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Ratio-dependent predator—prey models are favoured by many animal ecologists
recently as they better describe predator—prey interactions where predation involves
a searching process. When densities of prey and predator are spatially homogeneous,
the so-called Michaelis-Menten ratio-dependent predator—prey system, which is an
ordinary differential system, has been studied by many authors. The present paper
deals with the case where densities of prey and predator are spatially inhomogeneous
in a bounded domain subject to the homogeneous Neumann boundary condition. Its
main purpose is to study qualitative properties of solutions to this reaction-diffusion
(partial differential) system. In particular, we will show that even though the unique
positive constant steady state is globally asymptotically stable for the
ordinary-differential-equation dynamics, non-constant positive steady states exist for
the partial-differential-equation model. This demonstrates that stationary patterns
arise as a result of diffusion.

1. Introduction

There is growing biological and physiological evidence [1-4,9,15,16] that in many
situations, such as when predators have to search, share and compete for food, a
more suitable general predator—prey model should be based on the so-called ratio-
dependent theory, which asserts that the per capita predator growth rate should
be a function of the ratio of prey to predator abundance.

Let u and v represent the densities of prey and predator, respectively. In general,
a ratio-dependent predator—prey model takes the form

W0 =ugt) (%), v =0(a(2)-a)

where the function g represents the growth rate of prey in the absence of predator,
the function p is the so-called predator functional response, the function ¢ is the
rate of conversion of prey to predator, also called the birth rate of the predator,
and the positive constant d is the death rate of the predator. The functions p and ¢
are assumed to satisfy the usual non-negative and increasing properties, as well as
being equal to zero at zero. In Gause’s model, ¢ = np, where 7 is a positive constant

© 2003 The Royal Society of Edinburgh
https://doi.org/10.1017/5S0308210500002742 Published online by Carrgj)[@ge University Press


https://doi.org/10.1017/S0308210500002742

920 P. Y. H Pang and M. Wang

sometimes referred to as the conversion rate. A typical model of ¢ is the logistic
growth ¢g(u) = a(1l —u/K), where a and K are positive constants.

Based on the prevalent Lotka—Volterra-type predator—prey model with Michaelis—
Menten-type functional response, the following ratio-dependent analogue has been
studied by many authors:

) — Low) o _ew
w(t) au( K> u+mo’

(1.1)
onu
V() :v(—d—l— ! >,
u + mv
where a, ¢, d, n and K are positive constants. Under the scaling
; ; U v
—a U= = V= —
) Ki )
system (1.1) takes the form
b
W (1) = u(l — ) — ——
u + mv
u (1.2)
V' (t) —rU(—k—i— >,
u + mv

where b = ¢/a, r = en/a, k = d/(cn). The qualitative properties of (1.2) and related
models have been studied by many authors [5,18-20,23,33].
We note that (1.2) has at most one positive steady state (@, 7) given by
b(1—k) 1—k

1=1——-= 0= u ifk<1, b(1—k)<m. (1.3)
m mk

Furthermore, if £ < 1 and

b < o when

1
<r<oo or
1-k 1-k , (1.4)
b<m(l+rk) whenr< T
then (@,?) is globally asymptotically stable in Ri [18,23]. We note that condi-
tion (1.4) implies b(1 — k) < m.
Now, if the predator and prey are confined to a fixed bounded domain {2 in R™
with smooth boundary, and their densities are spatially inhomogeneous, from (1.2),

we are led to consider the following reaction-diffusion system:

b
ur — dr1Au = u(l —u) — i , r €N, t>0,
u + mu
vt—dgAv:rv( “ —k), r €N, t>0,
u+ mu (1.5)
Jdu v
5—5—0, r €012, t>0,
u(z,0) = ug(z) 20, ov(z,0) =vo(xz) 20, z €.
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In the above, v is the outward unit normal vector of the boundary 92 and the homo-
geneous Neumann boundary condition is being considered. The constants d; and
ds, which are the diffusion coefficients, are positive, and the initial data ug, vo are
continuous functions. We note that (1.5) has a unique non-negative global solution
(u,v). In addition, if ug # 0, vo # 0, then the solution is positive, i.e. u(x,t) > 0,
v(z,t) > 0 on 2 for all t > 0. It is obvious that if k < 1 and b(1 — k) < m, then
(@, ) given by (1.3) is also a positive constant steady state of (1.5).

The main aim of this paper is to study the dissipation, persistence and stability
of non-negative constant steady states, as well as the existence of non-constant
positive steady states of (1.5). In particular, we will prove that if

k<1, max{b(l-k), VIit+b—Vk?2} <m<bl-Fk?, (1.6)

then (1.5) has non-constant positive steady states for suitable ranges of d; and ds
(see theorems 5.2 and 5.4 for details). This implies that if (1.4) and (1.6) hold simul-
taneously, the positive constant equilibrium (@, 0) is globally asymptotically stable
for the ordinary-differential-equation (ODE) dynamics (1.2), but the corresponding
partial-differential-equation dynamics (1.5) will have non-constant positive steady
states, thus showing that stationary patterns arise as a result of diffusion.

REMARK 1.1. If we choose b = 3, k = 3 and r > 2, then (1.4) and (1.6) hold simul-
taneously, provided that (2 — 1/v/2)% < m < 9.

We point out that the study of non-constant steady-state solutions involves the
analysis of non-trivial solutions to elliptic systems (see (3.1) below). Typically,
there are two methods to establish the existence of such non-trivial solutions. One
is singular perturbation [21,22]. The other, which will be used in this paper, is a
bifurcation technique. We refer the reader to [7,10,11,14,26] for applications of
this method to a variety of problems in mathematical biology. A variation of the
bifurcation technique makes use of the powerful Leray—Schauder degree theory [8,
12,13,27-29,34]. As a general background for diffusive predator—prey models, we
refer to [6,24,32].

The organization of this paper is as follows. In §2, we first study the dissipation,
persistence and stability of non-negative constant steady states for (1.5). In §3, a
priori upper and lower bounds for positive steady states of (1.5) are established.
Section 4 deals with non-existence of non-constant positive steady states of (1.5)
for certain ranges of the parameters. In §5, we consider the global existence of
non-constant positive steady states. Bifurcation is discussed in §6, while stability
is relegated to the last section.

2. Large-time behaviour of solutions to (1.5)

First, we note that (1.5) has two trivial non-negative constant steady states, namely,
Ey=(0,0) and E; = (1,0).

2.1. Dissipation

THEOREM 2.1. For any solution (u,v) of (1.5),

limsup maxu(-,t) < 1, limsup maxv(-,t) < max{0, (1—k)/(mk)}. (2.1)
Q

t—o00 2 t—00
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Thus, for any e > 0, the rectangle [0,1 4 €) x [0,max{0, (1 —k)/(mk)} +¢€) is a
global attractor of (1.5) in R?%.

Proof. Since u satisfies
u —d1Au<u(l —w), ze€82, t>0,
@:0, x €2, t>0,
v
u(x,0) = uo(xz) 20, z € L,

the first inequality of (2.1) follows.
As_a result, for any € > 0, there exists T > 0 such that u(z,t) < 1 + ¢ for all
x € 2 and t > T. It then follows that v satisfies

1
vy — doAv < rv(—k + L)

14+e+mv
:rv(l—k)(l—i—s)—mk:v’ re, t=>T,
14+e+mv
@:0, r€ed, t=>T,
ov
v(z,T) >0, x € 1.

If £ < 1, let z(t) be a solution of the ODE

(1-k)A+e) —mkz
1+e+mz
2(T) = maxv(-,T) > 0.
Q

Zt)=rz , 2T,

Then

tligloz(t) - %

It follows from the comparison principle that v(x,t) < z(¢), and hence

1-k)(1
limsup maxv(-,t) < A-rd+e)
t—o0 0 mk

If £ > 1, we have the differential inequality

—mrkuv?

vy — doAv  ———m89
1+e+mo

and the same argument above yields

lim sup maxv(-,t) < 0.

t—oo

In either case, the second inequality of (2.1) holds. O
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2.2. Persistence

DEFINITION 2.2. Problem (1.5) is said to have the persistence property if, for any
non-negative initial data (ug(x), vo(z)) with ug(z) # 0, vo(z) # 0, there exists a
positive constant € = e(ug,vg) such that the corresponding solution (u,v) of (1.5)

satisfies

liminf minu(-,t) > ¢, liminf minov(-,t) > e.
t—oo 0 t—oo

THEOREM 2.3. If k <1 and b < m, then (1.5) has the persistence property.

Proof. Suppose ug(z) = 0 (# 0) and vo(z) = 0 (# 0). By the first equation of (1.5),

we have

b
ut—dlAu>u(1—E—u>, ref), t>0,

@:0, r €, t>0,
ov
u(z,0) =up(x) 20 (£0), z€

Since b/m < 1, it follows by a comparison argument that

b
liminf minu(-,¢t) > 1 — —.
t—oo m
Thus there exists T > 0 such that
1 b _
u(:mt)}—(l——) 2p>0 Vee, t>T.
2 m

As a result, v satisfies

vy — dpAv > rv(—k+ U > :m(l _k)n—mk:v’ 9.
muv +1 mv + 1
ov
gv _ o0
ov 0, x € 012,
v(@ 1) >0, T €N

Let w(t) be a solution of the ODE

Then

lim w(t) = A=k

t—oo mk ’

since k < 1. The comparison principle gives v(x,t) > w(t), and, in turn,

1—k
liminf minov(-,t) > Q

> 0.
t—oo 0 mk

The proof is complete.
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THEOREM 2.4. Suppose that di = ds. If there exists a positive constant o such that
(a +m)(1 +7k) < b+ ar, then the sector R = {(u,v) | u,v 2 0, u < av} is an
invariant domain of (1.5), i.e. if the initial data (uo(z),vo(x)) € R for all x € £2,
then (u(x,t),v(z,t)) € R for all x € 2 and t > 0. Furthermore, if this « satisfies
either o +m < b or a(l — k) < mk, and the initial data (ug,v) lie in R, then
(u,v) — (0,0) uniformly on 2 as t — oo. In particular, in this case, system (1.5)
does not have the persistence property.

Proof. Let G(u,v) = u — av and

buv

s =ro( )

flu,v) =u(l —u) —

u+mo’

Then
R = {(uw,v) | u,v 20, G(u,v) <0} and dG = (1,—a).

As (a+m)(14+7rk) < b+ar, it follows by direct computation that, on the boundary
u = au,

b
G-(fag)T=f—ag:u(1+rk— +O”"> —u2 <0.
a+m
The invariance of R then follows from corollary 14.8 of [32].
Now we assume that either « +m < b or a < mk/(1 — k), and that the initial
data (up,vp) lie in R. Then (u(z,t),v(x,t)) lies in R. Therefore, u satisfies
b

—dlAuéu(l— —u), e, t>0,
a+m
9u =0, r €0, t>0, (2:2)
ov
u(z,0) =0, T € (.

CASE 1. If a +m < b, then v — 0 uniformly on {2 as t — oo by the same argument
as in the proof of theorem 2.1. Furthermore, for any ¢ > 0, there exists T such that
u(z,t) <eforall z € 2 and t > T. Thus v satisfies

1—k)—mk
—dgAvérv( c —k)zrvw, reN, t=>T,
€+ muvu

3 5[5689, t}T,
v(z,T) >0, x € (.

The standard comparison argument shows that

1-k
limsup maxv(-,t) < M
t—oo £ mk

We conclude from the arbitrariness of ¢ > 0 that v — 0 uniformly on {2 as t — oc.
Case 2. If a+m > b and a(l — k) < mk, when k > 1, theorem 2.1 implies that

v — 0 uniformly on {2 as t — 00, and hence so does u, since u < av. Now, when
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k <1, we deduce from (2.2) that
b

limsup maxu(-,t) < 1— o.
t—oo {2 a+m

>

925

Thus, for any £ > 0, there exists Ty > 0 such that u(z,t) < e+ o for all z € 2 and

t > Ty. Consequently, v satisfies

1—k —mk
—dgAvérv(H—a—k>:rv( )+ 9) mv’ r e, t=Ty,
e+ o+ mvu e+ o+ mv
0
U:() r €012, t=T,
ov
v(z,Tp) = 0, x € £
As above,
1—k
limsup maxv(-,t) < w,
t—o00 2 mk
and hence there exists T7 > T such that
1—k _
v(z,t) <s+w Vo € 2, t=>1T1,
mk
and, in turn,
1—k _
u(z,t) < a[a—k# 2 pe) Yze 2, t=1T.
m

Let n = 3[1+ (1 — k)/(mk)] < 1. Since (0) = oa(l — k)/(mk) < no, one can

choose € < 1 such that ¢(¢) < no, and consequently,

(1—k)(e+ o)

}<770 Vee 2, t=>T.
mk

u(z,t) < o [E +
Thus v satisfies

1—k)no —mk
—dgAvérv(n—U—k>:rv( Juo mv’ r €N, t=1,

no + mu no + muv
0
Z o, x€dN, t>T,
ov
v(z,T1) 2 0, T € f2.
Repeating the arguments above,
1—k
limsup maxv(-,t) < M,
t—oo 2 mk
there exists To > T3 such that
1—k _
v(amf)éa—i—M Ve e, t=>1T,
mk
and
1—k _
u(z,t) < aa+a(—k)770<7720 Ve € 2, t=>Ts,
m
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provided that € < (no/a)[n—a(l—k)/(mk)]. Inductively, there exists an increasing
sequence {T},} with T,, — oo such that

u(x,t) <n"c Vo € R, t=T,.

Since n < 1, it follows that u — 0 uniformly on 2 as t — oo, and hence so does v,
as in case 1. The proof is complete. O

2.3. Stability
We discuss the stability of the constant steady states (1,0) and (@, 7).

THEOREM 2.5. If k> 1 and b < m, then

lim (u(-,t),v(-,t)) = (1,0)  uniformly on £,

t—oo

provided that ug # 0. Thus (1,0) is globally asymptotically stable in Ri.

Proof. From the proof of theorem 2.1, we see that there exists a positive function
f(¢) satisfying lim; o f(¢) = 0 such that maxg v(-,t) < f(¢). Thus v — 0 uniformly
on 2 ast — oc.

If b < m, from the proof of theorem 2.3, we see that

b
liminf minu(-,¢t) > 1 — —.
[ m

For any ¢, 0 < € < 1, there exists T, 0 < T < 00, such that

1 b ~
v(z,t) e, u(:ﬂ7t)>§(1—a>én>0 Vee 2, t=>T.
Therefore,
be
up — diAu > u|l —u— , xef, t>T,
me+n
ou
— =0, r€f, t=>T,
v
u(z,T) > 0, r € Q.

An application of the comparison principle gives

b
liminf minwu(-,¢) > 1 — .
t—oo me -+
The arbitrariness of € then implies that
liminf minu(-,t) > 1. (2.3)

t—o0 (9}

This, along with the first inequality of (2.1), implies that « — 1 uniformly on £2 as
t — 0.
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If b = m, then, since v(z,t) < f(t), we have

l—u—mv 5 1—u—mf(t) ,

- d A = = ) S Q; t )
Uy 1Au g U - U T >0
@:0, r €0, t>0,
ov
u(x,0) =0 (£0), x € 0.
Let w(t) be a solution of the ODE
1—w— t
wity= 1m0 2 s

w+mf(t)
w(ty) = m{%nu(-,to) > 0.

Then lim;_, w(t) = 1, and, by the comparison principle, (2.3) follows. The proof
can now be completed as above. O

Next we turn to the stability of (@, ). In this discussion, we will always assume
that £ < 1 and b(1 — k) < m, which imply that (@,?) given by (1.3) is the unique
positive constant steady state of (1.5).

Let 0 = pp < p1 < po < p3 < --- be the eigenvalues of the operator —A on (2
with the homogeneous Neumann boundary condition. Set

= ou  Ov
= 1 2 —_— e —
X = {(um) € [CH(02)] 5~ 0 on 8(2}
and consider the decomposition X = @;°, X, where X is the eigenspace corre-
sponding to pi;.

THEOREM 2.6. If k < 1 and m > b(1 — k?), then the positive constant solution
(@, ) of (1.5) is uniformly asymptotically stable (in the sense of [17]).

Proof. Let
~ ~2
9:1](—1+~b—v~>, 52#;
(@ + mv)? (@ + mv)?
i . (2.4)
O 5 - Mo
(@ +mv)?’ (@ + mv)?
and

Co diA+ 06 -8
B A doA—6)°

Then the linearization of (1.5) at (@,?) can be written as

F()=e()+ (zmzm).
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where f;(21,22) = O(2? + 23), i = 1,2. A straightforward calculation yields

72
0:—1+M’
m
B8 =0bk% >0,
1— k)2
A= AR (2.5)
m
d=rk(l—k)>0,
E(1—K)m—>b(1—k
ﬂ/\_%:?"( Jm —b(A =K _
m
Since m > b(1 — k?), § < 0. For each i, i = 0,1,2,..., X; is invariant under the

operator £, and £ is an eigenvalue of £ on X if and only if £ is an eigenvalue of

the matrix
A= —dipi+ 0 -3 '
A —dap; — 0
Noting that
det A; = didop? + (0dy — Oda) s + BX — 65 > 0,
trA; = —(d1 + dg)/ii +60—-6<0,

we conclude that the two eigenvalues fj and & of A; have negative real parts.
More specifically, we have the following.

(i) For i = 0, if (6 — 0)2 < 4(B\ — 65), then Re&f = 3(0 — &) < 0, and if
(6§ — 0)% > 4(BX\ — 66), then

Reé&f = 1[0 -6+ /(0 — 0)2— 4(BX — 00)] <0,
Reéy = 1[0 -6 — /(0 —0)2—4(BX — 00)] < 0.

(ii) For ¢ > 1, as p; is increasing with respect to ¢ and p; — 0o as i — oo, it
follows that if (tr 4;)? — 4 det A; < 0, then

and if (tr A;)? — 4det A; > 0, since det A; > 0 and tr A; < 0,

Re¢, =
<

(tI‘ Ai - \/(tr Ai)2 —4det Az) < %tr Ai
[—(dl + dg)/J,l + 6 — (5] < 0,

= Nl

2 det Ai
tr Ai - \/(tr Ai)2 — 4det Ai

Re& =1(tr A; + /(tr 4;)2 — ddet 4;) =

< detAi < ¢
tI‘AZ‘

for some positive constant € that does not depend on 1.
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The above arguments show that there exists a positive constant €, which does
not depend on %, such that
Re&f < —¢ Vi

Consequently, the spectrum of £, which consists of eigenvalues, lies in {Re& < —¢}.
Our result now follows from theorem 5.1.1 of [17]. O

3. A priori estimates on positive steady states of (1.5)

The main purpose of this section is to give a priori positive lower and upper bounds
for the positive steady states of (1.5). The corresponding steady-state problem
of (1.5) is the elliptic system

—d1Au=u(l —u) — buv , x € (2,
u + mv
—do Av = rv( R k), T € 2, (3.1)
u + mv
Jdu  Ov
5 = 5 =0, x € 0f2.

Without loss of generality, in the sequel, we will assume that » = 1. We first state
the following Harnack inequality due to Lin et al. [25].

PROPOSITION 3.1 (Harnack inequality (cf. [25])). Letw € C%(2)NCY(§2) be a pos-
itive classical solution to Aw(x) + c(z)w(x) = 0 in 2 subject to the homogeneous
C

Neumann boundary condition where ¢ € C(£2). Then there exists a positive constant
Cy = Ci(n, 2,]|c||oo) such that

maxw < C, minw.
0 0
Throughout the rest of this paper, by classical solutions we mean solutions in

C?(£2) N CY(£2). For notational convenience, we shall write A = (b, k,m) in the
sequel.

THEOREM 3.2. For any positive classical solution (u,v) of (3.1),

(1—F)

mk

maxu(z) < 1, maxv(z) < (3.2)
2 2

Proof. The result follows immediately from the maximum principle. O

THEOREM 3.3. For any positive integer ¢, the positive classical solution (u,v) of
(3.1) lies in C*(£2) x C*(2). Furthermore, for any fized positive constant d, there
exists a positive constant C = C(n, §2,d, A) such that, if d1,ds > d,

[ullc2a @) + Ivllc2a(@) < C (3.3)
for some 0 < a < 1.

Proof. Since u and v are positive on Q_, the standard regularity theorem for elliptic
equations yields (u,v) € C*(22) x C*(0).
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Now, by (3.2), it is known that the right-hand sides of the first two equations
of (3.1) are in L*°(£2). The LP theory (take p > n here) for elliptic equations and
the embedding theorem show that u,v € C1*(£2) for some 0 < a < 1, and the
C* norms of u and v depend only on n, 2, A and the lower bounds of d; and ds.
Let

Then a straightforward calculation yields

mv2Vu + u2Vo 1+1/m
I s
(u + muv) [Vulloo + Vvl

Vf=

and an application of the Schauder theory for elliptic equations concludes the proof.

O

THEOREM 3.4. Let d and D be fized positive constants. Assume that, for any fized
positive constants Dy and Ds, the elliptic problem

—Di1Aw =w — bwz’ T € (2,
w+mz
—DyAz = we —kz, x €, (3.4)
w+ mz
ow 0z
wow @ € 08,

has no positive solution. Then there exists a positive constant C = C(n,{2,d, D, A)
such that, if (d1,ds) € [d,00) x [d, D], every positive classical solution (u,v) of (3.1)
satisfies

m{%nu(m) > C, m{j}nv(x) > C. (3.5)

Proof. We first note that, by theorem 2.1, if (3.1) has a positive solution, then we
must have k£ < 1. Let

bv
u+mu |’

c(z)=dt (1 —u) — co(z) = dy ! [—k+

u—i—mv]

In view of (3.2), there exists a positive constant C = C(n, 2,d, A) such that ||¢1]|o,
lle2lloe < Cif dy,dy > d. As v and v satisfy

Au+ci(z)u=0 in £, % =0 on 912,
) ov

Av+ co(z)v=0 in 2, ol 0 omn 012,
v

proposition 3.1 shows that there exists a positive constant C, = C,(n, £2,d, A) such
that the Harnack inequality

maxu < Cy minu, maxv < Cy minv (3.6)
o) fo) o) fo)

holds when dq,ds > d.

https://doi.org/10.1017/5S0308210500002742 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002742

Ratio-dependent predator—prey model 931

Now, suppose, on the contrary, that (3.5) does not hold. Then, by (3.6), there
exists a sequence {(d1,,d2,)}2, with (di4,d2;) € [d,00) X [d, D], and positive
classical solutions (u;, v;) of (3.1) with (di,d2) = (d1,,d2), such that

maxu; — 0 or maxv; — 0 asi— oo. (3.7)
o) o)

By the maximum principle, u; < 1. Integrating by parts, we obtain

b .
/ui{l—ui—;}dx—o /vi(L—k>dm:0, i=1,2,....
0 U; + mu; 0 U; + mu;

(3.8)
Theorem 3.3 implies that there exists a subsequence of {(u;, v;)}?2,, which we shall
still denote by {(u;, v;)}$2;, and two non-negative functions u,v € C?({2), such that
(ui,v;) — (u,v) in [C?(£2))? as i — oo. By (3.7), we note that u = 0 or v = 0. Also,
u < 1. Furthermore, since u;, v; satisfy (3.6), so do u, v. We consider the following
three cases.

CASE 1 (v =0and v # 0). Since v satisfies the second inequality of (3.6), v > 0
on 2. Therefore,
k4 —— <0 on @ Vi>l.
U; + mu;

This contradicts the second integral identity of (3.8) and the fact that v; > 0.

CASE 2 (v=0and u #0). As above, u > 0 on 2. As (u;,v;) — (u,0), it follows
from the first integral identity of (3.8) that fQ u(1 — u) de = 0. This fact combines
with 0 < u < 1 to yield u = 1, which nnphes that u;/(u; + mv;) — 1 uniformly on
2 as i — oo, since v; — 0 uniformly on 2. As k < 1, this contradicts the second
integral identity of (3.8) and the fact that v; > 0.

CASE 3 (u=0and v =0). Let
Usg Vi

Wy = ———————— 2 =
U il Hlville™ T Hluilloo + llvilloo

Then (w;, z;) satisfies the elliptic system

bwi Zi

—d17iAwi = wi(l — uz(iL’)) — m, T € {2,
—dgiAz; = 2 (L - k), x € 0, (3.9)
w; +mz;
811)1‘ 821' o
8V_8V_0’ 5[5689,

and hence the following integral identities hold:

bz; i .
/wi{l—ui—;}dx:& /zi(L—k>dx:0, 1=1,2,....
0 w; +mz; 0 w; +mz;

(3.10)
Because dy 4, dg_z 2 d, theorem 3.3 implies the existence of a subsequence (wi, z;) —
(w, z) in [C?(£2))? for some non-negative functions w,z € C%(§2). Since ||w;| o +
|zilloo = 1, we have |w||so + [|2]lcc = 1. On the other hand, applying proposition 3.1
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to (3.9), we see that (wj, z;) satisfies the Harnack inequality (3.6), and hence so does
(w, z) by taking i« — co. These observations show that w(x)+z(z) > 0 on {2. Letting
i — oo in (3.10), we have

/w(l— b >dm:0, /z( el —k)dac:O. (3.11)
0 w+ mz 0 w+mz

By taking a subsequence if necessary, we may assume that d; — D; € [d, 00],
dy; — Do € [d, D]. We analyse the following two possibilities.

(i) If D1 = oo, then w satisfies

—Aw =0, x€/2,
ow _
o

Therefore, w = «, a non-negative constant. Moreover, z satisfies

0, xz€09f.

_DQAZ:Z( o _k>zzw, s
) a+mz o+ mz (3.12)
z
— =0, € 012.
ov v

It follows that o > 0, since (o, z) # (0,0). From the first integral identity
of (3.11), we deduce that z # 0, and, in turn, by maxgsz < C, ming z, we
have 2z > 0 on 2. In view of (3.12), we conclude that z = a(1 — k)/(mk) 28,
which is a positive constant. Again, by (3.11),

b3 « -
a+mB a+mf

k=0.

This implies that (a, 3) is a positive solution of (3.4)—a contradiction.

(ii) If D; < oo, then (w,z) satisfies (3.4), since w(z) + mz(x) > 0 on 2 and
u; — 0. Again, as w(x) +mz(x) > 0 on 2, it follows from (3.11) that neither
w = 0 nor z = 0. The Harnack inequality then yields w > 0, z > 0 on 2,
which contradicts the assumption of the theorem.

The proof is complete. O

COROLLARY 3.5. If the parameters a, k and m satisfy v/m+ Vk > V1 + b, then
(8.4) has no positive solution. In particular, under this assumption, the assertion
of theorem 3.4 holds.

Proof. Suppose, on the contrary, that (w, z) is a positive solution of (3.4). Integrat-
ing by parts, we have (3.11) and hence

/ w2 +mkz?+(m+k—b— 1wz
0 w+mz

dz = 0. (3.13)
Since w,z > 0, equation (3.13) implies m + k < 1 + b. Further, our assumption

implies that w? + mkz2 + (m +k — b — 1)wz is positive-definite. This contradiction
to (3.13) completes the proof. O
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4. Non-existence of non-constant positive steady states

From theorem 2.1, it is seen that if k¥ > 1, then the solution (u,v) of (1.5) satisfies
lim;_ o0 v(+, ) = 0 uniformly on 2. This implies that (3.1) has no positive classical
solution if £ > 1. In this section, we consider the case k < 1. Besides having an
interest in its own right, the non-existence result derived in this section will facilitate
the existence results of the next section.

THEOREM 4.1. Let 1 be the smallest positive eigenvalue of the operator —A on
2 with the homogeneous Neumann boundary condition. Assume that p1de > 1 —k
and let

d = min{1, p1ds — (1 — k)}.

Then there exists a positive constant d = d(d,n, 2, A) such that (3.1) has no non-
constant positive classical solution for di = d. In particular, we note that d does
not depend on dy when do is large.

Proof. Assume that (u,v) is a positive classical solution of (3.1). By (3.2), there
exists a positive constant C' = C(m,k) such that u(z),v(z) < C. For ease of
notation, we set

buv uv
g(u,v) =

flu,v) =u(l —u) —

u+mo’ u+mu’

For any ¢ € L'(12), let ¢ = (1/]02) [, ¢ dz. Multiplying the differential equation
for u by u — %, and then integrating over {2 by parts, we have

dl/Q|V(u—ﬂ)|2dx
- [ fw)u=n)da
~ [ Gt - @) ) ds
=/Q{[1—(u+a)](u—a)2—( mbud(u — )" buﬂ(u—ﬂ)(v—@)}dm

u~+mv)(a+mv)  (u-+mv)(a+ mo)

< /Q{(u—a)2+b|u—a||u—@|}dx
< [ta+cEu-m+elo-oP)a. (4.1)
2

where ¢ is an arbitrary small positive constant arising from Young’s inequality.
Similarly, we have

dg/Q|V(v—z‘))|2dx:/Q[—kv—kg(um)](v—z‘))dm
:/{—k(v—6)+g(u7v)—g(ﬂ7z‘))}(v—z‘))dm
2

</{(1—k+£)(v—@)2+C(s)(u—a)2}dm. (4.2)
9]
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Adding (4.1) and (4.2), we get

[ @19 =P + a9 - 0)?) ds
¢
< / {1+2CE)(uw—a)*+(1—k+2)(v—2)}da. (4.3)
¢
It follows from the Poincaré inequality that

ul/(dl(u—ﬂ)2+d2(v—6)2)dx</{[1+2C(6)](u—ﬂ)2+(1—k+26)(v—17)2}dx.
2 2

(4.4)
Since p1ds > 1—k, we may choose ¢ < 1 such that pids > 1—k+2¢. Consequently,
by (4.4),
u1ds / (u—1a)*de < (1+ 20(6))/ (u — a)?* d.
¢ ¢
This implies that u = u = const., and, in turn, v = ¥ = const., if
142C
dy > q 212006
M1
It is obvious that d depends only on d, n, 2 and A. The proof is complete. O

5. Global existence of non-constant positive steady states

In this section, we discuss the global existence of non-constant positive classical
solutions to (3.1) when the diffusion coefficients d; and ds vary while the parameters
b, k and m are kept fixed. Theorem 2.1 implies that when k > 1, then (3.1) has
no non-constant positive classical solutions. When k¥ < 1 and m > b(1 — k), in
which case (3.1) has a unique positive constant solution (@,?), theorem 2.6 says
that if m > b(1 — k?), then (%,d) is uniformly asymptotically stable. In this case,
one cannot expect to obtain non-constant positive classical solutions bifurcating
from the constant solution (@, 7). In view of these reasons, we shall restrict this
discussion to the case

E<1,  b(1—k) <m<b(l—E). (5.1)

For simplicity, we write u = (u,v) and @ = (4,?). Let 6, 8, A and ¢ be given
by (2.4), with » = 1, and set

_(di O ~ (u(l = u) = buv/(u+ mv) (8 —p
D_(O dg)’ F(u)—( —kv + uv/(u+ mv) ’ B={\ =5)
Then D, F(u) = B and (2.5) holds with r = 1. From (5.1), we see that § > 0. We

note that (3.1) can be written as

~Au =D F(u), x € (2,

5.2
9u _y, 2 €00 (5:2)
ov
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Furthermore, u solves (5.2) if and only if it satisfies
fldr,dosu) 2u— (I—A)" YD 'F(u)+u} =0 on X, (5.3)

where (I —A)~!is the inverse of I — A with the homogeneous Neumann boundary
condition. Direct computation gives

Duf(di,dy;@) =T — (I - A)"N(D7'B+1).

As in the proof of theorem 2.6, we note that, for each X;, £ is an eigenvalue of
D, f(d1,d2;u) on X; if and only if £(1 + u;) is an eigenvalue of the matrix

i — 0dy Bd;!
M; 2,1 -D'B= ' ! .
My i+ ddyt

It is straightforward to find

1
det Mi = ﬁ{dldgﬂf + ((5d1 - edg)/li + ﬂ)\ - 9(5},
142
tr M; = 2p; + 6dy " — 0d; "

Write
H(dy, d; ) = dydopi® + (8dy — Oda)ps + A — 66. (5.4)

Then H(dl,dg; Mz) = d1d2 det Mi' If
(6dy — 0d2)* > 4dydy (BN — 69), (5.5)

then H(dy,da; ) = 0 has two real roots, namely,

Ody — ddy + /(0da — 0d1)? — ddyda(BN — 09)

di,do) =
M+( 15 2) 2dydy )
Odo — 6dy — Ody — dd1)2 — 4d1ds (BN — 06
1 (dh,da) = 2 1 — /(0d2 1) 1d2 (8 )'
2d,dy

Set
A= A(dy,dz) ={p|p=>0, p_(di,da) < p < py(di, da)},
Sp = {/‘LOJ/‘L17/‘L27 s '}:

and let m(p;) be the multiplicity of u;. In order to calculate the index of f(dy,ds;,-)
at u, we first prove the following lemma.

LEMMA 5.1. Suppose H(dy,d2; i) # 0 for all p; € Sp. Then
index(f(d1, da;-),u) = (—1)7, (5.6)

where

o= ZmeAmsp m(u;) if ANS, #0,
0 if ANS, = 0.

In particular, if H(dy,do; ) >0 Vyp >0, then o = 0.
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Proof. Since H(dy,da;p;) # 0 for all u; € S, then 0 is not an eigenvalue of
D, f(dy,do;@). This implies that D,, f(dy,ds; @) is a homeomorphism from X into
itself and it follows from the implicit function theorem that w = @ is the isolated
solution of f(d1, d2; u) = 0. By the Leray—Schauder theorem (theorem 2.8.1in [30]),

index(f(dy, do; ), @) = (—1)7, 4= m(&),

20 £ <0

where &; is the eigenvalue of D, f(d1,d2;w) on X;, and m(&;) is its multiplicity.
From the relation between the eigenvalues of the operator D, f(dy,do; @) and the
matrix M;, we see that

index(f(di,do; ), @) = (1), =D m(r)m(u,),

i20 7 <0

where 7; is the eigenvalue of M; and m(r;) its multiplicity. Modulo 2, the number
of negative eigenvalues of M; is given by

A
a; = %(1 —sgn{det M;}) = %(1 —sgn{H (dy,d2; i) }),
provided that det M; # 0. For any p; € Sp, if u; € A, then
det M; = H(dl, do; Ni) < 0,

and hence a; = 1. If p; ¢ A, then det M; = H(dy,d2; ;) > 0, and hence a; = 0.
Consequently, modulo 2, v* = ¢ and the proof is complete. O

From lemma 5.1, we see that to calculate the index of f(dy,ds;-) at @, the key
step is to determine the range of p for which H(dy,ds2; ) < 0.

THEOREM 5.2. Let the assertion of theorem 3.4 hold. If 0/dy € (ugq, piq+1) for some
q =1, and oy =Y.]_, m(w;) is odd, then there exists a positive constant d* such
that (3.1) has at least one non-constant positive classical solution if do > d*.

REMARK 5.3. If (1.6) holds, so does (5.1), and hence the assertion of theorem 3.4
holds by corollary 3.5.

Proof of theorem 5.2. Since 6 > 0, it follows that if dy is large enough, then (5.5)
holds and p4(dq,ds2) > p—(di,d2) > 0. Also,

0
lim py(di,dy) = —, lim p(dy,dz) =0. (5.7)
dy—00 d1 do— o0

As 0/dy € (pig, tg+1), We see that there exists dp > 1 such that
pt(dr,d2) € (g, frg+1), 0 < p—(di,d2) < p1 Vda > do. (5.8)

By theorem 4.1, we know that there exists d > dy such that (3.1) with d; = d and
ds =2 d has no non-constant positive classical solution. Moreover, we can choose d
so large that 6/d < p1. It follows that there exists d* > d such that

0 < p—(d,d2) < py(d,d2) <p Vdp = d" (5.9)
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We shall prove that, for any ds > d*, system (3.1) has at least one non-constant
positive classical solution. On the contrary, suppose that this assertion is not true for
some d5 > d*. In the following, we will derive a contradiction by using a homotopy

argument.
Fixing dy = d3, for t € [0,1], we define
_ (tdi+ (1 —t)d 0
D(t) = ( 0 tdy + (1 —t)d* )’

and consider the problem

~Au=D"'t)F(u), z€ £,

9u _ 0, z € 092 (5.10)
v

Note that w is a non-constant positive classical solution of (3.1) if and ounly if it
is such a solution of (5.10) for ¢ = 1. It is obvious that @ is the unique positive
constant solution of (5.10). For any 0 < ¢t < 1, u is a non-constant positive classical
solution of (5.10) if and only if it is such a solution of the problem

h(u;t) :=u— (I —A)"H{D'$)F(u) +u} =0 on X. (5.11)

Our earlier arguments have shown that (5.11) has no non-constant positive classical
solution for t = 0, and we have assumed that there is no such solution for ¢t = 1
(at do = d3). It is obvious that

hu; 1) = f(di, dosu),  h(u;0) = f(d,d";u) (5.12)
and
Duf(di dos@) =1 — (I = A)"(D7'B+ I»} (5.13)
Dy f(d,d*a)=1—(T—-A)"" (D 'B+1),
where f(-,-;-) has been defined in (5.3) and
(1)
In view of (5.8) and (5.9), it follows that
A(dy,do) N Sp = {pa, pas - -5 Hg s A(d,d")n S, = 0.
Since oy is odd, lemma 5.1 gives
index(h(+;1),w) = index(f(dy,ds;-),u) = (—1)7¢ = -1,
index(h(+;0), @) = index(f(d, d*;-), @) = (=1)° = 1. } (5.14)

Now, by theorems 3.2 and 3.4, there exist positive constants
C =C(dy,d,d*,d5,A) and C =C(m,k)

such that, for all 0 < ¢ < 1, the positive classical solutions of problem (5.11) satisfy
C < u(z),v(z) < C on (2. Set

Y={ueX|C<u(z), viz) < C on 2}.
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Then h(u;t) # 0 for all u € 9% and t € [0, 1]. By the homotopy invariance of the
Leray—Schauder degree [30],

deg(h(-;0),2,0) = deg(h(-;1), X,0). (5.15)

Since both equations h(w;0) = 0 and h(u;1) = 0 have the unique positive classical
solution @ in X, by (5.14), we have

deg(h(+;0),X,0) = index(h(-;0);w) = 1,
deg(h(;1),X,0) = index(h(-;1),w) = —1.

This contradicts (5.15) and our proof is complete. O
Similarly, we have the following result whose proof we will omit.
THEOREM 5.4. Assume that the pair (di,d2) satisfies

A(dla d2) n Sp = {N@aﬂé+1: SRR N@‘HI}

for some £ =21 andqg>1. If oy = Z?:om(ﬂéJrj) is odd, then (3.1) has at least one
non-constant positive classical solution.

REMARK 5.5. It is easy to verify that

BA — 06 ,
1 dy,ds) = oo.
o0y o peldrdp) =00

li di,ds) =
Jm i (da, da)
If all p;, ¢ = 0,1,2,..., are simple and (BA — 00)/(0d2) € Sp, then theorem 5.4
shows that there exists a sequence of intervals,

{(@?, a9, with a7 < dY and dY) \, 07 as j — oo,

such that (3.1) has at least one non-constant positive classical solution for every
di € (d¥),d9).

6. Bifurcation of non-constant positive steady states

In this section, we consider the bifurcation of non-constant positive classical solu-
tions with respect to the diffusion coefficients d; and ds. It is assumed that b, k
and m are fixed and (1.3) holds. We shall only consider the bifurcation with respect
to the parameter do when dy is kept fixed; the case where the roles of d; and ds
are exchanged can be discussed similarly. The proofs of these results are based on
topological-degree arguments used earlier in this paper; we shall omit them but
refer readers to similar treatments in [31].

Recall that, for a constant solution ;, ((fg; ;) € (0,00) x X is a bifurcation point
of (3.1) if, for any & € (0,dy), there exists dy € [dy — 0, ds + 6] such that (3.1) has
a non-constant positive solution. Otherwise, we say that (d}; ;) is a regular point.

Define N (dy) = {p > 0| H(dy,ds; 1) = 0} for do > 0, and consider the equilib-
rium (da; @) of system (3.1) with dy > 0.

THEOREM 6.1 (local bifurcation).

(1) If S, NN (do) = 0, then (dy; @) is a regular point of (3.1).
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(2) Suppose S, N N(dy) # 0 and (3dy — 0d3)? > 4dydy (BN — 65). If the sum

Zme/\/(dz) m(u;) is odd, then (d2; @) is a bifurcation point of (3.1).
THEOREM 6.2 (global bifurcation). Suppose that
S, NN (dy) #0, (6dy —0dy)? > 4dydy(BN — 05)  for some dy > 0,

and that the assertion of theorem 3.4 holds. If the sum ZWGN(sz) m(u;) is odd, then
there exists an interval (o, 3) C RT such that, for every do € (a, ), system (3.1)
admits a non-constant positive classical solution u = wu(dz). Moreover, one of the
following holds.

(i) do=a < 3 < oo and S, NN (B) # 0.
(i) 0 < o< B=dy and S, NN () # 0.
(i) (o, 8) = (da, 00).
(iv) (a,5) = (0,d2).

7. Stability of non-constant positive steady states

In §5, we described two ways in which non-constant positive steady-state solutions
of (1.5) arise, namely, first, by fixing d; and choosing ds sufficiently large (theo-
rem 5.2), and second, by fixing ds and choosing d; sufficiently small (theorem 5.4).
In this section, we discuss the stability of such solutions.

THEOREM 7.1. Let (us,vs) be a positive classical solution of (3.1). If it satisfies
(us(z) + mus(z))? > 2bvs(x) on 2, then (us,vs) is stable in the sense that there
exists a small positive constant o such that when the initial data (ug,vo) of (1.5)
satisfy

(I1—0)us(z) < up(z) < (1+0)us(x), (I1—0)vs(z) <wvo(x) < (140)vs(x) (7.1)

Va € 2, then the solution (u,v) of (1.5) satisfies

buv uv
3 g(um) = —]{77}+ 3
u + mu u + mu

and set
= (14 o0)us, u=(1—-o0)us, v=(1+0)vs, v=(1-0)vs, (7.3)
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where 0, 0 < 0 < 1, is to be determined later. Applying the mean-value theorem
twice, we have

fus,vs) — f(u, )
= ful§;m)(us — 1) + fu(&,m)(vs — v)
= fulus,vs)(us — @) + fo(us, vs)(vs —v)
+ [ful&m) = fulus, vs)|(us — ) + [fu(§ 1) = fo(us, vs)](vs —v)
= fu(us, vs)(us — 0) + fo(us, vs)(vs — )
+ [fuu(§1,m)(§ — us) + fuw(€1,m) (0 — vs)](us — )
+ [fuv (&2, m2) (€ — us) + fou(§2,m2) (N — vs)](vs — V)

—fu(us,vs)(us—u)—i—ﬁ,(us,vs)(vS v)+ 1,

|@

where
S&e<é<u=(1+o)u,, (A-ojps=v<n<n,n<v
Thus I = ¢O(c), and, in turn,
flus,vs) = f(@,0) = fulus, vs)(us — @) + folus,v5)(vs —v) +00(0).  (7.4)
Similarly,
flus,vs) = fu,0) = fulus,vs)(us — u) + fo(us,v5)(vs = 0) +00(0).  (7.5)

Since (ugs(x) +vs(z))? > 2bvg(2) and ug(z) > 0 on 2, there exists og > 0 such that

u?(m) 1—% +O(U)>0 VZ'EQ, 0<o<oyp. (76)

We are now in the position to verify that (@,v) and (u,v) defined by (7.3) are
upper and lower solutions of (1.5), provided that (7.1) is satisfied. We note that (1.5)
is a mixed quasi-monotone system for the positive u, v. In view of (7.4), we obtain
by direct calculation that

— d1Aw — f(a,v)
= (14 09)f(us,vs5) = f(u,0)
=0 f(us,vs) + f(us, vs) — f(a,v)
= o f(us,vs) + fu(us,vs)(us — @) + fo(us,v5)(vs —v) + 00(0)
= 0f(us,vs) — 0 fultss,vs)us + 0 fo(us, vs)vs + 0O0(0)
= 0 f(us,vs) = o[ fulus, vs)us + fo(us, vs)vs] + 20 fy (us, vs)vs + 00(0)
= 0 f(us,vs) — o[ fults, vs) — u2] + 20 f, (us, vs)vs + 0O(0). (7.7)

As fo(us,vs) = —bu?/(us + v,)?, in view of (7.6) and (7.7), we have

s —diAu— f(u,v) = o{ui [1— ( 2bvs } —1—0(0)} >0, z€0, t>0.(7.8)

Us + vs)2
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Similarly, by (7.5) and (7.6), we have

2bv, _
> 0. (7.
P 08)2} +O(U)} <0, ze€f, t=0.(7.9)

—d1Au—f(u,v) = —a{u§ [1—(

Further, we can easily verify that

vy — do AU — g(u,0) = (1 + 0)g(us,vs) —g(u,v) =0, z€2, ¢=0,
v —dz2Av = g(u,v) = (1= 0)g(us,v5) = g(w,v) =0, w2, 120,170
du _du_9ov_du_, €N, t>0.

v ov ov  ov

Now, equations (7.8)—(7.10) show that if the initial data (ug,vo) of problem (1.5)
satisfy (7.1), then (#,?) and (u,v) defined by (7.3) are upper and lower solutions
of (1.5), and hence (7.2) holds. This completes the proof. O

REMARK 7.2. Theorem 7.1 leads us to believe that the solution (us,vs) of (3.1)
that satisfies (us(x) + muvs(x))? > 2bvs(z) should be obtained by theorem 5.4 with
dy < 1. However, the asymptotic stability of (ug, vs) remains open. Also, one would
like to have a better understanding of the condition (us(z) + muvs(z))? > 2bvs(z)
on {2.
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