Proceedings of the Edinburgh Mathematical Society (2015) **58**, 683–696 DOI:10.1017/S001309151500005X

SKEW DERIVATIONS IN BANACH ALGEBRAS

PAO-KUEI LIAU AND CHENG-KAI LIU

Department of Mathematics, National Changhua University of Education, Changhua 500, Taiwan (ckliu@cc.ncue.edu.tw)

(Received 4 March 2013)

Abstract We investigate the global versions of the Kleinecke–Shirokov theorem for skew derivations in Banach algebras. Centralizing skew derivations on Banach algebras are also studied.

Keywords: Banach algebra; quasinilpotent; radical; skew derivation

2010 Mathematics subject classification: Primary 47B47; 47B48; 46H15

1. Introduction

Throughout, unless specially stated, \mathcal{A} always denotes a complex Banach algebra with centre $Z(\mathcal{A})$. By rad(\mathcal{A}) and $Q(\mathcal{A})$, we denote the Jacobson radical of \mathcal{A} and the set of all quasinilpotent elements of \mathcal{A} , respectively. For $a, b \in \mathcal{A}$, we denote by [a, b] = ab - ba the commutator of a and b. A linear map $d: \mathcal{A} \to \mathcal{A}$ is called a derivation of \mathcal{A} if d(ab) = d(a)b + ad(b) for all $a, b \in \mathcal{A}$. For $a \in \mathcal{A}$, the map $d_a: b \in \mathcal{A} \mapsto [a, b]$ defines a derivation of \mathcal{A} called the inner derivation of \mathcal{A} induced by a.

The classical Kleinecke–Shirokov theorem [19, 33] states that if a and b are elements in \mathcal{A} such that [b, [b, a]] = 0, then [b, a] is quasinilpotent. A reformulation of the Kleinecke-Shirokov theorem says that if an inner derivation d_b of \mathcal{A} satisfies $d_b^2(a) = 0$ for $a \in \mathcal{A}$, then $d_b(a)$ is quasinilater. This result has been generalized to continuous derivations (see, for example, [26]) and to arbitrary derivations by Thomas [38]. In [31] Pták gave a global version of the Kleinecke–Shirokov theorem and proved that if d is an inner derivation of \mathcal{A} such that $d^2(a)$ is quasinilpotent for every $a \in \mathcal{A}$, then $d^2(a)^2$ lies in the radical of \mathcal{A} for every $a \in \mathcal{A}$. Later it was also generalized to arbitrary derivations by Turovskii and Shul'man [39]. On the other hand, according to the Kleinecke–Shirokov theorem, we see that if an inner derivation d_a of \mathcal{A} satisfies $[d_a(b), b] = 0$ for $b \in \mathcal{A}$, then $d_a(b)$ is quasinilaterative to continuous derivations (see, for example, [26]) but it is still unknown for discontinuous derivations. In [10], Brešar and Vukman gave another global version of the Kleinecke–Shirokov theorem and proved that if d is a continuous derivation of A such that $[d(a), a] \in \operatorname{rad}(\mathcal{A})$ for every $a \in \mathcal{A}$, then d(a) lies in the radical of \mathcal{A} for every $a \in \mathcal{A}$. Later, Brešar [5] showed that if d is a continuous derivation of \mathcal{A} such that [d(a), a] is quasinilpotent for every $a \in \mathcal{A}$, then d(a)

© 2015 The Edinburgh Mathematical Society

lies in the radical of \mathcal{A} for every $a \in \mathcal{A}$. Recently, Lee [20] proved that if d is a derivation of \mathcal{A} such that [d(a), a] is quasinilpotent for every $a \in \mathcal{A}$, then $d(\mathcal{I}_{\mathcal{A}}) \subseteq \operatorname{rad}(\mathcal{A})$, where $\mathcal{I}_{\mathcal{A}}$ is the ideal of \mathcal{A} generated by all commutators of \mathcal{A} .

Let σ be a linear automorphism of \mathcal{A} and let $1_{\mathcal{A}}$ denote the identity automorphism of \mathcal{A} . By a σ -derivation of \mathcal{A} we mean a linear map $\delta \colon \mathcal{A} \to \mathcal{A}$ such that $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$ for all $a, b \in \mathcal{A}$. Generally, we call σ -derivations skew derivations. Clearly, the map $\sigma - 1_{\mathcal{A}}$ is a σ -derivation and $1_{\mathcal{A}}$ -derivations are just ordinary derivations. Thus, the concept of σ -derivations can be viewed as an extension of derivations and automorphisms. The skew derivations appear in q-Weyl algebras, enveloping algebras of solvable Lie superalgebras and coordinate rings of quantum matrices [17]. See [1, 6, 8, 9, 12, 14, 18, 21–24, 28] for some recent results concerning skew derivations in Banach algebras. Brešar and Villena [9] proved that if δ is a continuous σ -derivation of \mathcal{A} satisfying $\delta^2(a) = 0$ for some $a \in \mathcal{A}$, where σ is a continuous automorphism of \mathcal{A} such that $\delta\sigma = \sigma\delta$, then $\delta(a)$ is quasinilpotent. In this paper, we investigate global versions of the Kleinecke–Shirokov theorem for skew derivations in Banach algebras. Our main results are as follows.

Theorem 1.1. Let \mathcal{A} be a complex Banach algebra, let σ be an automorphism of \mathcal{A} and let δ be a σ -derivation of \mathcal{A} . If $\delta^2(a)$ is quasinilpotent for every $a \in \mathcal{A}$, then $\delta^2(a)^2$ lies in the radical of \mathcal{A} for every $a \in \mathcal{A}$.

An element $a \in \mathcal{A}$ is said to be central modulo the radical of \mathcal{A} if $[a, b] \in \operatorname{rad}(\mathcal{A})$ for all $b \in \mathcal{A}$. Some spectral characterizations of elements that are central modulo the radical have been studied in [7, 30].

Theorem 1.2. Let \mathcal{A} be a complex Banach algebra, let σ be an automorphism of \mathcal{A} and let δ be a σ -derivation of \mathcal{A} . If $[\delta(a), a]$ is quasinilpotent for every $a \in \mathcal{A}$, then $\delta(a)$ is central modulo the radical of \mathcal{A} for every $a \in \mathcal{A}$.

In [11], Brešar and Vukman proved that if d is a continuous derivation of \mathcal{A} such that $[d(a), a]^2 \in \operatorname{rad}(\mathcal{A})$ for every $a \in \mathcal{A}$, then $d(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$. An automorphism σ of \mathcal{A} is said to be inner if there exists a unit u in \mathcal{A} such that $\sigma(a) = uau^{-1}$ for all $a \in \mathcal{A}$. As an application of Theorem 1.2, we have the following corollary.

Corollary 1.3. Let \mathcal{A} be a complex Banach algebra, let σ be an automorphism of \mathcal{A} and let δ be a σ -derivation of \mathcal{A} . If $[\delta(a), a]^{n(a)} \in \operatorname{rad}(\mathcal{A})$ for every $a \in \mathcal{A}$, where $n(a) \ge 1$ is an integer depending on a, then $[\delta(\mathcal{A}), \mathcal{A}] \subseteq \operatorname{rad}(\mathcal{A})$. Moreover, $\delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$ if σ is inner and δ is continuous.

In [6] Brešar proved that if σ is an automorphism of \mathcal{A} such that $[\sigma(a), a] \in \operatorname{rad}(\mathcal{A})$ for every $a \in \mathcal{A}$, then $(\sigma - 1_{\mathcal{A}})(a)$ is central modulo the radical of \mathcal{A} for every $a \in \mathcal{A}$. As an application of Theorem 1.2, we have the following corollary.

Corollary 1.4. Let \mathcal{A} be a complex Banach algebra and let σ be an automorphism of \mathcal{A} . If $[\sigma(a), a] \in Q(\mathcal{A})$ for every $a \in \mathcal{A}$, then $(\sigma - 1_{\mathcal{A}})(a)$ is central modulo the radical of \mathcal{A} for every $a \in \mathcal{A}$.

In 1955 Singer and Wermer [36] showed that every continuous derivation on a commutative Banach algebra \mathcal{A} has its range in rad(\mathcal{A}). They also conjectured that the

continuity assumption for the derivations was superfluous. It was more than 30 years before this conjecture was finally proved by Thomas [37]. In [27] Mathieu and Runde gave a noncommutative version of the Singer–Wermer theorem and proved that if d is a derivation of \mathcal{A} such that $[d(a), a] \in Z(\mathcal{A})$ for every $a \in \mathcal{A}$, then $d(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$. Using Theorem 1.2, we obtain the following theorem.

Theorem 1.5. Let \mathcal{A} be a complex Banach algebra, let σ be an automorphism of \mathcal{A} and let δ be a σ -derivation of \mathcal{A} . If $[\delta(a), a] \in Z(\mathcal{A})$ for every $a \in \mathcal{A}$, then $[\delta(\mathcal{A}), \mathcal{A}] \subseteq$ rad (\mathcal{A}) . Moreover, $\delta(\mathcal{A}) \subseteq$ rad (\mathcal{A}) if σ is inner.

It is noteworthy to mention that our approaches to the proofs of this paper are quite different from those in [5,10,11,20,25,31] and are based on the extended Jacobson density theorems for rings with automorphisms and skew derivations. Such density theorems connect the concept of a dense action of irreducible representations with the concept of outerness of automorphisms and skew derivations recently developed by Beidar and Brešar [2,6] and by Chuang and Liu [14], respectively. It is also our aim here to present a new possible technique that can be used in the study of skew derivations in Banach algebras.

2. Preliminaries

Throughout this section, \mathcal{A} denotes a complex Banach algebra. By $\operatorname{Prim}(\mathcal{A})$ we denote the set of all primitive ideals of \mathcal{A} . The (Jacobson) radical $\operatorname{rad}(\mathcal{A})$ of \mathcal{A} is defined to be the intersection of all primitive ideals of A and, by the usual convention, $\operatorname{rad}(\mathcal{A}) = \mathcal{A}$ if there are no primitive ideals of \mathcal{A} . For a complex Banach space X, we denote by L(X)the algebra of all linear operators on X and B(X) by the Banach algebra of all bounded linear operators on X. We say that π is a continuous irreducible representation of \mathcal{A} on a complex Banach space X if π is a continuous algebra homomorphism from \mathcal{A} into B(X)such that the only invariant subspaces of X under $\pi(\mathcal{A})$ are $\{0\}$ and X. It is known that the kernel of a continuous irreducible representation of \mathcal{A} and for each primitive ideal P of \mathcal{A} there exists a continuous irreducible representation π_P of \mathcal{A} on a complex Banach space X_P such that ker $\pi_P = P$ and $\pi_P(\mathcal{A}) \cong \mathcal{A}/P$ acts densely on X_P . We write $\operatorname{sp}(x)$ for the spectrum of $x \in \mathcal{A}$. If $\operatorname{Prim}(\mathcal{A}) \neq \emptyset$, we have the following result [**32**, Theorem 2.2.9]:

$$\operatorname{sp}(x) = \begin{cases} \bigcup_{P \in \operatorname{Prim}(\mathcal{A})} \operatorname{sp}(\pi_P(x)) & \text{if } \mathcal{A} \text{ is unital,} \\ \bigcup_{P \in \operatorname{Prim}(\mathcal{A})} \operatorname{sp}(\pi_P(x)) \cup \{0\} & \text{if } \mathcal{A} \text{ is non-unital} \end{cases}$$

Throughout this section, π always denotes a continuous irreducible representation of \mathcal{A} on the complex Banach space X. Following [6], we call an automorphism σ of \mathcal{A} π -inner if there exists an invertible $S \in L(X)$ such that $\pi\sigma(a) = S\pi(a)S^{-1}$ for all $a \in \mathcal{A}$. An automorphism that is not π -inner is called π -outer. Two automorphisms σ and τ of \mathcal{A} are called π -dependent if $\sigma\tau^{-1}$ is π -inner, that is, there exists an invertible $S \in L(X)$ such

that $\pi\sigma(a) = S\pi\tau(a)S^{-1}$ for all $a \in \mathcal{A}$. Otherwise, they are called π -independent. Clearly, an automorphism σ of \mathcal{A} and the identity automorphism $1_{\mathcal{A}}$ of \mathcal{A} are π -independent if and only if σ is π -outer.

To prove our results, we need the notion generalized in [14] (or see [21]) to σ -derivations of \mathcal{A} into L(X). Let σ be an automorphism of \mathcal{A} . By a σ -derivation $\tilde{\delta} \colon \mathcal{A} \to L(X)$, we mean that $\tilde{\delta}$ is a linear map satisfying $\tilde{\delta}(ab) = \pi \sigma(a) \tilde{\delta}(b) + \tilde{\delta}(a) \pi(b)$ for all $a, b \in \mathcal{A}$. Clearly, if $\delta \colon \mathcal{A} \to \mathcal{A}$ is a σ -derivation of \mathcal{A} , then the map $\tilde{\delta} = \pi \delta \colon \mathcal{A} \to L(X)$ is a σ -derivation. A σ -derivation $\tilde{\delta} \colon \mathcal{A} \to L(X)$ is called π -inner if there exists $T \in L(X)$ such that $\tilde{\delta}(a) = \pi \sigma(a)T - T\pi(a)$ for all $a \in \mathcal{A}$. Otherwise, it is called π -outer. Note that a σ -derivation δ of \mathcal{A} is called π -inner if $\tilde{\delta} = \pi \delta$ is π -inner. We have the extended Jacobson density theorems on π -outer σ -derivations and automorphisms as follows.

Theorem 2.1 (Chuang and Liu [14, Theorem 2.7]). Let $\delta: \mathcal{A} \to L(X)$ be a π outer σ -derivation, where σ is π -outer. Then, for any \mathbb{C} -independent $x_1, \ldots, x_n \in X$ and
arbitrary $y_1, \ldots, y_n, z_1, \ldots, z_n, w_1, \ldots, w_n \in X$, there exists $a \in \mathcal{A}$ such that $\delta(a)x_i = y_i$, $\pi\sigma(a)x_i = z_i$ and $\pi(a)x_i = w_i$ for all $i = 1, \ldots, n$.

Theorem 2.2 (Chuang and Liu [14, Theorem 2.6]). Let $\delta: \mathcal{A} \to L(X)$ be a π -outer σ -derivation, where σ is π -inner. Then, for any \mathbb{C} -independent $x_1, \ldots, x_n \in X$ and arbitrary $y_1, \ldots, y_n, z_1, \ldots, z_n \in X$, there exists $a \in \mathcal{A}$ such that $\delta(a)x_i = y_i$ and $\pi(a)x_i = z_i$ for all $i = 1, \ldots, n$.

Theorem 2.3 (Brešar [6, Theorem 1.2]). Suppose that $\sigma_1, \ldots, \sigma_m$ are automorphisms of A such that σ_i and σ_j are π -independent for all $i \neq j$. Then, for any \mathbb{C} -independent $x_1, \ldots, x_n \in X$ and arbitrary $y_{ij} \in X$, there exists $a \in \mathcal{A}$ such that $\pi \sigma_i(a)x_j = y_{ij}$ for all $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

Lemma 2.4 (Chebotar et al. [13, Lemma 2.7]). Let X be a vector space over \mathbb{C} and let $T: X \to X$ and $U: X \to X$ be linear operators. Suppose that $Tx \in \mathbb{C}Ux$ for all $x \in X$. Then $T = \alpha U$ for some $\alpha \in \mathbb{C}$.

3. Proof of Theorem 1.1

Let \mathcal{A} be a complex Banach algebra and let δ be a σ -derivation of \mathcal{A} , where σ is an automorphism of \mathcal{A} . For $a, b \in \mathcal{A}$, we have

$$\delta^2(ab) = \delta(\sigma(a)\delta(b) + \delta(a)b) = \sigma^2(a)\delta^2(b) + (\delta\sigma + \sigma\delta)(a)\delta(b) + \delta^2(a)b,$$

and hence

$$\delta^2(\sigma^{-1}(a)b) = \sigma(a)\delta^2(b) + (\delta + \sigma\delta\sigma^{-1})(a)\delta(b) + \delta^2\sigma^{-1}(a)b$$

Let π be a continuous irreducible representation of \mathcal{A} on a complex Banach space X. Then,

$$\pi\delta^2(ab) = \pi\sigma^2(a)\pi\delta^2(b) + \pi(\delta\sigma + \sigma\delta)(a)\pi\delta(b) + \pi\delta^2(a)\pi(b)$$
(3.1)

and

$$\pi\delta^2(\sigma^{-1}(a)b) = \pi\sigma(a)\pi\delta^2(b) + \pi(\delta + \sigma\delta\sigma^{-1})(a)\pi\delta(b) + \pi\delta^2\sigma^{-1}(a)\pi(b)$$
(3.2)

for all $a, b \in \mathcal{A}$.

Lemma 3.1. Let \mathcal{A} be a complex Banach algebra, let σ be an automorphism of \mathcal{A} and let δ be a σ -derivation of \mathcal{A} . Suppose that $\delta^2(a)$ is quasinilpotent for every $a \in \mathcal{A}$. If π is a continuous irreducible representation of \mathcal{A} on a complex Banach space X such that δ is π -outer, then $\pi\delta^2(a) = 0$ and $\pi(\delta\sigma + \sigma\delta)(a) = 0$ for every $a \in \mathcal{A}$.

Proof. Note that $\sigma\delta\sigma^{-1}$ and $\delta + \sigma\delta\sigma^{-1}$ are both σ -derivations of \mathcal{A} . We divide the proof into two cases.

Case 1 $(\delta + \sigma \delta \sigma^{-1}$ is π -outer). Choose $0 \neq x \in X$. By Theorem 2.1 and 2.2, there is $b \in \mathcal{A}$ such that $\pi \delta(b)x = x$ and $\pi(b)x = 0$. Assume first that σ is π -outer. Let $Y = \mathbb{C}x + \mathbb{C}\pi\delta^2(b)x$. By Theorem 2.1, there is $a \in \mathcal{A}$ such that $\pi(\delta + \sigma \delta \sigma^{-1})(a)x = x$ and $\pi\sigma(a)Y = 0$. Thus, $\pi\sigma(a)\pi\delta^2(b)x = 0$. In view of (3.2), $\pi\delta^2(\sigma^{-1}(a)b)x = x$, a contradiction. Assume next that σ is π -inner. Then there is an invertible $S \in L(X)$ such that $\pi\sigma(a) = S\pi(a)S^{-1}$ for all $a \in \mathcal{A}$. Let $Y = \mathbb{C}x + \mathbb{C}S^{-1}\pi\delta^2(b)x$. By Theorem 2.2, there is an $a \in \mathcal{A}$ such that $\pi(\delta + \sigma\delta\sigma^{-1})(a)x = x$ and $\pi(a)Y = 0$. Thus, $\pi(a)S^{-1}\pi\delta^2(b)x = 0$. In particular, $\pi\sigma(a)\pi\delta^2(b)x = S\pi(a)S^{-1}\pi\delta^2(b)x = 0$. In view of (3.2), $\pi\delta^2(\sigma^{-1}(a)b)x = x$, a contradiction.

Case 2 $(\delta + \sigma \delta \sigma^{-1} \text{ is } \pi \text{-inner})$. So, there is a $T \in L(X)$ such that $\pi(\delta + \sigma \delta \sigma^{-1})(a) = \pi \sigma(a)T - T\pi(a)$ for all $a \in \mathcal{A}$. In this case, (3.2) becomes

$$\pi \delta^2(\sigma^{-1}(a)b) = \pi \sigma(a)\pi \delta^2(b) + (\pi \sigma(a)T - T\pi(a))\pi \delta(b) + \pi \delta^2 \sigma^{-1}(a)\pi(b)$$

= $\pi \sigma(a)(\pi \delta^2(b) + T\pi \delta(b)) - T\pi(a)\pi \delta(b) + \pi \delta^2 \sigma^{-1}(a)\pi(b)$ (3.3)

for all $a, b \in \mathcal{A}$.

Assume first that T = 0. Then $\pi(\delta + \sigma \delta \sigma^{-1}) = 0$, and hence $\pi(\delta \sigma + \sigma \delta) = 0$. By (3.1),

$$\pi\delta^2(ab) = \pi\sigma^2(a)\pi\delta^2(b) + \pi\delta^2(a)\pi(b)$$

for all $a, b \in \mathcal{A}$. This implies that $\pi \delta^2 \colon \mathcal{A} \to L(X)$ is a σ^2 -derivation. Moreover, $\pi \delta^2$ must be π -inner; otherwise, by Theorem 2.1 and 2.2, for any $0 \neq x \in X$ there would exist $a \in \mathcal{A}$ such that $\pi \delta^2(a)x = x$, a contradiction. Let $U \in L(X)$ be such that $\pi \delta^2(a) = \pi \sigma^2(a)U - U\pi(a)$ for all $a \in \mathcal{A}$. If U = 0, then $\pi \delta^2 = 0$ and we are done. Assume that $Ux \neq 0$ for some $x \in X$. Then σ^2 is π -inner; otherwise, by Theorem 2.3, there would exist $a \in \mathcal{A}$ such that $\pi \sigma^2(a)Ux = x$ and $\pi(a)x = 0$, and so $\pi \delta^2(a)x = (\pi \sigma^2(a)U - U\pi(a))x = x$, a contradiction. Hence, there exists an invertible $S \in L(X)$ such that $\pi \sigma^2(a) = S\pi(a)S^{-1}$ and so $\pi \delta^2(a) = S\pi(a)S^{-1}U - U\pi(a)$ for all $a \in \mathcal{A}$. If $S^{-1}U \notin \mathbb{C}I$, there would exist $x \in X$ such that $S^{-1}Ux$ and x are \mathbb{C} -independent, letting $a \in \mathcal{A}$ be such that $\pi(a)x = 0$ and $\pi(a)S^{-1}U = S^{-1}x$, and then $\pi \delta^2(a)x = (S\pi(a)S^{-1}U - U\pi(a))x = x$, a contradiction. Hence, $S^{-1}U \in \mathbb{C}I$. Thus, $\pi \delta^2(a) = S\pi(a)S^{-1}U - U\pi(a) = S(S^{-1}U)\pi(a) - U\pi(a) = 0$ for all $a \in \mathcal{A}$ and we are done.

Assume now that $T \neq 0$. Choose $x \in X$ such that $Tx \neq 0$. Suppose that σ is π -outer. By Theorem 2.1, there is $b \in \mathcal{A}$ such that $\pi\delta(b)Tx = x$ and $\pi(b)Tx = 0$. Let $Y = \mathbb{C}x + \mathbb{C}(\pi\delta^2(b) + T\pi\delta(b))Tx$. By Theorem 2.3, there is $a \in \mathcal{A}$ such that $\pi\sigma(a)Y = 0$ and $\pi(a)x = -x$. In particular, $\pi\sigma(a)(\pi\delta^2(b) + T\pi\delta(b))Tx = 0$. Then, by (3.3), $\pi\delta^2(\sigma^{-1}(a)b)Tx = Tx$, P.-K. Liau and C.-K. Liu

a contradiction. Hence, σ is π -inner. That is, there exists an invertible $S \in L(X)$ such that $\pi\sigma(a) = S\pi(a)S^{-1}$ and so (3.3) becomes

$$\pi \delta^2(\sigma^{-1}(a)b) = S\pi(a)S^{-1}(\pi \delta^2(b) + T\pi\delta(b)) - T\pi(a)\pi\delta(b) + \pi \delta^2 \sigma^{-1}(a)\pi(b)$$
(3.4)

for all $a, b \in \mathcal{A}$. Suppose that $S^{-1}T \in \mathbb{C}I$. Then, $\pi(\delta + \sigma\delta\sigma^{-1})(a) = \pi\sigma(a)T - T\pi(a) = S\pi(a)S^{-1}T - T\pi(a) = S(S^{-1}T)\pi(a) - T\pi(a) = 0$, and thus $\pi(\delta\sigma + \sigma\delta) = 0$. With this and (3.1), we see that $\pi\delta^2 \colon \mathcal{A} \to L(X)$ is a σ^2 -derivation. By the same proof as above, we obtain $\pi\delta^2 = 0$, as desired. Hence, we may assume that $S^{-1}T \notin \mathbb{C}I$. Choose $x \in X$ such that $S^{-1}Tx$ and x are \mathbb{C} -independent. Then Tx and Sx are \mathbb{C} -independent. By Theorems 2.1 and 2.2, there exists $b \in \mathcal{A}$ such that $\pi(b)Tx = \pi(b)Sx = 0, \pi\delta(b)Tx = Tx$ and $\pi\delta(b)Sx = Sx$. Thus, for $\mu, \gamma \in \mathbb{C}, \pi(b)(\mu Tx + \gamma Sx) = 0, \pi\delta(b)(\mu Tx + \gamma Sx) = \mu Tx + \gamma Sx$, and by (3.4) we have

$$\pi \delta^2 (\sigma^{-1}(a)b)(\mu Tx + \gamma Sx)$$

$$= S\pi(a)S^{-1}(\pi \delta^2(b) + T\pi\delta(b))(\mu Tx + \gamma Sx) - T\pi(a)(\mu Tx + \gamma Sx)$$

$$= S\pi(a)U(\mu Tx + \gamma Sx) - T\pi(a)(\mu Tx + \gamma Sx)$$
(3.5)

for all $a \in \mathcal{A}$, where $U = S^{-1}(\pi\delta^2(b) + T\pi\delta(b))$. If $U(\mu Tx + \gamma Sx)$ and $\mu Tx + \gamma Sx$ are \mathbb{C} -independent for some $\mu, \gamma \in \mathbb{C}$, letting $a \in \mathcal{A}$ such that $\pi(a)U(\mu Tx + \gamma Sx) = \gamma x$ and $\pi(a)(\mu Tx + \gamma Sx) = -\mu x$, then by (3.5), $\pi\delta^2(\sigma^{-1}(a)b)(\mu Tx + \gamma Sx) = \mu Tx + \gamma Sx$, a contradiction. Hence, we conclude that

 $U(\mu Tx + \gamma Sx)$ and $\mu Tx + \gamma Sx$ are \mathbb{C} -dependent for all $\mu, \gamma \in \mathbb{C}$.

This implies that $UTx = \alpha Tx$, $USx = \beta Sx$ and $U(Tx + Sx) = \ell(Tx + Sx)$ for $\alpha, \beta, \ell \in \mathbb{C}$. Thus, $\ell(Tx + Sx) = U(Tx + Sx) = UTx + USx = \alpha Tx + \beta Sx$, implying that $(\ell - \alpha)Tx + (\ell - \beta)Sx = 0$. By the \mathbb{C} -independence of Tx and Sx, we obtain $\alpha = \beta = \ell$. This implies that $USx = \alpha Sx$. Thus, $U(Tx - \alpha Sx) = \alpha(Tx - \alpha Sx)$. With this, and setting $\mu = 1$ and $\gamma = -\alpha$ in (3.5), we obtain

$$\pi\delta^2(\sigma^{-1}(a)b)(Tx - \alpha Sx) = (\alpha S - T)\pi(a)(Tx - \alpha Sx)$$
(3.6)

for all $a \in \mathcal{A}$. Let $a \in \mathcal{A}$ be such that $\pi(a)(Tx - \alpha Sx) = -x$. By (3.6), we obtain $\pi \delta^2(\sigma^{-1}(a)b)(Tx - \alpha Sx) = Tx - \alpha Sx$, a contradiction.

Lemma 3.2. Let \mathcal{A} be a complex Banach algebra, let σ be an automorphism of \mathcal{A} and let δ be a σ -derivation of \mathcal{A} . Suppose that $\delta^2(a)$ is quasinilpotent for every $a \in \mathcal{A}$. If π is a continuous irreducible representation of \mathcal{A} on a complex Banach space X such that δ and σ are both π -inner, then $\pi(\delta^2(a)^2) = 0$ for every $a \in \mathcal{A}$.

Proof. By assumption, there exist $T \in L(X)$ and an invertible $S \in L(X)$ such that $\pi\delta(a) = \pi\sigma(a)T - T\pi(a)$ and $\pi\sigma(a) = S\pi(a)S^{-1}$ for all $a \in \mathcal{A}$. Thus, $\pi\delta(a) = S\pi(a)S^{-1}T - T\pi(a)$ for all $a \in \mathcal{A}$. We then have

$$\pi \delta^{2}(a) = S\pi(\delta(a))S^{-1}T - T\pi(\delta(a))$$

= $S(S\pi(a)S^{-1}T - T\pi(a))S^{-1}T - T(S\pi(a)S^{-1}T - T\pi(a))$
= $S^{2}\pi(a)(S^{-1}T)^{2} - (ST + TS)\pi(a)S^{-1}T + T^{2}\pi(a)$ (3.7)

for all $a \in \mathcal{A}$. If there is $x \in X$ such that $(S^{-1}T)^2 x$, $S^{-1}Tx$ and x are \mathbb{C} -independent, letting $a \in \mathcal{A}$ such that $\pi(a)(S^{-1}T)^2 x = S^{-2}x$ and $\pi(a)S^{-1}Tx = \pi(a)x = 0$, then, by (3.7), $\pi\delta^2(a)x = x$, a contradiction. So $(S^{-1}T)^2 x$, $S^{-1}Tx$ and x are \mathbb{C} -dependent for every $x \in X$. This implies that $(S^{-1}T)^2 = \mu S^{-1}T + \nu I$ for some $\mu, \nu \in \mathbb{C}$, where Idenotes the identity operator on X. Then (3.7) reduces to

$$\pi \delta^2(a) = (\mu S^2 - ST - TS)\pi(a)S^{-1}T + (\nu S^2 + T^2)\pi(a)$$

= $A\pi(a)B + C\pi(a)$ (3.8)

for all $a \in \mathcal{A}$, where $A = \mu S^2 - ST - TS$, $B = S^{-1}T$ and $C = \nu S^2 + T^2$. Suppose that $A = \lambda C$ for some $\lambda \in \mathbb{C}$. Then (3.8) becomes $\pi \delta^2(a) = C\pi(a)D$ for all $a \in \mathcal{A}$, where $D = \lambda B + I$. If $DCx \neq 0$ for some $x \in X$, letting $a \in \mathcal{A}$ such that $\pi(a)DCx = x$, then $\pi \delta^2(a)Cx = C\pi(a)DCx = Cx$, a contradiction. If DC = 0, then $\pi(\delta^2(a)^2) = (\pi \delta^2(a))^2 = 0$, proving the lemma. Hence, we may assume that $A \notin \mathbb{C}C$. Similarly, we may assume $C \notin \mathbb{C}A$.

Let $\xi, \eta \in \mathbb{C}$. If there is $x \in X$ such that $B(\xi A + \eta C)x$ and $(\xi A + \eta C)x$ are \mathbb{C} -independent, letting $a \in \mathcal{A}$ such that $\pi(a)B(\xi A + \eta C)x = \xi x$ and $\pi(a)(\xi A + \eta C)x = \eta x$, then, by (3.8), $\pi\delta^2(a)(\xi A + \eta C)x = (\xi A + \eta C)x$, a contradiction. So we conclude that

 $B(\xi A + \eta C)x$ and $(\xi A + \eta C)x$ are \mathbb{C} -dependent for all $\xi, \eta \in \mathbb{C}$ and $x \in X$.

In particular, BAx and Ax are \mathbb{C} -dependent, BCx and Cx are \mathbb{C} -dependent and B(A + C)x and (A + C)x are \mathbb{C} -dependent for every $x \in X$. From Lemma 2.4, it follows that $BA = \alpha A$, $BC = \beta C$ and $B(A + C) = \gamma(A + C)$ for some $\alpha, \beta, \gamma \in \mathbb{C}$. Then, $\gamma(A + C) = B(A + C) = BA + BC = \alpha A + \beta B$. Thus, $(\alpha - \gamma)A = (\gamma - \beta)C$. Recall that $A \notin \mathbb{C}C$ and $C \notin \mathbb{C}A$. This implies that $\alpha = \beta = \gamma$. Consequently, $BA = \alpha A$ and $BC = \alpha C$. Choose $x \in X$ such that $(\alpha A + C)x \neq 0$ and let $a \in \mathcal{A}$ be such that $\pi(a)(\alpha A + C)x = x$. By (3.8), $\pi\delta^2(a)(\alpha A + C)x = (\alpha A + C)x$, a contradiction. This proves the lemma. \Box

Now we are ready to give the following proof.

Proof of Theorem 1.1. To prove that $\delta^2(a)^2$ lies in the radical of \mathcal{A} , it suffices to show that $\pi(\delta^2(a)^2) = (\pi\delta^2(a))^2 = 0$ for any continuous irreducible representation π of \mathcal{A} . Let π be a continuous irreducible representation of \mathcal{A} on a complex Banach space X. By Lemma 3.1, we may assume that δ is π -inner. That is, there is $T \in L(X)$ such that $\pi\delta(a) = \pi\sigma(a)T - T\pi(a)$ for all $a \in \mathcal{A}$. Then (3.2) becomes

$$\pi \delta^{2}(\sigma^{-1}(a)b) = \pi \sigma(a)\pi \delta^{2}(b) + \pi(\delta + \sigma \delta \sigma^{-1})(a)\pi \delta(b) + \pi \delta^{2} \sigma^{-1}(a)\pi(b) = \pi \sigma(a)\pi \delta^{2}(b) + (\pi \sigma(a)T - T\pi(a))\pi \delta(b) + \pi \sigma \delta \sigma^{-1}(a)\pi \delta(b) + \pi \delta^{2} \sigma^{-1}(a)\pi(b).$$
(3.9)

Moreover, by Lemma 3.2, we may assume that σ is $\pi\text{-outer.}$

Assume first that $\sigma \delta \sigma^{-1}$ is π -outer. If T = 0, then $\pi \delta = 0$ and hence $\pi \delta^2 = 0$, as desired. So assume that $T \neq 0$ and let $x \in X$ be such that $Tx \neq 0$. Let $Y = \mathbb{C}x + \mathbb{C}Tx$. Since σ is π -outer, by Theorem 2.3 there is $b \in \mathcal{A}$ such that $\pi \sigma(b)Tx \neq 0$ and P.-K. Liau and C.-K. Liu

 $\pi(b)Y = 0$. This implies that $\pi(b)x = 0$ and $\pi\delta(b)x = (\pi\sigma(b)T - T\pi(b))x = \pi\sigma(b)Tx \neq 0$. Let $Z = \mathbb{C}\pi\delta(b)x + \mathbb{C}\pi\delta^2(b)x + \mathbb{C}T\pi\delta(b)x$. By Theorem 2.1, there is $a \in \mathcal{A}$ such that $\pi\sigma\delta\sigma^{-1}(a)\pi\delta(b)x = x$, $\pi\sigma(a)Z = 0$ and $\pi(a)Z = 0$. This implies that $\pi\sigma(a)\pi\delta^2(b)x = \pi\sigma(a)T\pi\delta(b)x = 0$ and $\pi(a)\pi\delta(b)x = 0$. By (3.9), $\pi\delta^2(\sigma^{-1}(a)b)x = x$, a contradiction.

Assume now that $\sigma\delta\sigma^{-1}$ is π -inner. That is, there exists $U \in L(X)$ such that $\pi\sigma\delta\sigma^{-1}(a) = \pi\sigma(a)U - U\pi(a)$ for all $a \in \mathcal{A}$. Thus, $\pi\sigma\delta(a) = \pi\sigma^2(a)U - U\pi\sigma(a)$ for all $a \in \mathcal{A}$. With this, we now have

$$\pi \delta^{2}(a) = \pi \sigma(\delta(a))T - T\pi(\delta(a))$$

$$= \pi \sigma \delta(a)T - T\pi\delta(a)$$

$$= (\pi \sigma^{2}(a)U - U\pi\sigma(a))T - T(\pi\sigma(a)T - T\pi(a))$$

$$= \pi \sigma^{2}(a)UT - (U+T)\pi\sigma(a)T + T^{2}\pi(a)$$
(3.10)

for all $a \in \mathcal{A}$. We divide the proof into two cases.

Case 1 (σ^2 , σ , and $\mathbf{1}_{\mathcal{A}}$ are pairwise π -independent). Suppose that $UTx \neq 0$ for some $x \in X$. Let $Y = \mathbb{C}UTx + \mathbb{C}Tx + \mathbb{C}x$. By Theorem 2.3, there is $a \in \mathcal{A}$ such that $\pi\sigma^2(a)UTx = x$, $\pi\sigma(a)Y = 0$ and $\pi(a)Y = 0$. This implies that $\pi\sigma(a)Tx = 0$ and $\pi(a)x = 0$. By (3.10), $\pi\delta^2(a)x = x$, a contradiction. Hence, we assume that UT = 0. Then (3.10) becomes

$$\pi \delta^2(a) = -(U+T)\pi \sigma(a)T + T^2 \pi(a)$$
(3.11)

for all $a \in \mathcal{A}$. Suppose that $T(U+T)x \neq 0$ for some $x \in X$. Let $Y = \mathbb{C}T(U+T)x + \mathbb{C}(U+T)x$. By Theorem 2.3, there is $a \in \mathcal{A}$ such that $\pi\sigma(a)T(U+T)x = x$ and $\pi(a)Y = 0$, implying that $\pi(a)(U+T)x = 0$. From (3.11), it follows that $\pi\delta^2(a)(U+T)x = -(U+T)x$, a contradiction. Thus, T(U+T) = 0. Suppose that $T^2x \neq 0$ for some $x \in X$. Let $Z = \mathbb{C}T^2x + \mathbb{C}T^3x$. By Theorem 2.3, there is $a \in \mathcal{A}$ such that $\pi(a)T^2x = x$ and $\pi\sigma(a)Z = 0$, implying that $\pi\sigma(a)T^3x = 0$. From (3.11), it follows that $\pi\delta^2(a)T^2x = T^2x$, a contradiction. Thus, $T^2 = 0$. Now, using $T(U+T) = T^2 = 0$ and (3.11), we have $(\pi\delta^2(a))^2 = \pi(\delta^2(a)^2) = 0$ for all $a \in \mathcal{A}$, proving the theorem.

Case 2 (σ^2 , σ and $\mathbf{1}_{\mathcal{A}}$ are not pairwise π -independent). Since σ is π -outer, we see that σ^2 and $\mathbf{1}_{\mathcal{A}}$ are π -dependent. That is, σ^2 is π -inner. So there exists an invertible $S \in L(X)$ such that $\pi \sigma^2(a) = S\pi(a)S^{-1}$ for all $a \in \mathcal{A}$. Then (3.10) becomes

$$\pi\delta^2(a) = S\pi(a)S^{-1}UT - (U+T)\pi\sigma(a)T + T^2\pi(a)$$
(3.12)

for all $a \in \mathcal{A}$. Suppose that $S^{-1}UT \notin \mathbb{C}I$. Then $S^{-1}UTx$ and x are \mathbb{C} -independent for some $x \in X$. Let $Y = \mathbb{C}S^{-1}UTx + \mathbb{C}x + \mathbb{C}Tx$. According to Theorem 2.3, there is $a \in \mathcal{A}$ such that $\pi(a)S^{-1}UTx = S^{-1}x$, $\pi(a)x = 0$ and $\pi\sigma(a)Y = 0$, implying that $\pi\sigma(a)Tx = 0$. By (3.12), $\pi\delta^2(a)x = x$, a contradiction. So $S^{-1}UT \in \mathbb{C}I$ and (3.12) reduces to

$$\pi\delta^2(a) = -(U+T)\pi\sigma(a)T + (T^2 + UT)\pi(a)$$
(3.13)

for all $a \in \mathcal{A}$. Suppose that $T(U+T)x \neq 0$ for some $x \in X$. Let $Y = \mathbb{C}T(U+T)x + \mathbb{C}(U+T)x$. By Theorem 2.3, there is $a \in \mathcal{A}$ such that $\pi\sigma(a)T(U+T)x = x$ and $\pi(a)Y = 0$,

implying that $\pi(a)(U+T)x = 0$. From (3.13) it follows that $\pi\delta^2(a)(U+T)x = -(U+T)x$, a contradiction. Thus, T(U+T) = 0. Suppose that $(T^2 + UT)x \neq 0$ for some $x \in X$. Let $Z = \mathbb{C}(T^2 + UT)x + \mathbb{C}T(T^2 + UT)x$. By Theorem 2.3, there is $a \in \mathcal{A}$ such that $\pi(a)(T^2 + UT)x = x$ and $\pi\sigma(a)Z = 0$, implying that $\pi\sigma(a)T(T^2 + UT)x = 0$. From (3.13) it follows that $\pi\delta^2(a)(T^2 + UT)x = (T^2 + UT)x$, a contradiction. Thus, $T^2 + UT = 0$. Now, using $T(U+T) = T^2 + UT = 0$ and (3.13), we see that $(\pi\delta^2(a))^2 = \pi(\delta^2(a)^2) = 0$, proving the theorem.

4. Proof of Theorems 1.2 and 1.5

Lemma 4.1. Let $\mathcal{A} = M_2(\mathbb{C})$, the 2×2 matrix algebra over the complex field. Suppose that $S, A \in \mathcal{A}$ and that S is invertible in \mathcal{A} . If $[S[A, a], a]^2 = 0$ for all $a \in \mathcal{A}$, then $A \in \mathbb{C}I_2$, where I_2 is the identity matrix in \mathcal{A} .

Proof. Clearly, for any invertible element $P \in \mathcal{A}$ we have $[PSP^{-1}[PAP^{-1}, a], a]^2 = 0$ for all $a \in \mathcal{A}$. Moreover, for any $\lambda \in \mathbb{C}$, $[PSP^{-1}[PAP^{-1} - \lambda I_2, a], a]^2 = 0$ for all $a \in \mathcal{A}$. Thus, writing A in its Jordan form modulo a scalar, we may assume that $A = \begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix}$ or $A = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}$, where $\alpha \in \mathbb{C}$. Clearly, if $\alpha = 0$, then we are done. So we may assume that $\alpha \neq 0$. Also write

$$S = \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix}, \text{ where } s_{ij} \in \mathbb{C}.$$

Suppose that $x = \binom{x_1}{x_2} \in \mathbb{C}^2$ such that Ax and x are \mathbb{C} -independent. Then, $\mathbb{C}^2 = \mathbb{C}Ax + \mathbb{C}x$. Write $Sx = \mu Ax + \nu x$ for $\mu, \nu \in \mathbb{C}$. Let $a \in \mathcal{A}$ such that ax = 0 and aAx = x. Then, $[S[A, a], a]x = (S(Aa - aA)a - aS(Aa - aA))x = aSaAx = \mu x$. From $0 = [S[A, a], a]^2 x = \mu^2 x$ it follows that $\mu = 0$, and hence $Sx = \nu x$. So we conclude that

if
$$Ax$$
 and x are \mathbb{C} -independent for $x \in \mathbb{C}^2$, then $Sx \in \mathbb{C}x$. (*)

Case 1 $(A = \begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix})$. Let $x = \begin{pmatrix} 1 \\ \gamma \end{pmatrix}$, where $0 \neq \gamma \in \mathbb{C}$. Then, $Ax = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$ and $x = \begin{pmatrix} 1 \\ \gamma \end{pmatrix}$ are \mathbb{C} -independent. By (*), we have $Sx = \ell_{\gamma}x$, where $\ell_{\gamma} \in \mathbb{C}$ depending on γ . This implies that $s_{11} + \gamma s_{12} = \ell_{\gamma}$ and $s_{21} + \gamma s_{22} = \ell_{\gamma}\gamma$. Combining these two identities, we obtain $s_{12}r^2 + (s_{11} - s_{22})r - s_{21} = 0$ for all $0 \neq \gamma \in \mathbb{C}$. Consequently, $s_{12} = s_{21} = 0$ and $s_{11} = s_{22}$. So $S = s_{11}I_2$. Setting $a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, we have $[S[A, a], a] = 2s_{11}\alpha\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Thus, $0 = [S[A, a], a]^2 = 4(s_{11}\alpha)^2I_2$, a contradiction.

Case 2 $(A = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix})$. Let $x = \begin{pmatrix} \gamma \\ 1 \end{pmatrix}$, where $0 \neq \gamma \in \mathbb{C}$. Then, $Ax = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$ and $x = \begin{pmatrix} \gamma \\ 1 \end{pmatrix}$ are \mathbb{C} -independent. By (*), we have $Sx = \ell_{\gamma}x$, where $\ell_{\gamma} \in \mathbb{C}$ depending on γ . This implies that $\gamma s_{11} + s_{12} = \ell_{\gamma}r$ and $\gamma s_{21} + s_{22} = \ell_{\gamma}$. Combining these two identities, we obtain $s_{21}r^2 + (s_{22} - s_{11})r - s_{12} = 0$ for all $0 \neq \gamma \in \mathbb{C}$. Consequently, $s_{12} = s_{21} = 0$ and $s_{11} = s_{22}$. So $S = s_{11}I_2$. Setting $a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, we have $[S[A, a], a] = s_{11}\alpha \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$. Thus, $0 = [S[A, a], a]^2 = -4(s_{11}\alpha)^2I_2$, a contradiction. This proves the lemma.

Lemma 4.2. Let \mathcal{A} be a complex Banach algebra, let σ be an automorphism of \mathcal{A} and let δ be a σ -derivation of \mathcal{A} . Suppose that $[\delta(a), a]$ is quasinilpotent for every $a \in \mathcal{A}$. If π is a continuous irreducible representation of \mathcal{A} on a complex Banach space X with $\dim_{\mathbb{C}} X \ge 2$, then $\pi \delta = 0$.

P.-K. Liau and C.-K. Liu

Proof. Clearly, we have

$$\pi([\delta(a), a]) = [\pi\delta(a), \pi(a)] = \pi\delta(a)\pi(a) - \pi(a)\pi\delta(a)$$

$$(4.1)$$

for all $a \in \mathcal{A}$.

Suppose first that δ is π -outer. Choose $x, y \in X$ such that x and y are \mathbb{C} -independent. By Theorems 2.1 and 2.2, there is an $a \in \mathcal{A}$ such that $\pi\delta(a)x = y, \pi(a)x = 0$ and $\pi(a)y = -x$. Then, by (4.1), $\pi([\delta(a), a])x = (\pi\delta(a)\pi(a) - \pi(a)\pi\delta(a))x = x$, a contradiction. Hence, δ must be π -inner. That is, there exists $T \in L(X)$ such that $\pi\delta(a) = \pi\sigma(a)T - T\pi(a)$ for all $a \in \mathcal{A}$. Thus, (4.1) becomes

$$\pi([\delta(a), a]) = (\pi\sigma(a)T - T\pi(a))\pi(a) - \pi(a)(\pi\sigma(a)T - T\pi(a))$$
(4.2)

for all $a \in \mathcal{A}$. If T = 0, then $\pi \delta = 0$, proving the lemma. So we may assume that $T \neq 0$.

Suppose next that σ is π -outer. Assume first that $T \notin \mathbb{C}I$. Then Tx and x are \mathbb{C} -independent for some $x \in X$. By Theorem 2.3, there is $a \in \mathcal{A}$ such that $\pi\sigma(a)Tx = Tx$, $\pi(a)Tx = -x$ and $\pi(a)x = 0$. By (4.2), $\pi([\delta(a), a])x = -\pi(a)\pi\sigma(a)Tx = x$, a contradiction. Assume now that $T \in \mathbb{C}I$ and write $T = \alpha I$, where $0 \neq \alpha \in \mathbb{C}$. Then (4.2) becomes

$$\pi([\delta(a), a]) = T(\pi\sigma(a)\pi(a) - \pi(a)\pi\sigma(a))$$
(4.3)

for all $a \in \mathcal{A}$. Choose $x, y \in X$ such that x and y are \mathbb{C} -independent. By Theorem 2.3, there is $a \in \mathcal{A}$ such that $\pi\sigma(a)x = y$, $\pi(a)x = 0$ and $\pi(a)y = -x$. Then, by (4.3), $\pi([\delta(a), a])x = Tx = \alpha x$, a contradiction. Hence, σ must be π -inner. That is, there exists an invertible $S \in L(X)$ such that $\pi\sigma(a) = S\pi(a)S^{-1}$ for all $a \in \mathcal{A}$. Thus, (4.2) reduces to

$$\pi([\delta(a), a]) = (S\pi(a)S^{-1}T - T\pi(a))\pi(a) - \pi(a)(S\pi(a)S^{-1}T - T\pi(a))$$
(4.4)

for all $a \in \mathcal{A}$. Note that

$$\pi\delta(a) = \pi\sigma(a)T - T\pi(a) = S\pi(a)S^{-1}T - T\pi(a) = S(\pi(a)S^{-1}T - S^{-1}T\pi(a))$$
(4.5)

for all $a \in \mathcal{A}$. If $S^{-1}T \in \mathbb{C}I$, then, by (4.5), $\pi \delta = 0$, proving the lemma. So we may assume that $S^{-1}T \notin \mathbb{C}I$. Hence, $S^{-1}Tx$ and x are \mathbb{C} -independent for some $x \in X$.

Case 1 (dim_C $X \ge 3$). Choose $y \in X$ such that $S^{-1}Tx$, x and y are C-independent. Let $a \in \mathcal{A}$ satisfy $\pi(a)x = 0$, $\pi(a)S^{-1}Tx = S^{-1}y$ and $\pi(a)y = -x$. Then, by (4.4), $\pi([\delta(a), a])x = -\pi(a)S\pi(a)S^{-1}Tx = x$, a contradiction.

Case 2 (dim_C X = 2). In this case, $\pi(\mathcal{A}) = B(X) \cong M_2(\mathbb{C})$. In view of (4.4), we have that $\pi([\delta(a), a]) = [S[A, \pi(a)], \pi(a)]$ is quasinilpotent in $\pi(\mathcal{A})$ for every $a \in \mathcal{A}$, where $A = -S^{-1}T$. By Lemma 4.1, $A = -S^{-1}T \in \mathbb{C}I$. This implies that $\pi\delta = 0$ by (4.5), proving the lemma.

Proof of Theorem 1.2. Let π be a continuous irreducible representation of \mathcal{A} on a complex Banach space X with ker $\pi = P$. If dim_{$\mathbb{C}} <math>X \ge 2$, then, by Lemma 4.2, $\pi \delta = 0$ and thus $\pi([\delta(a), b]) = [\pi \delta(a), \pi(b)] = 0$ for all $a, b \in \mathcal{A}$. If dim_{$\mathbb{C}} <math>X = 1$, then $\pi(\mathcal{A}) = \mathbb{C}I$ and hence $\pi([\mathcal{A}, \mathcal{A}]) = [\pi(\mathcal{A}), \pi(\mathcal{A})] = 0$, implying that $\pi([\delta(a), b]) = 0$ for all $a, b \in \mathcal{A}$. Consequently, $[\delta(\mathcal{A}), \mathcal{A}] \subseteq \operatorname{rad}(\mathcal{A})$, proving the theorem.</sub></sub>

Let $\mathcal{I}_{\mathcal{A}}$ be the ideal of \mathcal{A} generated by $[\mathcal{A}, \mathcal{A}]$, where $[\mathcal{A}, \mathcal{A}]$ denotes the subspace of \mathcal{A} spanned by all commutators (that is, elements of the form [a, b] = ab - ba where $a, b \in \mathcal{A}$) of \mathcal{A} . From $\mathcal{A}[\mathcal{A}, \mathcal{A}]\mathcal{A} \subseteq \mathcal{A}[[\mathcal{A}, \mathcal{A}], \mathcal{A}] + \mathcal{A}^2[\mathcal{A}, \mathcal{A}] \subseteq \mathcal{A}[\mathcal{A}, \mathcal{A}]$, it follows that $\mathcal{I}_{\mathcal{A}} = [\mathcal{A}, \mathcal{A}] + \mathcal{A}[\mathcal{A}, \mathcal{A}]$. For $b \in \mathcal{A}$, let $b_{\ell} \colon \mathcal{A} \to \mathcal{A}$ be the map defined by $b_{\ell}(a) = ba$ for all $a \in \mathcal{A}$.

Theorem 4.3. Let \mathcal{A} be a unital complex Banach algebra and let δ be a σ -derivation of \mathcal{A} , where σ is an inner automorphism of \mathcal{A} . Suppose that $[\delta(a), a]$ is quasinilpotent for every $a \in \mathcal{A}$. Then, $\delta(\mathcal{I}_{\mathcal{A}}) \subseteq \operatorname{rad}(\mathcal{A})$. Moreover, $\delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$ if δ is continuous.

Proof. By assumption, $\sigma(a) = uau^{-1}$ for all $a \in \mathcal{A}$, where u is a unit in \mathcal{A} . Let $d = u_{\ell}^{-1}\delta$. Then it is easy to see that d is a derivation of \mathcal{A} and $\delta = u_{\ell}d$.

Let π be a continuous irreducible representation of \mathcal{A} on a complex Banach space Xwith ker $\pi = P$. Suppose first that dim_C $X \ge 2$. Then, by Lemma 4.2, $\pi\delta(A) = 0$ and thus $\pi\delta(\mathcal{I}_{\mathcal{A}}) = 0$. Suppose next that dim_C X = 1. In this case, $\pi(A) = \mathbb{C}I$ and $\mathcal{A}/P \cong \mathbb{C}$. Clearly, $\pi([A, A]) = [\pi(A), \pi(A)] = 0$ and thus $\pi(\mathcal{I}_{\mathcal{A}}) = 0$. Using d([a, b]) =[d(a), b] + [a, d(b)], we see that $d(\mathcal{I}_{\mathcal{A}}) \subseteq \mathcal{I}_{\mathcal{A}}$. So $\pi d(\mathcal{I}_{\mathcal{A}}) = 0$, implying that $\pi\delta(\mathcal{I}_{\mathcal{A}}) = 0$. Note that d(1) = 0 and hence $d(\mathbb{C}) = 0$. Suppose that δ is continuous; then so is d. By [**34**, Theorem 2.2], $d(P) \subseteq P$. So d naturally induces a derivation d_P of \mathcal{A}/P by the rule: $d_P(a + P) = d(a) + P$ for all $a \in \mathcal{A}$. Since $\mathcal{A}/P \cong \mathbb{C}$, we have $d_P(\mathcal{A}/P) = 0 + P$. This implies that $d(\mathcal{A}) \subseteq P$. Thus, $\pi d(\mathcal{A}) = 0$, implying that $\pi\delta(\mathcal{A}) = 0$. Consequently, $\delta(\mathcal{I}_{\mathcal{A}}) \subseteq \operatorname{rad}(\mathcal{A})$ and if δ is continuous, then $\delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$.

The famous result of Halmos asserts that if H is a complex infinite-dimensional separable Hilbert space, then every element of $\mathcal{A} = B(H)$ is a sum of two commutators. Consequently, $\mathcal{A} = \mathcal{I}_{\mathcal{A}}$. In [4, Lemma 2.6], Brešar proved that if A is a von Neumann algebra with no non-zero central abelian summand, then $\mathcal{A} = \mathcal{I}_{\mathcal{A}}$. Moreover, if A is a unital properly infinitely C^* -algebra or a unital stable C^* -algebra [16] or a unital C^* -algebra without tracial states [29], then $\mathcal{A} = \mathcal{I}_{\mathcal{A}}$.

As an immediate consequence of Theorem 4.3, we have the following corollary.

Corollary 4.4. Let \mathcal{A} be a unital complex Banach algebra with $\mathcal{A} = \mathcal{I}_{\mathcal{A}}$ and let δ be a σ -derivation of \mathcal{A} , where σ is an inner automorphism of \mathcal{A} . Suppose that $[\delta(a), a]$ is quasinilpotent for every $a \in \mathcal{A}$. Then, $\delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$.

Proof of Corollary 1.3. Clearly, if $a \in \mathcal{A}$ with $a^n \in rad(\mathcal{A})$, then a and a^n are both quasinilpotent. By Theorem 1.2 and Theorem 4.3, we are done.

Proof of Corollary 1.4. Note that $\delta = \sigma - 1_{\mathcal{A}}$ is a σ -derivation of \mathcal{A} and $[\delta(a), a] = [(\sigma - 1_{\mathcal{A}})(a), a] = [\sigma(a) - a, a] = [\sigma(a), a]$ for all $a \in \mathcal{A}$. By Theorem 1.2, $[\delta(\mathcal{A}), \mathcal{A}] \subseteq \operatorname{rad}(\mathcal{A})$. Thus, $\delta(a) = (\sigma - 1_{\mathcal{A}})(a)$ is central modulo the radical for every $a \in \mathcal{A}$, as desired.

To prove Theorem 1.5, we need the following result.

Theorem 4.5 (Beidar *et al.* [3, Theorem 2]). Let \mathcal{A} be a prime algebra and δ a σ -derivation of \mathcal{A} , where σ is an automorphism of \mathcal{A} . If $[\delta(a), a] \in Z(\mathcal{A})$ for every $a \in \mathcal{A}$, then $\delta = 0$ or \mathcal{A} is commutative.

Now we are ready for the following proof.

Proof of Theorem 1.5. Clearly, $[[\delta(a), a], a] = 0$ for every $a \in \mathcal{A}$. By the Kleinecke–Shirokov theorem, $[\delta(a), a]$ is quasinilpotent for every $a \in \mathcal{A}$. So $[\delta(\mathcal{A}), \mathcal{A}] \subseteq \operatorname{rad}(\mathcal{A})$ by Theorem 1.2.

Suppose that σ is inner and $\sigma(a) = uau^{-1}$ for all $a \in \mathcal{A}$, where u is a unit in \mathcal{A} . Clearly, $d = u_{\ell}^{-1}\delta$ is a derivation of \mathcal{A} . Let Q be a primitive ideal of \mathcal{A} . Using Zorn's lemma, we can find a minimal prime ideal $P \subseteq Q$. By [27, Lemma], $d(P) \subseteq P$ and hence $\delta(P) \subseteq P$. Clearly, $\sigma(P) \subseteq P$.

Case 1 (*P* is closed in *A*). Then *d* naturally induces a derivation d_P of \mathcal{A}/P defined by $d_P(a+P) = d(a) + P$ for all $a \in \mathcal{A}$. In particular, $\delta_P = (u+P)_{\ell}d_P$ is a σ_P -derivation of \mathcal{A}/P such that $[\delta_P(a+P), a+P] \in Z(\mathcal{A}/P)$ for all $a \in \mathcal{A}$, where σ_P is an inner automorphism of \mathcal{A}/P defined by $\sigma_P(a+P) = (u+P) \cdot (a+P) \cdot (u+P)^{-1}$ for all $a \in \mathcal{A}$. By Theorem 4.5, $\delta_P = 0$ or \mathcal{A}/P is commutative. In the first case, $\delta(\mathcal{A}) \subseteq P$ and thus $\delta(\mathcal{A}) \subseteq Q$. In the latter case, by [**37**] $d_P(\mathcal{A}/P) \subseteq \operatorname{rad}(\mathcal{A}/P)$. Using $\operatorname{rad}(\mathcal{A}/P) \subseteq Q/P$, we obtain $d(\mathcal{A}) \subseteq Q$ and hence $\delta(\mathcal{A}) \subseteq Q$. So in both cases we have $\delta(\mathcal{A}) \subseteq Q$.

Case 2 (*P* is not closed in *A*). By [15, Lemma 2.3], $\Phi(d) \subseteq P$, where $\Phi(d)$ is the separating space of *d*. Let $\pi_{\bar{P}} \colon \mathcal{A} \to \mathcal{A}/\bar{P}$ be the canonical epimorphism defined by $\pi_{\bar{P}}(a) = a + \bar{P}$ for all $a \in \mathcal{A}$. Since $\pi_{\bar{P}}(\Phi(d)) = 0$, by [35, Lemma 1.3], $\pi_{\bar{P}} \circ d \colon \mathcal{A} \to \mathcal{A}/\bar{P}$ is continuous. By a standard argument [34, Theorem 2.2], $\pi_{\bar{P}} \circ d(\bar{P}) = 0 + \bar{P}$. This implies that $d(\bar{P}) \subseteq \bar{P}$. So *d* naturally induces a derivation $d_{\bar{P}}$ of \mathcal{A}/\bar{P} defined by $d_{\bar{P}}(a + \bar{P}) = d(a) + \bar{P}$ for all $a \in \mathcal{A}$. Note that $d_{\bar{P}}$ is continuous by [35, Lemma 1.4]. Thus, $\delta_{\bar{P}} = (u + \bar{P})_{\ell} d_{\bar{P}}$ is a continuous $\sigma_{\bar{P}}$ -derivation of \mathcal{A}/\bar{P} , where $\sigma_{\bar{P}}$ is an inner automorphism of \mathcal{A}/\bar{P} defined by $\sigma_{\bar{P}}(a + \bar{P}) = (u + \bar{P}) \cdot (a + \bar{P}) \cdot (u + \bar{P})^{-1}$ for all $a \in \mathcal{A}$. Recall that $[\delta(a), a]$ is quasinilpotent for every $a \in \mathcal{A}$. So $[\delta_{\bar{P}}(a + \bar{P}), a + \bar{P}]$ is quasinilpotent for every $a \in \mathcal{A}$. By Theorem 4.3, $\delta_{\bar{P}}(\mathcal{A}/\bar{P}) \subseteq \operatorname{rad}(\mathcal{A}/\bar{P})$. Clearly, $\bar{P} \subseteq Q$ as Q is closed in \mathcal{A} . Using $\operatorname{rad}(\mathcal{A}/\bar{P}) \subseteq Q/\bar{P}$, we obtain $\delta(\mathcal{A}) \subseteq Q$. Consequently, $\delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$. The proof is now complete. \Box

In general, a continuous skew derivation satisfying the assumptions in Theorem 1.2, Theorem 1.5 or Corollary 1.4 does not necessarily map into the radical. See the example below.

Example. Let $\mathcal{A} = \mathbb{C} \oplus \mathbb{C}$ and let σ be the automorphism of \mathcal{A} defined by $\sigma((a_1, a_2)) = (a_2, a_1)$ for all $a_1, a_2 \in \mathbb{C}$. Then, $\operatorname{rad}(\mathcal{A}) = 0$ and $\delta = \sigma - 1_{\mathcal{A}}$ is a non-zero continuous σ -derivation of \mathcal{A} satisfying $[\delta(a), a] = 0$ for all $a \in \mathcal{A}$.

Acknowledgements. The authors thank the referee for the very thorough reading of the paper and valuable comments. This research is supported by the NSC (Grant 101-2115-M-018-002) of Taiwan.

References

- 1. Z. ABDELIALI, On Φ-derivations in Banach algebras, Commun. Alg. 34 (2006), 2437–2452.
- K. I. BEIDAR AND M. BREŠAR, Extended Jacobson density theorem for rings with automorphisms and derivations, *Israel J. Math.* **122** (2001), 317–346.
- 3. K. I. BEIDAR, Y. FONG, W.-F. KE AND C.-H. LEE, Posner's theorem for generalized (σ, τ) -derivations, in *Lie algebras, rings and related topics* (ed. Y. Fong, A. A. Mikhalev and E. Zelmanov), pp. 5–12 (Springer, 2000).
- 4. M. BREŠAR, Centralizing mappings on von Neumann algebras, *Proc. Am. Math. Soc.* **111** (1991), 501–510.
- 5. M. BREŠAR, Derivations of noncommutative Banach algebras, II, Arch. Math. 63 (1994), 56–59.
- 6. M. BREŠAR, On automorphisms of Banach algebras, Arch. Math. 78 (2002), 297–302.
- M. BREŠAR AND P. SEMRL, Spectral characterizations of central elements in Banach algebras, *Studia Math.* **120** (1996), 47–52.
- M. BREŠAR AND P. ŠEMRL, On locally linearly dependent operators and derivations, Trans. Am. Math. Soc. 351 (1999), 1257–1275.
- M. BREŠAR AND A. R. VILLENA, The noncommutative Singer-Wermer conjecture and φ-derivations, J. Lond. Math. Soc. 66 (2002), 710-720.
- M. BREŠAR AND J. VUKMAN, On left derivations and related mappings, Proc. Am. Math. Soc. 110 (1990), 7–16.
- M. BREŠAR AND J. VUKMAN, Derivations of noncommutative Banach algebras, Arch. Math. 59 (1992), 363–370.
- M. BREŠAR, A. FOŠNER AND M. FOŠNER, A Kleinecke–Shirokov type condition with Jordan automorphism, *Studia Math.* 147 (2001), 237–242.
- M. A. CHEBOTAR, W.-F. KE AND P.-H. LEE, On a Brešar–Šemrl conjecture and derivations of Banach algebras, Q. J. Math. 57 (2006), 1–10.
- C.-L. CHUANG AND C.-K. LIU, Extended Jacobson density theorem for rings with skew derivations, *Commun. Alg.* 35 (2007), 1391–1413.
- J. CUSAK, Automatic continuity and topological simple radical Banach algebras, J. Lond. Math. Soc. 16 (1977), 493–500.
- T. FACK, Finite sums of commutators in C*-algebras, Annales Inst. Fourier 32 (1982), 129–137.
- 17. K. R. GOODEARL AND E. S. LETZTER, *Prime ideals in skew and q-skew polynomial rings*, Memoirs of the American Mathematical Society, Volume 109 (American Mathematical Society, Providence, RI, 1994).
- S. HEJAZIAN AND A. R. JANFADA, Invariance of primitive ideals by φ-derivations on Banach algebras, *Taiwan. J. Math.* **13** (2009), 1181–1187.
- 19. D. C. KLEINECKE, On operator commutators, Proc. Am. Math. Soc. 8 (1957), 535–536.
- 20. T.-K. LEE, Derivations on noncommutative Banach algebras, *Studia Math.* **167** (2005), 153–160.
- T.-K. LEE AND C.-K. LIU, Spectrally bounded φ-derivations on Banach algebras, Proc. Am. Math. Soc. 133 (2005), 1427–1435.
- T.-K. LEE AND C.-K. LIU, Partially defined σ-derivations on Banach algebras, Studia Math. 190 (2009), 661–669.
- P.-H. LEE AND C.-K. LIU, On the composition of q-skew derivations in Banach algebras, Linear Alg. Applic. 434 (2011), 2413–2429.
- 24. C.-K. LIU, Skew derivations with nilpotent values in rings and Banach algebras, *Commun. Alg.* **40** (2012), 4336–4345.
- M. MATHIEU, Where to find the image of a derivation, in *Functional analysis and operator theory*, Banach Center Publications, Volume 30, pp. 237–249 (Polish Academy of Science, Warsaw, 1994).

- M. MATHIEU AND G. J. MURPHY, Derivations mapping into the radical, Arch. Math. 57 (1991), 469–474.
- M. MATHIEU AND V. RUNDE, Derivations mapping into the radical, II, Bull. Lond. Math. Soc. 24 (1992), 485–487.
- 28. M. MIRZAVAZIRI AND M. S. MOSLEHIAN, Automatic continuity of σ -derivations on C^* -algebra, *Proc. Am. Math. Soc.* **134** (2006), 3319–3327.
- 29. C. POP, Finite sums of commutators, Proc. Am. Math. Soc. 130 (2002), 3039–3041.
- 30. V. PTÁK, Derivations, commutators and the radical, Manuscr. Math. 23 (1978), 355–362.
- 31. V. PTÁK, Commutators in Banach algebras, Proc. Edinb. Math. Soc. 22 (1979), 207-211.
- 32. C. E. RICHART, General theory of Banach algebras (Van Nostrand, New York, 1960).
- 33. F. V. SHIROKOV, Proof of a conjecture of Kaplansky, Usp. Mat. Nauk 11 (1956), 167–168.
- A. M. SINCLAIR, Continuous derivations on Banach algebras, Proc. Am. Math. Soc. 20 (1969), 166–170.
- A. M. SINCLAIR, Automatic continuity of linear operators, London Mathematical Society Lecture Note Series, Volume 21 (Cambridge University Press, 1976).
- I. M. SINGER AND J. WERMER, Derivations on commutative normed algebras, Math. Annalen 129 (1955), 260–264.
- 37. M. P. THOMAS, The image of a derivation is contained in the radical, Annals Math. **128** (1988), 435–460.
- M. P. THOMAS, Primitive ideals and derivations on noncommutative Banach algebras, Pac. J. Math. 159 (1993), 139–152.
- YU.V. TUROVSKII AND V. S. SHUL'MAN, Conditions for the massiveness of the range of a derivation of a Banach algebra and of associated differential operators, *Mat. Zametki* 42 (1987), 305–314.