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1. Introduction

Throughout, unless specially stated, A always denotes a complex Banach algebra with
centre Z(A). By rad(A) and Q(A), we denote the Jacobson radical of A and the set of
all quasinilpotent elements of A, respectively. For a, b ∈ A, we denote by [a, b] = ab − ba

the commutator of a and b. A linear map d : A → A is called a derivation of A if
d(ab) = d(a)b + ad(b) for all a, b ∈ A. For a ∈ A, the map da : b ∈ A �→ [a, b] defines a
derivation of A called the inner derivation of A induced by a.

The classical Kleinecke–Shirokov theorem [19,33] states that if a and b are elements
in A such that [b, [b, a]] = 0, then [b, a] is quasinilpotent. A reformulation of the Kleinecke–
Shirokov theorem says that if an inner derivation db of A satisfies d2

b(a) = 0 for a ∈ A,
then db(a) is quasinilpotent. This result has been generalized to continuous derivations
(see, for example, [26]) and to arbitrary derivations by Thomas [38]. In [31] Pták gave
a global version of the Kleinecke–Shirokov theorem and proved that if d is an inner
derivation of A such that d2(a) is quasinilpotent for every a ∈ A, then d2(a)2 lies in the
radical of A for every a ∈ A. Later it was also generalized to arbitrary derivations by
Turovskii and Shul’man [39]. On the other hand, according to the Kleinecke–Shirokov
theorem, we see that if an inner derivation da of A satisfies [da(b), b] = 0 for b ∈ A, then
da(b) is quasinilpotent. This result has also been extended to continuous derivations (see,
for example, [26]) but it is still unknown for discontinuous derivations. In [10], Brešar
and Vukman gave another global version of the Kleinecke–Shirokov theorem and proved
that if d is a continuous derivation of A such that [d(a), a] ∈ rad(A) for every a ∈ A,
then d(a) lies in the radical of A for every a ∈ A. Later, Brešar [5] showed that if d is a
continuous derivation of A such that [d(a), a] is quasinilpotent for every a ∈ A, then d(a)
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lies in the radical of A for every a ∈ A. Recently, Lee [20] proved that if d is a derivation
of A such that [d(a), a] is quasinilpotent for every a ∈ A, then d(IA) ⊆ rad(A), where IA
is the ideal of A generated by all commutators of A.

Let σ be a linear automorphism of A and let 1A denote the identity automorphism of A.
By a σ-derivation of A we mean a linear map δ : A → A such that δ(ab) = σ(a)δ(b)+δ(a)b
for all a, b ∈ A. Generally, we call σ-derivations skew derivations. Clearly, the map
σ − 1A is a σ-derivation and 1A-derivations are just ordinary derivations. Thus, the
concept of σ-derivations can be viewed as an extension of derivations and automorphisms.
The skew derivations appear in q-Weyl algebras, enveloping algebras of solvable Lie
superalgebras and coordinate rings of quantum matrices [17]. See [1,6,8,9,12,14,18,
21–24,28] for some recent results concerning skew derivations in Banach algebras. Brešar
and Villena [9] proved that if δ is a continuous σ-derivation of A satisfying δ2(a) = 0 for
some a ∈ A, where σ is a continuous automorphism of A such that δσ = σδ, then δ(a)
is quasinilpotent. In this paper, we investigate global versions of the Kleinecke–Shirokov
theorem for skew derivations in Banach algebras. Our main results are as follows.

Theorem 1.1. Let A be a complex Banach algebra, let σ be an automorphism of A
and let δ be a σ-derivation of A. If δ2(a) is quasinilpotent for every a ∈ A, then δ2(a)2

lies in the radical of A for every a ∈ A.

An element a ∈ A is said to be central modulo the radical of A if [a, b] ∈ rad(A) for all
b ∈ A. Some spectral characterizations of elements that are central modulo the radical
have been studied in [7,30].

Theorem 1.2. Let A be a complex Banach algebra, let σ be an automorphism of A
and let δ be a σ-derivation of A. If [δ(a), a] is quasinilpotent for every a ∈ A, then δ(a)
is central modulo the radical of A for every a ∈ A.

In [11], Brešar and Vukman proved that if d is a continuous derivation of A such that
[d(a), a]2 ∈ rad(A) for every a ∈ A, then d(A) ⊆ rad(A). An automorphism σ of A is
said to be inner if there exists a unit u in A such that σ(a) = uau−1 for all a ∈ A. As
an application of Theorem 1.2, we have the following corollary.

Corollary 1.3. Let A be a complex Banach algebra, let σ be an automorphism of A
and let δ be a σ-derivation of A. If [δ(a), a]n(a) ∈ rad(A) for every a ∈ A, where n(a) � 1
is an integer depending on a, then [δ(A),A] ⊆ rad(A). Moreover, δ(A) ⊆ rad(A) if σ is
inner and δ is continuous.

In [6] Brešar proved that if σ is an automorphism of A such that [σ(a), a] ∈ rad(A)
for every a ∈ A, then (σ − 1A)(a) is central modulo the radical of A for every a ∈ A. As
an application of Theorem 1.2, we have the following corollary.

Corollary 1.4. Let A be a complex Banach algebra and let σ be an automorphism
of A. If [σ(a), a] ∈ Q(A) for every a ∈ A, then (σ − 1A)(a) is central modulo the radical
of A for every a ∈ A.

In 1955 Singer and Wermer [36] showed that every continuous derivation on a com-
mutative Banach algebra A has its range in rad(A). They also conjectured that the
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continuity assumption for the derivations was superfluous. It was more than 30 years
before this conjecture was finally proved by Thomas [37]. In [27] Mathieu and Runde
gave a noncommutative version of the Singer–Wermer theorem and proved that if d is a
derivation of A such that [d(a), a] ∈ Z(A) for every a ∈ A, then d(A) ⊆ rad(A). Using
Theorem 1.2, we obtain the following theorem.

Theorem 1.5. Let A be a complex Banach algebra, let σ be an automorphism of A
and let δ be a σ-derivation of A. If [δ(a), a] ∈ Z(A) for every a ∈ A, then [δ(A),A] ⊆
rad(A). Moreover, δ(A) ⊆ rad(A) if σ is inner.

It is noteworthy to mention that our approaches to the proofs of this paper are quite
different from those in [5,10,11,20,25,31] and are based on the extended Jacobson den-
sity theorems for rings with automorphisms and skew derivations. Such density theorems
connect the concept of a dense action of irreducible representations with the concept
of outerness of automorphisms and skew derivations recently developed by Beidar and
Brešar [2,6] and by Chuang and Liu [14], respectively. It is also our aim here to present
a new possible technique that can be used in the study of skew derivations in Banach
algebras.

2. Preliminaries

Throughout this section, A denotes a complex Banach algebra. By Prim(A) we denote
the set of all primitive ideals of A. The (Jacobson) radical rad(A) of A is defined to be
the intersection of all primitive ideals of A and, by the usual convention, rad(A) = A if
there are no primitive ideals of A. For a complex Banach space X, we denote by L(X)
the algebra of all linear operators on X and B(X) by the Banach algebra of all bounded
linear operators on X. We say that π is a continuous irreducible representation of A on a
complex Banach space X if π is a continuous algebra homomorphism from A into B(X)
such that the only invariant subspaces of X under π(A) are {0} and X. It is known that
the kernel of a continuous irreducible representation of A is a primitive ideal of A and for
each primitive ideal P of A there exists a continuous irreducible representation πP of A
on a complex Banach space XP such that kerπP = P and πP (A) ∼= A/P acts densely
on XP . We write sp(x) for the spectrum of x ∈ A. If Prim(A) �= ∅, we have the following
result [32, Theorem 2.2.9]:

sp(x) =

⎧⎪⎪⎨
⎪⎪⎩

⋃
P∈Prim(A)

sp(πP (x)) if A is unital,

⋃
P∈Prim(A)

sp(πP (x)) ∪ {0} if A is non-unital.

Throughout this section, π always denotes a continuous irreducible representation of A
on the complex Banach space X. Following [6], we call an automorphism σ of A π-inner
if there exists an invertible S ∈ L(X) such that πσ(a) = Sπ(a)S−1 for all a ∈ A. An
automorphism that is not π-inner is called π-outer. Two automorphisms σ and τ of A are
called π-dependent if στ−1 is π-inner, that is, there exists an invertible S ∈ L(X) such
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that πσ(a) = Sπτ(a)S−1 for all a ∈ A. Otherwise, they are called π-independent. Clearly,
an automorphism σ of A and the identity automorphism 1A of A are π-independent if
and only if σ is π-outer.

To prove our results, we need the notion generalized in [14] (or see [21]) to σ-derivations
of A into L(X). Let σ be an automorphism of A. By a σ-derivation δ̃ : A → L(X), we
mean that δ̃ is a linear map satisfying δ̃(ab) = πσ(a)δ̃(b) + δ̃(a)π(b) for all a, b ∈ A.
Clearly, if δ : A → A is a σ-derivation of A, then the map δ̃ = πδ : A → L(X) is a
σ-derivation. A σ-derivation δ̃ : A → L(X) is called π-inner if there exists T ∈ L(X)
such that δ̃(a) = πσ(a)T − Tπ(a) for all a ∈ A. Otherwise, it is called π-outer. Note
that a σ-derivation δ of A is called π-inner if δ̃ = πδ is π-inner. We have the extended
Jacobson density theorems on π-outer σ-derivations and automorphisms as follows.

Theorem 2.1 (Chuang and Liu [14, Theorem 2.7]). Let δ : A → L(X) be a π-
outer σ-derivation, where σ is π-outer. Then, for any C-independent x1, . . . , xn ∈ X and
arbitrary y1, . . . , yn, z1, . . . , zn, w1, . . . , wn ∈ X, there exists a ∈ A such that δ(a)xi = yi,
πσ(a)xi = zi and π(a)xi = wi for all i = 1, . . . , n.

Theorem 2.2 (Chuang and Liu [14, Theorem 2.6]). Let δ : A → L(X) be a
π-outer σ-derivation, where σ is π-inner. Then, for any C-independent x1, . . . , xn ∈ X

and arbitrary y1, . . . , yn, z1, . . . , zn ∈ X, there exists a ∈ A such that δ(a)xi = yi and
π(a)xi = zi for all i = 1, . . . , n.

Theorem 2.3 (Brešar [6, Theorem 1.2]). Suppose that σ1, . . . , σm are auto-
morphisms of A such that σi and σj are π-independent for all i �= j. Then, for any
C-independent x1, . . . , xn ∈ X and arbitrary yij ∈ X, there exists a ∈ A such that
πσi(a)xj = yij for all i = 1, . . . , m and j = 1, . . . , n.

Lemma 2.4 (Chebotar et al . [13, Lemma 2.7]). Let X be a vector space over C

and let T : X → X and U : X → X be linear operators. Suppose that Tx ∈ CUx for all
x ∈ X. Then T = αU for some α ∈ C.

3. Proof of Theorem 1.1

Let A be a complex Banach algebra and let δ be a σ-derivation of A, where σ is an
automorphism of A. For a, b ∈ A, we have

δ2(ab) = δ(σ(a)δ(b) + δ(a)b) = σ2(a)δ2(b) + (δσ + σδ)(a)δ(b) + δ2(a)b,

and hence

δ2(σ−1(a)b) = σ(a)δ2(b) + (δ + σδσ−1)(a)δ(b) + δ2σ−1(a)b.

Let π be a continuous irreducible representation of A on a complex Banach space X.
Then,

πδ2(ab) = πσ2(a)πδ2(b) + π(δσ + σδ)(a)πδ(b) + πδ2(a)π(b) (3.1)

and

πδ2(σ−1(a)b) = πσ(a)πδ2(b) + π(δ + σδσ−1)(a)πδ(b) + πδ2σ−1(a)π(b) (3.2)

for all a, b ∈ A.
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Lemma 3.1. Let A be a complex Banach algebra, let σ be an automorphism of A
and let δ be a σ-derivation of A. Suppose that δ2(a) is quasinilpotent for every a ∈ A.
If π is a continuous irreducible representation of A on a complex Banach space X such
that δ is π-outer, then πδ2(a) = 0 and π(δσ + σδ)(a) = 0 for every a ∈ A.

Proof. Note that σδσ−1 and δ + σδσ−1 are both σ-derivations of A. We divide the
proof into two cases.

Case 1 (δ + σδσ−1 is π-outer). Choose 0 �= x ∈ X. By Theorem 2.1 and 2.2,
there is b ∈ A such that πδ(b)x = x and π(b)x = 0. Assume first that σ is π-outer. Let
Y = Cx + Cπδ2(b)x. By Theorem 2.1, there is a ∈ A such that π(δ + σδσ−1)(a)x = x

and πσ(a)Y = 0. Thus, πσ(a)πδ2(b)x = 0. In view of (3.2), πδ2(σ−1(a)b)x = x, a
contradiction. Assume next that σ is π-inner. Then there is an invertible S ∈ L(X) such
that πσ(a) = Sπ(a)S−1 for all a ∈ A. Let Y = Cx+CS−1πδ2(b)x. By Theorem 2.2, there
is an a ∈ A such that π(δ+σδσ−1)(a)x = x and π(a)Y = 0. Thus, π(a)S−1πδ2(b)x = 0. In
particular, πσ(a)πδ2(b)x = Sπ(a)S−1πδ2(b)x = 0. In view of (3.2), πδ2(σ−1(a)b)x = x,
a contradiction.

Case 2 (δ+σδσ−1 is π-inner). So, there is a T ∈ L(X) such that π(δ+σδσ−1)(a) =
πσ(a)T − Tπ(a) for all a ∈ A. In this case, (3.2) becomes

πδ2(σ−1(a)b) = πσ(a)πδ2(b) + (πσ(a)T − Tπ(a))πδ(b) + πδ2σ−1(a)π(b)

= πσ(a)(πδ2(b) + Tπδ(b)) − Tπ(a)πδ(b) + πδ2σ−1(a)π(b) (3.3)

for all a, b ∈ A.
Assume first that T = 0. Then π(δ + σδσ−1) = 0, and hence π(δσ + σδ) = 0. By (3.1),

πδ2(ab) = πσ2(a)πδ2(b) + πδ2(a)π(b)

for all a, b ∈ A. This implies that πδ2 : A → L(X) is a σ2-derivation. Moreover, πδ2 must
be π-inner; otherwise, by Theorem 2.1 and 2.2, for any 0 �= x ∈ X there would exist a ∈ A
such that πδ2(a)x = x, a contradiction. Let U ∈ L(X) be such that πδ2(a) = πσ2(a)U −
Uπ(a) for all a ∈ A. If U = 0, then πδ2 = 0 and we are done. Assume that Ux �= 0 for
some x ∈ X. Then σ2 is π-inner; otherwise, by Theorem 2.3, there would exist a ∈ A
such that πσ2(a)Ux = x and π(a)x = 0, and so πδ2(a)x = (πσ2(a)U − Uπ(a))x = x, a
contradiction. Hence, there exists an invertible S ∈ L(X) such that πσ2(a) = Sπ(a)S−1

and so πδ2(a) = Sπ(a)S−1U−Uπ(a) for all a ∈ A. If S−1U /∈ CI, there would exist x ∈ X

such that S−1Ux and x are C-independent, letting a ∈ A be such that π(a)x = 0 and
π(a)S−1Ux = S−1x, and then πδ2(a)x = (Sπ(a)S−1U − Uπ(a))x = x, a contradiction.
Hence, S−1U ∈ CI. Thus, πδ2(a) = Sπ(a)S−1U − Uπ(a) = S(S−1U)π(a) − Uπ(a) = 0
for all a ∈ A and we are done.

Assume now that T �= 0. Choose x ∈ X such that Tx �= 0. Suppose that σ is π-outer.
By Theorem 2.1, there is b ∈ A such that πδ(b)Tx = x and π(b)Tx = 0. Let Y = Cx +
C(πδ2(b)+Tπδ(b))Tx. By Theorem 2.3, there is a ∈ A such that πσ(a)Y = 0 and π(a)x =
−x. In particular, πσ(a)(πδ2(b)+Tπδ(b))Tx = 0. Then, by (3.3), πδ2(σ−1(a)b)Tx = Tx,
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a contradiction. Hence, σ is π-inner. That is, there exists an invertible S ∈ L(X) such
that πσ(a) = Sπ(a)S−1 and so (3.3) becomes

πδ2(σ−1(a)b) = Sπ(a)S−1(πδ2(b) + Tπδ(b)) − Tπ(a)πδ(b) + πδ2σ−1(a)π(b) (3.4)

for all a, b ∈ A. Suppose that S−1T ∈ CI. Then, π(δ + σδσ−1)(a) = πσ(a)T − Tπ(a) =
Sπ(a)S−1T − Tπ(a) = S(S−1T )π(a) − Tπ(a) = 0, and thus π(δσ + σδ) = 0. With this
and (3.1), we see that πδ2 : A → L(X) is a σ2-derivation. By the same proof as above,
we obtain πδ2 = 0, as desired. Hence, we may assume that S−1T /∈ CI. Choose x ∈ X

such that S−1Tx and x are C-independent. Then Tx and Sx are C-independent. By
Theorems 2.1 and 2.2, there exists b ∈ A such that π(b)Tx = π(b)Sx = 0, πδ(b)Tx = Tx

and πδ(b)Sx = Sx. Thus, for μ, γ ∈ C, π(b)(μTx + γSx) = 0, πδ(b)(μTx + γSx) =
μTx + γSx, and by (3.4) we have

πδ2(σ−1(a)b)(μTx + γSx)

= Sπ(a)S−1(πδ2(b) + Tπδ(b))(μTx + γSx) − Tπ(a)(μTx + γSx)

= Sπ(a)U(μTx + γSx) − Tπ(a)(μTx + γSx) (3.5)

for all a ∈ A, where U = S−1(πδ2(b) + Tπδ(b)). If U(μTx + γSx) and μTx + γSx are
C-independent for some μ, γ ∈ C, letting a ∈ A such that π(a)U(μTx + γSx) = γx

and π(a)(μTx + γSx) = −μx, then by (3.5), πδ2(σ−1(a)b)(μTx + γSx) = μTx + γSx, a
contradiction. Hence, we conclude that

U(μTx + γSx) and μTx + γSx are C-dependent for all μ, γ ∈ C.

This implies that UTx = αTx, USx = βSx and U(Tx + Sx) = 	(Tx + Sx) for α, β, 	 ∈
C. Thus, 	(Tx + Sx) = U(Tx + Sx) = UTx + USx = αTx + βSx, implying that
(	 − α)Tx + (	 − β)Sx = 0. By the C-independence of Tx and Sx, we obtain α = β = 	.
This implies that USx = αSx. Thus, U(Tx − αSx) = α(Tx − αSx). With this, and
setting μ = 1 and γ = −α in (3.5), we obtain

πδ2(σ−1(a)b)(Tx − αSx) = (αS − T )π(a)(Tx − αSx) (3.6)

for all a ∈ A. Let a ∈ A be such that π(a)(Tx − αSx) = −x. By (3.6), we obtain
πδ2(σ−1(a)b)(Tx − αSx) = Tx − αSx, a contradiction. �

Lemma 3.2. Let A be a complex Banach algebra, let σ be an automorphism of A
and let δ be a σ-derivation of A. Suppose that δ2(a) is quasinilpotent for every a ∈ A.
If π is a continuous irreducible representation of A on a complex Banach space X such
that δ and σ are both π-inner, then π(δ2(a)2) = 0 for every a ∈ A.

Proof. By assumption, there exist T ∈ L(X) and an invertible S ∈ L(X) such
that πδ(a) = πσ(a)T − Tπ(a) and πσ(a) = Sπ(a)S−1 for all a ∈ A. Thus, πδ(a) =
Sπ(a)S−1T − Tπ(a) for all a ∈ A. We then have

πδ2(a) = Sπ(δ(a))S−1T − Tπ(δ(a))

= S(Sπ(a)S−1T − Tπ(a))S−1T − T (Sπ(a)S−1T − Tπ(a))

= S2π(a)(S−1T )2 − (ST + TS)π(a)S−1T + T 2π(a) (3.7)
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for all a ∈ A. If there is x ∈ X such that (S−1T )2x, S−1Tx and x are C-independent,
letting a ∈ A such that π(a)(S−1T )2x = S−2x and π(a)S−1Tx = π(a)x = 0, then,
by (3.7), πδ2(a)x = x, a contradiction. So (S−1T )2x, S−1Tx and x are C-dependent
for every x ∈ X. This implies that (S−1T )2 = μS−1T + νI for some μ, ν ∈ C, where I

denotes the identity operator on X. Then (3.7) reduces to

πδ2(a) = (μS2 − ST − TS)π(a)S−1T + (νS2 + T 2)π(a)

= Aπ(a)B + Cπ(a) (3.8)

for all a ∈ A, where A = μS2 − ST − TS, B = S−1T and C = νS2 + T 2. Suppose that
A = λC for some λ ∈ C. Then (3.8) becomes πδ2(a) = Cπ(a)D for all a ∈ A, where
D = λB + I. If DCx �= 0 for some x ∈ X, letting a ∈ A such that π(a)DCx = x, then
πδ2(a)Cx = Cπ(a)DCx = Cx, a contradiction. If DC = 0, then π(δ2(a)2) = (πδ2(a))2 =
0, proving the lemma. Hence, we may assume that A /∈ CC. Similarly, we may assume
C /∈ CA.

Let ξ, η ∈ C. If there is x ∈ X such that B(ξA + ηC)x and (ξA + ηC)x are
C-independent, letting a ∈ A such that π(a)B(ξA+ηC)x = ξx and π(a)(ξA+ηC)x = ηx,
then, by (3.8), πδ2(a)(ξA + ηC)x = (ξA + ηC)x, a contradiction. So we conclude that

B(ξA + ηC)x and (ξA + ηC)x are C-dependent for all ξ, η ∈ C and x ∈ X.

In particular, BAx and Ax are C-dependent, BCx and Cx are C-dependent and B(A +
C)x and (A + C)x are C-dependent for every x ∈ X. From Lemma 2.4, it follows that
BA = αA, BC = βC and B(A+C) = γ(A+C) for some α, β, γ ∈ C. Then, γ(A+C) =
B(A + C) = BA + BC = αA + βB. Thus, (α − γ)A = (γ − β)C. Recall that A /∈ CC

and C /∈ CA. This implies that α = β = γ. Consequently, BA = αA and BC = αC.
Choose x ∈ X such that (αA + C)x �= 0 and let a ∈ A be such that π(a)(αA + C)x = x.
By (3.8), πδ2(a)(αA + C)x = (αA + C)x, a contradiction. This proves the lemma. �

Now we are ready to give the following proof.

Proof of Theorem 1.1. To prove that δ2(a)2 lies in the radical of A, it suffices to
show that π(δ2(a)2) = (πδ2(a))2 = 0 for any continuous irreducible representation π

of A. Let π be a continuous irreducible representation of A on a complex Banach space
X. By Lemma 3.1, we may assume that δ is π-inner. That is, there is T ∈ L(X) such
that πδ(a) = πσ(a)T − Tπ(a) for all a ∈ A. Then (3.2) becomes

πδ2(σ−1(a)b)

= πσ(a)πδ2(b) + π(δ + σδσ−1)(a)πδ(b) + πδ2σ−1(a)π(b)

= πσ(a)πδ2(b) + (πσ(a)T − Tπ(a))πδ(b) + πσδσ−1(a)πδ(b) + πδ2σ−1(a)π(b). (3.9)

Moreover, by Lemma 3.2, we may assume that σ is π-outer.
Assume first that σδσ−1 is π-outer. If T = 0, then πδ = 0 and hence πδ2 = 0,

as desired. So assume that T �= 0 and let x ∈ X be such that Tx �= 0. Let Y =
Cx+CTx. Since σ is π-outer, by Theorem 2.3 there is b ∈ A such that πσ(b)Tx �= 0 and
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π(b)Y = 0. This implies that π(b)x = 0 and πδ(b)x = (πσ(b)T −Tπ(b))x = πσ(b)Tx �= 0.
Let Z = Cπδ(b)x + Cπδ2(b)x + CTπδ(b)x. By Theorem 2.1, there is a ∈ A such that
πσδσ−1(a)πδ(b)x = x, πσ(a)Z = 0 and π(a)Z = 0. This implies that πσ(a)πδ2(b)x =
πσ(a)Tπδ(b)x = 0 and π(a)πδ(b)x = 0. By (3.9), πδ2(σ−1(a)b)x = x, a contradiction.

Assume now that σδσ−1 is π-inner. That is, there exists U ∈ L(X) such that
πσδσ−1(a) = πσ(a)U − Uπ(a) for all a ∈ A. Thus, πσδ(a) = πσ2(a)U − Uπσ(a) for
all a ∈ A. With this, we now have

πδ2(a) = πσ(δ(a))T − Tπ(δ(a))

= πσδ(a)T − Tπδ(a)

= (πσ2(a)U − Uπσ(a))T − T (πσ(a)T − Tπ(a))

= πσ2(a)UT − (U + T )πσ(a)T + T 2π(a) (3.10)

for all a ∈ A. We divide the proof into two cases.

Case 1 (σ2, σ, and 1A are pairwise π-independent). Suppose that UTx �= 0
for some x ∈ X. Let Y = CUTx + CTx + Cx. By Theorem 2.3, there is a ∈ A such
that πσ2(a)UTx = x, πσ(a)Y = 0 and π(a)Y = 0. This implies that πσ(a)Tx = 0 and
π(a)x = 0. By (3.10), πδ2(a)x = x, a contradiction. Hence, we assume that UT = 0.
Then (3.10) becomes

πδ2(a) = −(U + T )πσ(a)T + T 2π(a) (3.11)

for all a ∈ A. Suppose that T (U +T )x �= 0 for some x ∈ X. Let Y = CT (U +T )x+C(U +
T )x. By Theorem 2.3, there is a ∈ A such that πσ(a)T (U + T )x = x and π(a)Y = 0,
implying that π(a)(U+T )x = 0. From (3.11), it follows that πδ2(a)(U+T )x = −(U+T )x,
a contradiction. Thus, T (U + T ) = 0. Suppose that T 2x �= 0 for some x ∈ X. Let
Z = CT 2x + CT 3x. By Theorem 2.3, there is a ∈ A such that π(a)T 2x = x and
πσ(a)Z = 0, implying that πσ(a)T 3x = 0. From (3.11), it follows that πδ2(a)T 2x = T 2x,
a contradiction. Thus, T 2 = 0. Now, using T (U + T ) = T 2 = 0 and (3.11), we have
(πδ2(a))2 = π(δ2(a)2) = 0 for all a ∈ A, proving the theorem.

Case 2 (σ2, σ and 1A are not pairwise π-independent). Since σ is π-outer, we
see that σ2 and 1A are π-dependent. That is, σ2 is π-inner. So there exists an invertible
S ∈ L(X) such that πσ2(a) = Sπ(a)S−1 for all a ∈ A. Then (3.10) becomes

πδ2(a) = Sπ(a)S−1UT − (U + T )πσ(a)T + T 2π(a) (3.12)

for all a ∈ A. Suppose that S−1UT /∈ CI. Then S−1UTx and x are C-independent for
some x ∈ X. Let Y = CS−1UTx + Cx + CTx. According to Theorem 2.3, there is a ∈ A
such that π(a)S−1UTx = S−1x, π(a)x = 0 and πσ(a)Y = 0, implying that πσ(a)Tx = 0.
By (3.12), πδ2(a)x = x, a contradiction. So S−1UT ∈ CI and (3.12) reduces to

πδ2(a) = −(U + T )πσ(a)T + (T 2 + UT )π(a) (3.13)

for all a ∈ A. Suppose that T (U +T )x �= 0 for some x ∈ X. Let Y = CT (U +T )x+C(U +
T )x. By Theorem 2.3, there is a ∈ A such that πσ(a)T (U + T )x = x and π(a)Y = 0,
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implying that π(a)(U+T )x = 0. From (3.13) it follows that πδ2(a)(U+T )x = −(U+T )x,
a contradiction. Thus, T (U + T ) = 0. Suppose that (T 2 + UT )x �= 0 for some x ∈ X.
Let Z = C(T 2 + UT )x + CT (T 2 + UT )x. By Theorem 2.3, there is a ∈ A such that
π(a)(T 2+UT )x = x and πσ(a)Z = 0, implying that πσ(a)T (T 2+UT )x = 0. From (3.13)
it follows that πδ2(a)(T 2 + UT )x = (T 2 + UT )x, a contradiction. Thus, T 2 + UT = 0.
Now, using T (U + T ) = T 2 + UT = 0 and (3.13), we see that (πδ2(a))2 = π(δ2(a)2) = 0,
proving the theorem. �

4. Proof of Theorems 1.2 and 1.5

Lemma 4.1. Let A = M2(C), the 2×2 matrix algebra over the complex field. Suppose
that S, A ∈ A and that S is invertible in A. If [S[A, a], a]2 = 0 for all a ∈ A, then A ∈ CI2,
where I2 is the identity matrix in A.

Proof. Clearly, for any invertible element P ∈ A we have [PSP−1[PAP−1, a], a]2 = 0
for all a ∈ A. Moreover, for any λ ∈ C, [PSP−1[PAP−1 − λI2, a], a]2 = 0 for all a ∈ A.
Thus, writing A in its Jordan form modulo a scalar, we may assume that A = ( α 0

0 0 ) or
A = ( 0 α

0 0 ), where α ∈ C. Clearly, if α = 0, then we are done. So we may assume that
α �= 0. Also write

S =

(
s11 s12

s21 s22

)
, where sij ∈ C.

Suppose that x = ( x1
x2 ) ∈ C

2 such that Ax and x are C-independent. Then, C
2 =

CAx + Cx. Write Sx = μAx + νx for μ, ν ∈ C. Let a ∈ A such that ax = 0 and
aAx = x. Then, [S[A, a], a]x = (S(Aa − aA)a − aS(Aa − aA))x = aSaAx = μx. From
0 = [S[A, a], a]2x = μ2x it follows that μ = 0, and hence Sx = νx. So we conclude that

if Ax and x are C-independent for x ∈ C
2, then Sx ∈ Cx. (∗)

Case 1 (A = ( α 0
0 0 )). Let x =

(1
γ

)
, where 0 �= γ ∈ C. Then, Ax =

(
α
0

)
and x =

(1
γ

)
are C-independent. By (∗), we have Sx = 	γx, where 	γ ∈ C depending on γ. This
implies that s11 + γs12 = 	γ and s21 + γs22 = 	γγ. Combining these two identities, we
obtain s12r

2 + (s11 − s22)r − s21 = 0 for all 0 �= γ ∈ C. Consequently, s12 = s21 = 0 and
s11 = s22. So S = s11I2. Setting a = ( 0 1

1 0 ), we have [S[A, a], a] = 2s11α( 1 0
0 −1 ). Thus,

0 = [S[A, a], a]2 = 4(s11α)2I2, a contradiction.

Case 2 (A = ( 0 α
0 0 )). Let x =

(
γ
1

)
, where 0 �= γ ∈ C. Then, Ax =

(
α
0

)
and x =

(
γ
1

)
are C-independent. By (∗), we have Sx = 	γx, where 	γ ∈ C depending on γ. This
implies that γs11 + s12 = 	γr and γs21 + s22 = 	γ . Combining these two identities, we
obtain s21r

2 + (s22 − s11)r − s12 = 0 for all 0 �= γ ∈ C. Consequently, s12 = s21 = 0
and s11 = s22. So S = s11I2. Setting a = ( 0 1

1 0 ), we have [S[A, a], a] = s11α( 0 2
−2 0 ). Thus,

0 = [S[A, a], a]2 = −4(s11α)2I2, a contradiction. This proves the lemma. �
Lemma 4.2. Let A be a complex Banach algebra, let σ be an automorphism of A

and let δ be a σ-derivation of A. Suppose that [δ(a), a] is quasinilpotent for every a ∈ A.
If π is a continuous irreducible representation of A on a complex Banach space X with
dimC X � 2, then πδ = 0.
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Proof. Clearly, we have

π([δ(a), a]) = [πδ(a), π(a)] = πδ(a)π(a) − π(a)πδ(a) (4.1)

for all a ∈ A.
Suppose first that δ is π-outer. Choose x, y ∈ X such that x and y are C-independent.

By Theorems 2.1 and 2.2, there is an a ∈ A such that πδ(a)x = y, π(a)x = 0 and π(a)y =
−x. Then, by (4.1), π([δ(a), a])x = (πδ(a)π(a) − π(a)πδ(a))x = x, a contradiction.
Hence, δ must be π-inner. That is, there exists T ∈ L(X) such that πδ(a) = πσ(a)T −
Tπ(a) for all a ∈ A. Thus, (4.1) becomes

π([δ(a), a]) = (πσ(a)T − Tπ(a))π(a) − π(a)(πσ(a)T − Tπ(a)) (4.2)

for all a ∈ A. If T = 0, then πδ = 0, proving the lemma. So we may assume that T �= 0.
Suppose next that σ is π-outer. Assume first that T /∈ CI. Then Tx and x are

C-independent for some x ∈ X. By Theorem 2.3, there is a ∈ A such that πσ(a)Tx = Tx,
π(a)Tx = −x and π(a)x = 0. By (4.2), π([δ(a), a])x = −π(a)πσ(a)Tx = x, a contra-
diction. Assume now that T ∈ CI and write T = αI, where 0 �= α ∈ C. Then (4.2)
becomes

π([δ(a), a]) = T (πσ(a)π(a) − π(a)πσ(a)) (4.3)

for all a ∈ A. Choose x, y ∈ X such that x and y are C-independent. By Theorem 2.3,
there is a ∈ A such that πσ(a)x = y, π(a)x = 0 and π(a)y = −x. Then, by (4.3),
π([δ(a), a])x = Tx = αx, a contradiction. Hence, σ must be π-inner. That is, there exists
an invertible S ∈ L(X) such that πσ(a) = Sπ(a)S−1 for all a ∈ A. Thus, (4.2) reduces
to

π([δ(a), a]) = (Sπ(a)S−1T − Tπ(a))π(a) − π(a)(Sπ(a)S−1T − Tπ(a)) (4.4)

for all a ∈ A. Note that

πδ(a) = πσ(a)T − Tπ(a) = Sπ(a)S−1T − Tπ(a) = S(π(a)S−1T − S−1Tπ(a)) (4.5)

for all a ∈ A. If S−1T ∈ CI, then, by (4.5), πδ = 0, proving the lemma. So we may
assume that S−1T /∈ CI. Hence, S−1Tx and x are C-independent for some x ∈ X.

Case 1 (dimC X � 3). Choose y ∈ X such that S−1Tx, x and y are C-independent.
Let a ∈ A satisfy π(a)x = 0, π(a)S−1Tx = S−1y and π(a)y = −x. Then, by (4.4),
π([δ(a), a])x = −π(a)Sπ(a)S−1Tx = x, a contradiction.

Case 2 (dimC X = 2). In this case, π(A) = B(X) ∼= M2(C). In view of (4.4),
we have that π([δ(a), a]) = [S[A, π(a)], π(a)] is quasinilpotent in π(A) for every a ∈ A,
where A = −S−1T . By Lemma 4.1, A = −S−1T ∈ CI. This implies that πδ = 0 by (4.5),
proving the lemma. �

Proof of Theorem 1.2. Let π be a continuous irreducible representation of A on a
complex Banach space X with kerπ = P . If dimC X � 2, then, by Lemma 4.2, πδ = 0
and thus π([δ(a), b]) = [πδ(a), π(b)] = 0 for all a, b ∈ A. If dimC X = 1, then π(A) = CI

and hence π([A,A]) = [π(A), π(A)] = 0, implying that π([δ(a), b]) = 0 for all a, b ∈ A.
Consequently, [δ(A),A] ⊆ rad(A), proving the theorem. �
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Let IA be the ideal of A generated by [A,A], where [A,A] denotes the subspace
of A spanned by all commutators (that is, elements of the form [a, b] = ab − ba where
a, b ∈ A) of A. From A[A,A]A ⊆ A[[A,A],A] + A2[A,A] ⊆ A[A,A], it follows that
IA = [A,A] + A[A,A]. For b ∈ A, let b� : A → A be the map defined by b�(a) = ba for
all a ∈ A.

Theorem 4.3. Let A be a unital complex Banach algebra and let δ be a σ-derivation
of A, where σ is an inner automorphism of A. Suppose that [δ(a), a] is quasinilpotent for
every a ∈ A. Then, δ(IA) ⊆ rad(A). Moreover, δ(A) ⊆ rad(A) if δ is continuous.

Proof. By assumption, σ(a) = uau−1 for all a ∈ A, where u is a unit in A. Let
d = u−1

� δ. Then it is easy to see that d is a derivation of A and δ = u�d.
Let π be a continuous irreducible representation of A on a complex Banach space X

with kerπ = P . Suppose first that dimC X � 2. Then, by Lemma 4.2, πδ(A) = 0
and thus πδ(IA) = 0. Suppose next that dimC X = 1. In this case, π(A) = CI and
A/P ∼= C. Clearly, π([A, A]) = [π(A), π(A)] = 0 and thus π(IA) = 0. Using d([a, b]) =
[d(a), b] + [a, d(b)], we see that d(IA) ⊆ IA. So πd(IA) = 0, implying that πδ(IA) = 0.
Note that d(1) = 0 and hence d(C) = 0. Suppose that δ is continuous; then so is d.
By [34, Theorem 2.2], d(P ) ⊆ P . So d naturally induces a derivation dP of A/P by the
rule: dP (a + P ) = d(a) + P for all a ∈ A. Since A/P ∼= C, we have dP (A/P ) = 0 + P .
This implies that d(A) ⊆ P . Thus, πd(A) = 0, implying that πδ(A) = 0. Consequently,
δ(IA) ⊆ rad(A) and if δ is continuous, then δ(A) ⊆ rad(A). �

The famous result of Halmos asserts that if H is a complex infinite-dimensional sep-
arable Hilbert space, then every element of A = B(H) is a sum of two commutators.
Consequently, A = IA. In [4, Lemma 2.6], Brešar proved that if A is a von Neumann
algebra with no non-zero central abelian summand, then A = IA. Moreover, if A is a uni-
tal properly infinitely C∗-algebra or a unital stable C∗-algebra [16] or a unital C∗-algebra
without tracial states [29], then A = IA.

As an immediate consequence of Theorem 4.3, we have the following corollary.

Corollary 4.4. Let A be a unital complex Banach algebra with A = IA and let δ

be a σ-derivation of A, where σ is an inner automorphism of A. Suppose that [δ(a), a] is
quasinilpotent for every a ∈ A. Then, δ(A) ⊆ rad(A).

Proof of Corollary 1.3. Clearly, if a ∈ A with an ∈ rad(A), then a and an are both
quasinilpotent. By Theorem 1.2 and Theorem 4.3, we are done. �

Proof of Corollary 1.4. Note that δ = σ − 1A is a σ-derivation of A and [δ(a), a] =
[(σ − 1A)(a), a] = [σ(a) − a, a] = [σ(a), a] for all a ∈ A. By Theorem 1.2, [δ(A),A] ⊆
rad(A). Thus, δ(a) = (σ − 1A)(a) is central modulo the radical for every a ∈ A, as
desired. �

To prove Theorem 1.5, we need the following result.
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Theorem 4.5 (Beidar et al . [3, Theorem 2]). Let A be a prime algebra and δ a
σ-derivation of A, where σ is an automorphism of A. If [δ(a), a] ∈ Z(A) for every a ∈ A,
then δ = 0 or A is commutative.

Now we are ready for the following proof.

Proof of Theorem 1.5. Clearly, [[δ(a), a], a] = 0 for every a ∈ A. By the Kleinecke–
Shirokov theorem, [δ(a), a] is quasinilpotent for every a ∈ A. So [δ(A),A] ⊆ rad(A) by
Theorem 1.2.

Suppose that σ is inner and σ(a) = uau−1 for all a ∈ A, where u is a unit in A. Clearly,
d = u−1

� δ is a derivation of A. Let Q be a primitive ideal of A. Using Zorn’s lemma, we
can find a minimal prime ideal P ⊆ Q. By [27, Lemma], d(P ) ⊆ P and hence δ(P ) ⊆ P .
Clearly, σ(P ) ⊆ P .

Case 1 (P is closed in A). Then d naturally induces a derivation dP of A/P defined
by dP (a+P ) = d(a)+P for all a ∈ A. In particular, δP = (u+P )�dP is a σP -derivation
of A/P such that [δP (a + P ), a + P ] ∈ Z(A/P ) for all a ∈ A, where σP is an inner
automorphism of A/P defined by σP (a+P ) = (u+P ) · (a+P ) · (u+P )−1 for all a ∈ A.
By Theorem 4.5, δP = 0 or A/P is commutative. In the first case, δ(A) ⊆ P and thus
δ(A) ⊆ Q. In the latter case, by [37] dP (A/P ) ⊆ rad(A/P ). Using rad(A/P ) ⊆ Q/P ,
we obtain d(A) ⊆ Q and hence δ(A) ⊆ Q. So in both cases we have δ(A) ⊆ Q.

Case 2 (P is not closed in A). By [15, Lemma 2.3], Φ(d) ⊆ P , where Φ(d) is
the separating space of d. Let πP̄ : A → A/P̄ be the canonical epimorphism defined by
πP̄ (a) = a + P̄ for all a ∈ A. Since πP̄ (Φ(d)) = 0, by [35, Lemma 1.3], πP̄ ◦ d : A →
A/P̄ is continuous. By a standard argument [34, Theorem 2.2], πP̄ ◦ d(P̄ ) = 0 + P̄ .
This implies that d(P̄ ) ⊆ P̄ . So d naturally induces a derivation dP̄ of A/P̄ defined by
dP̄ (a + P̄ ) = d(a) + P̄ for all a ∈ A. Note that dP̄ is continuous by [35, Lemma 1.4].
Thus, δP̄ = (u + P̄ )�dP̄ is a continuous σP̄ -derivation of A/P̄ , where σP̄ is an inner
automorphism of A/P̄ defined by σP̄ (a + P̄ ) = (u + P̄ ) · (a + P̄ ) · (u + P̄ )−1 for all
a ∈ A. Recall that [δ(a), a] is quasinilpotent for every a ∈ A. So [δP̄ (a + P̄ ), a + P̄ ]
is quasinilpotent for every a ∈ A. By Theorem 4.3, δP̄ (A/P̄ ) ⊆ rad(A/P̄ ). Clearly,
P̄ ⊆ Q as Q is closed in A. Using rad(A/P̄ ) ⊆ Q/P̄ , we obtain δ(A) ⊆ Q. Consequently,
δ(A) ⊆ rad(A). The proof is now complete. �

In general, a continuous skew derivation satisfying the assumptions in Theorem 1.2,
Theorem 1.5 or Corollary 1.4 does not necessarily map into the radical. See the example
below.

Example. Let A = C⊕C and let σ be the automorphism of A defined by σ((a1, a2)) =
(a2, a1) for all a1, a2 ∈ C. Then, rad(A) = 0 and δ = σ − 1A is a non-zero continuous
σ-derivation of A satisfying [δ(a), a] = 0 for all a ∈ A.
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