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DIRECTED PREFERENTIAL
ATTACHMENT MODELS: LIMITING
DEGREE DISTRIBUTIONS AND THEIR TAILS

TOM BRITTON,∗ Stockholm University

Abstract

The directed preferential attachment model is revisited. A new exact characterization
of the limiting in- and out-degree distribution is given by two independent pure birth
processes that are observed at a common exponentially distributed time T (thus cre-
ating dependence between in- and out-degree). The characterization gives an explicit
form for the joint degree distribution, and this confirms previously derived tail proba-
bilities for the two marginal degree distributions. The new characterization is also used
to obtain an explicit expression for tail probabilities in which both degrees are large. A
new generalized directed preferential attachment model is then defined and analyzed
using similar methods. The two extensions, motivated by empirical evidence, are to
allow double-directed (i.e. undirected) edges in the network, and to allow the proba-
bility of connecting an ingoing (outgoing) edge to a specified node to also depend on the
out-degree (in-degree) of that node.
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1. Introduction and models

The (undirected) preferential attachment model (PA) is a random network model defined
by Barabási and Albert [1] and later, more rigorously, by Bollobás et al. [3]. To start off, the
network consists of one single node without any edge. At each time step k = 1, 2, . . . , a new
node with m (a fixed integer parameter in the model) new edges connected to it is added. Each
of the new edges of the node is connected, independently, to existing nodes, and the probability
of connecting to a specific node with current degree i is proportional to i. Two novel features, as
compared to most other network models at the time, were that it was defined sequentially, thus
with nodes having different ages, and that the degree distribution of nodes in a large network
were shown to have power-law tails rather than exponentially decaying tail probabilities.

In 2003, Bollobás et al. [2] defined a related model, but now for a network in which edges
are directed rather than undirected. As in the undirected model, edges/nodes are entered at each
discrete time step. However, now one of three different possibilities may happen: (1) either a
new node with an outgoing edge is added (with probability α), or (2) a new directed edge but
no new node is added (with probability β), or (3) a node with an ingoing edge is added (with
probability γ = 1 − α − β). In the first event, the edge connects to (i.e. points at) a node u
having current in- and out-degree i and j with probability proportional to i + δI. In the second
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event the edge starts from u with probability proportional to j + δO and, independently, ends at
u with probability proportional to i + δI. In the third and final event the edge starts from u with
probability proportional to j + δO. The procedure of adding nodes/edges is initiated by having
one single node without edges (however, as shown in [2], the exact starting configuration is not
important for the limiting degree distribution as long as it is finite).

The model has four parameters: α, β, δI, δO (recall that γ = 1 − α − β). It is important that
δI > 0 and δO > 0, otherwise nodes born with in-degree 0 will never get positive in-degree, and
similarly for the remaining nodes born with out-degree 0. In order to avoid some less interesting
special cases of the model (which would require special attention in the analyses) we will also
assume that α > 0 and γ > 0. We term this model the directed preferential attachment (DPA)
model.

In [2] it was shown that E(Xi(n)) = ϕin + o(n), E(Yj(n)) = φjn + o(n), and E(Mij(n)) = fijn +
o(n), where Xi(n) denotes the number of nodes with in-degree i, Yj(n) denotes the number of
nodes with out-degree j, and Mij(n) denotes the number of nodes having in-degree i and out-
degree j, at time step n. Bollobás et al. [2] did not obtain explicit expressions for ϕi, φj, or
fij, but instead derived limiting properties for large i and j (sending either, but not both, off to
infinity for fij). More specifically, they showed that ϕi ∼ i−(1+1/cI) and φj ∼ j−(1+1/cO), where

cI = α + β

1 + δI(α + γ )
, (1)

cO = γ + β

1 + δO(α + γ )
(2)

(ai ∼ bi meaning ai/bi → c for some 0 < c < ∞ as i → ∞). As for the bivariate distri-
bution fij it was shown that, having one of i and j fixed and letting the other tend to
infinity, fij ∼ i−xI (as i → ∞ and j fixed) and fij ∼ j−xO (as j → ∞ and i fixed), where xI =
1 + 1/cI + cO(δO + I(γ δO=0))/cI, and xO = 1 + 1/cO + cI(δI + I(αδI=0))/cO (note that there is
a small misprint the first time the expressions appear in [2]). The method used when proving
the results is by analyzing the evolution of the vector-valued processes (X0(n), X1(n), . . . ),
(Y0(n), Y1(n), . . . ), and (M10(n), M01(n), . . . ), and by analyzing the limiting partial differen-
tial equations. Samorodnitsky et al. [8] took this one step further and derived an exact integral
characterization of the joint generating function ϕ(x, y) of {fij}. Using this characterization they
were also able to prove that the joint distribution {fij} has jointly regularly varying tails with a
specified tail measure.

In the current paper we analyze the same DPA model but using a different method. Instead
we analyze the evolution of the in- and out-degree of one randomly selected node (born
before n) up until time step n. If we let p(n)

ij denote the probability that the degree of this node

equals (i, j) at time step n, it follows that limn p(n)
ij = cfij (the constant c is only there because

the fij of [2] will not sum to unity). Using this alternative method we show, by means of weak
convergence and a certain time transformation, that the evolution of degrees of a randomly
selected node, in the limit, converges to the evolution of two independently evolving Markov
birth processes, which are both stopped at a common exponentially distributed time T . We now
define this limiting process.

Consider a bivariate birth process X(t) = (XI(t), XO(t)) with time-homogeneous birth rates

P(X(t + h) = (i + 1, j) | X(t) = (i, j)) = λI
ijh + o(h),

P(X(t + h) = (i, j + 1) | X(t) = (i, j)) = λO
ij h + o(h),

P(X(t + h) = (i, j) | X(t) = (i, j)) = 1 − λI
ijh − λO

ij h + o(h),
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where the jump intensities are given by

λI
ij = λI

i = (i + δI)cI, (3)

λO
ij = λO

j = ( j + δO)cO, (4)

with cI and cO defined in (1) and (2).
Because the two jump rates depend only on the first and second coordinate respectively, the

two coordinate processes, reflecting in- and out-degree, evolve independently. Assume that the
process is started either in state (0, 1) or (1, 0):

P(X(0) = (0, 1)) = α

α + γ
, and

P(X(0) = (1, 0)) = γ

α + γ
.

In Section 2 we make use of this process and show that the limiting-degree distribution of
the DPA model is identical to that of this process observed after an exponentially distributed
time, which enables the computation of its bivariate tail distribution. Another advantage with
this new characterization is that it easily extends to related, but more realistic, preferential
attachment models, including the one defined below.

Recently, and independently, Wang and Resnick [10] studied the special case of a DPA
model where β = 0 so that a node is always added. The focus of their paper is slightly different
from that of the current paper. Wang and Resnick studied convergence properties of empirical
tail degrees, estimates of marginal tail power laws using the Hill estimator, and the degree
growth rate of a specific node as the network increases. Here we focus on deriving explicit
expressions for the limiting bivariate degree distribution and its tail, and extending the model
(see below).

The DPA model of [2] has two main features which may be criticized from the point of
realism. The first is that the two different degrees of a node evolve independently in the sense
that the rate/probability of acquiring an additional ingoing edge (thus increasing the in-degree
by 1) depends on the current in-degree of the node, but not on its out-degree, and vice versa. A
more realistic model would in many situations be to let the probability that an added directed
edge points to a node having current in- and out-degree (i, j) be proportional to i + cj + δI,
and similarly that the probability that a new edge points out from this node to be proportional
to di + j + δO (where c and d are non-negative model parameters; in the original DPA model
c = d = 0). This will allow for a stronger dependence between in- and out-degree.

A second, perhaps more important, feature that the original DPA model can be criticized for
is that the fraction of edges that are ‘double directed’ (or equivalently undirected), i.e. pairs of
nodes for which there exist directed edges going both ways between them, will be negligible.
In many empirical networks having directed edges, the fraction ρ of directed edges for which
the reciprocal edge is also present is far away from 0, typically in the interval (0.2, 0.8) (cf.
[7], and Spricer and Britton [9] who considered another model for a partially directed random
network). This can be achieved if we modify the DPA model by simply stating that, at each
time step (when a directed edge is added), the corresponding reciprocal edge is added with
probability ρ.

From the reasoning above we now define what we call the generalized directed preferential
attachment (GDPA) model.

Definition 1. (The generalized directed preferential attachment (GDPA) model.) The process is
started at k = 0 with a single node without any edges. At each discrete time step k = 1, 2, . . . ,
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one of three different events can happen: (1) with probability α a new node with an edge
pointing out from this node is added, (2) with probability β a new directed edge without nodes
is added, and (3) with the remaining probability γ = 1 − α − β a new node with a directed
edge pointing at the new node is added. In the first and second cases, the probability that the
new edge points to a specific existing node with in- and out-degree (i, j) is proportional to
i + cj + δI. In the second and third cases, the probability that the new edge points out from a
specific node with in- and out-degree (i, j) is proportional to di + j + δO. Finally, the added
directed edge is made reciprocal (i.e. double-directed) with probability ρ, independently in
each time step.

The GDPA model has seven parameters: α, β, δI, δO, c, d, and ρ (recall that γ = 1 − α − β

and hence is not a free parameter). Note that in the DPA model it was crucial that δI > 0 and
δO > 0, since otherwise a node would only have positive in- or out-degree. For the GDPA
model this is no longer necessary when c > 0 and d > 0. For this reason it is possible to
reduce the number of parameters to five by assuming δI = δO = 0. Further, the GDPA model is
identical to the DPA model when instead c = d = ρ = 0.

2. Main results

We now state our main result characterizing the limiting-degree distribution of the directed
preferential attachment model in terms of our simple two-dimensional birth process X(·)
(defined in the previous section) evaluated after an exponentially distributed time. Recall that
we assume α, γ , δI, and δO to all be strictly positive (the interesting case) to avoid special
cases.

Theorem 2.1. Let p(n)
ij denote the probability that a randomly selected node in the DPA model

after n steps has in- and out-degree i and j respectively. Let X(t) denote the bivariate birth
process defined above, and T an independent Exp(1) random variable. Then

p(n)
ij → pij := P(X(T) = (i, j)).

Remark. Let N(n) denote the number of nodes after n steps in the DPA model (which follows a
1 + Bin(n, α + γ ) distribution). It then directly follows that Mij(n)/N(n), the fraction of nodes
having in- and out-degree (i, j), converges in probability to pij.

The explicit distribution of X(T) can be derived in two ways. The first is by studying the
embedded discrete-time random walk which, if currently in state (k, 
), goes to state k + 1, 


with probability λI
k/(λI

k + λO

 + 1), to state k, 
 + 1 with probability λO


 /(λI
k + λO


 + 1), or
gets stuck for ever in state (k, 
) with the remaining probability 1/(λI

k + λO

 + 1). These

jump probabilities follow directly from the Markov property: the jump probabilities equal
the rate of jumping to the considered state divided by the overall jump rate. The probabil-
ity P(X(T) = (i, j)) is then the probability that this random walk gets stuck in state (i, j).
Note that there are many different paths, in general having different probabilities, end-
ing in state (i, j). This derivation technique will be applied when analyzing the GDPA
model.

The other way to derive the distribution is by integrating over possible values of T , and
using that the two components of the continuous-time bivariate processes evolve indepen-
dently. Let X(0,1)(t) = (X0

I (t), X1
O(t)) and X(1,0)(t) = (X1

I (t), X0
O(t)) denote the bivariate birth

process described above, but where we condition on the starting state being (0, 1) and (1, 0)
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respectively (remember that the probabilities for these two starting points are α/(α + γ ) and
γ /(α + γ ) respectively). We then have

pij = α

α + γ

∫ ∞

0
P(X0

I (t) = i)P(X1
O(t) = j)e−t dt

+ γ

α + γ

∫ ∞

0
P(X1

I (t) = i)P(X0
O(t) = j)e−t dt, (5)

and the following result gives explicit expressions for the bivariate degree distribution (using
the notation ak = a(a − 1) · · · (a − k + 1)).

Theorem 2.2. The marginal distributions of the two birth processes conditioned on their
starting values r are given by

P(Xr
I (t) = i) = (δI + i − 1)i−r

(i − r)! e−cI(δI+r)t(1 − e−cIt)i−r, i = r, r + 1, . . . ,

P(Xr
O(t) = j) = (δO + j − 1)j−r

( j − r)! e−cO(δO+r)t(1 − e−cOt) j−r, j = r, r + 1, . . . .

The marginal distributions of the stopped birth processes conditioned on their starting value r
are given by

P(Xr
I (T) = i) = (δI + i − 1)i−r

(δI + 1
cI

+ i)i−r+1
,

P(Xr
O(T) = j) = (δO + j − 1)j−r

(δO + 1
cO

+ j)j−r+1
.

The joint degree distribution pij = P(X(T) = (i, j)) is given by

pij = α

α + γ

(δI + i − 1)i(δO + j − 1)j−1

i!( j − 1)!
i∑

k=0

j−1∑

=0

(−1)k+


( i
k

)(j−1



)
cI(δI + k) + cO(δO + 
) + 1

+ γ

α + γ

(δI + i − 1)i−1(δO + j − 1)j

(i − 1)!j!
i−1∑
k=0

j∑

=0

(−1)k+


(i−1
k

)( j



)
cI(δI + k) + cO(δO + 
) + 1

.

Besides having an explicit (albeit long) form for the limiting-degree distribution {pij}, its
characterization as a stopped bivariate birth process making independent jumps component-
wise gives hope for a richer analysis of the tail behavior of the two degrees. For example, it is
not hard to confirm the earlier stated results of [2].

Corollary 2.1. (Bollobás et al. [2]) For large in-degrees, pi := ∑
j pij ∼ i−(1+1/cI); for large

out-degrees, qj := ∑
i pij ∼ j−(1+1/cO). For fixed j and large i, pij ∼ i−xI ; for fixed i and large j,

pij ∼ j−xO; where xI = 1 + 1/cI + cOδO/cI and xO = 1 + 1/cO + cIδI/cO.

Remark. The original theorem of Bollobás et al. contains an additional term for xI and xO, but
these vanish when restricting the parameters δI, δO, α, and γ to all being strictly positive, as
we have done (the interesting case).

Our new result concerns the tail probability pij when both i → ∞ and j → ∞. More specifi-
cally, let i = n and j = �snr� for some 0 < s, r < ∞, where �x� is the integer part of x. We have
the following theorem.
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Theorem 2.3. The tail probabilities pij, for i = n and j = �snr�, satisfy

pn,�snr� ∼ LnnδI−1+r(δO−1)−(cIδI+δOcO+1) max (1/cI,r/cO)

=
{

Lnn−(1+δO(cO/cI−r)+r+1/cI ) if r ≤ cO/cI,

Lnn−(1+δI (rcI/cO−1)+r+r/cO) if r ≥ cO/cI,

where Ln ∼ nεn (εn → 0) is a slowly varying function. The factor s hence has no effect on the
tail exponents. The choice of r which maximizes the tail probability is given by

arg max{r≥0}pn,�nr� →
{

0 if δO < 1,

cO/cI if δO > 1.

If δO = 1 any value of r between 0 and cO/cI gives the same asymptotic tail.

The limiting-degree distribution of the original (undirected) PA model of [1] can also
be derived using a similar methodology. Here, the limiting process is even simpler: a one-
dimensional pure birth process Z(t) starting at Z(0) = m and having birth rate λi = i/2 that
is stopped at T ∼ Exp(1). The limiting distribution has previously been derived using other
methods.

Theorem 2.4. (Dorogovtsev et al. [4].) Let p(n)
i denote the probability that the degree of a

randomly selected individual after n steps has degree i in the (undirected) PA model, and let
Z(t) and T be defined as above. Then

p(n)
i → pi := P(Z(T) = i) = 2m(m + 1)

i(i + 1)(i + 2)
, i = m, m + 1, . . .

We now consider the generalized directed preferential attachment (GDPA) model. Using
very similar methods as when proving Theorem 2.1, it can be shown that for the GDPA model
the limiting degree distribution can also be characterized by a continuous-time bivariate ‘birth
process’ which is stopped and observed after an exponentially distributed random time T .
We now describe the limiting process to which the degree distribution of the GDPA model
converges. Let Y(t) = (YI(t), YO(t)) be a time-homogeneous bivariate Markov birth process, but
where now simultaneous births of the two components are also possible. The three different
birth rates βI

ij, βO
ij , and βI+O

ij are defined by

βI
ij = (i + cj + δI)(1 − ρ)

α + β

(1 + ρ)(1 + c) + δI(α + γ )

=: (i + cj + δI)(1 − ρ)gI,

βO
ij = (di + j + δO)(1 − ρ)

γ + β

(1 + ρ)(1 + d) + δO(α + γ )

=: (di + j + δO)(1 − ρ)gO,

βI+O
ij = (i + cj + δI)ρgI + (di + j + δO)ρgO,

(6)

gI and gO being the respective ratio expressions. The third rate means that P(Y(t + h) = (i +
1, j + 1) | Y(t) = (i, j)) = βI+O

ij h + o(h). The process is started in one of the states (0, 1), (1,
0), or (1, 1) with respective probability (1 − ρ)α/(α + γ ), (1 − ρ)γ /(α + γ ), ρ. As before,
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let T ∼ Exp(1) be an independent exponentially distributed time. We then have the following
theorem.

Theorem 2.5. Let π
(n)
ij denote the probability that a randomly selected node in the GDPA

model after n steps has in- and out-degree i and j respectively. Let Y(t) denote the bivariate
birth process defined above, and T an independent Exp(1) random variable. Then

π
(n)
ij → πij := P(Y(T) = (i, j)).

Remark. Just as in Theorem 2.1, it follows that the fraction of nodes having in- and out-degree
(i, j) converges in probability to πij.

The limiting probabilities {πij} can be computed by summing over all paths, starting from
one of (0, 1), (1, 0), or (1, 1), and ending in (i, j), where each jump either increases the in-
degree by 1, the out-degree by 1, both degrees by 1, or makes a complete stop. If currently in
state (k, 
), the process jumps to (k + 1, 
) with probability βI

k,
/σk,
, to state (k, 
 + 1) with

probability βO
k,
/σk,
, to state (k + 1, 
 + 1) with probability βI+O

k,
 /σk,
, or makes a complete

final stop with probability 1/σk,
, where σk,
 = βI
k,
 + βO

k,
 + βI+O
k,
 + 1 (the different βs were

defined in (6)).
As an illustration,

π11 = (1 − ρ)α

α + γ
× βI

0,1

βI
0,1 + βO

0,1 + βI+O
0,1 + 1

× 1

βI
1,1 + βO

1,1 + βI+O
1,1 + 1

+ (1 − ρ)γ

α + γ
× βO

1,0

βI
1,0 + βO

1,0 + βI+O
1,0 + 1

× 1

βI
1,1 + βO

1,1 + βI+O
1,1 + 1

+ ρ × 1

βI
1,1 + βO

1,1 + βI+O
1,1 + 1

.

The first factor in each row is the probability of starting in (0, 1), (1, 0), and (1, 1) respectively.
For higher degrees there will be many more paths to sum over. Starting at (0, 1) and ending in
(1, 2) can, for example, happen in three different ways, either first jumping to (1, 1) followed
by a jump to (1, 2), or first jumping to (0, 2) and then to (1, 2), or jumping directly to (1, 2).

As for the tail probabilities of the GDPA model {πij}, it should be possible to derive them
using a similar analysis as for the tails of the DPA model (Corollary 2.1 and Theorem 2.3).
However, the fact that the two components no longer evolve independently makes the analysis
more involved, and its tail behavior remains an open problem.

3. Proofs

3.1. Proof of Theorem 2.1

The proof consists of two parts. First we show that the evolution of the degrees of a ran-
domly selected node up to step n converges to the evolution of the degrees of a continuous-time
bivariate birth process D = (DI, DO), born at U ∼ U[0, 1], having time-inhomogeneous birth
rates λI

ij/t and λO
ij /t respectively, and observed at time t = 1. Then, using a time transforma-

tion, we show that this limiting distribution has the same distribution as the time-homogeneous
bivariate process X = (XI, XO) of the theorem, having birth rates λI

ij and λO
ij respectively, born

at time 0 and observed at time T ∼ Exp(1).
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Recall that p(n)
ij is the probability that a randomly chosen node after n time steps has in- and

out-degree (i, j). At the start there are no edges, and at each time step one edge is added, so
there are n edges at this time. Further, at the start there is one node, and at each time step a new
node is added with probability α + γ , so the number of nodes at time step n, denoted N(n), is
1 + Bin(n, α + γ ). For large n this is well approximated by (α + γ )n, which is done below.

Fix s, 0 ≤ s ≤ 1, and consider a node that entered the network at time step �sn� (the integer
part of sn). For s ≤ t ≤ 1 we define the bivariate process (D(n)

I (t), D(n)
O (t)) as the in- and out-

degree of that node at time step �tn�. The starting value of our node may either be (0, 1) or (1,
0) depending on whether it entered through the event 1 or event 3 (if event 2 happens, no new
node is added). The probabilities are hence given by

P(D(n)
I (s) = 0, D(n)

O (s) = 1) = α

α + γ
= 1 − P(D(n)

I (s) = 1, D(n)
O (s) = 0).

Assume that at time t our process equals (D(n)
I (t), D(n)

O (t)) = (i, j), and let �t = 1/n. We first
compute the probability/intensity that our process will increase its in-degree by 1. This happens
if either event 1 happens and our node is selected as the node to point at, or that event 2 happens
and our node is selected as the node to point at. The probability for this is hence

P((D(n)
I (t + �t), D(n)

O (t + �t)) = (i + 1, j) | (D(n)
I (t), D(n)

O (t)) = (i, j))

= (α + β)
i + δI

�tn� + δIN(�tn�)
+ op(1/n)

= (α + β)
i + δI

t(1 + δI(α + γ ))
�t + op(�t),

where the terms op(·) tend to 0 in probability as the argument tends to 0. For the out-degree we
obtain the similar result

P((D(n)
I (t + �t), D(n)

O (t + �t)) = (i, j + 1) | (D(n)
I (t), D(n)

O (t)) = (i, j))

= (β + γ )
j + δO

�tn� + δON(�tn�)
+ op(1/n)

= (β + γ )
j + δO

t(1 + δO(α + γ ))
�t + op(�t).

It can in fact also happen that our node increases both its in- and out-degree. This happens in
the case that event 2 happens and our node is chosen both for the start and the end of the edge
(thus creating a loop). This event should in fact also be excluded from the above probabilities.
However, this happens with a probability proportional to 1/n2 = (�t)2, so these events will not
occur in the limit.

We have thus shown that the jump rates of (D(n)
I , D(n)

O ) converge to those of (DI, DO). For
a more general Markov jump process (e.g. taking any values in R

2) this corresponds to the
generator converging to the generator of the limiting process. From this result we can use
theory for density-dependent jump Markov processes to conclude that (D(n)

I , D(n)
O ) converges

in the limit as n → ∞ to the continuous-time stochastic process (DI, DO) on [s, 1] (see [5,
Theorem 4.2.5, p. 167], and also Exercise 4.8 on p. 262 therein, which considers the current
situation except for being one-dimensional). The limiting process only makes increases by
one unit, and never in both coordinates at the same time: it is a bivariate time-inhomogeneous
Markov birth process. An important observation is that the birth rate for the in-degree only
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depends on the current value of the in-degree i and not on the current out-degree j, and similarly
for the out-degree, which means that the two degrees evolve independently. We can hence
drop this dependence in our notation and write λI

i and λO
j as defined in (3) and (4). It hence

follows that our process (D(n)
I (t), D(n)

O (t)) converges to a continuous-time, time-inhomogeneous
bivariate Markov birth process, with birth intensities given by λI

i/t and λO
j /t respectively. The

process starts at time s with degrees (0, 1) or (1, 0), with respective probabilities α/(α + γ )
and γ /(α + γ ).

Finally, our randomly chosen node has the same probability α + γ of being born at any time
point between 1 and n, implying that the birth time s of the limiting process is U[0, 1]. We have
thus shown that the distribution {p(n)

ij } of the in- and out-degree of a randomly selected node
after step n in the GPA model converges (as n → ∞) to the distribution of (DI(1), DO(1)),
where this process is started at a uniformly distributed time s with starting configuration as
stated above, and where the two degrees evolve according to the rates given above until time
t = 1.

The second part of the proof consists of showing that this distribution equals the one stated
in the theorem. We do this by looking at the accumulated intensities. Since the jump rates of
(DI, DO) are of the form λij × 1/t, and the jump rates of (XI, XO) equal λij for the same λij, it
suffices to show that the accumulated rates agree for a fixed parameter λ, say.

The accumulated rate for the D process, starting at time s ∼ U[0, 1] and evolving until time
1, equals ∫ 1

0

( ∫ 1

s
λ

1

t
dt

)
ds = λ.

The accumulated rate for the X process starting at time 0 and evolving up until time T ∼
Exp(1) equals ∫ ∞

0

( ∫ t

0
λ ds

)
e−t dt = λ.

The two processes hence have the same accumulated jump rates and start from the same
initial condition, which implies that they have the same distribution at the observation points.
Another way to obtain this result is to make a time transformation of D: first we reverse
time and let it evolve from 0 to s ∼ U[0, 1] with rate λ/(1 − s), and then transform time:
s′ = log (1 − s). These two changes combined lead to the rates and limits of the X process.
This completes the proof.

3.2. Proof of Theorem 2.2

For the first part of the theorem we show the result for Xr
I , the proof for Xr

O being identical.
We only need the result for r = 0 and r = 1, but the result holds for any r. Fix r. We use
induction. The jump rate of XI if currently in state i equals λI

i = (i + δI)cI. We start with i = r,
meaning that there must be no jump between 0 and t:

P(Xr
I (t) = r) = e−λI

rt = e−(r+δI)cIt,

which agrees with the theorem. We now assume the expression for P(Xr
I (t) = k) is as stated in

the theorem for k = 1 . . . , i − 1 for all t. Then

P(Xr
I (t) = i) =

∫ t

0
P(Xr

I (s) = i − 1)λI
i−1e−λI

i (t−s) ds

= (δI + i − 1)i−r

(i − 1 − r)! cIe
−(δI+i)cIt

∫ t

0
e(i−r)cIs(1 − e−cIs)i−1−r ds
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= (δI + i − 1)i−r

(i − 1 − r)! cIe
−(δI+i)cIt

i−1−r∑
j=0

(
i − 1 − r

j

)
e(i−r−j)cIt − 1

cI(i − r − j)
(−1)j

= (δI + i − 1)i−r

(i − 1 − r)!
e−(δI+i)cIt

i − r

( i−1−r∑
j=0

(
i − 1 − r

j

)
e(i−r−j)cIt(−1)j + (−1)i−r

)

= (δI + i − 1)i−r

(i − 1 − r)!
e−(δI+i)cI t

i − r
(ecIt − 1)i−r

= (δI + i − 1)i−r

(i − r)! e−(δI+r)cIt(1 − e−cIt)i−r,

which proves the first part of the theorem. The third equality is obtained by expanding (1 −
e−cIs)i−1−r in its binomial terms and integrating each term, and the fourth equality comes from
summing the ‘−1’ terms.

Now to the second part of the theorem. As before, we only show it for Xr
I (T) (the proof

for Xr
O(T) being identical). If currently in state k, the rate at which XI gives birth equals λI

k =
(δI + k)cI and the rate at which the process stops equals 1 (T ∼ Exp(1)). The probability for a
birth before a stop is hence λI

k/(λI
k + 1). Since the process is Markovian we hence have

P(Xr
I (T) = i) =

( i−1∏
k=r

λI
k

λI
k + 1

)
1

λI
i + 1

,

where the last factor comes from requiring that the process stops when in state k. Simple
manipulation of this expression, using that λI

k = (δI + k)cI, gives the desired result.
Now to the final part of the theorem. We know that the starting configuration of X is either

(0, 1) or (1, 0) with probabilities α/(α + γ ) and γ /(α + γ ), so by conditioning on the starting
configuration and the stopping time T ∼ Exp(1), and using that XI(t) and XO(t) are independent
given the starting configuration, we get

pij = P(X(T) = (i, j)) = α

α + γ

∫ ∞

0
P(X0

I (t) = i)P(X1
O(t) = j)e−t dt

+ γ

α + γ

∫ ∞

0
P(X1

I (t) = i)P(X0
O(t) = j)e−t dt.

From the first part of the corollory it follows that the first integral above equals

(δI + i − 1)i(δO + j − 1)j−1

i!( j − 1)!
∫ ∞

0
e−δIcIt(1 − e−cIt)ie−(δO+1)cOt(1 − e−cOt) j−1 dt.

By expanding both (1 − e−cIt)i and (1 − e−cOt) j−1, and integrating term by term, the first sum
of the theorem is obtained. The second term is treated identically.

3.3. Proof of Corollary 2.1

We have that pi = P(XI(T) = i) = α/(α + γ )P(X0
I (T) = i) + γ /(α + γ )P(X1

I (T) = i), and
these probabilities are given in Theorem 2.2:

P(Xr
I (T) = i) = 1

(δI + 1
cI

+ i)

(δI + i − 1)i−r

(δI + 1
cI

+ i − 1)i−r
.
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It is easy to show that, as i → ∞, (a + i)i−r/(b + i)i−r ∼ ia−b. This implies that

P(Xr
I (T) = i) ∼ i−(1+1/cI),

and since the same expression holds for r = 0 and r = 1 it also holds for pi. The proof for
qj is obtained similarly. We now fix j and study pij = P(X(T) = (i, j)) for large i. We start by
considering j = 0, and hence look at pi0 for large i. For j = 0, the process must start in state (1,
0) and the out-degree birth process must never have a birth, so

pi0 = γ

α + γ

( i−1∏
k=1

λI
k

λI
k + λO

0 + 1

)
1

λI
i + λO

0 + 1

= (δI + i − 1)i−1

(δI + 1
cI

+ cO
cI

δO + i − 1)i−1
∼ i

−(1+ 1
cI

+ cO
cI

δO)
,

where the second equality is obtained by plugging in the expressions for λI
k and λO

0 , and the
asymptotic size follows from the above stated property of (a + i)i−r/(b + i)i−r.

For another fixed j ≥ 1 we now show that it is of the same order. In order to reach (i, j) where
i is large and j is fixed (and hence small in comparison with i) the j births of the out-degree
process can occur for different values of the in-degree process. However, since the birth rate
for the in-degree process increases with i, the probability that any out-degree birth takes place
when the in-degree is greater than n is o(1/n). So, the more likely paths ending in (i, j) (where j
is fixed and small and i is large) are where the out-degree births take place when the in-degree
is small. We now compute the probability for one such path, and since there are only a fixed
number of such paths, and all these paths have probability of the same order, we conclude that
the overall probability pij is of the same order as the probability of one such (likely) path.

We assume that the initial configuration is (0, 1) (the other case is done equivalently).
We now compute the probability of the path, namely first having all the j out-degree births,
followed by all the in-degree births:

P((0, 1) → (0, 2) · · · (0, j) → (1, j) → (2, j) → · · · (i, j)

=
j−1∏
k=1

λO
k

λI
0 + λO

k + 1

i−1∏
k=0

λI
k

λI
k + λO

j + 1

1

λI
i + λO

j + 1
.

For fixed j, the first product is a constant, and the second product and the last factor are of

order i
−(1+ 1

cI
+ cO

cI
δO), which is shown in the same way as was done for pi0. So, since j is fixed,

together with the fact that j births of the out-degree process happen when the in-degree is small
with large probability, proves the last statement of the theorem.

3.4. Proof of Theorem 2.3

The exact expression for pij is given in (5). It is easy to show that for large i = n, P(X1
I (t) =

n) ∼ P(X0
I (t) = n), and for j = �snr�, P(X1

O(t) = �snr�) ∼ P(X0
O(t) = �snr�), which implies that

starting in either state (0, 1) or (1, 0) has no effect on the tail behavior. Further, it is known
and easily proven that (a + n)n/n! ∼ na. From these two observations, together with the exact
expression (5), we have

pn,�snr� ∼ nδI−1(snr)δO−1
∫ ∞

0
e−(cIδI+cOδO+1)t(1 − e−cIt)n(1 − e−cOt)snr

dt. (7)
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We now analyze the integral in (7), writing b = cIδI + cOδO + 1 and using Laplace’s
method. The integral in (7) can be written as∫ ∞

0
e−nfn(t) dt, where fn(t) = (b/n)t − log (1 − e−cIt) − snr−1 log (1 − e−cOt).

Clearly, fn(t) > 0 for t > 0, and as t → 0 or t → ∞, fn(t) → +∞. From this it follows that the
main contribution to the integral comes for t values close to t(min)

n for which fn(t) is minimized.
We hence Taylor expand fn(t) around t(min)

n :

fn(t) = fn(t(min)
n ) + (t − t(min)

n ) f ′
n(t(min)

n ) + (t − t(min)
n )2

2
f ′′
n (t(min)

n ) + o((t − t(min)
n )2)

= fn(t(min)
n ) + 0 + (t − t(min)

n )2

2
f ′′
n (t(min)

n ) + o((t − t(min)
n )2).

By differentiating fn(t), it follows that, for large n, t(min)
n = max (1/cI, r/cO) log n +

o( log n) and f (min)
n := fn(t(min)

n ) = log n
n b max (1/cI, r/cO) + o( log (n)/n). Further, f ′′

n (t) =
c2

I e−cIt + nr−1c2
Oe−cOt, and f ′′

n (t(min)
n ) ∼ c2

I n−cI max + c2
Onr−1−cO max ∼ n−1, where max :=

max (1/cI, r/cO). Going back to the integral we hence have∫ ∞

0
e−nfn(t) dt ∼ e−nf (min)

n

∫ ∞

0
e−n(t−t(min)

n )2f ′′
n (t(min)

n )/2 dt ∼ e−nf (min)
n ;

the last step is by identifying the normal density. We have the following approximation for (7):

pn,�snr� ∼ LnnδI−1(snr)δO−1e−nf (min)
n ∼ LnnδI−1nr(δO−1)n−(cIδI+cOδO+1) max (1/cI,r/cO).

In the last asympotic equivalence we have dropped the constant term sδO−1, and replaced
nf (min)

n by its expansion derived above. The remainder term becomes the factor Ln ∼ no( log n) =
nεn , with εn → 0 as n → ∞, which is a slowly varying function and thus does not affect the
exponents. This proves the first statement of the theorem.

As for the second statement, we have that pn,�nr� ∼ LnnδI−1+r(δO−1)−b max (1/cI,r/cO). The
r value which maximizes this is hence the same r which maximizes g(r) := r(δO − 1) −
b max (1/cI, r/cO). For r < cO/cI we have g′(r) = δO − 1, and for r > cO/cI, g′(r) = −1 −
cIδI/cO − 1/cO < 0, using that b = cIδI + cOδO + 1. So, if δO < 1 then the maximum is
obtained at r = 0, and if δO > 1 then g(r) is maximized for r = cO/cI. Finally, if δO = 1, then
g(r) is constant up to r = cO/cI, after which it has a negative derivative, so the maximum is
obtained for any r ∈ [0, cO/cI], which completes the proof.

3.5. Proof of Theorem 2.4

We start by specifying the original PA model for an undirected network once again.
Suppose that at time k = 0 the network consists of one single node without any edge. For
each k = 1, 2, . . . , n one node with m edges is added, and each of the edges is attached,
independently, to a node u with degree i with probability proportional to i. We now prove
the result previously derived using other methods by Dorogovtsev et al. [4]. After step n, let
p(n)

i = P(random node has degree i). We want to prove that

p(n)
i → pi := 2m(m + 1)

i(i + 1)(i + 2)
, i = m, m + 1, . . .
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As n tends to infinity we approximate the PA model by a continuous-time process by speeding
up time, similarly to what was done with the DPA model. For each n we speed up time by
letting new nodes enter after a time step 1/n rather than after one unit of time. So, for each
n we define the whole preferential attachment process up to step n: X(1), . . . , X(n) by X(n)(t),
0 ≤ t ≤ 1, where X(n)(t) := X(�tn�) (as before, �tn� denotes the integer part of tn).

More specifically, let’s consider a node selected randomly among the n + 1 nodes at time 1
(after step n in the original time scale), and analyze the distribution of its degree at time 1. This
degree will depend on when it was born (= entered the network), and since one node enters at
each time unit in the original time scale, the birth time is U[0, 1] on the new time scale.

First, we condition on the birth time s. Let D(n)(t), s ≤ t ≤ 1, denote the degree of this
node from birth until time 1 (when there are in total n + 1 nodes). Since a node has degree
m when it enters the network (expect for the first node, which is selected with probability
1/(n + 1) tending to 0) we have D(n)(s) = m. We hence seek the limit limn P(D(n)(1) = i |
D(n)(s) = m) =: pi(s).

At any time step, the total number of nodes and the total number of edges is non-random.
At time t (�tn� in the original time scale) there are �tn� + 1 nodes and m · �tn� edges. Since
each edge is connected to two nodes, the sum of all degrees then equals 2m�tn�.

The process D(n)(t), s ≤ t ≤ 1, is a pure birth chain with possible jumps at the increments
1/n, so in the limit it converges to a continuous-time time-inhomogeneous Markov birth pro-
cess. Since m edges are added when a new node is added, the degree could of course increase
by more than 1 at a given time instant, but the probability of increasing by more than one is
O(1/n2) and hence neglected. However, the probability of increasing by 1 is m times the prob-
ability that a specific edge connects to our node, plus terms of smaller order. We now compute
the jump probability/intensity, which follows straightforwardly from the model definition. As
before, let �t = 1/n. We have

λ
(n)
i (t) = P(D(n)(t + �t) = i + 1 | D(n)(t) = i)/�t ≈ m

i

2m�tn� × 1

1/n
≈ i/2

t
=: λi/t,

where λi = i/2 (and an ≈ bn means that an/bn → 1 as n → ∞). Our limiting birth process is
hence born at a uniform time s, and then evolves with birth rate λi/t up until t = 1. Similarly
to the DPA model, this distribution is equal to the distribution of a time-homogeneous linear
birth process Z(t) (a Yule process), born at time 0 in state m, having birth rate λi, and being
stopped after an Exp(1) time T . A Yule process with birth rate λi = i/2, starting in state m and
observed at time t, has distribution

P(Z(t) = k | Z(0) = m) =
(

m − 1

k − 1

)
e−mt/2(1 − e−t/2)k−1

(see, e.g., [6]).
Furthermore, if the birth process has intensities λk = k/2 and T ∼ Exp(1), then

P(Z(T) = i | Z(0) = m) = λm

λm + 1
. . .

λi−1

λi−1 + 1

1

λi + 1

= m/2

m/2 + 1
. . .

(i − 1)/2

(i − 1)/2 + 1

1

i/2 + 1
= 2m(m + 1)

i(i + 1)(i + 2)
,

where the last equality is shown by induction.
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3.6. Proof of Theorem 2.5

The proof of Theorem 2.5 is more or less identical to the proof of Theorem 2.1. Now the
limiting process can have births of each type, but also a simultaneous birth of both types (cor-
responding to the event that a new node attaches a directed edge, in either direction, to an
existing node and the edge is reciprocated, which happens with probability ρ). This makes the
limiting distribution P(Y(T) = (i, j)) harder to derive in that there are more paths to reach the
state (i, j), but the proof goes through in the same way.

4. Conclusions and discussion

We have analyzed the directed preferential attachment model using a new approach and
showed that the limiting-degree distribution can be characterized by two independent (except
when starting either in state (0, 1) or (1, 0)) birth processes that are observed at a common
Exp(1) random time point, thus creating dependence. Beside shedding more light on the struc-
ture of the limiting-degree distribution, this method also allows analyses of the bivariate tail
probabilities (where both in- and out-degree were assumed large), cf. Theorem 2.3.

We also extended the DPA model to a more general model, the GDPA model, where new
directed edges select nodes to attach to, in a way that may depend on both types of degrees, and,
perhaps even more important, that the network may have a substantial fraction of edges being
bidirected (or, equivalently, undirected). The limiting-degree distribution of this process was
derived using similar methods. Also, here the distribution may be described by a bivariate birth
process, but now the birth processes no longer evolve independently, and both components may
have births at the same point in time. As before, the limiting-degree distribution is the state of
this process observed at an Exp(1) random time point. The limiting tail probabilities for the
GDPA model may perhaps also be derived using similar methods to the DPA model, but this
remains an open problem.

Beside deriving the tail distribution for the GDPA model it would be interesting to study
other generalizations of the DPA network model. For instance, many empirical networks
exhibit clustering, meaning that triangles are more common than, for instance, in the DPA
model. It would be of interest to study related models that allow for such clustering to be
present in the network, and to see if a similar alternative construction of the limiting tail
behavior may be obtained.
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