
Ergod. Th. & Dynam. Sys. (2012), 32, 899–918 c© Cambridge University Press, 2011
doi:10.1017/S0143385710000970

Deterministic and stochastic perturbations of
area preserving flows on a two-dimensional torus

DMITRY DOLGOPYAT, MARK FREIDLIN and LEONID KORALOV

Department of Mathematics, University of Maryland, College Park, MD, USA
(e-mail: dmitry@math.umd.edu)

(Received 22 October 2009 and accepted in revised form 10 July 2010)

Abstract. We study deterministic and stochastic perturbations of incompressible flows on
a two-dimensional torus. Even in the case of purely deterministic perturbations, the long-
time behavior of such flows can be stochastic. The stochasticity is caused by instabilities
near the saddle points as well as by the ergodic component of the locally Hamiltonian
system on the torus.

1. Introduction
Consider a Hamiltonian system with one degree of freedom:

ẋ(t)= v(x(t)), x(0)= x0 ∈ R2, (1)

where v =∇⊥H = (−H ′x2
, H ′x1

) and H(x), x ∈ R2, has bounded and continuous second
derivatives. Then H is a first integral of (1): H(x(t))= H(x0) for all t . Assume, for now,
that lim|x |→∞ H(x)=+∞. Consider a small deterministic perturbation of (1):

˙̃xε(t)= v(̃xε(t))+ εβ(̃xε(t)), x̃ε(0)= x0,

where the vector field β is assumed to be bounded and continuously differentiable. It is
clear that x̃ε(t) is uniformly close to x(t) on any finite time interval [0, T ] if ε is small
enough:

lim
ε↓0

max
t∈[0,T ]

|̃xε(t)− x(t)| = 0.

Usually, however, one is interested in the behavior of x̃ε(t) in time intervals that grow
when ε ↓ 0. Then, in general, x̃ε(t) deviates significantly from x(t). In order to describe
such deviations, it is convenient to re-scale the time by considering xε(t)= x̃ε(t/ε). Then
xε(t) satisfies

ẋε(t)=
1
ε
v(xε(t))+ β(xε(t)), xε(0)= x0. (2)

The dynamics described by (2) consists of the fast motion (with speed of the order 1/ε)
along the unperturbed trajectories of (1) together with the slow motion (with speed of the
order 1) in the direction transversal to the unperturbed trajectories.
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Assume, for a moment, that the Hamiltonian H has just one well. Then the slow
component of the motion can be described completely by the evolution of H(xε(t)):

H(xε(t))− H(x0)=

∫ t

0
〈β(xε(s)), ∇H(xε(s))〉 ds.

Before H(xε(t)) changes by δ (a small constant independent of ε), the fast component
makes a large number of rotations (of the order δ/ε) along the unperturbed trajectory. The
classical averaging principle [2, Ch. 10] gives that

lim
ε↓0

H(xε(t))= y(t)

uniformly on each finite time interval, where y(t) is the solution of the averaged equation

ẏ(t)=
β(y(t))

T (y(t))
, y(0)= H(x0). (3)

Here

T (h)=
∫
γ (h)

dl

|∇H |

is the period of rotation along the level set γ (h)= {x ∈ R2
: H(x)= h} and

β(h)=
∫
γ (h)

〈β, H〉

|∇H |
dl.

Thus the long-time behavior of the perturbed system can be described in terms of the
evolution of the slow component according to (3).

The situation becomes more complicated if the Hamiltonian has more than one well:
first, the system (1) has an additional (discrete) first integral and so the slow motion now
has two components, and, secondly, the limit limε↓0 H(xε(t)) may not exist. In order to
describe the slow motion, let us identify all the points that belong to the same connected
component of a level set of H . Let h be the identification mapping. It is easy to see that
the set G= h(R2) equipped with the natural topology is a graph (see Figure 1). Denote the
edges of G by I1, . . . , Im and let k(x) be the index of an edge such that h(x) ∈ Ik(x). Thus
we get the global coordinate system (k, H) on G (each interior vertex belongs to several
edges, so it can be described by different coordinates). In this coordinate system, h(x)=
(k(x), H(x)), x ∈ R2. The integer-valued function k(x) and real-valued function H(x)
are first integrals for the unperturbed system (1), and h(xε(t))= (k(xε(t)), H(xε(t))) is
the slow component of system (2). Because of the instability of system (1) near the
saddle points, the process h(xε(t)) is very sensitive to small changes of ε, and the limit
limε↓0 h(xε(t)) may not exist for a large class of perturbations.

Indeed, let γ be a separatrix loop of the Hamiltonian with a unique saddle point
O ∈ γ . Thus γ separates the plane into two bounded domains, U1 and U2 (wells of the
Hamiltonian), and one unbounded domain C. Suppose that H does not have critical points
in C, and H(x) > H(O) for x ∈ C. Let div β(x) < 0 for x ∈ R2, and Xε0 = x ∈ C. Put
T ε = inf{t : Xεt ∈ γ }. One can check that limε↓0 T ε = T 0 <∞, and Xε

T 0+t
alternately

belongs to U1 or U2 as ε ↓ 0 for each t > 0. Since the limiting slow motions in different
wells are, in general, different, the limit limε↓0 Xε

T 0+t
does not exist. The limit, in the

sense of convergence in the distribution of random processes, will exist in certain cases
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FIGURE 1. The graph of H and the corresponding graph G.

if the initial condition for the process is assumed to have a continuous density, although
one can give examples of H and β where the limit does not exist, even for continuously
distributed initial conditions (see [4]).

One can also consider perturbations of (1) that contain, besides the vector field εβ(x),
a diffusion term which is even smaller than ε. More precisely, instead of equation (2), let
us consider

d X~,εt =
1
ε
v(X~,εt ) dt + β(X~,εt ) dt + ~u(X~,εt ) dt

+
√
~σ(X~,εt ) dWt , X~,εt ∈ R2, (4)

where u is a smooth bounded vector field, σ is a 2× 2 smooth bounded matrix such that
α(x)= σ(x)σ ∗(x) is positive definite for all x , Wt is a two-dimensional Brownian motion
and ~ is a small parameter. The slow component h(X~,εt ) of process (4) is a stochastic
process on the graph G. One can prove that for fixed ~ the process h(X~,εt ) converges
weakly, as ε ↓ 0, to a diffusion process Z~t on G. All the diffusion processes on a graph
have been described in [10]. When ~ ↓ 0, the processes Z~t in their turn converge to a
stochastic process Z t on G. The process Z t is a deterministic motion inside each edge,
governed by the averaged equation considered above for the one-well case. A trajectory of
Z t can reach an interior vertex O of G in a finite time and leaves O immediately, going to
one of the other two edges that have O as an end point, with probabilities p1(O) and p2(O)
which can be calculated explicitly. These probabilities and the deterministic motion inside
the edges are independent of the choice of the matrix σ and vector field u. This means that
the convergence of the slow motion of a deterministically pertrubed deterministic system
to the stochastic process Z t is an intrinsic property of the system and of the deterministic
perturbation. The addition of a small stochastic term is used only as a regularization of the
problem. The stochasticity of the limiting slow motion is actually a result of instability of
system (1) near the saddle points. These results were obtained by Brin and Freidlin in [4]
for the case when all the level sets of H are compact.

In the current paper, we consider an incompressible periodic vector field v. We assume
that v is typical, in the sense that all the equilibrium points of v are non-degenerate,
there are no saddle connections, and the projections of some of the flow lines on T2 are
not periodic (the case when the projections of all the unbounded flow lines are periodic
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was covered in [4]). It has been conjectured by Freidlin [9] that the averaging principle
(Theorem 1 below) holds for random perturbations of such flows. This has been proved by
Dolgopyat and Koralov in [6] for generic flows (flows with Diophantine rotation numbers)
and by Sowers in [16] for flows whose stream function is nearly periodic. In [7], a
general result for arbitrary rotation numbers was obtained, covering in particular the cases
considered in [6, 16]. An assumption was made that the Lebesgue measure on the torus was
invariant for the diffusion processes that appear after the small perturbation of the original
flow. In the current paper, we get rid of this assumption and then study the deterministic
perturbations of such flows.

Let us start by describing the structure of the stream lines of the unperturbed flow. Since
v is periodic, we can write H as

H(x1, x2)= H0(x1, x2)+ ax1 + bx2,

where H0 is periodic. Note that a and b are rationally independent (otherwise all the
unbounded flow lines would be periodic). It has been shown by Arnold in [1] that in this
case the structure of the stream lines of v considered on the torus is as follows. There are
finitely many domains Uk , k = 1, . . . , n, bounded by the separatrices of the flow, such
that the trajectories of the dynamical system Ẋ t = v(X t ) in each Uk behave as in a part
of the plane: they are either periodic or tend to a point where the vector field is equal to
zero. The trajectories form one ergodic class outside the domains Uk . More precisely, let
E = T2

\[
⋃n

k=1 Uk]. Here [·] stands for the closure of a set. Then the dynamical system is
ergodic on E (and is, in fact, mixing for typical rotation numbers; see [12]).

Although H itself is not periodic, we can consider its critical points as points on the
torus, since ∇H is periodic. All the maxima and the minima of H are located inside the
domains Uk . There may also be saddle points of H inside some of the domains Uk , and
the level sets containing such points will be the separatrices of the flow.

Let us introduce the finite graph G and the mapping h : T2
→G that correspond to the

structure of the stream lines of the flow on the torus. The graph is a tree and h maps the
entire ergodic component to one point—to the root of the tree that will be denoted by O .
Next we identify all the points that belong to each of the compact flow lines. This way each
connected domain bounded by the separatrices is mapped onto an edge of the graph, and
the separatrices and the local maxima and minima of H are mapped onto vertices of the
graph (see Figure 2). In particular, the root of the graph serves as an end point for n edges
(n is the number of domains Uk).

Let I1, . . . , In be the edges of the graph. We can introduce coordinates hk , 1≤ k ≤ n,
on the edges as follows. If V is a connected domain such that H(V )= Ik , x0 ∈ ∂V is such
that H(x0)= y0, where y0 is the end point of Ik that is closer to the root, and x ∈ V is such
that H(x)= y, then we put hk(y)= H(x)− H(x0). Then the value of hk and the number
of the edge k form a global coordinate system on G (each interior vertex belongs to several
edges, so it can be described by different coordinates).

Now consider the process X~,εt on T2 given by the stochastic differential equation

d X~,εt =
1
ε
v(X~,εt ) dt + β(X~,εt ) dt + ~u(X~,εt ) dt

+
√
~σ(X~,εt ) dWt , X~,εt ∈ T2, (5)
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FIGURE 2. The stream lines of the flow and the corresponding graph.

which can be viewed as a small stochastic perturbation of (2). Here v is an incompressible
periodic vector field, β and u are periodic vector fields, σ is a 2× 2 periodic matrix such
that α(x)= σ(x)σ ∗(x) is positive definite for all x , Wt is a two-dimensional Brownian
motion and ~ > 0 is a small parameter. We assume that v, β, u and σ are infinitely smooth
and have a common period in each of the variables that is equal to one, and that the initial
distribution of X~,εt does not depend on ε or ~. We assume that the generator L~,ε of the
process X~,εt can be written in the form

L~,ε f =
1
ε
〈v, ∇ f 〉 + 〈β, ∇ f 〉 +

~

2
div(α∇ f ),

that is

ui = ((α1i )
′
x1
+ (α2i )

′
x2
)/2, i = 1, 2. (6)

The latter assumption is made only for simplicity of notation; it can be easily avoided by
adding a small correction term to β.

Let Y ~,εt = h(X~,εt ) be the corresponding process on G. In §2, we demonstrate that
for fixed ~ > 0 the process Y ~,εt converges, in the sense of weak convergence of induced
measures, as ε ↓ 0, to a Markov process on the graph. The limiting process will be denoted
by Z~t . In §3, we identify the limit of Z~t as ~ ↓ 0 and show that it does not depend on the
random perturbation (choice of the matrix-valued function α). The limiting process, which
will be denoted by Z t , moves deterministically along the edges of the graph. When it
reaches a vertex other than the root, it proceeds with deterministic motion along the ‘next’
edge, which is chosen randomly with probabilities that depend on v and β. If the process
reaches the root of the graph, it is delayed there for a random exponentially distributed
time, and then moves along the ‘next’ edge, which is chosen randomly.

The parameter of the exponential distribution is independent of the matrix α. This
means that stochasticity at O is an intrinsic property of the purely deterministic system (2).
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2. Averaging principle for random perturbations
2.1. Formulation of the result. We assume for brevity that each of the domains Uk ,
k = 1, . . . , n, contains a single critical point Mk of H (a maximum or a minimum of H ).
The general case can be easily considered using the results of this paper and [4]. Let Ak ,
k = 1, . . . , n be the saddle points of H such that Ak is on the boundary of Uk . We denote
the boundary of Uk by γk .

For now, we are assuming that ~ is fixed and ε tends to zero. Therefore, we can
temporarily omit the dependence of the process on ~ from the notations. Let Xεt solve
the stochastic differential equation

d Xεt =
1
ε
v(Xεt ) dt + β(Xεt ) dt + u(Xεt ) dt + σ(Xεt ) dWt , Xεt ∈ T2. (7)

We assume that the initial distribution of Xεt does not depend on ε.
The phase space of the limiting process will be a graph G, which consists of n edges Ik ,

k = 1, . . . , n (segments labeled by k), where each segment is either [H(Mk)− H(Ak), 0]
(if Mk is a minimum) or [0, H(Mk)− H(Ak)] (if Mk is a maximum). All the edges share
a common vertex (the root), which will be denoted by O . Thus a point in G\O can be
determined by specifying k (the number of the edge) and the coordinate on the edge. We
define the mapping h : T2

→G as follows:

h(x)=

{
O if x ∈ [E],
(k, H(x)− H(A)) if x ∈Uk,

where [E] is the closure of E . We will use the notation hk for the coordinate on Ik . For
a function f defined on G, we will often write f (hk) instead of f (k, hk) when it is clear
that the argument belongs to the kth edge of the graph.

We denote the set {x ∈ [Uk] : H(x)− H(A)= hk} by γk(hk). Thus γk = γk(0)= ∂Uk .
Let Lk f (hk)= ak(hk) f ′′ + bk(hk) f ′ be the differential operator on the interior of Ik with
the coefficients

ak(hk)=
1
2

(∫
γk (hk )

1
|∇H |

dl

)−1 ∫
γk (hk )

〈α∇H, ∇H〉

|∇H |
dl (8)

and

bk(hk)=
1
2

(∫
γk (hk )

1
|∇H |

dl

)−1 ∫
γk (hk )

2〈β + u, ∇H〉 + α · H ′′

|∇H |
dl, (9)

where α · H ′′(x)=
∑

1≤i, j≤2 αi j (x)H ′′xi x j
(x). Let

pk =±
1
2
(Area(E))−1

∫
γk

〈α∇H, ∇H〉

|∇H |
dl =±

1
2
(Area(E))−1

∣∣∣∣∫
Uk

div(α∇H)(x) dx

∣∣∣∣,
(10)

where the sign + is taken if Ak is a local minimum for H restricted to Uk , and − is taken
otherwise.

Consider the process Yt on G, which is defined via its generator L as follows. The
domain of L, denoted by D(L), consists of those functions f ∈ C(G) which:
(a) are twice continuously differentiable in the interior of each of the edges;
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(b) have the limits limhk→0 Lk f (hk) and limhk→(H(Mk )−H(Ak )) Lk f (hk) at the
endpoints of each of the edges, and the value of the limit q = limhk→0 Lk f (hk)

is the same for all edges;
(c) have the limits limhk→0 f ′(hk), and

n∑
k=1

pk lim
hk→0

f ′(hk)= q. (11)

For functions f which satisfy the above three properties, we define L f = Lk f in the
interior of each edge, and as the limit of Lk f at the endpoints of Ik .

It is well known (see [10, 15]) that a strong Markov process on G with continuous
trajectories exists, with the generator L. The measure on C([0,∞),G) induced by the
process is uniquely defined by the operator and the initial distribution of the process.

The rest of this section is devoted to the proof of the following theorem.

THEOREM 1. The measure on C([0,∞),G) induced by the process Y εt = h(Xεt )
converges weakly to the measure induced by the process with the generator L with the
initial distribution h(Xε0).

In the case β = 0, the limiting operator has a clear intuitive meaning. First, let us
consider the motion inside an edge. Let the support of f ∈ D(L) belong to the interior of
one edge Ik . Applying the Ito formula to f (hk(Xεt )), we see that

f (hk(X
ε
t ))−

∫ t

0
(a(Xεs ) f ′′(hk(X

ε
s ))+ b(Xεs ) f ′(hk(X

ε
s ))) ds

is a martingale, where

a = 1
2 〈α∇H, ∇H〉, b = 〈u, ∇H〉 + 1

2αH ′′.

When ε is small, the trajectories of the diffusion process converge to the motion along the
stream lines of H , so the integrals over time are well approximated by the averaged values
over the stream lines.

Next we explain the gluing conditions. Note that for each ε the Lebesgue measure is
invariant for the process on T2, so its projection µ to G should be invariant for the limiting
process. In other words, for each f ∈D(L) we should have∫

G
(L f ) dµ= 0. (12)

The projection has the following form:

dµ=
n∑

k=1

gk(hk) dhk + λ(E)δO ,

where

gk(hk)=

∫
γk (hk )

1
|∇H |

dl.
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Integrating by parts, we get∫
G
(L f ) dµ =

n∑
k=1

∫
Ik

(L∗gk) dhk + λ(E)L f (0)

+

n∑
k=1

sk(((ak gk)
′
− bk gk) f − ak gk f ′)(0),

where sk = 1 if Ak is a local minimum for H restricted to Uk , and sk =−1 otherwise.
Note that from (8), (9) and Stokes’ formula it follows that (gkak)

′
= gkbk , therefore (12)

reduces to

λ(E)L f (0)=
n∑

k=1

sk(ak gk f ′)(0),

which explains the choice of coefficients pk in (11).
If β 6= 0, the form of L inside the edges can be found by the same reasoning as above,

but the meaning of the gluing conditions is less clear. The main result of this section is that
the gluing conditions remain the same as in the incompressible case. Roughly speaking,
the reason is the following. In [7], we showed that the orbit cannot stay in E for a long
time. Therefore, the Girsanov theorem shows that the behavior of the process with β 6= 0
in a neighborhood of E should be similar to the behavior of the process with the same
coefficients u and σ , but with β = 0, and so the gluing conditions for the two processes
should be the same.

Let us now give a rigorous argument. We need the following lemma.

LEMMA 2.1. For any function f ∈ D(L) and any T > 0, we have

Ex

[
f (h(XεT ))− f (h(Xε0))−

∫ T

0
L f (h(Xεs )) ds

]
→ 0 as ε→ 0 (13)

uniformly in x ∈ T2.

An analogous lemma was used in the monograph of Freidlin and Wentzell [11, Ch. 8]
to justify the convergence of the process Y εt to the limiting process on the graph. The
main idea, roughly speaking, is to use the tightness of the family Y εt , and then to show
that the limiting process (along any subsequence), is a solution of the martingale problem
corresponding to the operator L.

The main difference between our case and that of [11] is the presence of an ergodic
component. However, all the arguments used to prove the main theorem based on (13)
remain the same. Thus, referring to [11, Lemma 3.1], it is enough to prove our Lemma 2.1
above.

Lemma 2.1 was proved in [7] for the case when β = 0. One of the important ingredients
in the proof is an estimate of the time it takes for the process to exit the ergodic component.
The estimate uses the results of [8, 17] (which are also closely related to [3, 5]), which
allow one to relate the time it takes the process to exit E to the spectral properties of the
operators related to the generator of the process in E . In the current paper, we reduce the
general case to the one with β = 0.
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2.2. Proof of Lemma 2.1. Before we proceed with the rigorous arguments, let us briefly
discuss the main idea for the proof of Lemma 2.1. Together with Xεt , we will consider an
auxiliary process X̃εt obtained from Xεt by setting β = 0 in the right-hand side of (7). For
ρ > 0, the measure on C([0, ρ]) induced by Xεt is absolutely continuous with respect to
the measure induced by X̃εt starting at the same point, and the density of the first measure
with respect to the second one is close to one if ρ is small, as follows from the Girsanov
theorem. We can split the interval [0, T ] into subintervals of length ρ and consider the
contribution to the expectation in (13) from each of the small intervals separately. We
further split each of the small intervals into random subintervals as follows. Introduce the
curves γ k inside Uk that are asymptotically close to γk when ε ↓ 0, thus separating the time
axis into the intervals (between hitting γ k and one of the curves γ j ) that the process spends
in Uk on the way to the ergodic component and the intervals (between hitting γ j and one
of the curves γ k) that the process spends in a neighborhood of E . The contribution from
intervals of the first type is treated using classical averaging theory. The contribution from
intervals of the second type is compared to the contribution from the same intervals for the
auxiliary process, for which the result is already available, using the fact that the measures
induced by the two processes are similar.

The proof of Lemma 2.1 will rely on several other lemmas. Below we will introduce a
number of processes, stopping times and sets, which will depend on ε. However, we will
not always incorporate this dependence on ε into the notation, so one must be careful to
distinguish between the objects which do not depend on ε and those which do.

Fix an arbitrary α ∈ (1/4, 1/2). Let γ k = γk(ε
α) and γ =

⋃n
k=1 γ k . Let γ =

⋃n
k=1 γk

be the boundary of U =
⋃n

k=1 Uk . Let σ be the first time when the process Xεt reaches γ
and τ be the first time when the process reaches γ .

We inductively define the following two sequences of stopping times. Let σ0 = σ . For
n ≥ 0, let τn be the first time following σn when the process reaches γ . For n ≥ 1, let σn

be the first time following τn−1 when the process reaches γ .

LEMMA 2.2. We have the following limit:

lim
ε↓0

sup
x∈Cl(E)

Exσ = 0.

Proof. The same lemma was proved in [7] under the additional assumption that β = 0.
Consider an auxiliary process X̃εt obtained from Xεt by setting β = 0 in the right-hand side
of (7). Since the result holds when β = 0, for each δ > 0 we have

lim
ε↓0

sup
x∈Cl(E)

Px (̃σ > δ)= 0, (14)

where σ̃ is the first time when the process X̃εt reaches γ . Let µεx be the measure on
C([0, δ], T2) induced by Xεt starting at x , and µ̃εx the measure induced by X̃εt starting
at x . By the Girsanov theorem, µεx is absolutely continuous with respect to µ̃εx , with a
density pεx , and

inf
x∈Cl(E)

µ̃εx (p
ε
x ≥ 3/4)≥ 3/4

provided that δ is sufficiently small. Therefore, by (14),

sup
x∈Cl(E)

Px (σ > δ)≤ 1/2,
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provided that ε is sufficiently small. Since δ was arbitrary, the lemma follows from the
Markov property of the process Xεt . 2

LEMMA 2.3. For each function f ∈ D(L), we have

sup
x∈T2

sup
σ ′≤σ

∣∣∣∣Ex

[
f (h(Xεσ ′))− f (h(Xε0))−

∫ σ ′

0
L f (h(Xεs )) ds

]∣∣∣∣→ 0 as ε→ 0, (15)

where the first supremum is taken over all stopping times σ ′ ≤ σ .

Proof. If the supremum is restricted to the set T2
\Cl(E), then the statement follows from

the averaging principle inside a periodic component (see [13] for the case when there are no
saddle points inside Uk , and [11] for the general case). The statement with the supremum
taken over Cl(E) immediately follows from Lemma 2.2 if one takes into account that
f (h(x))= const for x ∈ Cl(E). 2

LEMMA 2.4. For each function f ∈ D(L), we have

sup
x∈T2

∣∣∣∣Ex

[
f (h(Xετ ))− f (h(Xε0))−

∫ τ

0
L f (h(Xεs )) ds

]∣∣∣∣→ 0 as ε→ 0. (16)

Proof. Let U ⊆U be the union of the domains bounded by γ . Note that

sup
x∈U

∣∣∣∣Ex

[
f (h(Xετ ))− f (h(Xε0))−

∫ τ

0
L f (h(Xεs )) ds

]∣∣∣∣→ 0 as ε→ 0,

as follows from the classical averaging principle. Since L f is bounded and f is nearly
constant on T2

\U (which is a small neighborhood of E ), it is sufficient to show that

sup
x∈T2\U

Exτ → 0 as ε→ 0. (17)

This has been done in [7] for the case when β = 0. The general case follows from the
Markov property of the process and the Girsanov theorem in the same way as in the proof
of Lemma 2.2. 2

LEMMA 2.5. For each function f ∈D, we have the following asymptotic estimate:

sup
x∈γ

sup
σ ′≤σ

∣∣∣∣Ex

[
f (h(Xεσ ′))− f (h(Xε0))−

∫ σ ′

0
L f (h(Xεs )) ds

]∣∣∣∣= o(εα) as ε→ 0, (18)

where the first supremum is taken over all stopping times σ ′ ≤ σ .

This lemma is similar to the averaging principle inside the periodic component—the
difference is that now the initial point is not fixed, but is located at a distance of the order
εα from the boundary of the periodic component. This guarantees that the expectation
of the exit time from the periodic component is of the order O(εα), which allows for the
o(εα) estimate of the left-hand side of (18). The necessary modifications to the averaging
principle are not difficult (see, for example, [14, Lemma 4.4] where a similar statement
was proved).
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We need to control the number of excursions between γ and γ before time T . For
this purpose we formulate the following lemma, whose proof is similar to that of [6,
Lemma 2.5].

LEMMA 2.6. There is a constant r > 0 such that for all sufficiently small ε we have

sup
x∈γ

Ex e−σ ≤ 1− rεα.

Using the Markov property of the process and Lemma 2.6, for n ≥ 1 we get the
following estimate:

sup
x∈T2

Ex e−σn ≤ sup
x∈γ

Ex e−σn−1 ≤

(
sup
x∈γ

Ex e−σ
)n−1

≤ (1− rεα)n−1. (19)

The first inequality here follows from the definition of σn . Note that for n ≥ 0

Px (τn < T )≤ Px (σn < T )≤ Px (e
−σn > e−T )≤ eT (1− rεα)n−1.

The last inequality here is due to (19) and the Chebyshev inequality if n ≥ 1, and is obvious
for n = 0. Taking the sum in n, we obtain

∞∑
n=0

Px (τn < T )≤
∞∑

n=0

Px (σn < T )≤
∞∑

n=0

eT (1− rεα)n−1
≤ K ε−α, (20)

where the constant K depends on T .

Proof of Lemma 2.1. Let f ∈D, T > 0 and η > 0 be fixed. We would like to show that the
absolute value of the left-hand side of (13) is less than η for all sufficiently small positive ε.
Using the stopping times τn and σn , we can rewrite the expectation in the left-hand side
of (13) as follows

Ex

[
f (h(XεT ))− f (h(Xε0))−

∫ T

0
L f (h(Xεs )) ds

]
= Ex

[
f (h(XεT∧σ ))− f (h(Xε0))−

∫ T∧σ

0
L f (h(Xεs )) ds

]
+

∞∑
n=0

Ex

(
χ{σn<T }

[
f (h(Xετn∧T ))− f (h(Xεσn

))−

∫ τn∧T

σn

L f (h(Xεs )) ds

])

+

∞∑
n=0

Ex

(
χ{τn<T }

[
f (h(Xεσn+1∧T ))− f (h(Xετn

))−

∫ σn+1∧T

τn

L f (h(Xεs )) ds

])
,

(21)

provided that the sums in the right-hand side converge absolutely (which follows from the
arguments below). Due to (15), the absolute value of the first term on the right-hand side
of this equality can be made smaller than η/4 for all sufficiently small ε. Therefore, it
remains to estimate the two infinite sums.

Let us start with the second sum. From (18), we can find ε0 such that for all ε < ε0 we
have

sup
x∈γ

sup
σ ′≤σ

∣∣∣∣Ex

[
f (h(Xεσ ′))− f (h(Xε0))−

∫ σ ′

0
L f (h(Xεs )) ds

]∣∣∣∣≤ ηεα4K
.
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Therefore, by (20) and due to the Markov property of the process, for ε < ε0 we have∣∣∣∣ ∞∑
n=0

Ex

(
χ{τn<T }

[
f (h(Xεσn+1∧T ))− f (h(Xετn

))−

∫ σn+1∧T

τn

L f (h(Xεs )) ds

])∣∣∣∣
≤ sup

x∈γ
sup
σ ′≤σ

∣∣∣∣Ex

[
f (h(Xεσ ′))− f (h(Xε0))−

∫ σ ′

0
L f (h(Xεs )) ds

]∣∣∣∣ ∞∑
n=0

Exχ{τn<T } ≤
η

4
.

(22)

It remains to estimate the first sum in the right-hand side of (21). Fix ρ > 0, to be specified
later. We introduce the stopping times σ n , where σ 0 = σ0 and σ n , 0≤ n ≤ [T/ρ], is the
first of the stopping times σk which exceeds σ n−1 by at least ρ. We wish to replace the
sum by

[T/ρ]∑
n=0

Ex

(
χ{σ n<T }EXεσn

∞∑
k=0

χ{σk<ρ}

[
f (h(Xετk

))− f (h(Xεσk
))−

∫ τk

σk

L f (h(Xεs )) ds

])
.

(23)

Indeed, by Lemma 2.4 and the Markov property of the process, we can replace τn ∧ T
by τn everywhere in the first sum in the right-hand side of (21), and the difference will be
smaller than η/4 if ε is sufficiently small. The difference between the resulting expression
and the one in (23) is estimated using the Markov property by

sup
x∈γ

sup
α≤ρ

∣∣∣∣Ex

∞∑
k=0

χ{σk<α}

[
f (h(Xετk

))− f (h(Xεσk
))−

∫ τk

σk

L f (h(Xεs )) ds

]∣∣∣∣, (24)

where the second supremum is taken over stopping times α ≤ ρ. In order to estimate the
expressions in (23) and (24), we will need the following lemma, whose proof is provided
below.

LEMMA 2.7. For each f ∈D and δ > 0, there is ρ > 0 such that

sup
x∈γ

sup
α≤ρ

∣∣∣∣Ex

∞∑
n=0

χ{σn<α}

[
f (h(Xετn

))− f (h(Xεσn
))−

∫ τn

σn

L f (h(Xεs )) ds

]∣∣∣∣≤ δρ (25)

for all sufficiently small ε, where the second supremum is taken over stopping times α ≤ ρ.

If we choose δ = η/(4(T + 1)) and take ρ ∈ (0, 1) such that (25) holds, then the
absolute value of the expression in (23) and the expression in (24) are estimated by η/4.
This shows that the right-hand side of (21) is estimated by η, as required. 2

Proof of Lemma 2.7. We divide the proof into several steps.
(a) Consider the process X̃εt obtained from Xεt by setting β = 0 in the right-hand side

of (7). Let us show that for each ρ > 0,

lim
ε↓0

sup
x∈γ

sup
α≤ρ

∣∣∣∣Ex

∞∑
n=0

χ{σn<α}

[
f (h(X̃ετn

))− f (h(X̃εσn
))−

∫ τn

σn

L f (h(X̃εs )) ds

]∣∣∣∣= 0.

(26)
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Indeed, Lemma 2.1 holds for the process X̃εt , as shown in [7]. Moreover, the same
proof shows that (13) remains valid if T is replaced by a stopping time α ≤ T and the
convergence is uniform in α if T is fixed. Therefore,

lim
ε↓0

sup
x∈γ

sup
α≤ρ

∣∣∣∣Ex

[
f (h(X̃εα))− f (h(X̃ε0))−

∫ α

0
L f (h(X̃εs )) ds

]∣∣∣∣= 0. (27)

The expectation in (27) can be represented as a sum of terms corresponding to the intervals
[σn, τn] and the intervals [τn, σn+1], as above. The contribution from the intervals of the
second type tends to zero, as in (22). Therefore, the contribution from the intervals of the
first type also tends to zero. Notice that the expectation in (26) is equal to the contribution
from the intervals of the first type (up to a term found in (16)), thus proving (26).

(b) Given ρ > 0, let µεx be the measure on C = C([0, 2ρ], R2) induced by the process
Xεt starting at x , and µ̃εx be the measure on C induced by the process X̃εt starting at x . Let
pεx be the density of µεx with respect to µ̃εx . By the Girsanov theorem, for each c > 0 there
is ρ0 > 0 such that for ρ ≤ ρ0 we have

µ̃εx (1− cδ ≤ pεx ≤ 1+ cδ)≥ 1− ρ2 (28)

for all sufficiently small ε and all x ∈ γ . Let C′ ⊆ C be the event where pεx /∈ [1− cδ,
1+ cδ] and �′ ⊆� be the event that (Xεt , t ∈ [0, 2ρ]) ∈ C′.

(c) Note that by the Markov property of the process and Lemma 2.4, we can replace the
stopping times τn in (25) by τ ′n =min(τn, 2ρ).

(d) For 0< ρ < 1, we can take the same sum as in (20), but starting with n =
[ε−α ln(C/ρ)] instead of n = 0. We then obtain that for each δ > 0 there is a sufficiently
large C > 0 that does not depend on ρ such that

∞∑
n=[ε−α ln(C/ρ)]

Px (σn < ρ)≤

∞∑
n=[ε−α ln(C/ρ)]

eρ(1− rεα)n−1
≤ δρε−α.

Therefore, if δ > 0, �′ is the event constructed above and ρ is sufficiently small (ρ may
now depend on δ), then

∞∑
n=0

Px (�
′
∩ {σn < α})≤

∞∑
n=0

Px (�
′
∩ {σn < ρ})

≤

[ε−α ln(C/ρ)]−1∑
n=0

Px (�
′)+

∞∑
n=[ε−α ln(C/ρ)]

Px (σn < ρ)

≤ ε−α ln(C/ρ)ρ2
+ δρε−α ≤ 2δρε−α. (29)

(e) Let us show that we can replace χ{σn<α} in (25) by χ{σn<α}\�′ . Indeed,∣∣∣∣Ex

∞∑
n=0

χ{σn<α}∩�′

[∫ τ ′n

σn

L f (h(Xεs )) ds

]∣∣∣∣≤ 2ρ sup |L f |Px (�
′).

For arbitrary δ > 0, this can be made smaller than δρ for all sufficiently small ε by taking
a sufficiently small ρ. Also,∣∣∣∣Ex

∞∑
n=0

χ{σn<α}∩�′ [ f (h(X
ε
τ ′n
))− f (h(Xεσn

))]

∣∣∣∣≤ 2| f ′(0)|εα
∞∑

n=0

Px (�
′
∩ {σn < α}),
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which can be made smaller than δρ for all sufficiently small ε by taking a sufficiently small
ρ due to (29).

We have thus demonstrated that the expectation in the left-hand side of (25) can be
approximated (with the accuracy of δρ with arbitrarily small δ) by

Ex

(
χ�\�′

∞∑
n=0

χ{σn<α}

[
f (h(Xετ ′n ))− f (h(Xεσn

))−

∫ τ ′n

σn

L f (h(Xεs )) ds

])
. (30)

(f) We claim that there is a constant K such that

sup
x∈γ

sup
α≤ρ

Ex

∣∣∣∣ ∞∑
n=0

χ{σn<α}

[
f (h(X̃ετ ′n ))− f (h(X̃εσn

))−

∫ τ ′n

σn

L f (h(X̃εs )) ds

]∣∣∣∣≤ Kρ (31)

for all sufficiently small ε. Indeed,

Ex

∣∣∣∣ ∞∑
n=0

χ{σn<α}

[∫ τ ′n

σn

L f (h(X̃εs )) ds

]∣∣∣∣≤ 2ρ sup |L f |,

and

Ex

∣∣∣∣ ∞∑
n=0

χ{σn<α}[ f (h(X̃
ε
τ ′n
))− f (h(X̃εσn

))]

∣∣∣∣≤ 2| f ′(0)|εα
∞∑

n=0

Px (σn < α)≤ Kρ,

for some K , where the last inequality is due to (20).
(g) Let F be the functional on C = C([0, 2ρ], R2) corresponding to the sum in (30).

Thus the expectation in (30) can be written as∫
C\C′

F dµεx =
∫

C\C′
Fpεx dµ̃εx =

∫
C\C′

F dµ̃εx +
∫

C\C′
F(pεx − 1) dµ̃εx . (32)

The first integral on the right-hand side can be made smaller than δρ for all sufficiently
small ε. Indeed, the arguments in steps (c)–(e) can be applied to the process X̃εt , and,
therefore, due to (26), the expression in (30) with Xεt replaced by X̃εt can be made smaller
than δρ.

Finally, the second integral on the right-hand side of (32) can be estimated as follows:∣∣∣∣∫
C\C′

F(pεx − 1) dµ̃εx

∣∣∣∣≤ cδ
∫

C\C′
|F | dµ̃εx ≤ cK δρ,

where the first inequality follows from the definition of C′ and the second one from (31).
It remains to take a sufficiently small constant c in (28). 2

3. Averaging principle for deterministic perturbations
Recall that the process X~,εt is defined in (5), which is different from (7) in that now
the terms u(Xεt ) dt + σ(Xεt ) dWt in the right-hand side are replaced by ~u(Xεt ) dt +
√
~σ(Xεt ) dWt , where ~ > 0 is a small parameter.
Let Y ~,εt = h(X~,εt ) be the corresponding process on the graph G. In §2, we

demonstrated that the distribution of Y ~,εt converges, as ε ↓ 0, to the distribution of a
limiting process, which will be denoted by Z~t . In this section, we show that the distribution
of Z~t , in turn, converges to the distribution of a limiting Markov process on G when ~ ↓ 0.
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We need additional notations in order to describe the limiting distribution of Z~t . Let

ϕk =

∫
γk

〈α∇H, ∇H〉

|∇H |
dl,

ψk = 2
∫
γk

〈β, ∇H〉

|∇H |
dl.

Let us recall that Z~0 is distributed as h(X~,ε0 ) (we assume that X~,ε0 does not depend on
ε). Denote the generator of Z~t by L~ . Recall that L~ can be described as follows.

Let L~k f (hk)= a~k (hk) f ′′(hk)+ b~k (hk) f ′(hk) be the differential operator on the
interior of Ik with the coefficients

a~k (hk)=
1
2
(Tk(hk))

−1
∫
γk (hk )

〈~α∇H, ∇H〉

|∇H |
dl

and

b~k (hk)=
1
2
(Tk(hk))

−1
∫
γk (hk )

2〈β + ~u, ∇H〉 + ~α · H ′′

|∇H |
dl,

where

Tk(hk)=

∫
γk (hk )

1
|∇H |

dl

is the period of the unperturbed system. Note that

a~k (hk)=
1
2 (Tk(hk))

−1~ϕk(1+ o(1)), |hk | ↓ 0,

b~k (hk)=
1
2 (Tk(hk))

−1(ψk(1+ o(1))+ ~O(ln(|hk |))), |hk | ↓ 0,

and, therefore,

b~k (hk)

a~k (hk)
=
ψk

~ϕk
(1+ o(1))+ O(ln(|hk |)), |hk | ↓ 0. (33)

The domain of L~ consists of those functions f ∈ C(G) which:
(a) are twice continuously differentiable in the interior of each of the edges;
(b) have the limits limhk→0 L~k f (hk) and limhk→(H(Mk )−H(Ak )) L~k f (hk) at the

endpoints of each of the edges, and the value of the limit q~ = limhk→0 L~k f (hk)

is the same for all edges;
(c) have the limits limhk→0 f ′(hk), and

~

n∑
k=1

pk lim
hk→0

f ′(hk)= q~ , (34)

where pk is given by (10).
For functions f which satisfy the above three properties, we define L~ f = L~k f in the

interior of each edge, and as the limit of L~k f at the endpoints of Ik .
We assume that ψk 6= 0. Let sk , 1≤ k ≤ n, take values zero and one. We set sk = 1 if

ψk > 0 and Mk is a local maximum of H as well as if ψk < 0 and Mk is a local minimum
of H . Otherwise, we set sk = 0. Let

rk =

∣∣∣∣ sk pkψk

ϕk

∣∣∣∣= sk |ψk |

2Area(E)
, 1≤ k ≤ n.
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Note that rk does not depend on α. Let Z t be the family of processes (that depend on
the initial point) on the state space G whose distribution is determined by the following
conditions.
(a) Z t is a strong Markov family with continuous trajectories.
(b) If Z0 = O , where O is the root of G, then the process spends a random time τ

in O . There is a random variable ξ that is independent of τ , takes values in the set
{1, . . . , n}, and is such that Z t ∈ Iξ for t > τ .
If sk = 0 for 1≤ k ≤ n, then τ =∞. If sk = 1 for some k, then τ is exponentially
distributed with the parameter

µ=

n∑
k=1

rk . (35)

If sk = 1 for some k, then

P(Z t ∈ Ik for t > τ)= rk

( n∑
i=1

ri

)−1

.

(c) If Z0 ∈ int(Ik), then d Z t/dt = bk(Z t ) for t < σ , where σ = inf(t : Z t = O) and

bk(hk)= b0
k (hk)=

1
2
(Tk(hk))

−1
∫
γk (hk )

2〈β, ∇H〉

|∇H |
dl.

Thus Z t moves deterministically along the edge Ik of the graph with the speed bk(hk).
If the process reaches O in a finite time (in which case sk = 0), then it either stays at O (if
sm = 0, 1≤ m ≤ n) or spends exponential time in O and then continues with deterministic
motion away from O along a randomly selected edge (if sm = 1 for some m).

THEOREM 2. The measure on C([0,∞),G) induced by the process Z~t converges weakly
to the measure induced by the process Z t with the initial distribution h(Xε0).

We would like to underline again that the process Z t is defined by the deterministic
system (2). The stochastic perturbations are used just for regularization purposes.

The motion of Z~t inside each edge can be understood by standard perturbation theory.
Namely, let

0≤ δ < min
1≤k≤n

|H(Ak)− H(M)|, σ ~(δ)= inf(t : |Z~t | = δ), σ (δ)= inf(t : |Z t | = δ).

Using the fact that for small ~ we have a small perturbation of the deterministic system
d Z t/dt = bk(Z t ), one can easily obtain the following statements.

For the processes Z~t and Z t starting on the edge Ik with |Z~0 | = |Z0| = δ,

if σ(0) <∞, then lim
~↓0
(σ ~(0)− σ(0))= 0 in probability

and for each T <∞,

lim
~↓0

(
max

t≤min(T,σ ~ (0))
|Z~t − Z t |

)
= 0 in probability.

From here it easily follows that for the process Z~t starting at O ,

lim
~↓0

σ ~(δ)=∞ in probability
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if rk = 0 for all k. It remains to describe the behavior of the process Z~t starting at O till
the time it exits a small neighborhood of O in the case when rk 6= 0 for some k. Thus
Theorem 2 will follow from the two lemmas below.

LEMMA 3.1. If Z~0 = O and rk 6= 0 for some k, then

lim
~↓0

P(Z~σ ~ (δ) ∈ Ik)= rk

( n∑
i=1

ri

)−1

.

Proof. Let Gδ
= {(i, hi ) ∈G : |hi | ≤ δ}. Let fk,~(h), h ∈Gδ , be the probability that the

process Z~t starting at h exits Gδ through the point that belongs to Ik . Thus fk,~ is a
continuous function on Gδ , is twice continuously differentiable for |hi | ∈ (0, δ) and is
such that:
(a) L~i fk,~(hi )= 0 for |hi | ∈ (0, δ), 1≤ i ≤ n;
(b) the limits limhi→0 f ′k,~(hi ) exist and (34) holds with fk,~ instead of f and q~ = 0;
(c) fk,~(hk)= 1 for |hk | = δ; fk,~(hi )= 0 for |hi | = δ if i 6= k.

Note that we are interested in the limit lim~↓0 fk,~(O). Assuming that fk,~(O) is
known, we can use the differential relation (a) to find fi,~(hi ), 0≤ |hi | ≤ δ, 1≤ i ≤ n.
Namely,

fi,~(hi )= fk,~(O)+ ci,~

∫ hi

0
exp

(
−

∫ s

0

b~i (u)

a~i (u)
du

)
ds.

The constants ci,~ can be found from the boundary condition (c) and are equal to

ck,~ =
1− fk,~(O)

Ik(~)
; ci,~ =

− fk,~(O)

Ii (~)
, i 6= k,

where

Ii (~)=

∫ δ

0
exp

(
−

∫ s

0

b~i (u)

a~i (u)
du

)
ds. (36)

From (b) we find that
∑n

i=1 pi ci,~ = 0, and, therefore,

fk,~(O)=
pk I−1

k (~)∑n
i=1 pi I−1

i (~)
. (37)

From (33) it easily follows that

Ii (~)= (~ + o(~))
ϕi

ψ i
when ~ ↓ 0 if si = 1; (38)

Ii (~)→∞ when ~ ↓ 0 if si = 0. (39)

Substituting this into (37), we obtain the desired result. 2

The next lemma shows that the distribution of the time spent by the process in a small
neighborhood of O is asymptotically exponential with parameter µ and that this time is
asymptotically independent of which edge it chooses upon exiting from O .
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LEMMA 3.2. Let λ≥ 0, Z~0 = O and rk 6= 0 for some k. Let Am denote the event that
Zκσ ~ (δ) ∈ Im . Then

E(χAm exp(−λσ ~(δ)))=
rm

µ+ λ
(1+ ξm(λ, δ, ~))+

ληm(λ, δ, ~)

µ+ λ
, (40)

where µ is defined in (35), lim~↓0 ξm(λ, δ, ~)= 0 uniformly in λ≥ 0, δ < δ0 for some
positive δ0 and limδ↓0 ηm(λ, δ, ~)= 0 uniformly in λ≥ 0, ~ < ~0 for some positive ~0.

In particular,

E exp(−λσ ~(δ))=
µ

µ+ λ
(1+ ξ(λ, δ, ~))+

λη(λ, δ, ~)

µ+ λ
, (41)

where ξ and η have the same properties as ξm and ηm .

Proof. Let us prove (40). Let f~(h), h ∈Gδ , be equal to the expectation in the left-hand
side of (40), where the stopping time σ ~(δ) is that of the process starting at h instead
of O . Then f~ is a continuous function on Gδ , is twice continuously differentiable for
|hk | ∈ (0, δ), and is such that:
(a) L~k f~(hk)− λ f~(hk)= 0 for |hk | ∈ (0, δ), 1≤ k ≤ n;
(b) the limits limhk→0 f ′~(hk) exist and (34) holds with f~ instead of f and q~ replaced

by λ f~(O);
(c) f~(hm)= 1 for |hm | = δ, and f~(hk)= 1 for |hk | = δ, k 6= m.
Note that we are interested in the asymptotics of f~(O) as ~ ↓ 0. Let us temporarily treat
λ f~ as a known function, which we denote by g~ . Note that g~ is continuous and |g~ | is
bounded by λ. Then f~(O)= g~(O)/λ. From this and the differential relation (a) we can
find f ′~(hk), 0≤ |hk | ≤ δ, 1≤ k ≤ n. Namely,

f ′~(hk)=

(∫ hk

0

g~(s)

a~k (s)
exp

(∫ s

0

b~k (u)

a~k (u)
du

)
ds + ck,~

)
exp

(
−

∫ hk

0

b~k (s)

a~k (s)
ds

)
, (42)

where ck,~ are constants. From (b) it follows that

n∑
k=1

pkck,~ = g~(O)/~. (43)

Upon integrating (42) from 0 to δ and using (c), we obtain

f~(O) = δkm −

∫ δ

0

(∫ hk

0

g~(s)

a~k (s)
exp

(∫ s

0

b~k (u)

a~k (u)
du

)
ds + ck,~

)
× exp

(
−

∫ hk

0

b~k (s)

a~k (s)
ds

)
dhk

= δkm −

∫ δ

0

(∫ hk

0

g~(s)

a~k (s)
exp

(∫ s

0

b~k (u)

a~k (u)
du

)
ds

)
× exp

(
−

∫ hk

0

b~k (s)

a~k (s)
ds

)
dhk − ck,~ Ik(~)

= δkm − Jk(δ, λ, ~)− ck,~ Ik(~),
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where

Jk(δ, λ, ~)=

∫ δ

0

(∫ hk

0

g~(s)

a~k (s)
exp

(∫ s

0

b~k (u)

a~k (u)
du

)
ds

)
exp

(
−

∫ hk

0

b~k (s)

a~k (s)
ds

)
dhk,

(44)
Ik(~) was defined in (36) and δkm equals 1 if k = m, and 0 otherwise. Let us multiply both
sides of this equality by pk/Ik(~) and take the sum in k. Using (43), we obtain

f~(O)
n∑

k=1

pk

Ik(~)
=

pm

Im(~)
−

n∑
k=1

pk Jk(δ, λ, ~)

Ik(~)
−
λ f~(O)

~
.

This is a linear equation on f~(O). Solving it, we obtain

f~(O)=

( n∑
k=1

pk Ik(~)+
λ

~

)−1 pm

Im(~)
+

( n∑
k=1

pk

Ik(~)
+
λ

~

)−1 n∑
k=1

pk Jk(δ, λ, ~)

Ik(~)
.

By (38) and (39), the first term on the right-hand side converges, as ~ ↓ 0, to rm/(µ+ λ).
It remains to show that

lim
δ↓0

~ Jk(δ, λ, ~)

Ik(~)
= 0

for each k. When k is such that sk = 0, we use the fact that by (33)∫ hk

0

g~(s)

λ

~

a~k (s)
exp

(∫ s

0

b~k (u)

a~k (u)
du

)
ds

converges to zero when δ ↓ 0, and the second factor inside the integral in (44) is the same
as the integrand in the definition of Ik(~). When sk = 1, we rewrite Jk as follows

Jk(δ, λ, ~)=

∫ δ

0

(∫ hk

0

g~(s)

a~k (s)
exp

(
−

∫ hk

s

b~k (u)

a~k (u)
du

)
ds

)
and again use (33) to show that Jk(δ, λ, ~) tends to zero when δ ↓ 0. This proves (40).
Now (41) follows from (40) by summing over m. 2

Finally, as was already mentioned, the case where some of the periodic components
contain saddles could be treated using the analysis of [4], namely the limit process is still
Markov. Upon reaching a vertex corresponding to a saddle point, the process instantly
chooses one of the edges where the averaged field points inside the edge and the probability
of choosing the edge k is proportional to |ψ̄k |.
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