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Abstract

As more and more people are increasingly turning to nature for design inspiration, tools and methodologies are developed to
support the systematic bioideation process. State-of-the-art approaches struggle with expanding their knowledge bases be-
cause of interactive work required by humans per biological strategy. As an answer to this persistent challenge, a scalable
search for systematic biologically inspired design (SEABIRD) system is proposed. This system leverages experience from
the product aspects in design by analogy tool that identifies candidate products for between-domain design by analogy.
SEABIRD is based on two conceptual representations, product and organism aspects, extracted from, respectively, a patent
and a biological database, that enable leveraging the ever growing body of natural-language biological texts in the systema-
tic bioinspired design process by eliminating interactive work by humans during corpus expansion. SEABIRD’s search is
illustrated and validated with three well-known biologically inspired design cases.
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1. INTRODUCTION

Biologically inspired design (BID) is the discipline where in-
spiration is taken from the natural world to solve technical
problems or challenges. An increased interest in BID during
the last two decades caused a strong rise in the number of aca-
demic papers (Lepora et al., 2013) on a wide range of topics,
such as robotics, artificial intelligence, multifunctional mate-
rials, and sensors. In addition, a growth in patented inventions
is observed (Bonser, 2006). While the growth in academic
output is an indicator of overall research activity and interest
in BID, the increase in patent output suggests that many of the
resulting bioinspired solutions are deemed commercially vi-
able and that new technologies are derived from biological
examples (Bonser & Vincent, 2007). Today BID is even be-
coming an important paradigm for disciplines like robotics
and materials science (Lepora et al., 2013).

Many of the challenges posed upon organisms in their nat-
ural environments (e.g., making strong materials, moving ef-
ficiently through fluids, implementing shock absorbency, and

regulating temperature) are similar to the problems humans
face. One common rationale motivating BID recognizes the
relevance and proven performance of biological solutions
(Bar-Cohen, 2006, 2011): why reinvent the wheel when there
are millions of different species around us that adopt time-
tested solutions? A second important motivation for nature
as a source for inspiration is the general increase in environ-
mental consciousness (Bonser & Vincent, 2007), supported
by academic research (Bajželj et al., 2013) and slowly influ-
encing governments (Intergovernmental Panel on Climate
Change, 2007). Organisms rely on renewable resources for
their “production processes,” and nature does not generate
ever-growing waste piles. Although bioinspired products
are not inherently sustainable (Vandevenne, et al., 2012),
nature is regarded as a promising source of inspiration for
environmentally friendly products and processes (Gebeshu-
ber et al., 2009) and, by some, even regarded as a measure
or ecological standard to judge the “rightness” of innovations
(Benyus, 1997). A third argument for BID claims that draw-
ing inspiration from a largely unused biological knowledge
domain entails a higher probability of identifying leapfrog in-
novations. In an experimental setup, exposure to biological
examples has been found to increase novelty without decreas-
ing variety in idea generation (Wilson et al., 2010). Other pos-
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sible advantages of bioinspired products are their enhanced
marketability and financial savings through efficient use of en-
ergy and other resources.

These high expectations of BID are currently not met with
adequate methods and algorithms that enable designers to
systematically leverage nature’s potential. Although it is
hard to obtain trustworthy information about the specific
mechanisms behind the bioinspiration for many bioinspired
designs, it is commonly accepted that spontaneous, accidental
inspiration plays an important role. A frequently used exam-
ple is Velcro. Its inventor is claimed to have serendipitously
observed the ability of the cocklebur to attach to the fur of
his dog, which then inspired him to study this phenomenon
in detail and to develop the well-known innovation.

In the last decade, a number of research efforts have fo-
cused on providing support in the BID process by developing
tools and methods that facilitate cross-domain search and
knowledge transfer. Many successes and insights are reported
(see Section 2), although there is one unresolved challenge:
the scalability of these systematic BID ideation tools and
methods. About 1.7 million species are named currently,
and the total number is estimated to be between 5 and 30
million (Purves et al., 2001). Although only a fraction of these
1.7 million identified organisms has been studied in detail,
many sources exist, such as books, journals, and online
resources, where biological knowledge is documented.
Considering the large work that lays ahead for biologists to
completely describe and comprehend all of nature’s phenom-
ena, these sources are expected to keep on expanding. To
leverage this ever-growing source of biological inspiration
in natural-language format, the authors of this paper devel-
oped a series of methods and algorithms that support system-
atic and automated identification of biological information
relevant to specific design problems. These methods and
algorithms are jointly referred to as scalable search for sys-
tematic BID (SEABIRD). In Section 2 the state of the art in
the systematic search for bioinspiration is listed and dis-
cussed. Next, SEABIRD’s architecture and functionalities
are detailed in Sections 3 and 4, respectively. Thereafter,
the proposed approach for scalable search is validated in Sec-
tion 5 and discussed in Section 6, and conclusions are drawn
in Section 7.

2. RELATED RESEARCH

BID has been studied from a number of different perspec-
tives, focusing on application domains (Bhushan, 2009;
Bar-Cohen, 2011), on sustainability of biomimetic products
(Benyus, 1997), on understanding bioinspired design by
analogy (Mak & Shu, 2008; Helms et al., 2009; Vattam,
Helms, et al., 2010; Cheong et al., 2012), and on developing
ideation systems for systematic BID (SBID; see Section
2.2). This paper focuses on function-based BID to solve
technical problems, not on the mimicry of form or structure
for, for example, aesthetic purposes. The remainder of this
section summarizes the four general phases of the typical

scalable systematic BID (SSBID) process and then presents
the state of the art in the search phase to illustrate a common
challenge.

2.1. SSBID process phases

A comparison of different contributions describing the en-
countered phases of the BID process, identifies four ubiqui-
tous phases (Sartori, 2010): formulating search objectives,
searching for biological analogues, analyzing biological ana-
logues, and knowledge transfer. These four phases are ap-
plied to the SSBID process, which draws inspiration from
large biological repositories in a natural-language format
(Vandevenne et al., 2011):

† Formulate search objectives: The specific design prob-
lem at hand needs to be captured in a form allowing
launching a search in the next phase.

† Scalable search: Searching large repositories of biolog-
ical strategy documents requires a scalable, automated
approach that allows the identification of a number of
candidate biological strategy documents to be consid-
ered in the next phase.

† Filter and analyze: An automated search method un-
leashed on large repositories is expected to generate
more than a few candidate descriptions of biological strat-
egies. Therefore, methods and algorithms are required
to guide the designer in selecting one or more candidate
solutions. The retained biological candidates should be
analyzed in detail to enable the designer to transfer the
biological principles in the next phase.

† Knowledge transfer: In order to transfer knowledge
from the biological source domain to the technological
target domain in a systematic way, assistance to the de-
signer is required for identifying the cross-domain anal-
ogy and to coming up with a feasible, biologically in-
spired technical concept.

The above SSBID process is expected to be iterative. For ex-
ample, after attempting knowledge transfer based on a first set
of search results, users might change their problem formula-
tion to perform a search again. To support one or more of the
four general BID process phases, a number of systematic BID
approaches have been proposed. The next section summa-
rizes these approaches, while focusing on scalability of the
search phase because this is where SEABIRD’s main
contribution currently lies. A more detailed description of
these approaches, positioning each in the above four SSBID
process phases, is available in Vandevenne, Verhaegen, and
Duflou (2014).

2.2. Searching for biological strategies

As a summary of the state of the art in the SBID search phase,
this section details three keyword-based search methods, then
two approaches supporting on the classification of biological

SEABIRD 79

https://doi.org/10.1017/S0890060415000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000177


strategies, and finally three contributions that require complex
model instantiation for each corpus entry.

Starting from a functional keyword search, an iterative and
interactive methodology extracts new biological keywords
from the obtained results for future searches (Lenau et al.,
2010). In this way, biological search words, initially not
known to be relevant to the problem, are identified. A contri-
bution aimed at automating the identification of biologically
relevant search words (Chiu & Shu, 2007; Shu, 2010) bridges
the terminology gap between the engineering and biological
domain by means of a systematic, semiautomatic search
method that requires the design problem to be expressed in
functional keywords; and then generates biological meaningful
bridge verbs and text passages containing them. Another Word-
Net-based contribution (BIOscrabble) performs a search on and
with PubMed, a very large biomedical research article database,
by entering keyword combinations and inferred keywords
(synonyms, variations, and negations) in PubMed’s search en-
gine that is used as a block box (Kaiser et al., 2012). Besides
function, the approach also formally investigates property-
and environment-related search words (Kaiser et al., 2014).

Two contributions require positioning each biological
strategy into a classification scheme. First, BioTRIZ (Vincent
et al., 2006) aims at integrating biological knowledge in the
TRIZ methodology (Altshuller, 1984) by interactively posi-
tioning biological strategies in the BioTRIZ contradiction
matrix. To identify bioinspiration, the problem needs to be
formulated as a classical TRIZ contradiction, which is then
reformulated into a BioTRIZ contradiction. This BioTRIZ
contradiction then leads the designer to inventive principles
learned from the manual analysis of 2500 contradictions in
500 biological phenomena. Second, AskNature interactively
classifies biological strategies in a functional, hierarchical
taxonomy called the Biomimicry Taxonomy (Deldin &
Schuknecht, 2014). Designers looking for bioinspiration
need to formulate their design problem in this taxonomy. A
classification algorithm was recently proposed that automati-

cally positions biological strategies in the functional categories
of AskNature’s Biomimicry Taxonomy (Vandevenne, Ver-
haegen, et al., 2014).

Three approaches can be found in the literature that require
human interaction to instantiate detailed models for each bio-
logical phenomenon to be integrated in a structured knowl-
edge base. To enable searching, the technical problem is
also expressed by instantiating at least part of these models.
Next, matching of the technical problem model to the biolog-
ical system models in the knowledge base generates candidate
stimuli for design by analogy. Such a methodology has cur-
rently been reported for structure–behavior–function (SBF)
models (Vattam, Wiltgen, et al., 2010; Goel et al., 2012),
for functional basis (FB) models (Nagel et al., 2010; Nagel
& Stone, 2012), and for SAPPhIRE models of causality
(Chakrabarti et al., 2005; Sartori et al, 2010). These three
model-based approaches have been recently extended in the
following ways. Biologue, a social citation cataloging system,
is developed (Vattam & Goel, 2011) to involve more people
in the process of manual creation of SBF models. An Engi-
neering to Biology Thesaurus (Cheong et al., 2011; Nagel
& Stone, 2012), a lookup table that translates the FB terms
into biological corresponding terms, is proposed to extend
the FB approach. This way, model instantiation, requiring in-
teractive work by humans, for large biological databases is
avoided because the biological corresponding terms can be
used as search words in natural-language texts. The SAPPh-
IRE approach is extended by an ontology aimed at provid-
ing extra stimuli during bioinspired ideation. The ontology
consists of manually derived, biological and engineering
term clusters for each of the SAPPhIRE model constructs
(Srinivasan et al., 2012). In order to illustrate the corpora in-
tegrated into the above systems, for each contribution, the
number of reported biological sources is given in Table 1.

While these systematic BID approaches differ in many
ways, they all assign a central role to function: functional
problem formulation and function driving search. A second

Table 1. Overview of existing database sizes and content

Method Size and Content Reference

Bridge verbs 1 biological introductory handbook Shu, 2010
SBF 40, of which 22 complete SBF models of

biological systems
Vattam et al., 2010

Functional basis 30 models of biological phenomena Nagel et al., 2010
SAPPhIRE 20 biomimetic examples (engineering &

biological systems)
100 biological strategies about motion in nature

Chakrabarti et al., 2005

AskNature 1665 detailed descriptions of biological strategies Deldin & Schuknecht, 2014
BioTRIZ 2500 conflicts, from an analysis of 500 biological

phenomena
Vincent et al., 2006

BIOScrabble PubMed, a very large biomedical databasea Kaiser et al., 2012

Note: SBF, Structure–behavior–function.
aThis source contains, besides biological strategies, many articles that are not useful for bioinspiration (drug testing,

mapping genomes, genetically modified organisms, biomedical research methodologies, etc.). The authors state;
“a useful knock-out criterion was, e.g., the paper is treating a medical application” (Kaiser et al. 2014).
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observation is the increasing interest in natural-language re-
sources. Pioneered by researchers from the Biomimetics for
Innovation and Design Laboratory (Chiu & Shu, 2005), later
the interactive functional keyword search approach (Lenau
et al., 2010), the Engineering to Biology Thesaurus keyword
search (Nagel & Stone, 2012), and BIOScrabble (Kaiser
et al., 2012) were reported. Using natural-language resources
avoids the immense interactive work of populating structured
databases, that is, model instantiation or strategy classifica-
tion. Therefore, the SEABIRD search system described in
this article uses natural-language biological and patent texts
as corpora to respectively represent biological and technical
systems.

2.3. Challenges for scaling search

All of the above methodologies struggle in one way or an-
other with scalably integrating large numbers of biological
systems; these challenges are the following:

† Interactive result filtering: For the above natural-lan-
guage keyword search methods, interactive result rele-
vance filtering does not scale well for large repositories.
For the bridge verb approach, it was stated: “Even with a
single text used as the source, there can be an unmanage-
able number of matches” (Shu, 2010). For BIOscrabble,
students performed an interactive analysis of 3416 re-
search articles. The large effort analyzing these results
concludes that 115 articles, or 3.36%, were considered
inspiring (Kaiser et al., 2014). A recent approach to
identify causally related functions could assist here to re-
turn proportionally more relevant results (Cheong &
Shu, 2014).

† Interactive classification: This translates to the position-
ing of biological strategies into the Biomimicry Taxon-
omy for the AskNature approach, or to the identification
of the relevant contradiction for the BioTRIZ approach.
These interactive tasks are again proportional to the size
of the biological databases.

† Interactive model instantiation: Model-based ap-
proaches are inherently difficult to scale because they re-
quire a detailed analysis of both the engineering and the
biological systems to express them on a common ab-
straction level.

† Crowdsourcing: The SBF-based approach developed a
social citation cataloging system for annotating research
articles with model instantiations. In theory, crowdsourc-
ing can tackle the scalability of any BID ideation sys-
tem. However, the successful creation of a large manu-
ally annotated database has not yet been reported.
AskNature is demonstrating constant growth of about
100 biological strategies a year. Although most of the
strategies in their database are added by paid staff (Del-
din & Schuknecht, 2014), a number of qualified scien-
tific curators are also able to add content.

† Completeness of thesaurus or ontology extensions:
Questions rise about the completeness of the relatively
short biological word lists, which in turn make it diffi-
cult to estimate how much of the biological inspiration
in natural-language texts is retrievable.

† Reference corpus building: Automated classification of
biological strategies into the Biomimicry Taxonomy re-
quires a certain amount of reference strategies to be manu-
ally annotated for each functional category. Achieving
adequate reference corpus support foreach of the 162 func-
tional categories is feasible but still requires a significant
interactive effort (Vandevenne, Verhaegen, et al., 2014).

3. SYSTEM ARCHITECTURE

The proposed scalable search approach leverages the knowl-
edge about technical systems captured in patents and biolog-
ical systems documented in academic papers. These two da-
tabases allow the generation of two domain-specific concept
sets, named product aspects (PAs) for technical systems and
organism aspects (OAs) for biological systems. These aspects
are generated by the analysis of word co-occurrences in, re-
spectively, a patent and a biological document set. For exam-
ple, the word hovering co-occurring together with flying in
one document can be linked to the word gliding co-occurring
in another document with the common word flying. Flying
could be an OA in this simple example, associated with the
words flying, hovering, and gliding. Large-scale application
of this principle to both corpora results in technical and bio-
logical concepts, where each concept is associated to a num-
ber of co-occurring words. These concept sets (PAs and OAs)
are central to the proposed approach, as illustrated by Figure 1.
They represent a common abstraction level that enables tech-
nical systems to be linked to biological systems.

The extraction of PAs from a patent database is fully des-
cribed in Verhaegen et al. (2009) and Verhagen, D’hondt,
et al. (2011). PAs support the Product Aspects in Design by
Analogy (PAnDA) tool that identifies candidate products for de-
sign by analogy. Using PAnDA, a product, for example, car-
buretor, can be associated to the most relevant PAs, for exam-
ple, for the carburetor case combustion, inflow/outflow, and
rotate. Based on a selected PA, for example, inflow/outflow,
candidate products are depicted as stimuli for the redesign of
the carburetor product; for example, strainer, faucet, and eu-
phonium are suggested as candidate products for design by
analogy. The PAnDA tool has been shown to increase the
variety and novelty of ideas (Verhaegen, Peeters, et al., 2011).

Analogously to the extraction of PAs from a patent data-
base, OAs are extracted from a biological database. Because
OA extraction is inspired by PAs extraction, there is quite
some high-level similarity in the involved processes. Never-
theless, it is necessary to detail the different algorithms be-
cause there are a number of necessary implementation differ-
ences. Section 3.1 details the technical and biological
knowledge bases. Thereafter, Section 3.2 explains the prepro-
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cessing algorithms that transform the biological corpus into a
document-term matrix (DTM). Next, in Section 3.3, OAs are
generated from this DTM, and in Section 3.4, an algorithm
for automated mapping between PAs and OAs is presented
that allows linking biological solutions to technical problems.
Finally, in Section 3.5, the product and OAs are used to char-
acterize products and organisms.

3.1. Corpora

The corpus representing the technical domain consists of
155,000 patents, randomly drawn from the 21 million patents
of the EPO Worldwide Patent Statistical Database. The full-
text descriptions of these patents are used for DTM genera-
tion (see Section 3.2) because it has been shown that the in-
clusion of significantly large text fragments of the description
can be beneficial for text mining in a patent environment
(Larkey, 1999; Fall et al., 2003). Starting small and doubling
the database size each time while comparing the generated PA
sets has shown that the extracted concept sets change very lit-
tle once a significant sample corpus is reached (Verhaegen &
Duflou, 2013). In the case of PAnDA, 155,000 patents were
found to be sufficient to form a stable conceptual representa-
tion of the technical domain. After PA generation and system
setup, new patents can be integrated by applying folding-in
(Deerwester et al., 1990) to update PAnDA. This folding-in
procedure allows positioning new document vectors in a pre-
viously created, stable PA vector space. The mathematical
procedure is the multiplication of the document vector with
the term-PA matrix.

The corpus representing the biological domain, for the tests
reported in this paper, is a set of 8011 full-text biological pa-
pers from the Journal of Experimental Biology. As many as
possible of the available papers from this journal were taken
as the test set, and no further selection was made. In this pa-
per, the term strategy refers to the biological phenomenon
with potential for knowledge transfer. The term strategy
document refers to a single document describing a strategy.
Hence, it is possible to encounter multiple strategy docu-
ments discussing different aspects of the same strategy. Al-
though the current number of strategy documents is not
high enough to confidently claim that a representative subset
of human’s knowledge about nature is gathered, the research
presented here found the resulting OA set to be useful and de-
tailed enough to allow testing and validation of the proposed
approach. More details about corpus expansion are discussed
in Section 6.

3.2. DTM generation

Five preprocessing steps transform each corpus into a DTM.
The DTM is the vector space model (VSM; Salton et al.,
1975) representation of the corpus. A VSM representation
was, for instance, also used to develop a patent-based analogy
search tool for innovative concept generation (Murphy,
2011). This algebraic model (VSM) represents documents
as vectors, where each dimension corresponds to a unique
corpus word or feature; and each feature value corresponds
to the importance of the word in the document. A DTM con-
sists of a collection of document vectors (see Table 2 for a

Fig. 1. Overview of the proposed system.
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simple example of a document vector). An overview of the
DTM generation preprocessing steps, which are detailed in
the following subsections, is shown in Figure 2.

3.2.1. Organism filtering

To avoid that OAs would represent parts of the Linnaean
taxonomy, a particular form of biological classification cre-
ated by Carl Linnaeus (Linnaeus, 1767), the occurrences of
organism names in the texts are filtered. Organism name fil-
tering is comparable with filtering words related to products
(Verhaegen, D’hondt, et al., 2011) because in both ap-
proaches interdocument links are removed to bring out struc-
ture relevant for design by analogy. Omitting organism name
filtering could result in, for example, an OA that represents
the order of Araneae, or spiders, caused by the many men-
tions of different spider species that tend to co-occur in bio-
logical papers. Generating such OAs would be useless for
the envisaged mapping of PAs to OAs.

Organism name detection is performed by LINNAEUS
(Gerner et al., 2010), an open-source species name identifi-
cation system. Its database, containing only names at the
species level, is expanded to include all scientific and com-
mon organism names of the National Center for Biotech-
nology Information taxonomy. Because biological strategy
documents often contain mentions of ranks higher than
the species level, all 26 biological ranks are included (Van-
devenne et al., 2015). For the biological corpus of 8011
documents, on average 128 organism mentions are detected
per document and 19,782 unique organisms are found in
the full corpus. Organism mention filtering eliminates a
large number of nouns and therefore reduces the dimen-

sions of the DTM and a significant part of the effort of
manual filtering (see Section 3.2.5).

3.2.2. Part of speech tagging

A standard Trigrams’n’Tags tagger (Brants, 2000) anno-
tates each biological text with part of speech (POS) informa-
tion (Charniak, 1997), and only verbs, adverbs, adjectives,
and nouns are retained for further processing. These are the
same POS categories as used for the PAnDA tool (Verhaegen
& Duflou, 2013). These POS categories contain terms about
function, properties, and environment, all relevant for search
in SBID as motivated by Kaiser et al. (2014). Table 2 illus-
trates the POS tagging results of the following sentence:
“This study investigates the aerodynamic and gravitational
forces on ideal falcons and uses a mathematical model to cal-
culate speed and acceleration during diving.” The table lists
all words of the sentence that received one of the above-men-
tioned POS categories and their grammatical function in the
sentence, or POS category. After POS tagging, corpus docu-
ments are treated as bags of words, meaning that their content
is represented as an unordered set of words, ignoring word or-
der and lexical relationships.

3.2.3. Lemmatization

After POS tagging, each remaining word is reduced to its
lemma by WordNet-based lemmatization (Fellbaum, 1998)
assisted with the words’ POS tags. Table 2 illustrates lemma-
tization for the running example. For example, the word in-
vestigates is lemmatized to investigate. By eliminating all
words that are not inflections of a WordNet lemma, this
step is also a thesaurus filter that ignores wrongly spelled

Fig. 2. Preprocessing, from corpus to document-term matrix.

Table 2. Preprocessing example: From corpus document to document vector

Word
POs

Category Lemma Filtered by
Document

Vector

Study Noun Study Relevance filter
Investigates Verb Investigate Relevance filter
Aerodynamic Adjective Aerodynamic 1
Gravitational Adjective Gravitational 1
Forces Noun Force 1
Ideal Adjective Ideal Relevance filter
Falcons Noun Falcon Mention filter
Uses Verb Use Stop word filter
Mathematical Adjective Mathematical Relevance filter
Model Noun Model Relevance filter
Calculate Verb Calculate Relevance filter
Speed Noun Speed 1
Acceleration Noun Acceleration 1
Diving Noun Diving 1
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words. Lemmatization further summarizes the document
vectors by summing word frequencies of inflections of the
same lemma. Hence, the final DTM is reduced. For example,
the word swimming occurring 8 times in a document can be
linked to the word swims occurring 4 times in the same docu-
ment through the association of both words with the lemma
swim, and the frequencies of the two features swimming
and swims can be summed to 12 for the lemma swim. In order
to enable the use of standard terminology like DTM, instead
of a document-lemma matrix, from here on, the concept term
will refer to lemmas.

3.2.4. Stop word filtering

Stop words (Fox, 1989) are removed in the fourth filtering
step, because they do not represent relevant document con-
tent. Examples of stop words are the, and, a, that, and was.
The full list used in the proposed system can be consulted
in (Fox, 1989).

3.2.5. Relevance filtering

All previous preprocessing steps have reduced the number
of terms, and hence they have decreased the size of the DTM.
Manual filtering identifies those terms in the remaining cor-
pus dictionary that are interesting for knowledge transfer
from the biological source domain to the technical target do-
main. Term filtering is performed by considering the terms
independently; hence, no context in the form of sentences
or documents is provided. Four term categories are immedi-
ately dismissed: a small number of remaining organism men-
tions, all terms representing academic language (e.g., study,
pose, hypothesis, and objective), all terms representing struc-
ture (e.g., wood, body, larva, droplet, oil, wing, and antenna),
and all terms that belong to nonrelevant topics (typically re-

lated to the technical domain, medicine, and genetics).
From the remaining terms, only those that are interesting
for describing a biological strategy for knowledge transfer
to the technical domain are retained. For the running example,
study, investigate, mathematical, model, and calculate are ex-
amples of words used in academic language that can be dis-
missed, as illustrated in Table 2.

Because such manual term relevance filtering is a subjec-
tive process, its repeatability needs verification. Therefore, a
chance-adjusted measure of agreement is calculated. The
free-marginal multirater k (Randolph, 2005) is used because
coders are not forced to mark a specific proportion of the
terms as relevant. The free-marginal birater k is calculated
to be 0.73. The k values range from –1 to 1, where –1 indi-
cates perfect disagreement below chance, 0 indicates agree-
ment equal to chance, and 1 indicates perfect agreement
above chance. A k value of 0.7 or above is normally consid-
ered proof of good agreement (Randolph, 2005).

Only a relatively small number of words in the English lan-
guage covers most of the written text. Zipf’s (1932) law con-
firms this by stating that few words occur very often while
most words occur rarely. This Zipf function is a negative ex-
ponential: see Figure 3 for the term frequencies of the remain-
ing corpus terms after stop word filtering. The most frequent
term, not filtered by one of the previous preprocessing steps,
is reference, occurring 7974 times, which is nearly once per
document. Because it can safely be assumed that sporadically
occurring terms contribute little to the formation of the prin-
cipal components (PCs) for OA generation (see Section 3.3),
only the terms occurring more than 10 times in the corpus are
interactively evaluated. This way 49% of the dictionary is
eliminated, almost halving the required interactive work.
Relevance filtering further reduces the term dictionary, result-

Fig. 3. Illustration of Zipf’s law for the corpus dictionary term frequencies.
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ing in a DTM with 8011 rows (documents) and 4055 columns
(terms). The six remaining words indicated in the last column
of Table 2 represent the document vector for the one-sentence
example document. For this very short document, the vector
only has six attributes (one for each word) and the term fre-
quencies are all one because every word occurs exactly
once in the sentence.

3.3. PA and OA generation

The OAs generation process is depicted in Figure 4. The
DTM obtained from preprocessing is a matrix where each ele-
ment aij corresponds to the frequency with which term j oc-
curs in document i. This matrix is weighted with a term fre-
quency inverse document frequency (tf-idf) scheme (Salton
& Buckley, 1988) and normalized to account for different
document text lengths. The tf-idf weighted DTM is subjected
to principal component analysis (PCA; Berry et al., 1995;
Skillicorn, 2007). This analysis allows extracting a prede-
fined number of PCs, of which the first PC is the dimension
oriented in such a way that it explains the maximum amount
of variance in the data set. Each succeeding PC represents as
much of the remaining variability as possible, taken into ac-
count that all PCs are orthogonal to each other. The authors
currently calculate 300 PCs (Landauer & Dumais, 1997; Ver-

haegen & Duflou, 2013), which is an arbitrarily chosen
number for proof of concept purposes. This dimensionality
reduction results in two smaller matrices: a term-PC and a
PC-document matrix.

In a tf-idf weighted DTM, term frequencies are correlated
variables. For example, documents containing a high fre-
quency of the term eating are more likely to contain terms
like feeding or ingesting than random documents. In a term-
PC matrix, all terms are expressed in a smaller number of un-
correlated variables or PCs. Furthermore, for the PAnDA tool
it has been demonstrated (Verhaegen et al., 2009; Verhaegen,
D’hondt, et al., 2011) that Varimax rotation (Kaiser, 1958) fa-
cilitates the interpretability of the resulting PCs. After rota-
tion, the PCs are called OAs, which are represented by a num-
ber of ranked terms. Figure 5 illustrates the highest scoring
terms for an example OA: buoyancy, descent, ascent, buoy-
ant, depth, density, ascend, and descend. Manual labeling in-
terprets such ranked groups of terms; for example, the OA la-
bel buoyancy is given to this group of terms. Table 3 details
the OA labels for the first 20 OAs. Because such labeling is
subjective, the process is repeated with two raters who have
93.33% agreement. All 300 generated OAs are labeled, and
30 random OAs were selected for estimating the interrater re-
liability. Although the raters could use any labeling they
seemed fit, most of the OA labels were chosen by picking

Fig. 5. Term loadings for an example organism aspect.

Fig. 4. The organism aspect generation process.
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one of the high-loading terms, or a modified form of one of
these terms, on the OAs. For this interrater reliability test, the
number of possible labels is very large; hence, there is no
need to adjust for chance. OAs generation results in a term-
OA and an OA-document matrix that allow the positioning
of terms and documents in the new set of labeled OA dimen-
sions. These two matrices are important information structures
that support the functionalities described in Section 4.

3.4. PA and OA mapping

In order to link technical and biological systems for potential
knowledge transfer, a similarity measure between the PAs as
specified by Verhaegen, D’hondt, et al. (2011) and the above
calculated OAs is necessary. The multiplication of the term-
PA and the term-OA matrices, with the term indices as common
dimensions, results in a PA-OA matrix that expresses the simi-
larity between the technical and biological concepts. The more
the PA and OA vectors share common term loadings, the higher
their similarity value will be in the PA-OA matrix. One can dis-
tinguish three types of relationships between PAs and OAs:

1. (Near) identical concepts: The (near) identical concepts
are represented by the largest values in the PA-OA simi-
larity matrix. Some examples are rotation, fluores-
cence, solar, and inflation/deflation. Each of these con-
cepts exists in both the OA and PA set and a high value
links them in the similarity matrix. The automated map-
ping of (near) identical concepts still allows domain-
specific terminology to be mapped because it is not
necessary that all the terms or features in the (near) iden-
tical PA and OA vectors are identical.

2. Semantically related concepts: Some links between
PAs and OAs express a semantic relation less obvious
than for identical concepts. These links can represent
a cross-domain bridge on the conceptual level because,
for instance, the PA drilling that has a strong link to the
OA digging and the PA humidify has a strong link to the
OA transpiration. Of course the cross-domain bridge
on the terminology level is also present here, connect-
ing domain-specific terms related to both concepts.

3. Unrelated concepts: As can be expected, most links be-
tween PAs and OAs are meaningless, which results in a
zero or near zero value in the PA-OA matrix.

Aspect mapping associates concepts from the technical
domain to the biological domain and, hence, patents to
biological papers. In the next section, products are linked to
patents and organisms to biological papers.

3.5. Characterization of products and organisms

The tasks of characterizing products with PAs and organisms
with OAs are similar. The occurrences of products in patents
and of organisms in papers need to be identified and ex-
pressed in product–patent and organism–paper matrices.
Next, the document vectors in these matrices are folded in
(Deerwester et al., 1990) to obtain product and organism
characterization matrices.

3.5.1. Product identification

The product identification used by the PAnDA tool (Verhae-
gen, D’hondt, et al., 2011), which consists of 1011 single-word
products extracted from the Google product taxonomy (Google
Merchant Center, 2014), is improved by a new multiword
product identification algorithm, detailed in the paragraphs be-
low. Motivation is twofold: this way much more products are
detected (151132), and products can be characterized more
precisely. For example, products like air bag and plastic
bag, which would be mapped to the single-word product
bag, are distinguished by the new multiword product identifi-
cation algorithm. Such more refined product search improves
product characterization results. For example, the most impor-
tant PAs for air bag and plastic bag are inflation/deflation and
conveying and feeding, respectively, whereas the most impor-
tant PA for bag is packaging and sealing. Without multiword
product identification, some of the validation cases presented
in Section 5 would not be possible, that is, for the air condition-
ing system and car body products.

To identify products, the following POS sequence is de-
tected in the title and abstracts of patents: zero or more adjec-
tives followed by one or more nouns. Next, unique nouns oc-
curring in the title and abstracts are manually categorized into
four categories (see Table 4). The first category represents
nouns that are products by themselves, for example, valve,
display, and vehicle. The single-word products from the Goo-
gle taxonomy are also placed in this category. A second noun
category groups words that need explanation to be products,
for example, system, device, and apparatus. These are not dis-
carded because the language used in patents often is indirect,
such as communication apparatus or packaging system. A
third category contains nouns that have an explanatory func-
tion, for example, temperature, pressure, and power; these
can explain the words in the previous category, for example,
temperature regulation system. All other nouns are consid-
ered not relevant and placed in the fourth noun category.
Adjectives are labeled relevant (e.g., optical, magnetic, and
digital) or not relevant (e.g., preferred, first, and improved)
to reflect their capability of providing useful information
about a product. Manual annotation of the 10% most frequent
nouns and 20% most frequent adjectives (in total 2568 words)

Table 3. The first 20 organism aspects

1. concentration 2. diving 3. force 4. oxygen
5. sound 6. olfactory 7. action potential 8. temperature
9. flying 10. swimming 11. magnetic 12. hypoxia

13. spectral 14. walking 15. jumping 16. secretion
17. capture 18. shorten/

lengthen
19. current 20. motility
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resulted in the identification of 151,132 multiword products,
which allowed performing validation tests for proof-of-con-
cept purposes (see Section 5). This way, rarely used nouns
and adjectives (e.g., thromboembolism, saussurea, arrhenius,
gratuitous, and sovereign) are filtered because the large ma-
jority of these infrequently encountered words would be la-
beled nonrelevant anyway. Noun and adjective categorization
is a subjective process; hence, rater agreement is measured.
The free-marginal multirater k (Randolph, 2005) is
calculated for noun categorization to four categories and for
adjective categorization to two categories. The k scores for
two raters are 0.82 and 0.87, both indicating proof of good in-
terrater agreement (Randolph, 2005).

For multiword product identification, the four noun and
two adjective category labels are applied to the retrieved
POS sequences as follows:

† If the last word is categorized as nonrelevant (Noun4) or
as an explaining noun (Noun3), the full POS sequence is
ignored.

† If the last word is a product by itself (Noun1), the full
POS sequence is labeled as product.

† If the last word is a noun that needs explanation (Noun2)
and this explanation is given by either an explaining
noun (Noun3), a product noun (Noun1), or a relevant ad-
jective (Adj1), the POS sequence is retained as product.

A final processing step lemmatizes the last words of the re-
trieved multiword products (e.g., transforming magnetic
strips to magnetic strip) and the frequencies of these lemma-
tized multiword products in patents are recorded in a product–
patent matrix.

3.5.2 Organism identification

Organism identification is performed in the same manner
as for mention filtering in Section 3.2.1. The algorithm de-
tects both single- (e.g., Lotus) and multiword organism
names (e.g., Lotus japonicus), as well as common (e.g., gyr-
falcon) and scientific names (e.g., Falco rusticolus), and is
applied to the titles of the biological documents to record or-
ganism occurrences in an organism–paper matrix (Vande-
venne, Verhaegen, et al., 2014).

3.5.3. Positioning products and organisms in PA and OA
space

Following the folding-in procedure (Deerwester et al.,
1990), the product–patent and organism–paper matrices are
multiplied with, respectively, the patent-PA and paper-OA
matrices calculated in Section 3.3 to obtain two characteriza-
tion matrices: product-PA and organism-OA. Figure 6 illus-
trates organism characterization for geckos in a radar plot.
The visualization shows the most important OAs (highest or-
ganism loadings in OA space, obtained from the organism-
OA matrix) for the selected organism. This characterization
is a reflection of the eight documents currently present in
the database that contain a reference to geckos in their title.
In general, the more documents associated to an organism
in the database, the more the radar plot becomes spiral shaped
as more topics can be addressed. Of course, it is possible that
a large fraction of documents for an organism focuses on one
specific strategy. One example in the current corpus is the set
of 17 documents associated to cuttlefish. Because most of
them discuss camouflage, this results in a spike in the radar
plot for the OA camouflage. If there is only one document
stored for a specific organism, the radar plot typically spikes
for one or a few OAs.

4. SEABIRD FUNCTIONALITIES

The algorithms described in the previous section are used to
implement the back-end architecture of SEABIRD, as shown

Table 4. Noun and adjective categories

Category Description Examples

Noun1 Products Valve, display, vehicle
Noun2 Potential products, need explanation System, device, apparatus
Noun3 Nouns with explanatory function Temperature, pressure, power
Noun4 All nouns not in Noun1–3 Data, portion, end
Adj1 Relevant for explaining Noun2 Optical, magnetic, digital
Adj2 Not relevant for explaining Noun2 Preferred, first, improved

Fig. 6. Radar plot of automatic organism characterization of geckos.
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in Figure 1. To allow users to interact with the system while
moving through the different BID process phases, a number
of front-end or user interface elements have been developed,
which are detailed below.

4.1. Network browser

The information structure created with the algorithms de-
scribed in Section 3 represents a large network containing
four types of nodes: products, PAs, OAs, and organisms. Links
are formed between these nodes by consulting the characteri-
zation and mapping matrices, that is, the product-PA, PA-
OA, and organism-OA matrices. This way, products are con-
nected to PAs, PAs to OAs, and OAs to organisms. A central
user interface element, network browser, is developed to as-
sist navigation through this network. The network browser
contains four columns, from left to right: products, PAs,
OAs, and organisms. Table 5 illustrates with an example
where the product display is characterized with PAs. The se-
lected PA color perception maps to OAs from which the OA
color results in the listed organisms. For the problem-oriented
bioinspired design process (Helms et al., 2009), the user na-
vigates from left to right in the network browser.

4.2. Supporting problem formulation: BID process
phase 1

Problems are often formulated as How can we improve our
product? In the context of BID, this question translates to
How can nature inspire us to improve our product? To cap-
ture this problem formulation, SEABIRD has a search func-
tionality to select one or more products from the large product
database (see Section 3.5.1). A direct search allows searching
for multiword products. One can search for the exact product
or for products starting, ending, or containing a specified
character string. The results, which easily contain 10s to
100s of multiword products, are visualized as a word cloud,
where the font size reflects the importance (frequency) of
the products in the patent database. For example, the most
important products for bag are bag, air bag, plastic bag,
packaging bag, golf bag, and so forth. These results also con-
tain product parts; for example, when searching for air bag,
air bag cover and air bag gas are also found. Another indirect
search finds products that are mentioned in the same patents
as a selected product. Continuing the same example, the most

important products linked to air bag with indirect search are ve-
hicle, steering wheel, gas generator, door, fabric, seat, and so
forth. This list contains product synonyms (e.g., air bag appara-
tus), elements of the super system (e.g., vehicle), and elements
of the subsystem (e.g., fabric). Because this indirect search also
has the potential to generate hundreds of product names, again a
frequency-weighted word cloud is used as a visualization
method. Product search and selection is an important step in
problem formulation, because different but related products
are likely to offer distinct characterizations. For example, the
product car body is characterized with the PA aerodynamic,
but if one would select the product car, this PA is suppressed
by other PAs. Indirect search facilitates the identification of the
most relevant product. Product selection adds it to the first col-
umn of the network browser, and SEABIRD characterizes the
product with PAs, as explained in Section 3.5.3). Problem def-
inition ends with the user selecting the PA that best expresses
the desired function or aspect of the product to improve.

Another possible way to formulate a problem is How can
we realize a specific functionality? or How can nature inspire
us to realize a specific functionality? Because there is no
product to start from, a direct selection is made from the set
of PAs. For example, for the question How can we realize ac-
celeration? the PA acceleration and deceleration can be se-
lected. SEABIRD has a search function for PAs that, like
for products, can search for exact PAs or for PAs starting,
ending, or containing a specified character string. For exam-
ple, searching for heat results in the following two PAs: heat-
ing/cooling and heat treatment. These search results are posi-
tioned in the second column of the network browser.
Independently of which problem formulation strategy is
taken, the output of problem formulation is a set of PAs
from which the user selects one or more to continue to the
next BID process step, explained in the following section.

4.3. Supporting scalable search for biological strategy
documents: BID process phase 2

For each selected PA, an ordered list of relevant OAs can be
generated in the third column of the network browser. To ob-
tain this list, the PA-OA similarity or mapping matrix is con-
sulted, as explained in Section 3.4. Continuing the running ex-
ample, the most important PA for air bag is inflation/deflation
and the most relevant OA that maps to this PA is volume (in-
flation/deflation).

Table 5. Representation of the network browser

Product Product Aspect Organism Aspect Organism

Display Text & illustration Color Swallowtails
Data transmission Coloration Strawberry poison frog
Illumination Spectrum/reflectance Steller’s jay
Color perception Spectral Monarch butterfly
Vibrating Optical Cephalotes atratus
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4.3.1. Search for relevant organisms

After selecting an OA in the network browser, the fourth
column of the network browser is populated with an ordered
list of organism names that reflects the organism loadings
stored in the organism-OA matrix. The organisms put forward
for the OA volume (inflation/deflation) are mute swan, walking
goby, American grasshopper, locusta, rana nicobariensisnico-
bar island frog, ribbed mussel, bearded seal, and so forth. Im-
mediate understanding of which strategies these organisms
implement that are relevant for the selected OA is not evident
for this example, and further analysis is necessary in the fol-
lowing BID process steps. A second example, generating a
list of organisms for the OA bioluminescence, is easier to di-
rectly verify, because the retrieved organisms are glowworms,
Lampyris noctilucacommon, dinoflagellates, Suberites do-
muncula, fireflies, brittle stars, Photuris, and so forth.

4.3.2. Search for relevant strategy documents

For a selected OA, SEABIRD consults the OA-document
matrix to identify the most relevant strategy documents
with the highest OA loadings. A strategy document explorer
is developed for SEABIRD that presents the information in
table format. Each line contains the strategy title and involved
organism name for a quick overview of the results. In addi-
tion, by clicking on a strategy document line, the biological
paper’s abstract is shown together with a link to the full
text, for further analysis in the next BID steps. Continuing
the running example, high-scoring strategy documents for
the OA volume (inflation/deflation) discuss volume changes
of the lung, the swim bladder, and individual cells.

4.4. Supporting filtering: BID process phase 3

With scalable search allowing the integration of very large bi-
ological knowledge repositories, a new challenge emerges.
The more strategy documents SEABIRD integrates, the
more relevant results become retrievable and measures need
to be taken to avoid information overload. The presentation
of ordered lists of organisms and strategy documents is a first
important filtering method. In this way, the user can retrieve

as many ordered results as he or she wants to process. A sec-
ond functionality that deals with growing database size is the
organism-oriented view that SEABIRD provides. Besides or-
ganism characterization, it also presents all strategy docu-
ments for the specific organism in a separate table. This
way, related studies about similar biological strategies of
the same organism are grouped. For example, the organism
view not only contains the characterization as illustrated by
Figure 6 but also presents a strategy document table contain-
ing eight entries for geckos. Seven of these strategy docu-
ments discuss the strategy of gecko adhesion in the context
of locomotion, climbing, or static hanging. One strategy
document focuses on high-frequency gecko communication.
Because database expansion will pose new challenges, extra
filtering measures are considered, as detailed in Section 6,
Discussion and Future Work.

4.5. Supporting analysis and knowledge transfer: BID
process phases 3 and 4

After having narrowed down the set of potential biological
strategy documents to a manageable number, the retrieved bi-
ological knowledge needs to be analyzed and transferred to
the technical domain by identifying cross-domain analogies.
These are cognitive processes. The main information unit that
SEABIRD returns are academic papers, which, intuitively, is
a too bulky representation to use as stimuli for knowledge
transfer. Therefore, initially only the title and abstract are
shown with text-highlights for the high-loading terms of
the selected OA. Term loadings are retrieved by consulting
the term-OA matrix obtained from OAs generation (see Sec-
tion 3.3). Figure 7 illustrates annotation for an example title
and abstract of a strategy document scoring on the OA adhe-
sion. The highest loading terms for this OA are adhesive,
attach, glue, detach, and so forth. These terms and their
inflections (e.g., adhesives, adhesiveness, adhesion, and ad-
hesions for adhesive) are marked in the text to catch attention.
The same annotation process can be applied to the full text if
the user requires more background information. Automated
text annotation, as described above, builds on the assumption

Fig. 7. Annotation for an example strategy document for the organism aspect adhesion (Autumn et al., 2006).
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that the terms scoring high on the relevant OAs are interesting
to focus on during knowledge transfer.

5. VALIDATION OF SCALABLE SEARCH

The main contribution of this paper is presenting an approach
for scalable cross-domain search. Therefore the authors vali-
date SEABIRD’s implementation of the first and second BID
process phases. After searching with SEABIRD, other re-
search contributions can be integrated to complete the BID
process phases. For example, the integration of automated ex-
traction of causally related functions from natural-language
text (Cheong & Shu, 2014) could be considered to facilitate
knowledge transfer. More opportunities for combining re-
search efforts are discussed in Section 6.

In order to objectively validate the search functionality, a set
of search questions and an accompanying set of desirable re-
sults are required. This translates to identifying a set of existing
bioinspired concepts and testing if SEABIRD’s problem for-
mulation and search functionalities are able to return relevant
stimuli for knowledge transfer. For the selection of validation
cases, well-known bioinspired designs are taken, often used
as examples for introducing BID, for example, the butterfly-in-
spired Mirasol display technology (Mirasol, 2009). By taking
widely accepted examples of BID as validation cases, the au-
thors aim at maximizing the likelihood of readers being famil-
iar with the presented validation cases and at minimizing doubt
whether the bioinspired design was really inspired by nature.

As explained in Section 3.1, SEABIRD currently inte-
grates a relatively small database compared to a human’s
knowledge about nature. This entails that the biological strat-
egies relevant for the chosen validation cases are possibly not
represented in this corpus by one or more strategy documents.
In such cases, one or more relevant biological papers are
added to SEABIRD and automatically positioned in the OA
space with folding-in (Deerwester et al., 1990). Adding bio-
logical strategy documents this way does not impede valida-
tion because it is not database completeness but the search
functionality that is verified. At the same time, folding in ex-
tra biological strategy documents illustrates that corpus ex-
pansion is possible for SEABIRD without the need to repeat
any of the interactive labeling or classification tasks detailed
in Section 3 and without the need to regenerate the OAs.

5.1. Validation case 1: Butterflies and Mirasol display
technology

For the development of a new display technology, power con-
sumption is an important parameter. When resource effi-
ciency is a primary goal, nature is an interesting source of
inspiration (Bar-Cohen, 2006). The Mirasol display technol-
ogy (Mirasol, 2009) is inspired by the structural coloring of
butterflies. According to Vukusic (2006),

Structural colour utilizes the wave-nature of light. As a wave,
light can experience wave superposition; that is, groups of

waves may add together to reinforce or diminish their com-
bined effect. For this to happen effectively and therefore to
produce a distinct colour effect, there must be a definite
structural order in the system; importantly, the physical di-
mension of this order, the period, must be on a par with
the wavelength of light. This phenomenon is often referred
to as interference and is identical to the mechanism that pro-
duces the iridescent colours in soap bubbles; other names for
it include Bragg diffraction or coherent scattering.

Besides power savings, a second competitive advantage of
this technology is sunlight viewability (Mirasol, 2009). For
the butterfly-inspired displays, the structure is created with
microscopic machines that consist of different material layers
and a variable-size air gap manipulatable with applied voltage
(Mirasol, 2009).

SEABIRD’s multiword product search is used to initiate
problem formulation. The product word cloud returns display
as the most important product in the patent corpus for the
search key display. Other high-ranked results are display de-
vice, display screen, display apparatus, and so forth. Display
is taken as the product to characterize, which results in the fol-
lowing ordered PAs: text and illustration, data transmission,
illumination, color perception, vibrating, and so forth. The
other high-ranking product synonyms are confirmed to have
similar characterizations, mainly differing in the order of
the PAs. For the problem at hand, the PA color perception
is chosen to map to OAs. SEABIRD’s PA-to-OA-mapping
suggests in decreasing order of importance: color, coloration,
spectrum and reflectance, spectral, optical, illumination, ca-
mouflage, and so forth, and the first OA color is selected to
explore for relevant organisms. A list of organisms is gener-
ated that, in order of relevance to the selected OA, are swal-
lowtails, strawberry poison frog, Steller’s jay, monarch
butterfly, cephalotes atratus, Graphium sarpedon, budgeri-
gar, butterflies, Nymphalini, eastern nosquitifish, and so
forth. Based on SEABIRD’s current corpus, 5 of the top 10
results are a member of the superfamily Papilionoidea with
common name butterflies. The Linnaeus classification of
the identified Papilionoidea ranges from the species level
(monarch butterfly) to the super family (butterflies). Next, the
SEABIRD strategy document explorer’s results are scanned
to verify the presence for one or more specific biological
strategies that have the potential to trigger the design of the
Mirasol display technology. For the OA color, the 11th strat-
egy document is titled “Significance of a basal melanin layer
to production of noniridescent structural plumage color: Evi-
dence from an amelanotic Stellers jay,” discussing structural
coloration for birds. For the OA coloration, the 9th result is
titled “Spectral reflectance and directional properties of struc-
tural coloration in bird plumage” and for the OA spectrum/re-
flectance the 2nd, 8th, and 14th result are titled “Glass scales
on the wing of the swordtail butterfly Graphium sarpedon act
as thin film polarizing reflectors,” “Blue integumentary struc-
tural colors in dragonflies (Odonata) are not produced by in-
coherent Tyndall scattering,” and “Anatomically diverse but-
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terfly scales all produce structural colors by coherent scatter-
ing,” respectively. Each of these titles describes a biological
strategy strongly related to the Mirasol technology. Therefore,
for this validation case, the search results can be said to pro-
vide useful strategy documents as input to the fourth BID pro-
cess step, knowledge transfer, to lead to the conceptual design
of the successful display technology.

As illustrated above, SEABIRD makes it possible to iden-
tify similar solutions in nature for taxonomically distant spe-
cies. Structural coloring is not a strategy exclusive to butter-
flies: “The non-pigmentary source of colour, referred to as
structural colour, is a very important component in the ap-
pearance of many different animal systems; examples are
found in many other orders of insects, as well as in birds
and aquatic animals” (Vukusic, 2006). SEABIRD, only rely-
ing on the biological papers of one journal, retrieves two strat-
egy documents describing structural coloring for birds, two
for butterflies, and one for dragonflies.

5.2. Validation case 2: Boxfishes and the Mercedes-
Benz bionic concept car

A key focus point in new car development is energy con-
sumption, in which aerodynamics plays an important role.
During product search with SEABIRD, as a part of problem
formulation, it soon becomes clear that there are a large num-
ber of multiword products in the patent database containing
the word car. The most important are car, elevator car, elec-
tric car, railway car, motor car, and so forth. Hence, product
search is focused on the part of the car most relevant to aero-
dynamics, being the car body. This product is found with an
indirect product search, see Section 4.2, locating products that
frequently co-occur with the product car. SEABIRD’s char-
acterization of car body places the PA aerodynamic on the
second place, right after rigidity/deformation/elasticity. Map-
ping to OAs identifies the OA vortex on the fourth place, and
the retrieved organisms are in order of relevance: mullets,
swimming frogs, boxfishes, Sarsia tubulosa, thrushes, may-
flies, blackcap, swift, and so forth. The strategy document ex-
plorer finds one relevant strategy document discussing box-
fishes for the OA vortex titled “Body-induced vortical
flows: A common mechanism for self-corrective trimming
control in boxfishes.” In this study, “flows around the bodies
of three morphologically distinct boxfishes” are investigated,
and it was found that “carapaces of boxfishes, which vary in
cross-sectional shape, longitudinal features, and ornamenta-
tion, play an important role in hydrodynamic stability” (Bar-
tol et al., 2005). Hence, SEABIRD’s problem formulation
and scalable search have made the link from aerodynamics
of the car body to the shape of the body of boxfishes.

5.3. Validation case 3: Termite mound and air
conditioning for buildings

Temperature regulation in large office buildings is conven-
tionally realized with air-conditioning and heating systems.

The Eastgate Centre in Harare, Zimbabwe, has a temperature
regulation system inspired by self-cooling termite mounds. At
the time of inspiration,1 the biological understanding of tem-
perature control in termite mounds had two main compo-
nents: less dense, warm internal air rises and is exchanged
in the chimneys with denser cooler air that moves downward;
and an induced-flow mechanism (Venturi effect) causes air to
enter through the cavities near the ground (lower wind veloc-
ity) and to exit through the chimneys (higher wind velocity).
Application of this strategy causes the Eastgate Centre to save
up to 90% in energy costs.

Unlike the previous two examples, SEABIRD’s current
corpus did not contain any strategy document that could func-
tion as a valid search result. As explained in Section 6, in such
a case, the corpus is extended with one or more relevant strat-
egy documents to validate the search functionality. As a bo-
nus, at the same time, the folding-in process for corpus expan-
sion is tested. For this validation case, four biological strategy
documents were folded-in OA space (see Table 6). The sec-
ond strategy document in this list does not mention an organ-
ism name; hence, it will not contribute to the organism lists
generated for OAs. It can, however, be retrieved via the strat-
egy document browser because this functionality does not re-
quire an identified organism in the title.

SEABIRD’s multiword product search returns a number of
candidate products, for example, air conditioning system, air
conditioning apparatus, and air conditioning device. The
most important PA for these products is heating/cooling/tem-
perature. Mapping this PA to OAs results in the OA tempera-
ture on the fourth place, and termites are placed fourth in the
organism list for this OA. This can motivate the user to ex-
plore all strategy documents of termites, which returns the
three validation strategy documents linked to termites and
two more already present in the corpus about unrelated topics.
The strategy document ranked first by SEABIRD’s strategy
browser is “nest thermoregulation in social insects,” and the
ranks of the other strategy documents are detailed in Table 6.
Hence, the folded-in strategy documents are retrievable by
SEABIRD’s search functionality. Therefore, again for this
case, SEABIRD’s search is able to retrieve stimuli that have
the potential to trigger a bioinspired invention.

6. DISCUSSION AND FUTURE WORK

Although eventually SEABIRD aims at effectively support-
ing the designer in all four SSBID phases, in this paper, the
contribution of adding scalability to the search phase is the
main focus. Therefore, SEABIRD’s search is validated with
three well-known BID cases. For each case, the proposed sys-
tem was able to identify relevant stimuli with the potential to
lead to the development of bioinspired innovations. The con-

1 Today, a more complex understanding of how termite mounds work is
reported (Turner & Soar, 2008). This, however, does not change that the East-
gate Centre was bioinspired, and the documents detailing the biological strat-
egies remain valid stimuli that can trigger successful BID designs.
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fidence about SEABIRD’s search functionality obtained
from these validation tests, combined with extensive corpus
expansion and further development of algorithms to support
the problem formulation, filtering, analysis, and knowledge
transfer phases, will allow testing the ideation tool in con-
trolled outcome-based experiments in which new design
challenges are presented to a large group of participants.

Table 1 indicates that, compared to related research, SEA-
BIRD’s biological strategy corpus is large. However, com-
pared to the end goal of leveraging human’s knowledge about
nature, significant corpus expansion is required. SEABIRD
sets itself apart by its inherent scalability, eliminating any
limit for increasing the supporting biological database while
still facilitating efficient search. The interactive operations re-
ported in Section 3 (filtering and categorization steps) take
place during system setup and need to occur only once for
each unique term in the corpus dictionary that survived the
automated term filtering steps. These interactive tasks re-
quired together approximately 40 h to set up SEABIRD. Add-
ing new documents to the corpus gradually has less and less
influence on dictionary size; that is, fewer new terms are in-
troduced to a growing dictionary by extra documents. Al-
though the stability of the current dictionary is not yet claimed
in this contribution, the current corpus and corpus dictionary
already allowed validation of the presented BID cases. Future
work will include a second iteration for SEABIRD’s setup to
increase the corpus until the critical mass is reached that de-
livers a stable dictionary. Thereafter, no more interactive la-
beling or categorization tasks are required to integrate as
many new sources as there are, or become, available. Of
course, after a number of years, the dictionary stability should
be reevaluated because language itself evolves. If necessary, a
small effort can integrate new terms. A similar reasoning
holds for the interactive labeling of OAs. By comparing the
OA set for a gradually increasing database, a minimal corpus
size will be determined where the OA set becomes stable, as
previously illustrated for the PA set of the PAnDA tool (Ver-
haegen, D’hondt, et al., 2011). Thereafter, more biological
strategy documents will be folded in (Deerwester et al.,
1990) in OA space without any human interaction besides se-
lecting the corpus and running the scripts. Compared to the
state of the art, the above interactive labeling or classification
tasks occur on the corpus level, not the document level;
hence, they only need to be performed once for a stable cor-
pus and dictionary. Because these tasks require a relatively

small human effort during SEABIRD’s setup, they are not
the focus of future automation attempts.

The above interactive tasks during SEABIRD’s initial
setup require human judgment and are thus subjective and
even error prone. Although the confirmed repeatability gives
some confidence about the execution of these tasks, it also in-
dicates that opinions for term labeling or classification can
differ. The effect of this, however, is limited because of the
key role of dimension reduction (PCA) in SEABIRD’s de-
sign. This technique combines correlated original variables
(term frequencies) to uncorrelated variables (PAs and OAs).
Take, for example, the OA depicted in Figure 5. If one of
these terms (correlated variables) would be mislabeled, there
would still be a set of correlated variables representing a con-
cept in the data for PCA to reveal. As the corpus dictionary
grows, the potential number of terms behind the concepts
grows, and the technique becomes more and more resistant
to such errors. Of course, there is a limit to this appealing
property, but the validation cases illustrate that the execution
of the interactive, repeatable tasks on a corpus of 8011 docu-
ments already results in a functional bioideation tool. A fur-
ther illustration of the resistance of the functioning of the pro-
posed tool to changes in the retained dictionary is that only
the terms that occur at least 10 times in the corpus are inter-
actively evaluated; the rest do not take part in dimension re-
duction. The central role of semantic concepts linking the
technical to the biological domain during search, as opposed
to direct search with keywords, has the advantage that the
identification of cross-domain links is not dependent on find-
ing the right keywords, but on choosing the right concepts
from the offered product characterization.

With further corpus expansion, the need for more support in
search result filtering and grouping will increase (SSBID Phase
3). Therefore, measures like clustering-related strategy docu-
ments discussing the same strategy, biological scale detection,
and taxonomic visualization of search results are envisaged.
Related strategies could, for instance, also be grouped by de-
tecting enabling functions (Cheong & Shu, 2014).

Further expansion of the PA and OA sets will increase the
ability to specify a technical problem and to find matches with
OAs on the conceptual level. For example, there is an OA ad-
hesion that scores high on the characterization of many organ-
isms like geckos, carnivorous plants, spiders, and mussels;
and in the patent database, many products that have a func-
tionality related to adhesion or attachment are identified (fas-

Table 6. Biological strategy documents for air conditioning of buildings, and their rank on the
organism aspect temperature

Strategy Title Organism Rank

Ventilation of termite mounds: new results require a new model Termites 60
Nest thermoregulation in social insects (none) 1
Thermoregulation of termite mounds Termites 31
Wind-induced ventilation of the giant nests of the leaf-cutting ant

Atta vollenweideri
Atta vollenweideri 11
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tener tape, adhesive tape, paper glue, fastener, etc.). However,
the most relevant concept in the set of 300 PAs for attachment
functionality currently is soldering, clearly linked to a subset
of products, while a semantically more general concept cur-
rently is missing. This example illustrates the potential benefit
of generating more product and OAs than the currently arbi-
trarily chosen sets of 300. Another feature that would benefit
SEABIRD is the ability of multiple selection of products, PAs
or OAs. This way synonymous products (e.g., computer
screen and computer display) could be characterized as one,
or multiple PAs could be combined to map to OAs, or multi-
ple OAs could be selected to generate relevant organism or
strategy document lists.

In this contribution, the authors have split the validation of
access to relevant biological strategies from testing how the
natural-language stimuli should be represented for efficient
ideation by facilitating the recognition of cross-domain analo-
gies. The former is an information retrieval problem, the latter a
cognitive science problem which the authors hope to address in
future research. For the information retrieval problem, it is val-
idated that SEABIRD offers relevant stimuli via a logical path.
How many users would recognize these solutions is not yet
tested because this task requires solving the second important
challenge of effective stimuli representation for supporting
knowledge transfer. Identifying valid analogies in natural-lan-
guage text resulting from search is not a trivial task (Cheong &
Shu, 2013), even if relevant biological text is presented. Sec-
tion 4.5 details current efforts to support knowledge transfer,
and related contributions suggest more measures can be taken
to increase SEABIRD’s support for this BID process phase.
These range from training users in BID to adding extra knowl-
edge transfer supporting functionality to the ideation tool. Nel-
son et al. (2009) found that training BID students helps them to
develop more novel and more diverse design ideas in a test
setup without biological strategies as stimuli. To counteract
cognitive bias, the abstraction of nouns to their hypernyms in
biological texts is proposed (Cheong & Shu, 2013), a process
close to automation; and another contribution identifies cau-
sally related verbs (Cheong & Shu, 2014) to support structural
mapping (Gentner & Markham, 1997). Furthermore, it is likely
that instantiating knowledge transfer models (FB, SBF, and
SAPPhIRE) for both the biological systems as for the formu-
lated technical problem will benefit the recognition of cross-
domain design by analogy opportunities. For SBF models, a
pilot study indicates that some designers benefit from SBF
model instantiation for understanding biological articles (Vat-
tam & Goel, 2011). Although manual model instantiation does
not scale well for a large biological database, this is an oppor-
tunity to leverage these academic insights in knowledge trans-
fer when a limited set of relevant biological strategies have
been identified by SEABIRD.

7. CONCLUSION

To eliminate the element of chance in discovering new bioin-
spired solutions to technical problems, a number of system-

atic BID approaches have been proposed. However, all ap-
proaches struggle with integrating the ever-growing body of
biological knowledge in a scalable way. Therefore, SEA-
BIRD is proposed, a bioideation methodology that leverages
large natural-language biological databases in the search for
relevant biological stimuli for design by analogy.

Central to SEABIRD are product and OAs, two concept
sets extracted from, respectively, a patent and biological pa-
per database. Problem formulation is supported by combining
an advanced multiword product search with product charac-
terization, resulting in one or more PAs to focus on. A map-
ping of product to OAs results in an ordered strategy docu-
ment and organism lists, which are initial stimuli for the
filter analysis and knowledge transfer phases.

SEABIRD’s search functionality is validated by demon-
strating its capability to provide relevant stimuli with the po-
tential to inspire three well-known BID cases. During valida-
tion, SEABIRD’s ability to easily expand the biological
corpus is also illustrated. No interactive tasks, that have
been found to encumber the scalability of existing systematic
BID approaches, are required during corpus expansion. After
demonstrating a novel approach for scalable search, focus
needs to be shifted to increase support for the other SSBID
phases. By combining findings from existing research with
the development of extra supporting functionalities, SEA-
BIRD needs to be extended to effectively support bioinspired
concept generation.
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