
J. Fluid Mech. (2022), vol. 946, A18, doi:10.1017/jfm.2022.575

Evaluating the stretching/compression effect of
Richtmyer–Meshkov instability in convergent
geometries

Jin Ge1, Haifeng Li2,†, Xinting Zhang1 and Baolin Tian2,3,†
1Sino-French Engineer School, Beihang University, Beijing 100191, PR China
2Institute of Applied Physics and Computational Mathematics, Beijing 100094, PR China
3HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University,
Beijing 100871, PR China

(Received 9 December 2021; revised 10 May 2022; accepted 30 June 2022)

Richtmyer–Meshkov (RM) instability in convergent geometries (such as cylinders and
spheres) plays a fundamental role in natural phenomena and engineering applications,
e.g. supernova explosion and inertial confinement fusion. Convergent geometry refers to a
system in which the interface converges and the fluids are compressed correspondingly.
By applying a decomposition formula, the stretching or compression (S(C)) effect is
separated from the perturbation growth as one of the main contributions, which is defined
as the averaged velocity difference between two ends of the mixing zone. Starting from
linear theories, the S(C) effect in planar, cylindrical and spherical geometries is derived
as a function of geometrical convergence ratio, compression ratio and mixing width.
Specifically, geometrical convergence stretches the mixing zone, while fluid compression
compresses the mixing zone. Moreover, the contribution of geometrical convergence in
the spherical geometry is more important than that in the cylindrical geometry. A series of
cylindrical cases with high convergence ratio is simulated, and the growth of perturbations
is compared with that of the corresponding planar cases. As a result, the theoretical results
of the S(C) effect agree well with the numerical results. Furthermore, results show that
the S(C) effect is a significant feature in convergent geometries. Therefore, the S(C) effect
is an important part of the Bell–Plesset effect. The present work on the S(C) effect is
important for further modelling of the mixing width of convergent RM instabilities.
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1. Introduction

Perturbations existing on a material interface grow after being accelerated by an incident
shock wave or by an external force directed from the heavy fluid to the light fluid, which
are known as Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969) and
Rayleigh–Taylor (RT) instability (Rayleigh 1882; Taylor 1950), respectively. The pressure
gradient caused by the shock wave or the external force does not coincide with the density
gradient, which produces a baroclinic source term depositing vorticity around the material
interface. The interface is thus rolled up, forming bubbles where the light fluid penetrates
into the heavy fluid, and spikes where the heavy fluid penetrates into the light fluid. At
late time, the nonlinear effect causes the interfacial instability to transition into turbulent
mixing. The evolution of mixing width (W), defined as the distance from the bubble front
to the spike front, has been investigated extensively, which is reviewed systematically in a
series of papers (Brouillette 2002; Zhou 2017a,b; Zhai et al. 2018; Zhou et al. 2021).

The classical RM instability, which occurs at a planar interface, has been investigated
widely. However, in many engineering applications, such as inertial confinement fusion
(Thomas & Kares 2012; Betti & Hurricane 2016), the interface is always a collapsing
cylinder or sphere. These interface configurations are referred to collectively as convergent
geometries. Built on the understanding of planar RM instability, researches have been
carried out on convergent RM instability. Early-time linear (Bell 1951; Plesset 1954)
and weakly nonlinear (Wang et al. 2015; Zhang et al. 2020) growth of the single-mode
perturbation in the convergent geometry are described mathematically. These models
have been confirmed by a series of experiments (Ding et al. 2017; Luo et al. 2018b,
2019). Theoretical analyses were extended in recent studies to predict the growth
of perturbations in the case of multiple shocks (Flaig et al. 2018), nonlinear stages
(Goncharov & Li 2005; Zhao et al. 2020; Dimonte 2021), or late-time turbulent mixing
(Mikaelian 1990, 2005; Rafei et al. 2019; El Rafei & Thornber 2020). Besides, numerical
simulations have been carried out to investigate the convergent RM instability. Joggerst
et al. (2014) presented two-dimensional spherical and cylindrical implosion cases with
different grids, and showed that the results obtained from different grids converge under
high resolution. Lombardini, Pullin & Meiron (2014a,b) simulated numerically the RM
instability with multi-mode perturbations in spherical geometry, and divided the growth of
the mixing width into three parts based on a linear theory: RT-like contribution, geometric
convergence, and compression effects. A series of cylindrical implosion experiments were
carried out (Hsing & Hoffman 1997; Hsing et al. 1997; Tubbs et al. 1999; Barnes et al.
2002; Lanier et al. 2003). In the experiments, the smooth premixing layer is observed to be
thickened during convergence (Lanier et al. 2003), which has not been understood clearly.

One key problem is how to evaluate the difference between the growth of perturbations
in convergent geometries and that in the planar geometry. Bell (1951) and Plesset
(1954) extended the single-mode linear theory to the cylindrical and spherical geometry,
respectively, which are summarized by Epstein (2004) as(

γρ + d
dt

)
d
dt
(ρa) = γ 2

0 (ρa), (1.1a)

(
γρ + d

dt

)
d
dt
(ρaR) = γ 2

0 (ρaR) (1.1b)

and (
γR + γρ + d

dt

)
d
dt
(ρaR2) = γ 2

0 (ρaR2) (1.1c)
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Stretching/compression in convergent RM instability

for planar, cylindrical and spherical geometries, respectively. Here, γR = −Ṙ/R is the
convergence rate of the interface, and γρ = −ρ̇/ρ is the compression rate of the fluids.
The overdot represents the time derivative. Also, a is the perturbation amplitude, and γ0 is
the growth rate, where

γ 2
0 = 2πm

L
ρh − ρl

ρh + ρl
g (1.2a)

for the planar geometry,

γ 2
0 = m

R
ρh − ρl

ρh + ρl
g (1.2b)

for the cylindrical geometry, and

γ 2
0 = m(m + 1)

R
ρh − ρl

mρh + (m + 1)ρl
g (1.2c)

for the spherical geometry. Here, ρh and ρl are the densities of heavy fluid and light fluid,
L is the length of the cross-section in the planar geometry, which is a constant, R is the
interface radius, which varies with time, m is the wavenumber of the perturbations, and
g is the acceleration of the interface. Compared with the planar cases, the linear theory
in convergent geometry is characterized with R, which varies with time, and ρ̇, which
represents the variation of density with time. In the weakly nonlinear model deduced
by Wang et al. (2015) and Zhang et al. (2020), geometrical convergence is also verified
as an important factor to modify the growth of perturbation. The perturbation growth is
found to be amplified in the convergent geometries, which is described as a function of
the convergence ratio Cr = R0/R(t). For example, by assuming a self-similar growth of
perturbation, Mikaelian (1990, 2005) extended the linear theory to predict the growth
of the turbulent-mixing width in both cylindrical and spherical geometries, where the
convergence ratio Cr also amplifies the growth of the mixing width. Therefore, compared
to that in the planar geometry, the perturbation growth in the convergent geometry is
modified. This modification caused by the geometry is referred to collectively as the
Bell–Plesset (BP) effect (Beck 1996; Hsing & Hoffman 1997), which is a function
of R and ρ. As suggested in the inertial confinement fusion experiments by Li et al.
(2004), the BP effect is expected to become important at a much higher convergence
ratio Cr > 30.

The BP effect is caused mainly by geometrical convergence and fluid compression.
However, the relative importance and coupling of the two factors are unclear. On the
one hand, by assuming a constant mass in the mixing zone with constant density, the
stretching of the mixing width W (the radial length) is deduced since the azimuthal
length of the mixing zone decreases as the interface converges (Luo et al. 2018a). On
the other hand, supposing that the fluids are compressed uniformly in space, the coupling
effect of geometrical convergence and fluid compression turns out to inhibit the growth
of perturbations (Epstein 2004), which leads to a different conclusion. More recently,
Ge et al. (2020) carried out three-dimensional simulations of cylindrical RM instability.
As a result, a stretching effect exists obviously in cylindrical geometry. The stretching
effect is defined as the averaged velocity difference between two ends of the mixing zone
(Li et al. 2021), which does not exist in planar geometry if there is no wave acting on
the mixing zone. Ge et al. (2020) ascribe this stretching effect in cylindrical geometry
to ‘an asymmetric geometric environment’. However, there is no detailed explanation of
this asymmetric geometric environment. Furthermore, the relation between this stretching
effect and the BP effect is still unclear. Therefore, to better understand the BP effect,
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it is worthwhile to give the exact quantitative contribution of geometrical convergence
and fluid compression in the modification caused by the convergent geometry. Besides, an
intuitive physical explanation of this modification on the perturbation growth in convergent
geometries is also needed, which motivates the present work.

In this work, we extract a compression or stretching (S(C)) effect from the perturbation
growth. We evaluate quantitatively the S(C) effect, and prove this effect to be an important
part of the BP effect. The physical origin underlying the S(C) effect is also given. A series
of numerical simulations in planar and cylindrical geometries are performed to verify our
theoretical analysis.

The layout of this paper is as follows. The theoretical analysis is presented in § 2, where
the S(C) effect is introduced and analysed. In § 3, the physical model and numerical
method for numerical simulations are presented. The numerical results can be found
in § 4, followed by the discussion about the S(C) effect in § 5. The conclusions are
drawn in § 6. The reliability of the numerical simulations is discussed in Appendices A
and B.

2. Theoretical analysis on the S(C) effect

2.1. Definition of the S(C) effect
The definition of the S(C) effect is given by applying a decomposition formula. The
formula was proposed to investigate the influence of nonlinear waves (Li et al. 2021) and
convergent geometry (Ge et al. 2020) on the evolution of RM instability. For completeness,
we give a brief derivation of the S(C) effect.

The mixing width is defined as the distance from the bubble-zone front to the spike-zone
front, i.e.

W ≡ sgn(A) (RB − RS), (2.1a)

and hence

Ẇ = sgn(A) (ṘB − ṘS), (2.1b)

where the overdot means the time derivative, A = (ρout − ρin)/(ρout + ρin) is the Atwood
number, RB is the radius where the Favre-averaged light-fluid mass fraction profile in the
streamwise direction Ỹl(RB, t) = 0.01, and RS is the radius where Ỹl(RS, t) = 0.99.

For a physical variable f , f̄ and f̃ represent the Reynolds-averaged streamwise-direction
profile and the Favre-averaged streamwise-direction profile, respectively. Here, f̃ = ρ̄f /ρ̄,
where ρ is the fluid density. Correspondingly, f ′ = f − f̄ and f ′′ = f − f̃ are the fluctuating
parts of the variable. The averaged velocity is aligned in the streamwise direction. For
consistency, in the planar geometry, we use r to indicate the streamwise direction.

For the Favre-averaged mass fraction profile Ỹ(r, t), where r is the streamwise direction,
at any given time t, the function of space Ỹ(r, t) is monotonic when Ỹ ∈ (0, 1). Therefore,
the inverse function of Ỹ(r, t) can be defined as RỸ(Y, t) = Ỹ−1(r, t) (Y ∈ (0, 1)), where
RỸ(Y, t) is the radius with an averaged mass fraction Y at time t. The time derivative of
the radius with a certain mass fraction Y0 is formulated as

Ṙ|Y0 = ∂RỸ
∂t

∣∣∣∣
Y0

= lim
�t→0

RỸ(Y0, t +�t)− RỸ(Y0, t)
�t

. (2.2)
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Stretching/compression in convergent RM instability

For r0 = RỸ(Y0, t +�t), it is obvious that at time t, the radius r0 corresponds to another
value of mass fraction Y0 +�Y , such that

r0 = RỸ(Y0, t +�t) = RỸ(Y0 +�Y, t), (2.3a)

−�Y = Ỹ(r0, t +�t)− Ỹ(r0, t). (2.3b)

Substituting (2.3) into (2.2), we have

∂RỸ
∂t

∣∣∣∣
Y0

= lim
�t→0

RỸ(Y0 +�Y, t)− RỸ(Y0, t)
�Y

�Y
�t

= −∂RỸ
∂Y

∂Ỹ
∂t

∣∣∣∣∣
Y0

. (2.4)

The property of the inverse function indicates that ∂RỸ/∂Y = (∂Ỹ/∂r)−1. Therefore, the
velocity of the radius with a certain mass fraction Y0 can be expressed as

Ṙ|Y0 = − ∂Ỹ/∂t

∂Ỹ/∂r

∣∣∣∣∣
Y0

. (2.5)

The governing equation of the mass fraction is

∂ρY
∂t

+ ∇ · (ρYu) = ∇ · (ρD ∇Y), (2.6)

where D is the diffusion coefficient. The Reynolds-averaged equation (2.6) is

∂ρ̄Ỹ
∂t

+ ∇ · (ρ̄Ỹũ)+ ∇ · ρY ′′u′′ = ∇ · (ρ̄D ∇Ỹ + ρD ∇Y ′′). (2.7)

We now consider the averaged mass equation

∂ρ̄

∂t
+ ∇ · (ρ̄ũ) = 0. (2.8)

Subtracting Ỹ times (2.8) from (2.7), we obtain

∂Ỹ
∂t

+ (ũ · ∇) Ỹ + 1
ρ̄

∇ · ρY ′′u′′ = 1
ρ̄

∇ · (ρ̄D ∇Ỹ + ρD ∇Y ′′). (2.9)

The spatial gradient in the streamwise direction has the same form for the Cartesian,
cylindrical and spherical coordinates. Therefore, we use ∇f = er ∂f /∂r, where er is the
unit vector in the streamwise direction, so (ũ · ∇)f = ũ ∂f /∂r. Dividing (2.9) by ∂Ỹ/∂r
and using ũ = ū + ρ′u′/ρ̄, we obtain

− ∂Ỹ/∂t

∂Ỹ/∂r
= ū + 1

ρ̄

(
ρ′u′ + ∇ · ρY ′′u′′

∂Ỹ/∂r

)
− 1

ρ̄ ∂Ỹ/∂r
∇ ·

(
ρ̄D

∂Ỹ
∂r

+ ρD
∂Y ′′

∂r

)
er.

(2.10)

By combining (2.5) and (2.10), we obtain

Ṙ|Y0 = (ū + uPen + uDiff )|Y0, (2.11)
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where

uPen = 1
ρ̄

(
ρ′u′ + ∂ρY ′′u′′/∂r

∂Ỹ/∂r

)
+ uPen,G, (2.12a)

uDiff = − 1

ρ̄ ∂Ỹ/∂r

∂

∂r

(
ρ̄D

∂Ỹ
∂r

+ ρD
∂Y ′′

∂r

)
+ uDiff ,G. (2.12b)

Here, ū|Y0 is the Reynolds-averaged velocity at radius r with Ỹl(r) = Y0; uPen describes
the contribution of the fluctuation field, uDiff represents the contribution of the molecular
diffusion, and uPen,G and uDiff ,G are the terms caused by the spatial divergence in
non-Cartesian coordinates, where

uPen,G = α

ρ̄

ρY ′′u′′/r
∂Ỹ/∂r

, (2.13a)

uDiff ,G = − α

ρ̄ ∂Ỹ/∂r

1
r

(
ρ̄D

∂Ỹ
∂r

+ ρD
∂Y ′′

∂r

)
, (2.13b)

where α is the geometry coefficient, with α = 0, 1, 2 for the Cartesian, cylindrical and
spherical coordinates, respectively.

At two ends of the mixing zone, the term related to the fluctuation terms, i.e. uPen,G, is
negligible compared with the terms related to the spatial gradient of the fluctuation terms
(the validation can be found in figures 8 and 9). Combining (2.1) and (2.11), the growth
rate of the mixing width is decomposed into

Ẇ = sgn(A)
[
(ū|B − ū|S)+ (uPen|B − uPen|S)+ (uDiff |B − uDiff |S)

]
, (2.14)

which is referred to as the decomposition formula. The formula indicates that the growth
of the mixing width contains three parts.

(i) The stretching or compression (S(C)) effect defined as the mean-velocity difference
between two edges of the mixing zone, which is presented as the large arrows in
figure 1. When this term is not zero, the mixing zone is stretched or compressed.

(ii) The penetration effect defined by the fluctuating field. This effect is illustrated in
figure 1 with small arrows. During the growth of the mixing zone, ρY ′′u′′ and ρ′u′
are dominated by two important processes: the light fluid penetrates the heavy fluid,
and the heavy fluid penetrates the light fluid (Li et al. 2021).

(iii) The diffusion effect caused by molecular diffusion, which tends to decrease the
density gradient at the material interface.

According to the work of Li et al. (2021), the contribution of the diffusion effect is
negligible in the flows at a high Reynolds number. Therefore, in the present work, we
consider only the penetration effect and the S(C) effect.

The decomposition formula provides a method to analyse quantitatively the mechanisms
controlling the evolution of the mixing width in interfacial fluid mixing. In the planar
geometry, the perturbation growth caused by RT/RM instability is attributed to the
penetration effect in most cases, while the S(C) effect, which is a growth mechanism
independent of RM/RT growth, is significant only when the mixing zone is influenced by
wave systems, such as shock, rarefaction and compression waves (Li et al. 2021). However,
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Stretching/compression in convergent RM instability

ūB < u   ¯s: Stretching

ūS

ūB

ūB > u   ¯s: Compression
RS

RB

Intermediate

turbulent-mixing

zone

Outer light fluid

Inner heavy fluid

Bubble front Spike front

u′′ > 0
ρ′ > 0

u′′ < 0
ρ′ < 0

u′′ < 0
ρ′ < 0

u′′ > 0
ρ′ > 0

Figure 1. Schematic diagram of the growth of the mixing width in convergent geometry. The large arrows
represent the mean velocity calculated at the bubble front and spike front. The small arrows represent the
fluctuating velocity of the bubble and spike.

in the convergent geometry, the S(C) effect is evident even when there is no wave in the
mixing zone (Ge et al. 2020). Therefore, the S(C) effect is an important difference between
the interfacial mixing in planar geometry and that in convergent geometry.

2.2. Quantitative analysis of the S(C) effect
In this subsection, we consider the S(C) effect in planar, cylindrical and spherical
geometries. For the fluids inside and outside the interface, the compression rates are
assumed to be uniform around the interface, i.e.

γρ,in = −ρ̇in/ρin, γρ,out = −ρ̇out/ρout. (2.15a,b)

The works of Bell (1951) and Epstein (2004) are inherited in the present work, where the
fluid motion is assumed to be irrotational. Therefore, there exist velocity potentials Φin/out
that satisfy a Poisson-type equation, �Φin/out = −γρ,in/out. The initial perturbation is
formulated as a single mode with a small amplitude. These results give the velocity
potentials inside and outside the interface expressed as

Φin/out(r, y, t) = Ψin/out(r, t)+ ψin/out(r, y, t) (2.16a)

in Cartesian coordinates (r, y),

Φin/out(r, θ, t) = Ψin/out(r, t)+ ψin/out(r, θ, t) (2.16b)

in cylindrical coordinates (r, θ), and

Φin/out(r, θ, ϕ, t) = Ψin/out(r, t)+ ψin/out(r, θ, ϕ, t) (2.16c)

in spherical coordinates (r, θ, ϕ). For the planar and cylindrical geometries, we disregard
the z-dependent direction. The potential functions Ψin/out(r) describe the background flow
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inside and outside the interface in all geometries, which are represented respectively as

Ψin/out(r, t) = −(r − R)Ṙ − (r − R)2
γρ,in/out

2
(2.17a)

in the planar geometry,

Ψin/out(r, t) = −
(

RṘ − R2

2
γρ,in/out

)
ln r − γρ,in/out

4
r2 (2.17b)

in the cylindrical geometry, and

Ψin/out(r, t) =
(

R2Ṙ − R2

3
γρ,in/out

)
1
r

− γρ,in/out

6
r2 (2.17c)

in the spherical geometry. For consistency, we use R to indicate the position of the interface
throughout. Here, ψin/out represents the potential of the perturbed flow, which satisfies the
Laplace function �ψin/out = 0 and thus is formulated as

ψin/out(r, y, t) = Ain/out(γρ,in/out, t) exp(±2πmr/L) cos(2πmy/L) (2.18a)

in the planar geometry (where m is the wavenumber of the perturbation, and L is the length
scale in the spanwise direction y),

ψin/out(r, θ, t) = Ain/out(γρ,in/out, t) r±m cos(mθ) (2.18b)

in the cylindrical geometry, and

ψin/out(r, θ, ϕ, t) = Ain/out(γρ,in/out, t) r[m,−(m+1)] Yn
m(θ, ϕ) (2.18c)

in the spherical geometry, where m − n and n are the latitude and longitude wavenumbers,
respectively. Also, Ain/out(t) is the function determined by the boundary condition and is
a function of only time. The perturbed interface equations are

r = R(t)+ a(t) cos(2πmy/L) (2.19a)

in the planar geometry,

r = R(t)+ a(t) cos (mθ) (2.19b)

in the cylindrical geometry, and

r = R(t)+ a(t)Yn
m(θ, ϕ) (2.19c)

in the spherical geometry, where a(t) is the amplitude of the perturbation. Therefore, the
bubble front RB and spike front RS of the mixing zone are described as R − a and R +
a, respectively. The Reynolds-averaged velocities at the bubble front and spike front in
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Stretching/compression in convergent RM instability

different geometries are calculated as

ūB/S = −
ˆ L

0

∂Φin/out

∂r
(RB/S, y) dy

/ ˆ L

0
dy (2.20a)

in the planar geometry,

ūB/S = −
˛
θ

∂Φin/out

∂r
(RB/S, θ) dθ

/ ˛
θ

dθ (2.20b)

in the cylindrical geometry, and

ūB/S = −
"
θ,ϕ

∂Φin/out

∂r
(RB/S, θ, ϕ) dθ dϕ

/"
θ,ϕ

dθ dϕ (2.20c)

in the spherical geometry. As a result, we have

ūS = Ṙ + aγρ,out, (2.21a)

ūB = Ṙ − aγρ,in (2.21b)

in the planar geometry,

ūS =
(

RṘ − R2

2
γρ,out

)
1

R + a
+ γρ,out

2
(R + a) , (2.21c)

ūB =
(

RṘ − R2

2
γρ,in

)
1

R − a
+ γρ,in

2
(R − a) (2.21d)

in the cylindrical geometry, and

ūS =
(

RṘ − R2

3
γρ,out

)
1

(R + a)2
+ γρ,out

3
(R + a) , (2.21e)

ūB =
(

RṘ − R2

3
γρ,in

)
1

(R − a)2
+ γρ,in

3
(R − a) (2.21f )

in the spherical geometry. Substituting (2.21) into (2.14) and considering that a � R, one
obtains that the S(C) effect is formulated as

ẆS(C) = (αγR + γρ)W, (2.22)

where γρ = (γρ,out + γρ,in)/2, the averaged compression rate, and W = 2a denotes the
mixing width. The geometrical coefficient is α = 0, 1, 2 for the planar, cylindrical and
spherical geometries, and ẆS(C) > 0 means that the mixing zone is stretched, while
ẆS(C) < 0 means that the mixing width is compressed.

The interface convergence gives γR > 0, and fluid compression gives γρ < 0. Therefore,
the geometrical convergence leads to the stretching of the mixing zone, while fluid
compression leads to the compression of the mixing zone. The coupling of geometrical
convergence and fluid compression is realized by the linear superposition. Furthermore,
in cylindrical geometry α = 1, while in spherical geometry α = 2. Therefore, the
contribution from the geometrical convergence is more significant in the spherical
geometry.
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R

R
+
�R

W
+
�

W

W

ρ

�ρ + ρ

�t

Figure 2. Schematic diagram of the S(C) effect. At time t, the mixing zone is positioned in the radius R with
width W, where R is the centre radius of the mixing zone. The density ρ in the mixing zone is assumed to be
uniform. After t +�t, the mixing zone converges to radius R +�R with width W +�W and density ρ +�ρ.

2.3. Physical origin of the S(C) effect
According to (2.22), the S(C) effect is determined by three physical quantities: γR, γρ and
W. As will be shown, the underlying physical origin of (2.22) is that the mass in the mixing
zone is conserved except for the mass brought in by the penetration effect.

As shown in figure 2, the mass in the mixing zone is ρVt at time t, and
(ρ +�ρ)Vt+�t at time t +�t. Here, Vt denotes the volume of the mixing zone
at time t. In this demonstration, ρ is assumed to be uniform in the mixing
zone. For the cylindrical geometry, we have Vt = π[(R + W/2)2 − (R − W/2)2] =
2πWR, where the axial length is unity. For the spherical geometry, we have
Vt = (4π/3)[(R + W/2)3 − (R − W/2)3] = 4πWR2(1 + W/12R). By assuming that the
mass in the mixing zone is conserved, we have ρVt = (ρ +�ρ)Vt+�t, i.e.

2πρWR = 2π (ρ +�ρ) (W +�W) (R +�R) (2.23a)

in the cylindrical geometry, and

4πρWR2
(

1 + W
12R

)
= 4π (ρ +�ρ) (W +�W) (R +�R)2

(
1 + W +�W

12(R +�R)

)
(2.23b)

in the spherical geometry. In most cases, the radial length of the mixing zone is much
smaller than the radius. Therefore, W/12R � 1. By disregarding small quantities of any
order higher than the first, we obtain

�W = −
(
�ρ

ρ
+ α

�R
R

)
W, (2.24)

where α = 1, 2 for the cylindrical geometry and spherical geometry, respectively. Dividing
(2.24) by �t and applying �t → 0, we have ẆS(C) = (αγR + γρ)W, which is the same as
(2.22). Therefore, we verify that the S(C) effect originates from the idea that the mass in
the mixing zone is conserved if we do not consider the mass brought in by the penetration
effect. When the mixing zone undergoes fluid compression or interface convergence, the
density or the spanwise length of the mixing zone changes, and the mixing width changes
as well.
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Stretching/compression in convergent RM instability

2.4. The S(C) effect and the BP effect
According to (2.22), the S(C) effect is caused by the geometrical convergence and fluid
compression. For the geometrical convergence, it happens in only cylindrical and spherical
geometries. For the fluid compression, it happens in a convergent system where the fluids
are compressed, or when the mixing zone is influenced by waves, such as shock waves,
rarefaction waves and compression waves. Therefore, we know that in planar geometry,
ẆS(C) = 0 when there is no wave system acting on the mixing zone (Li et al. 2021), while
ẆS(C) /= 0 in convergent geometries (Ge et al. 2020). Therefore, we conclude that the S(C)
effect is an important part of the BP effect.

However, the S(C) effect is not equivalent to the BP effect. The BP effect is, in fact,
a collective factor for the modification caused by the geometry, which contains multiple
mechanisms. For example, as the interface converges, the wavelength of the perturbations
changes, and how this factor modifies the instability remains an open question.

In this section, we give the definition of the S(C) effect in (2.14). The quantitative
relation between the S(C) effect and the geometrical convergence and fluid compression is
given in (2.22), which implies that the S(C) effect originates from the conservation of the
mixing mass. Furthermore, we prove that the S(C) effect is one of the mechanisms of the
BP effect. In the next section, a series of numerical simulations is provided to support our
theoretical analysis.

3. Numerical approach and problem set-up

3.1. Governing equations and computational approach
The flow field is governed by the compressible multi-component Navier–Stokes equations.
The mass, momentum, energy and mass fraction equations are

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.1a)

∂ρu
∂t

+ ∇ · (ρuu) = −∇ · ( pδ − τ ), (3.1b)

∂ρE
∂t

+ ∇ · (ρEu) = −∇ ·
(

pu − τ · u − κ ∇T − T
∑

i

Cp,i(ρD ∇Yi)

)
, (3.1c)

∂ρYi

∂t
+ ∇ · (ρYiu) = ∇ · (ρD ∇Yi), (3.1d)

where ρ, u, p, and T are the density, velocity vector, pressure and temperature, respectively.
The energy of the fluid is E = e + u · u/2, where e is the internal energy, and u · u/2 is the
kinetic energy. Here, δ is the Kronecker function, Yi is the mass fraction of the ith species,
where i = 1, 2 and Y1 + Y2 = 1, κ and D are the mixture thermal conductivity and the
mixture diffusion coefficient, respectively, and Cp,i is the constant-pressure-specific heat
capacity of the ith species. To close the equations, the fluids are assumed to be Newtonian
to calculate the shear stress, and the equations of state for the ideal gas are applied, i.e.

τ = μ
(
∇u + (∇u)T − 2

3δ(∇ · u)
)
, (3.2a)

p
ρ

= e
γ − 1

, (3.2b)
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where γ = Cp/CV is the heat capacity ratio, and CV is the constant-volume-specific heat
capacity.

The viscosity, thermal conductivity, and diffusivity of the ith species, which describe
the physical properties of the component, are obtained as (Sutherland 1893),

μi = μ0,i

(
T
T0

)3/2 T0 + Ts

T + Ts
, (3.3a)

κi = Cp,i
μi

Pri
, (3.3b)

Di = μi

ρi Sci
, (3.3c)

where μ0,i is the viscosity at a reference temperature T0 = 273.15 K, Ts = 124 K is an
effective temperature (Li et al. 2019), and Pri and Sci are the Prandtl number and Schmidt
number for the ith species, respectively.

The thermodynamic quantities f of the mixture in a computational cell are calculated
following Reckinger, Livescu & Vasilyev (2016):

f =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i

fi, for f = ρ, p,

f1 = · · · = fi, for f = T,V,∑
i

Yifi, for f = μ, κ,D,CV ,Cp.

(3.4)

The governing equations are solved numerically by the finite difference method with the
program APEX (Adaptive-mesh-refinement Program of Eulerian solvers with X-physics).
To show the reliability in simulating RM instability with APEX, we simulate the case taken
from the work of Thornber et al. (2017). Appendix A shows the numerical results and their
comparison with other algorithms. The fifth-order weighted essentially non-oscillation
(WENO) scheme is adopted for spatial reconstruction. The Harten–Lax–van Leer contact
(HLLC) approximate Riemann solver is applied to calculate the convection flux. The time
advancement is achieved through a third-order Runge–Kutta scheme.

3.2. Initial problem set-up

3.2.1. Computational domain
In this subsubsection, we first simulate the RM instability in a cylindrical geometry. To
compare the influence of geometry, RM instability in a planar geometry is also simulated,
in which the perturbed interface is the same as that unfolded from the cylindrical interface.
Both two-dimensional (2-D) and three-dimensional (3-D) cases are simulated. All cases
are simulated under Cartesian grids ((x, y) for 2-D cases, and (x, y, z) for 3-D cases). The
2-D views of both configurations are depicted in figure 3. By comparing the subsequent
growth of the perturbations on the two interfaces after shock time t0, we can evaluate the
influence caused by the geometry.

The initial setting of the cylindrical case is shown in figure 3(a). At the initial time t−,
the material interface is located at the position r = R0. The convergent shock wave radius
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Rext–Rs0 Rs0

Rs0

–R0

R0

R00

0

Initial shock wave

Initial shock wave

Initial perturbed interface

Initial perturbed interface

Inner fluid

Inner fluid

Outflow boundary

Outflow boundary

Periodic boundary

Symmetric

boundary

Periodic boundary

Unshocked outer fluid

Shocked outer fluid

Unshocked

outer fluid

Shocked

outer fluid

(a)

(b)

Figure 3. Planar slice at z = 0 for (a) cylindrical geometry and (b) planar geometry.

is Rs(t−) = Rs0 = 1.1R0, and the domain size Vcylinder is

Vcylinder,2-D = {(x, y) | |x| � Rext, |y| � Rext}, (3.5a)

Vcylinder,3-D = {(x, y, z) | |x| � Rext, |y| � Rext, |z| � πR0}, (3.5b)

with Rext = 4πR0 to avoid possible influence caused by the boundaries. The symmetric
boundaries are set in the axial direction z, while outflow conditions are applied in the
x and y directions. The convergence analysis of the size of the computational domain is
presented in Appendix B.

The initial setting of the planar case is shown in figure 3(b). The planar interface is
obtained by unfolding the cylindrical interface, including the perturbations. The planar
case considered is a shock tube with a constant cross-section. At the initial time t−,
the material interface is located at the position x = R0. The initial shock wave locates

946 A18-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.575


J. Ge, H. Li, X. Zhang and B. Tian

Quantity Fluid 1 (air) Fluid 2 (SF6-acetone)

ρ (kg m−3) 0.279 1.086
p (kPa) 23.000 23.000
T (K) 286.000 286.000
|u| (m s−1) 0 0
μ0 (×10−5 kg m−1 s−1) 1.716 1.239
Pr 0.720 0.800
Sc 0.757 0.691
γ 1.400 1.100

Table 1. The preshock state parameters and other properties of fluid 1 (air) and fluid 2 (SF6-acetone).

at Rs(t−) = Rs0, and the domain size Vplane is

Vplane,2-D = {(x, y) | R−
ext � x � R+

ext, |y| � πR0}, (3.6a)

Vplane,3-D = {(x, y, z) | R−
ext � x � R+

ext, |y| � πR0, |z| � πR0}, (3.6b)

where R+
ext − R−

ext = 2Rext. We adjust R−
ext to make sure that the re-shock time when the

reflected shock wave impacts the interface is identical in the two geometries. An outflow
boundary condition is applied at x = R+

ext, while a symmetric boundary condition is used
at x = R−

ext. Periodic boundaries are applied in the y direction. The boundaries in the z
direction are symmetric.

The streamwise direction refers to the direction in which the shock wave propagates,
i.e. the radial direction in the cylindrical cases, and the x direction in the planar cases. The
spanwise direction denotes the direction perpendicular to the streamwise direction.

For the 2-D cylindrical cases, the base grid resolution is 40962, and four additional levels
of refinement with a factor of two are applied. The finest resolution is therefore 65 5362,
i.e.�xmin ≈ 3.8 × 10−4R0. The same�xmin and refinement level are applied for the planar
cases, i.e. the base grid resolution is 4096 × 1024 (x direction × y direction) for the 2-D
planar cases. For the 3-D cylindrical cases, the base grid resolution is 512 × 512 × 128
(x direction × y direction × z direction), and five additional levels of refinement with a
factor of two are applied. The finest resolution is therefore 16 384 × 16 384 × 4096, i.e.
�xmin ≈ 1.5 × 10−3R0 in both domains. The same�xmin and refinement level are applied
for the planar cases, i.e. the base grid resolution is 512 × 128 × 128 for the 3-D planar
cases. The grid convergence analysis is presented in Appendix B.

3.2.2. Initial fluid state
The two fluids considered here are air (fluid 1, outside the interface) and SF6-acetone
mixtures (fluid 2, inside the interface). As with Tritschler et al. (2014), the unshocked state
parameters and other properties of the two fluids are shown in table 1.

For the cylindrical configuration, the initialization of the postshock fluid refers to the
work of Chisnell (1998). In that work, by solving the mass, momentum and entropy
equations for postshock symmetric flow, using an adiabatic ideal gas assumption, the
self-similar solutions of ρ, p, u are given in terms of ξ = r/Rs, where Rs is the radius
of the shock wave. For both geometries, the preshock and postshock states satisfy the
Rankine–Hugoniot conditions.

For the cylindrical geometry, the initial Mach number of the shock wave is set to ensure
a large convergence ratio (Cr ∼ 10) before the interface is re-shocked. Meanwhile, the
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Stretching/compression in convergent RM instability

non-dimensional duration (defined in the next section) when the interface converges with
a quasi-steady velocity should be long enough so that the cylindrical and planar cases are
comparable. Hence the initial Mach number of the cylindrical shock wave is set to be 2.

For the planar geometry, the Mach number is adjusted so that the velocity jump of
the interface �V impacted by the incident shock is the same as that in the cylindrical
geometry. In the cylindrical geometry, when the shock wave arrives at the interface at r =
R0, the Mach number is greater than the Mach number at the initial time t−, i.e. Ma(t0) >
Ma(t−). By referring to the work of Si et al. (2015), we can predict the Mach number
of the convergent shock wave at the shock time t0. Based on this theoretical value, the
Mach number is adjusted slightly and it is finally set to be Maplane = 2.14 in the numerical
simulations.

3.2.3. Initial perturbations
Two types of initial perturbations are applied: (i) single-mode perturbation in 2-D cases,
and (ii) multi-mode perturbation in 3-D cases.

The single-mode perturbations at both interfaces are presented as

ηcylinder(θ) = am cos(kmθR0) (3.7)

and
ηplane( y) = am cos(kmy), (3.8)

where am is the amplitude of perturbation, and km = mk0, with m the wavenumber and
k0 = 2π/(2πR0) = 1/R0. Two wavenumbers are applied: m = 8 and m = 16, which are
named SP8 and SP16, respectively. The initial amplitude is am = 0.01λm, where λm =
2πR0/m.

The multi-mode perturbation is a superposition of a series of modes with a prescribed
power spectrum (Dimonte et al. 2004). The power spectrum is given as

P(k) =
{

Fkl, kmin < k < kmax,

0, otherwise,
(3.9)

where k = √
k2

m + k2
n denotes the wavenumber of the mode (m, n), and F is the coefficient.

In physical space, the perturbations are of the form

ηcylinder(θ, z) =
∑
m,n

(
amn cos(kmθR0) cos(knz)+ bmn sin(kmθR0) cos(knz)

+ cmn cos(kmθR0) sin(knz)+ dmn sin(kmθR0) sin(knz)
)

(3.10)

and

ηplane( y, z) =
∑
m,n

(
amn cos(kmy) cos(knz)+ bmn sin(kmy) cos(knz)

+ cmn cos(kmy) sin(knz)+ dmn sin(kmy) sin(knz)
)
, (3.11)

where the amplitude coefficients amn, bmn, cmn and dmn are determined by the variance
σ 2

mn ∼ P(km, kn)�km�kn, which corresponds to the energy involved in wave space,
and km = mk0 and kn = nk0, where k0 = 2π/(2πR0) = 1/R0. The relevant detailed
demonstration of the transformation from the wave space (3.9) to the physical space (3.10)
and (3.11) has been given by Thornber et al. (2010). In the present work, a narrowband
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perturbation with wavenumbers ranging from 16 to 48 is used, and the energy spectrum

follows P(k) = Fk0. The total standard deviation is σ =
√´

P(k) dk ≈ 0.0067R0. These
cases are named MP16–48.

3.2.4. Summary of initial conditions
The initial conditions are designed carefully so that the RM instability on a planar interface
and a cylindrical interface are comparable. A perturbed cylindrical interface and a planar
interface obtained by unfolding the cylindrical interface are impacted by shock waves with
the same strength. According to the RM linear model Ẇ = A+k�V W+ in the planar
geometry (Richtmyer 1960), where A+ and W+ are the postshock Atwood number and
the postshock width of the perturbation, the perturbations in the two geometries should
have the same initial growth rate. During the subsequent growth of the perturbations,
whether the interface converges or not is the only independent variable, from which we can
reasonably compare the difference in the perturbation evolution under the two geometries.
Specifically, the set-ups need to meet the following conditions.

(i) The initial preshock fluid states, the initial perturbations and the initial interface size
are the same in both geometries.

(ii) The Mach number in the planar geometry is larger than that in the cylindrical
geometry at initial time t− to ensure that the velocity jumps �V impacted by the
incident shock are equal in the two geometries.

(iii) The convergence ratio Cr should be high, and the non-dimensional duration when
the interface converges with a quasi-steady velocity should be long enough so
that the cylindrical and planar cases are comparable. The re-shock time when the
reflected shock wave impacts the interface should also be identical in the two
geometries.

4. Numerical results

4.1. One-dimensional unperturbed flow
In this section, we inspect the one-dimensional unperturbed cases, with an emphasis on
the periods before the re-shock moment trs. Figure 4 shows the interface motion R(t) in
both geometries. The interface has a non-zero width because of the numerical diffusion,
therefore the position of the interface R(t) is defined as the radius where Y1(R(t), t) = 0.5.
The curves obtained from the planar case are shifted along the time axis so that the shock
time ts is aligned. The interface is shocked at time ts = 0.4 ms, then the planar interface
moves with a constant velocity �V = 340 m s−1 until the interface is re-shocked at trs =
8.5 ms. For the cylindrical case, before t1 = 5 ms, the convergence velocity is slightly
increased, and after that, the interface begins to decelerate. At re-shock time trs, the final
convergence ratio of the interface is Cr(trs) ∼ 10.

The temporal evolution of the averaged fluid compression rate γρ is plotted in figure 5,
where the density value is sampled from two sides of the interface. At time ts, the interface
is shocked by the shock wave, which results in a strong compression of the fluids. For
time t ∈ [ts, t0], where t0 = 1 ms, the shock wave continues to affect the fluids near
the interface, which results in the negative pulse of the fluid compression. After t0, the
planar RM flow is quasi-incompressible before the re-shock, which supports the discussion
in § 2.4. Fluid compression is one of the basic features of convergent RM instability.
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Figure 4. The displacement (a) and velocity (b) of the interface.
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Figure 5. The temporal evolution of the fluid compression rate.

Therefore, for cylindrical cases, after t0, a non-zero fluid compression rate can still be
observed, and its absolute value continues to rise with the convergence of the interface.

According to the evolution of the fluid parameters mentioned above, the flow evolution
is divided into five stages, as shown in table 2. Due to the nature of the convergent shock
wave, the acceleration of the convergent interface is not zero. Therefore, the growth of
perturbations in the convergent geometries is coupled with RT stability/instability. RT
instability, as introduced in § 1, is the phenomenon where the perturbation grows in
an acceleration environment (the lighter fluid accelerates the heavier fluid), while the
RT stability is the situation when the heavier fluid accelerates the lighter fluid and the
perturbations oscillates or attenuates.

The quantities presented in the following subsections are non-dimensionalized.
For the single-mode cases, the characteristic length is the initial wavelength of
the perturbation, L∗ = λ. The characteristic velocity is V∗ = A+k�V W+, where
W+ = (1 −�V/Vs)W(t−), and Vs is the velocity of the shock wave. For the multi-mode
cases, the characteristic velocity is defined as the growth rate of the perturbations at time
t0 when the shock wave just passes away from the interface. The characteristic length is
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Stage Time duration Description

I [t−, ts] The interface has not been shocked. All the preshock parameters in
both geometries remain the same.

II [ts, t0] Shock phase, the interfaces are shocked with the same strength.
III [t0, t1] The interface converges at a slightly increased velocity.
IV [t1, trs] The interface begins to decelerate.
V trs Re-shock. The convergence ratio is Cr ∼ 10

Table 2. Definition of five stages of the RM instability until the re-shock time.

Case Length L∗ (m) Time T∗ (s) Velocity V∗ (m s−1)

SP8 2.36 0.155 15.23
SP16 1.18 0.077 15.23
MP16–48 0.59 0.012 47.30

Table 3. Characteristic quantities for each case.

L∗ = λ̄, where λ̄ = 2π/k̄ is the equivalent wavelength of the perturbations at time t−, and
k̄ is calculated by the energy-weighted average of k, which is formulated as

k̄ =

ˆ kmax

kmin

k P(k) dk

ˆ kmax

kmin

P(k) dk
. (4.1)

In this paper, P(k) = Ck0, hence k̄ = 0.5(kmin + kmax). The characteristic quantities for all
of the cases are listed in table 3.

4.2. Single-mode cases
Figures 6 and 7 show the growth of the perturbations for the cases SP8 and SP16,
respectively. After τ = τ0 when the shock wave passes away from the interface, the initial
growth rates are identical in both geometries, as designed in § 3. Because the initial
amplitude of the perturbations is set as am = 0.01λm, the growth of the perturbations lies
in the linear stage.

For the planar configurations, the growth rate of the perturbations increases slowly
and is smaller than the growth rate predicted by the linear theory (Richtmyer 1960) by
the time trs, i.e. the non-dimensional growth rate is smaller than 1. This shows that
the growth of the perturbations is still in the start-up process (Lombardini & Pullin
2009). For the cylindrical configurations, the temporal evolution of the perturbation
growth rate is significantly different from that of the planar configurations. The growth
rate in the cylindrical geometry is first accelerated and then decelerated to a negative
value. This complicated growth behaviour in the cylindrical geometry originates from the
coupling of multiple physical effects (for example, the RT instability/stability, geometrical
convergence, and fluid compression).

The decomposition formula (2.14) is applied to decompose the growth of the
perturbations, where the contribution of the diffusion is neglected. The results are given
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Figure 6. For the case SP8, the temporal evolution of the mixing width, as well as its growth rate, in both
geometries.
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Figure 7. For the case SP16, the temporal evolution of the mixing width, as well as its growth rate, in both
geometries.

in figures 8 and 9. In all configurations, the results obtained by the decomposition
formula Ẇformula and the results extracted directly from the numerical simulations Ẇsim
are consistent, which proves the reliability of the decomposition formula. Furthermore, in
figures 8(b) and 9(b), we have ẆPen,G = uPen,G|B − uPen,G|S ≈ 0, where uPen,G is defined
in (2.13), which is neglected in the following analysis.

For the planar cases, one can observe that ẆS(C), which represents the contribution
of the S(C) effect, is not zero only when the wave system acts on the mixing zone. For
most of the time in the duration [τ0, τrs], the growth of the mixing width is dominated
by the penetration effect, as shown in figures 8(a) and 9(a), which is consistent with
the previous work of Li et al. (2021). For the cylindrical geometry, at the initial time,
ẆS(C)(τ0) = 0. However, with the evolution of the flow, the contribution of the S(C) effect
continues to increase and finally exceeds the penetration effect to dominate the growth
of the perturbations. From the numerical results, we know that the S(C) effect is very
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ẆPen
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Figure 8. For the case SP8, the growth rates obtained by the simulation and the decomposition formula for
(a) planar geometry and (b) cylindrical geometry.
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Figure 9. For the case SP16, the growth rates obtained by the simulation and the decomposition formula for
(a) planar geometry and (b) cylindrical geometry.

different in the two geometries, therefore the S(C) effect is an important part of the BP
effect.

The comparisons of the penetration effect are shown in figure 10. In both geometries,
the ẆPen values are identical at the initial time. With the coupling effect of geometrical
convergence and the RT instability, the fluid penetration effect increases before the
convergent velocity reaches its maximum τ1. After that, under the influence of the RT
stability, the penetration rate decreases to a negative value at late time.

The evolution of the S(C) effects is shown in figure 11. The values of γρ and γR used
in (2.22) are obtained from the one-dimensional unperturbed simulations. The numerical
results and the theory agree well, which proves the reliability of the theory.
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Figure 10. For (a) the case SP8 and (b) the case SP16, the different performances of the penetration effect in
the two geometries.
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Figure 11. For (a) the case SP8 and (b) the case SP16, the evolution of the S(C) effect in the two geometries.
The theoretical prediction for the S(C) effect in the cylindrical geometry is also shown.

The stretching effect (VStretching = γRW) and the compression effect (VCompression =
γρW) are given in figure 12. In the short duration τ ∈ [τs, τ0], the perturbations are
compressed strongly by the shock wave. Therefore, the S(C) effect is dominated by
the compression effect caused by the shock wave. In the duration τ ∈ [τ0, τrs], the
stretching velocity is always greater than the compression velocity, with the ratio
|VStretching/VCompression| ranging from 1 to 2.

4.3. Multi-mode case
To examine the universality of the results obtained from the single-mode cases, the
multi-mode cases are simulated. Figure 13 gives the growth of the perturbations for
the cases MP16–48. For the planar configuration, after τ = τ0, there is no more energy
injected into the system. Therefore, in the duration τ ∈ [τ0, τ1], the growth rate of
the perturbations first experiences a short-time increase and then attenuates. For the
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Figure 12. For (a) the case SP8 and (b) the case SP16, the contributions of different components in the S(C)
effect of the cylindrical cases.
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Figure 13. For the cases MP16–48, the temporal evolution of the mixing width, as well as its velocity, in both
geometries.

cylindrical configuration, it is obvious that the convergent interface enhances the growth
of the perturbations. In the duration τ ∈ [τ0, τ1], the growth rate of the perturbations does
not decay, in contrast with that in the planar geometry. During the subsequent duration
τ ∈ [τ1, τrs], the acceleration of the interface is pointed from the heavy fluid to the light
fluid; hence the growth of the perturbations is influenced by the RT stability, which
decelerates the growth of the perturbations.

Figure 14 shows the growth rates obtained with the decomposition formula and those
obtained from the numerical results in both geometries. In both geometries, at time τs
when the incident shock wave impacts the interface, ẆS(C) experiences a sharp decrease
due to the compression by the shock wave. Meanwhile, the incidence shock wave deposits
vorticity on the interface, which results in an increase in the penetration effect ẆPen.
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Figure 14. For the cases MP16–48, the growth rates obtained by the simulation and the decomposition
formula for (a) planar geometry and (b) cylindrical geometry.

For the planar configuration, ẆS(C) is always zero when τ ∈ [τ0, τrs], which indicates
that the growth of the mixing width is dominated by the penetration effect if there is no
influence of the wave system. For the cylindrical configuration, with the convergence of the
interface, the stretching effect of the mixing width continues to increase. When τ > τ1, the
contribution of the penetration effect decreases due to the RT stability, while the stretching
effect surpasses the penetration effect and begins to dominate the perturbation growth.

Figure 15(a) shows the evolution of the penetration effect in the two geometries.
After the passage of the shock wave, as the initial growth rates are the same, the
penetration rates in both geometries are identical. In the subsequent duration τ ∈ [τ0, τ1],
the penetration rates increase first and then decay with almost the same rate in both
geometries. This is because the growth of most perturbation modes enters the nonlinear
phase. This phenomenon is different from the single-mode cases, for which the growth of
the perturbations lies in the linear stage or the weakly nonlinear stage for most of the time.
When τ ∈ [τ1, τrs], the growth of the perturbations in cylindrical geometries is influenced
by the RT stability. As a result, the penetration rate decays faster in cylindrical geometry
than in planar geometry. In the late stage, the penetration effect is negative in cylindrical
geometry, which indicates a reduction in the mixing width.

As shown in figure 15(b), the behaviour of the S(C) effect in the multi-mode case
is similar to that in the single-mode cases. For the planar cases, the influence of the
S(C) effect is observed only when the shock wave impacts the interface, while ẆS(C)
increases with time in the cylindrical geometry. The ratio between the stretching effect
and compression effect is also similar to the single-mode cases, as shown in figure 16.

5. Discussion

The numerical results presented in § 4 support our discussion in § 2 that the S(C) effect is
an important part of the BP effect. Furthermore, as shown in § 4, for different geometries,
there indeed exists a difference in the penetration effect, which verifies that the BP effect
has in fact multiple mechanisms. Therefore, the S(C) effect is an important part of the
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Figure 15. For the cases MP16–48, the different performance of (a) the penetration effect and (b) the S(C)
effect, in the two geometries. The theoretical prediction of the S(C) effect is also shown.
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BP effect but not equivalent to the BP effect. Because of the non-zero acceleration in the
cylindrical interface, it is hard to evaluate the modification in the penetration effect caused
by the BP effect. For our single-mode cases, the growth of perturbation is mainly in the
linear and weakly nonlinear phase, and the difference in the penetration effect is obvious.
However, in our multi-mode cases, the perturbations grow rapidly into the nonlinear phase.
In the duration τ ∈ [τ0, τ1] when there is no strong RT instability, it is remarkable that
the main difference between the growths of the perturbations in the two geometries is
contributed by the S(C) effect, and that there is little difference in the penetration effect. In
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physical reality, the perturbations are always multi-mode, which contains a wide range of
modes. Therefore, the results of single-mode cases can be referred to so as to understand
the evolution of the low-order modes, while the results of the multi-mode cases can be
referred to in order to understand the evolution of the high-order modes. However, the
quantitative analysis of the perturbation growth in reality needs further investigations,
especially for the penetration effect.

The S(C) effect can explain the phenomenon of the ‘thickening smooth premixing
layer’ in the LANL experiments (Lanier et al. 2003). Since there is no penetration effect
for the smooth premixing layer, the mixing layer thickens because of the S(C) effect.
The theoretical results of the S(C) effect in different geometries (2.22) does not include
explicitly the initial perturbations, interface acceleration and Atwood number. Moreover,
as shown in § 4, (2.22) is applicable for different forms of initial perturbations and all
stages of flow evolution.

As the S(C) effect is the mechanism independent to the penetration effect, this part of
the contribution should be considered additionally in constructing models for the growth
of mixing width in the convergent geometries. For example, El Rafei & Thornber (2020)
propose a buoyancy-drag model for the RM instability in the spherical geometry to model
the mixing-zone width, where the ‘BP effect’ is taken into account in ‘bubble and spike
velocities (Vb,Vs) relative to the fluid’. Mathematically, Vb, Vs are calculated as

Vb = dhb

dt
− (Ub − UI), (5.1a)

Vs = dhs

dt
− (UI − Us), (5.1b)

where Ub, Us and UI are determined from one-dimensional results at the bubble front,
spike front and interface, respectively (El Rafei & Thornber 2020). Essentially, the second
term on the right-hand side of each equation in (5.1) can be explained as eliminating the
S(C) effect.

6. Conclusions

The S(C) effect, which is induced by the velocity difference between two ends of the
mixing zone, is defined based on the decomposition formula for the growth of the mixing
width. Starting from the linear theory, the quantitative relationship between the S(C)
effect and the flow parameters is given. The physical origin of the S(C) effect and the
relationship between the S(C) effect and the BP effect are discussed. A series of numerical
simulations in cylindrical and planar geometries is performed to describe modifications of
RM instability induced by the geometry. To ensure that the numerical cases in the two
geometries are comparable, the perturbed planar interface is obtained by unfolding the
perturbed cylindrical interface. The preshock flow states are identical in both geometries.
Moreover, both interfaces are impacted by a shock wave of the same strength. The
convergence ratio of the cylindrical cases Cr ∼ 10 makes sure that the BP effect is shown
clearly. The conclusions are listed below.

(i) The S(C) effect in planar, cylindrical and spherical geometries is evaluated as
ẆS(C) = (αγR + γρ)W in (2.22). Further analysis about (2.22) shows that when
there is no wave acting on the mixing zone, WS(C) = 0 in the planar geometry while
WS(C) /= 0 in convergent geometries. Therefore, we conclude that the S(C) effect is
an important part of the BP effect.
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(ii) The physical origin underlying the S(C) effect is that the mass in the mixing zone is
conserved if we do not consider the mass brought in by the penetration effect.

(iii) Both the decomposition formula and the theoretical expression of the S(C) effect
agree well with the corresponding numerical results. This agreement is valid for
a wide range of initial perturbations and different evolution stages. In the present
cases, the contribution of the geometrical effect is always greater than the fluid
compression, except for the duration when the shock wave impacts the mixing zone.
Therefore, the mixing zone is always stretched.

(iv) The penetration effect is different in the two geometries. Therefore, the S(C) effect
is not equivalent to the BP effect. In the present work, the quantitative comparison
of the penetration effect in the two geometries is hard because of the existence of
the RT stability/instability. The modification on the penetration effect caused by the
geometry remains an open question.

(v) The S(C) effect is a growth mechanism that is independent of the RM and RT
instabilities (Li et al. 2021). Therefore, for the RM/RT instability in a convergent
geometry, additional consideration needs to be given to the stretching or compression
of the mixing zone when we model the mixing width by the bubble/spike dynamics
(such as the buoyancy-drag model) or extend the understanding in the planar
geometry to the convergent geometry.

In the present work, the lighter fluid locates in the outside of the interface, i.e. the
initial shock wave propagates from the light fluid to the heavy fluid. For the opposite
configuration where the lighter fluid is in the inside, the growth of the perturbation will
experience a phase-reversal process, i.e. the amplitude of the perturbation first decreases
and then increases in the oppose direction. This process occupies a considerable part of
the comparable time, which will influence the comparison between the two geometries.
This is why we choose the configuration to put the lighter fluid on the outside. However,
the comparison of RM instability in planar and cylindrical geometries where the lighter
fluid is in the inside of the interface is still important work worthy of future investigation.
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Appendix A. Validation of APEX

In the work of Thornber et al. (2017), eight independent algorithms were employed to test
a standard RM problem with multi-mode perturbations. The mathematical expression of
the initial perturbations is the same as (3.9). In this problem, The computational domain
is Cartesian and measures x × y × z = 2.8π × 2π × 2π m3. The initial wavelength is λ ∈
[L/8, L/4], where L is the length of the cross-section. The distribution of energy is P(k) =
Ck0. The total standard deviation is σ =

√´
P(k) dk = 0.1λmin, where λmin = L/8.

The initial pre-mixing width is δ = L/32. The initial Atwood number is A = 0.5. The
shock wave propagates from the light fluid to the heavy fluid. As a result, the numerical
results of all algorithms converge with resolution �x = L/256. The same problem is
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Figure 17. Comparison of the mixing-zone width with the work of Thornber et al. (2017).

simulated with APEX in the present work. The base resolution is 23 × 16 × 16, on which
four additional levels of refinement with a factor of 2 are applied. The finest resolution
is therefore 364 × 256 × 256. In the work of Thornber et al. (2017), the integral mixing
width is defined as

W =
ˆ Lx

0
Z̄1Z̄2 dx, (A1)

where Z̄1,2 indicates the ( y, z) plane (the spanwise directions) averaged volume fraction of
species 1, 2, where species 1 is the heavy gas. The results obtained by APEX show good
agreement with those of Thornber et al. (2017), as shown in figure 17, which proves the
reliability of APEX for simulating the interfacial instability problem.

Appendix B. Grid/computation domain convergence analysis

B.1. Grid
The grid convergence is discussed in this subsection. All of the set-ups are summarized in
tables 4 and 5. Figures 18, 19 and 20 present the results of the grid convergence test for
three cases with different initial perturbations. Good grid convergence is shown between
the cases G2048 and G4096 in 2-D simulations. The grid convergence is also shown
between the cases G512-4 and G512-5 in 3-D simulations, which indicates that the result
of the mixing width is not sensible for our finest grid set-up. Therefore, we present the
numerical results of the cases G4096 and G512-5 in the present work.

B.2. Computational domain
The fluid quantities behind the cylindrical shock wave are not uniform with radius. For
the convergent geometry, at the boundaries of the (x, y) plane, the gradients of the fluid
quantities are not zero. Hence if the outflow boundary condition is applied at the (x, y)
plane, the perturbations at the boundaries will propagate to the interior and may influence
the numerical results. Therefore, it is necessary to verify the convergence about the
computation domain width to make sure that the perturbation does not propagate into the
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Figure 18. For the case SP8, grid convergence test for the mixing width in (a) the planar geometry and (b)
the cylindrical geometry.
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Figure 19. For the case SP16, grid convergence test for the mixing width in (a) the planar geometry and (b)
the cylindrical geometry.

1.0 1.5

1.0

0.5

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

W/λ̄

τ τ

G512-5

G512-4

G256

(a) (b)

Figure 20. For the cases MP16–48, grid convergence test for the mixing width in (a) the planar geometry and
(b) the cylindrical geometry.
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Stretching/compression in convergent RM instability

Initial perturbation Base resolution (x × y(×z)) Case Refinement level �xmin(×10−4R0)

SP8/SP16 10242 G1024 4 15.2
20482 G2048 7.6
40962 G4096 3.8

MP16–48 256 × 256 × 64 G256 4 60.8
512 × 512 × 128 G512-4 30.4
512 × 512 × 128 G512-5 5 15.2

Table 4. For the cylindrical cases, the grid set-ups for each case.

Initial pertubation Base resolution (x × y(×z)) Case Refinement level �xmin(×10−4R0)

SP8/SP16 1024 × 256 G1024 4 15.2
2048 × 512 G2048 7.6

4096 × 1024 G4096 3.8

MP16–48 256 × 64 × 64 G256 4 60.8
512 × 128 × 128 G512-4 30.4
512 × 128 × 128 G512-5 5 15.2

Table 5. For the planar cases, the grid set-ups for each case.

0.20

0.15

0.10

0.05

0 0.02 0.04 0.06 0.08 0.10 0.12

Rext = πR0

Rext = 2πR0

Rext = 4πR0

Rext = 8πR0

τ

W/λ

Figure 21. For the case SP16 in the cylindrical geometry, domain width convergence test for the mixing
width.

zone in which we are interested. As the convergent shock wave configuration is identical in
all the cylindrical cases, here we take the case SP16 as an example. Figure 21 verifies the
convergence about the computation domain width. We tested domain widths Rext = πR,
2πR, 4πR and 8πR with the finest resolution and refinement level the same as G4096. The
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results show a very good convergence. To avoid the influence of the boundary and to save
computation resource at the same time, we choose Rext = 4πR in the present work.
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