+(1 − χ0) + (φE − ε)+χ0 .

Then, for any x ∈ Ω0, it follows from (5.5) and (5.7) that

∣{m ∈ {0, 1, . . . , N0 − 1}d ∶ ((φE − ε)+χ0)(T−m(x)) > 0}∣
= ∣{m ∈ {0, 1, . . . , N0 − 1}d ∶ (φE − ε)+(T−m(x)) > 0}∣

< 1
4
∣{m ∈ {0, 1, . . . , N0 − 1}d ∶ φF(T−m(x)) > 0}∣

= 1
4
∣{m ∈ {0, 1, . . . , N0 − 1}d ∶ (φF χ0)(T−m(x)) > 0}∣ .

Therefore, with respect to the isomorphism C*(T0) ≅ MN d
0
(C0(Ω0)) (see Definition

5.3), one has

rank(((φE − ε)+χ0)(x)) ≤
1
4

rank((φF χ0)(x)), x ∈ Ω0 .

Moreover, it follows from (5.6) and the fact that N0 > d
√

1
δ that, for any x ∈ Ω0,

1
4N d

0
rank((φF χ0)(x)) =

1
4N d

0
∣{m ∈ {0, 1, . . . , N0 − 1}d ∶ φF(T−m(x)) > 0}∣ > δ > 1

N d
0

.

Then, by Lemma 5.4,

(φE − ε)+χ0 ≾ φF χ0 ≾ φF .(5.8)
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Consider the product (φE − ε)+(1 − χ0). Since (1 − χ0) is supported in U1 ∪U2 ∪
⋅ ⋅ ⋅ ∪UK , one has

(φE − ε)+(1 − χ0) ≾ (1 − χ0) ≾ φU1∪ ⋅ ⋅ ⋅ ∪UK ∼ φU1 + ⋅ ⋅ ⋅ + φUK ≾ φU1 ⊕ ⋅ ⋅ ⋅ ⊕ φUK .

On the other hand, by Lemma 5.2,

φTn1 (U1) ⊕ ⋅ ⋅ ⋅ ⊕ φTnK (UK) ≾ ⊕
(2⌊
√

d⌋+1)d

(φTn1 (U1) + ⋅ ⋅ ⋅ + φTnK (UK)).

Note that φU i ∼ φTni (U i), i = 1, 2, . . . , K, and so one has

(φE − ε)+(1 − χ0) ≾ ⊕
(2⌊
√

d⌋+1)d

φTn1 (U1)∪ ⋅ ⋅ ⋅ ∪TnK (UK).(5.9)

By Theorem 4.3,

1
N d

1
∣{m ∈ {0, 1, . . . , N1 − 1}d ∶ T−m(x) ∈

K
⋃
k=1

T nk(Uk)}∣ < δ, x ∈ Ω1 .(5.10)

Let χ1 ∶ X → [0, 1] be a continuous function such that

{ χ1(x) > 0, x ∈ ⊔m∈{0,1,. . . ,N1−1}d T−m(Ω1),
χ1(x) = 0, x ∉ ⊔m∈{0,1,. . . ,N1−1}d T−m(Ω1).

Then
1

4N d
1

rank((φF χ1)(x)) =
1

4N d
1
∣{m ∈ {0, 1, . . . , N1 − 1}d ∶ φF(T−m(x)) > 0}∣ > δ > 1

N d
1

for all x ∈ Ω1, and hence, by (5.10), one has

rank(φTn1 (U1)∪ ⋅ ⋅ ⋅ ∪TnK (UK)(x)) = ∣{m ∈ {0, 1, . . . , N1 − 1}d ∶ T−m(x) ∈
K
⋃
k=1

T nk(Uk)}∣

< N d
1 δ < 1

4
rank((φF χ1)(x))

for any x ∈ Ω1.
By Lemma 5.4,

φTn1 (U1)∪ ⋅ ⋅ ⋅ ∪TnK (UK) ≾ φF χ1 ≾ φF ,

and together with (5.9) and (5.8), this implies

(φE − ε)+ ≾ (φE − ε)+(1 − χ0) ⊕ (φE − ε)+χ0

≾ ( ⊕
(2⌊
√

d⌋+1)d

(φTn1 (U1)∪ ⋅ ⋅ ⋅ ∪TnK (UK))) ⊕ φF

≾ ( ⊕
(2⌊
√

d⌋+1)d

φF) ⊕ φF ,

as desired. ∎

Theorem 5.6. Let (X , T ,Zd) be a minimal-free dynamical system. Then

rc(C(X) ⋊Zd) ≤ 1
2

mdim(X , T ,Zd).
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Proof Note that any minimal-free dynamical system has the marker property. By
Theorem 5.5, the C*-algebra C(X) ⋊Zd has the property COS. By Theorem 4.2, the
dynamical system (X , T ,Zd) has the property URP. The statement follows directly
from Theorem 4.8 of [29]. ∎

Remark 5.7. The proof of Theorem 4.8 of [29] used the simplicity of the C*-algebra
C(X) ⋊Zd .

The following corollary generalizes Corollary 4.9 of [7] (where d = 1) and general-
izes the classifiability result of [33] (where dim(X) < ∞).

Theorem 5.8 Let (X , T ,Zd) be a minimal-free dynamical system with mean dimen-
sion zero. Then C(X) ⋊Zd absorbs the Jiang–Su algebra tensorially, and hence is
classified by its Elliott invariant (i.e., belongs to the classifiable class of Theorem 2.7 of
[4]). In particular, if dim(X) < ∞, or (X , T ,Zd) has at most countably many ergodic
measures, or (X , T ,Zd) has finite topological entropy, then C(X) ⋊Zd is classified by
its Elliott invariant.

Proof By Theorems 4.2 and 5.5, the dynamical system (X ,Zd) has the URP and
COS. The statement then follows from Theorem 4.8 of [28]. ∎

The following is a generalization of Corollary 5.7 of [7].

Corollary 5.9. Let (X1 , T1 ,Zd1) and (X2 , T2 ,Zd2) be arbitrary minimal-free dynam-
ical systems, where d1 , d2 ∈ N. Then the tensor product C*-algebra (C(X1) ⋊Zd1) ⊗
(C(X2) ⋊Zd2) absorbs the Jiang–Su algebra tensorially, and hence is classified by its
Elliott invariant.

Proof Note that

(C(X1) ⋊Zd1) ⊗ (C(X2) ⋊Zd2) ≅ C(X1 × X2) ⋊ (Zd1 ×Zd2),

where Zd1 ×Zd2 acting on X1 × X2 by

(T1 × T2)(n1 ,n2)((x1 , x2)) = (T n1
1 (x1), T n2

2 (x2)), n1 ∈ Zd1 , n2 ∈ Zd2 .

By the argument of Remark 5.8 of [7], one has

mdim(X1 × X2 , T1 × T2 ,Zd1 ×Zd2) = 0,

and the statement then follows from Theorem 5.8. ∎
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