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We show that a vertical viscosity stratification at a localized region caused by a chemical
reaction yields an inconspicuous shear layer. A chemo-hydrodynamic Kelvin–Helmholtz
instability or cat-eye-shaped morphology develops at one reaction front, while the other
front diffuses steadily over time. Through linear stability and nonlinear simulations, the
existence of such instabilities is established if the log-mobility ratio exceeds a critical
value. We find unique scalings between the stable and unstable zones that demonstrate
how the influence of variations in solute diffusion on instability can be eliminated. The
observed unstable patterns agree with existing experimental results.
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1. Introduction

The Kelvin–Helmholtz instability (KHI) commonly occurs when there is velocity shear in
a single continuous fluid or a velocity difference across the interface between two fluids. It
leads to the progressive steepening of fluid interfaces and ultimately forms roll-up-like
patterns in the flow (Gallaire & Brun 2017). This makes KHI crucial in fluid mixing
and transport processes, which are observed frequently in astrophysics (Roediger et al.
2013), river plumes (Horner-Devine, Hetland & MacDonald 2015), food processing, and
medical and cleaning industries (Regner et al. 2007; Landel & Wilson 2021; Jayaprakash
et al. 2020). It is well-known that a shear flow with a streamwise velocity profile U
that exhibits an inflection point (IP) where U′′ = 0, becomes unstable according to the
Rayleigh inviscid stability theory (Rayleigh 1879). This condition can trigger KHI by
exacerbating the disturbances (Winant & Browand 1974; Nepf 2012; Caulfield 2021). A
stratified layer arises when two fluids with different viscosities flow in the same or opposite
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directions in a miscible flow configuration. This may result in a velocity profile with an IP,
which in turn can lead to the formation of KHI.

By conducting a linear stability analysis on parallel shear flow in a channel,
Govindarajan, L’vov & Procaccia (2001) and Govindarajan (2004) showed that the flow
becomes unstable when the critical layer, or the wall-normal location where the phase
speed of the disturbance equals the mean velocity, overlaps the viscosity-stratified layer.
Under this condition, maximum disturbance kinetic energy is produced, which makes the
flow unstable. It was shown that a slight viscosity stratification in the absence of reaction
causes huge stabilization/destabilization by the KHI and some other instabilities in the
Navier–Stokes-driven flow (Govindarajan & Sahu 2014). However, the study on the effects
of chemical reactions on viscosity stratification is nearly unexplored. A chemical reaction
of A + B → C type, where separate solutions of chemicals A and B undergo a reaction
to produce C, is known to actively modify or control the convection of Darcy’s flow by
altering the viscosity profile. For instance, Podgorski et al. (2007) experimented with
aqueous solutions of the cationic surfactant cetyltrimethylammonium bromide (CTAB)
and the organic salt sodium salicylate (NaSal). It was found that bringing CTAB and
NaSal into contact produces a strongly viscoelastic micellar material. The micellar gel-like
medium was formed due to reaction–diffusion at the interface between two otherwise
ordinary, miscible water-like Newtonian fluids of identical viscosities. The experiments
were carried out in a Hele-Shaw cell, where new patterns forming fingering instability
were observed. The experiment by Nagatsu et al. (2007) justifies the concentration
dependency of viscosity and its gradient increment or decrement by a chemical reaction of
A + B → C type. They used the pH dependency of a viscous solution (aqueous polyacrylic
acid, PAA) of polymers to tune the changes in the gradient of the mobility profile. Riolfo
et al. (2012) claimed that the presence of NaOH induces viscous fingering because the
neutralization reaction PAA + NaOH → SPA + H2O transforms the acid PAA into the
more viscous salt sodium polyacrylate (SPA), and hence modifies the viscosity profile in
the system. One can look at the theoretical studies too, where reaction induces instabilities
by changing the viscosity profiles of the underlying fluids (Gérard & De Wit 2009; Hejazi
et al. 2010; Sharma et al. 2019; De Wit 2020). Thus it is natural to ask: can such a realistic
chemical reaction of A + B → C type modify the viscosity at a very localized region so
that an appropriate IP in the mean velocity profile generates the KHI? Moreover, it is
necessary to investigate how the chemical reaction affects the stability of a layered flow in
linear and nonlinear regimes.

In this context, the objective of this paper is to study the effects of viscosity stratification
caused solely by a simple A + B → C type chemical reaction in the Navier–Stokes flow.
For this, we take two iso-viscous reactants A and B in a layered channel flow model that
produce a product C of different viscosity upon reacting with each other. We found that
a favourable IP in the mean velocity for the KHI appears at one front of the reaction
zone, depending on the viscosity of the reaction’s product. In contrast, the other front
influences the KHI negatively, causing it to diffuse steadily. The Kelvin–Helmholtz-type
roll-up produces two distinct patterns due to this unusual reactive phenomenon. One of
them is in good agreement with experimental results (Hu & Cubaud 2018). Unlike previous
approaches (Govindarajan & Sahu 2014), we have used both linear stability analysis
(LSA) and direct numerical simulations (DNS) to obtain stable and unstable zones in the
parameter space spanned by the Damköhler number and critical log-mobility ratio. We
demonstrate that the flow is more unstable when the product is less viscous through an
asymmetric area occupancy of the instability region.
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2. Mathematical formulation

Two concentrically flowing streams form downstream when a fluid displaces another fluid
of different viscosity with a constant volumetric flow rate in a channel or pipe (Sahu
et al. 2009). Two interfaces separate the binary viscous fluids across the channel/pipe.
Such a type of flow configuration is known as core-annular flow, and its features have
been analysed extensively (Joseph et al. 1997). However, the stability results (Selvam
et al. 2007; Talon & Meiburg 2011) and unstable patterns (D’olce et al. 2009; Sahu et al.
2009; Selvam et al. 2009) are symmetric with respect to the centreline of the channel. So
here we consider a two-layered flow configuration in a channel (see, figure 1a). One can
extend this two-layered flow configuration to core-annular flow under symmetric boundary
conditions at the middle height of the channel, and mimicking results can be expected from
an appropriate scaling (Drazin & Reid 1985; Schmid & Henningson 2001). Moreover,
this configuration allows us to compare the experimental results of the non-reactive
two-layered microfluidic flow (Hu & Cubaud 2018). We choose a two-dimensional x–y
plane channel of length L and height H for the DNS. Here, the two-layered configuration
is constituted in the following way. A reactant fluid containing solute A with dimensional
concentration A of viscosity μ1 overlies another iso-viscous miscible reactant fluid
containing solute B with the same concentration A (see figure 1a). The initial stratification
is along a horizontal flat interface located at y = h. Upon diffusive mixing across y = h,
both solutions A and B react to produce C of viscosity μ2 following simple bimolecular
kinetics A + B → C (Gálfi & Rácz 1988). The reactants and the product fluids are assumed
to be Newtonian and incompressible with equal density ρ. The chemical rate and the
diffusion coefficients of solutes A,B,C are assumed to be constant (Rongy, Trevelyan &
De Wit 2008), i.e. k and D, respectively. We use the reference length scale H, volumetric
flow rate Q, concentration A, viscosity μ1, velocity Q/H, time H2/Q, and pressure
ρQ2/H2 to obtain the following coupled dimensionless Navier–Stokes equations with the
reaction–diffusion–convection system:

∇ · u = 0, (2.1a)

∂tu + u · ∇u = −∇p + 1
Re

∇ · [μ
(∇u + ∇uT)

], (2.1b)

∂tA + u · ∇A = 1
Pe
�A − Da AB, (2.1c)

∂tB + u · ∇B = 1
Pe
�B − Da AB, (2.1d)

∂tC + u · ∇C = 1
Pe
�C + Da AB, (2.1e)

μ = e(RcC). (2.1f )

Here, u = (u, v) is the velocity vector, wherein u and v are the axial and vertical
components, respectively; and p denotes the pressure. The viscosity is related to product
concentration through (2.1f ), which is an Arrhenius relationship. The above model
system employs no-flux, no-slip and no-penetration conditions at the top and bottom
walls. Periodic boundary conditions are used at the inlet and outlet of the channel.
Four dimensionless numbers are associated with this problem. The Reynolds number
Re = ρQ/μ1, and the Péclet number Pe = Q/D signify the relative strength of convective
to diffusive transport in the momentum and solutes, respectively. The Damköhler number
Da = (H)2kA/Q expresses the ratio between advection and reaction time scales, and
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Figure 1. (a) The schematic of the problem. Base state profiles for (b) concentrations A,B,C, (c) viscosity,
(d) axial velocity, (e) zoomed second derivative of axial velocity near to the reactive zone, with various Rc

when h = 0.3, δ = 0.1 (whose freezing time t0 is 3.776), Da = 100 and Pe = 2 × 104.

the log-mobility ratio Rc = ln(μ2/μ1). We aim to analyse the stability of the problem
described by (2.1) in linear and nonlinear regimes. Thus below, we first calculate the base
state solutions around which the growth of a tiny perturbation needs to be checked.

2.1. Base-state concentrations, viscosity and velocity
Under the parallel flow assumptions, we assume the base-state concentrations A0( y, t),
B0( y, t) and C0( y, t) to be spatially varying only in the y-direction, while satisfying the
following one-dimensional reaction–diffusion (RD) system of equations:

∂tA0 = 1
Pe
∂yyA0 − Da A0B0, (2.2a)

∂tB0 = 1
Pe
∂yyB0 − Da A0B0, (2.2b)

∂tC0 = 1
Pe
∂yyC0 + Da A0B0. (2.2c)

Since the solution of A overlies the solution of B, and there is no product initially,
the initial condition for the RD system is taken as (A0,B0,C0) = (1, 0, 0) for y > h,
(A0,B0,C0) = (0, 1, 0) for y < h. The RD system does not have an analytical solution
with this initial condition and no-flux boundary conditions. Moreover, the only possible
solution is A0 + B0 + 2C0 = 1, with the reaction front at y = h (Gálfi & Rácz 1988). So
we solve the RD system numerically on a uniform grid (with number of grid points 104) by
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using the Crank–Nicolson method for underlying diffusion equations, while the reaction
terms are handled explicitly.

At each time, the base-state viscosity is evaluated following the Arrhenius relation
(2.1f ), i.e. μ̄( y, t) = exp(RCC0( y, t)). By the quasi-steady-state approximation (Tan &
Homsy 1987), the time variable is replaced with a constant time t = t0, which is termed
the freezing time. Thus the quasi-steady base-state concentrations and viscosity become
functions of only y, and we denote them as Ā( y), B̄( y), C̄( y) and μ̄( y), respectively. The
mean flow profile (u, v) = (Ū( y), 0) is obtained by solving the fully developed version of
the Navier–Stokes equations, Re (dP/dx) = (d/dy)(μ̄ dŪ/dy). An explicit expression of
the exact analytical solution for Ū can be found in Talon & Meiburg (2011). Note that
the pressure gradient dP/dx is kept constant, assuming the non-dimensional flow rate
Q = ∫ 1

0 Ū dy = 1.
Exemplary base state profiles of concentrations are shown in figure 1(b), which depicts

clearly the formation of the product C of thickness δ = 0.1 around h = 0.3. It is to be
noted here that the freezing time t0 = 3.776 leads to the formation of the product C in layer
width 0.1. Figure 1(c) shows the base-state C viscosity profiles for Rc = −3, 0 and +3,
depicting its variation across the height of the channel when the product’s viscosity is less
than, identical to and greater than the iso-viscous reactants, respectively. Figure 1(d) shows
the Ū profile modified due to the viscosity variation arising from the chemical reaction.
We observe that when Rc = −3, the velocity increases more than in the Rc = 0 case in the
upper layer (y > h), making the maximum velocity even greater than that of Rc = 0 case.
However, in the lower layer (y < h), Ū decreases as compared to that of the Rc = 0 case.
The opposite scenario occurs for Rc = 3, making the maximum velocity lower than that of
Rc = 0. This increase and decrease in base velocity profile with two IPs is common at two
different well-separated miscible interfaces of a non-reactive core-annular flow (D’olce
et al. 2009; Selvam et al. 2009), for which roll-up patterns develop in a mirrored fashion
towards the centreline of the channel. But here, the reaction is making the flow profile
inflected only at the single miscible interface (the reactive zone), and it seems for less
(Rc = −3) and more viscous fluids (Rc = 3), Ū is inflected in a mirrored fashion across
Ū for Rc = 0 locally at h = 0.3 with minor asymmetries. Moreover, the variation of Ū′′
reveals that for Rc = −3, an IP with Ū′′ = 0 appears at the B–C front, while at the C–A
front, Ū′′ is negative (figure 1e). However, for Rc = 3, the IP is present at the C–A front,
while at B–C front, Ū′′ is negative. These changes on the velocity profile are completely
due to the presence of a local minimum (for Rc = −3) and maximum (for Rc = 3) in
μ̄( y) at the reactive zone. Thus the questions that arise are as follows. How do these base
profiles modified solely by the reaction affect the stability of the flow? Can these thin
shear layers due to viscosity stratification only in the reactive zone lead to KHI patterns
as reported in Winant & Browand (1974), Nepf (2012) and Caulfield (2021)? To answer
these questions, temporal LSA and nonlinear DNS are performed. We formulate the linear
stability problem below.

2.2. Linear stability problem
For LSA, we use normal mode approximations as follows.

The amplitudes of the velocity disturbances are expressed in terms of a stream function
(û, v̂) = (ψ ′,−iαψ), where a prime denotes derivative in the y-direction. Moreover, the
given flow variables are split into base-state quantities and two-dimensional perturbations
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(designated by a hat):

(u, v, p,A,B,C)(x, y, t) = (Ū( y), 0, P̄, Ā( y), B̄( y), C̄( y))+ (û, v̂, p̂, Â, B̂, Ĉ)( y) ei(αx−ωt).

(2.3)

Following a standard procedure (Drazin & Reid 1985; Govindarajan 2004; Sahu &
Govindarajan 2016), after suppressing hat notation, one can derive the following set of
stability equations, which constitute an eigenvalue problem:

iα Re[(ψ ′′ − α2ψ)(Ū − ω/α)− Ū′′ψ] = μ̄(ψ iv − 2α2ψ ′′ + α4ψ)+ 2μ̄′(ψ ′′′ − α2ψ ′)

+ μ̄′′(ψ ′′ + α2ψ)+ Ū′(μ′′ + α2μ)+ 2Ū′′μ′ + Ū′′′μ, (2.4a)

iα Pe
[
(Ū − ω/α)A − ψĀ′] = (Ā′′ − α2A)− Da (AB̄ + ĀB), (2.4b)

iα Pe
[
(Ū − ω/α)B − ψB̄′] = (B̄′′ − α2B)− Da (AB̄ + ĀB), (2.4c)

iα Pe
[
(Ū − ω/α)C − ψC̄′] = (C̄′′ − α2C)+ Da (AB̄ + ĀB). (2.4d)

Here, the perturbed viscosity is μ = (dμ̄/dC̄)C, i = √−1, ω represents the complex
frequency, and α denotes the real wavenumber of the disturbance. This indicates that
a given mode is unstable if Im(ω) > 0, stable if Im(ω) < 0, and neutrally stable if
Im(ω) = 0. The boundary conditions based on the physical configuration are ψ = ψ ′ =
A = B = C = 0 at y = 0, 1 (top and bottom boundaries). The system (2.4a)–(2.4d) can be
written as the eigenvalue problem

⎡
⎢⎣

P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34
P41 P42 P43 P44

⎤
⎥⎦

⎡
⎢⎣
ψ

A
B
C

⎤
⎥⎦ = ω

⎡
⎢⎣

Q11 Q12 Q13 Q14
Q21 Q22 Q23 Q24
Q31 Q32 Q33 Q34
Q41 Q42 Q43 Q44

⎤
⎥⎦

⎡
⎢⎣
ψ

A
B
C

⎤
⎥⎦ , (2.5)

where

P11 = iαŪ
(

d2

dy2 − α2
)

− iα
d2Ū

dy2 − 1
Re

[
μ̄

d4

dy4 + 2
dμ̄
dy

d3

dy3 +
(

d2μ̄

dy2 − 2α2 dμ̄
dy

)
d2

dy2

− 2α2 dμ̄
dy

d
dy

+ α2 d2μ̄

dy2 + α4μ̄

]
, P12 = 0, P13 = 0,

P14 = − 1
Re

[(
Rc

d2μ̄

dy2 + 2Rc
dμ̄
dy

d
dy

+ Rcμ̄
d2

dy2 + α2Rcμ̄

)
dŪ
dy

+ 2
(

Rc
dμ̄
dy

+ Rcμ̄
d
dy

)
d2Ū

dy2 + Rcμ̄
d3Ū

dy3

]
, P21 = −iα Pe

dĀ
dy
,

P22 = iα Pe Ū −
(

d2

dy2 − α2
)

+ Da Pe B̄, P23 = Da Pe Ā, P24 = 0,

P31 = −iα Pe
dB̄
dy
, P32 = Da Pe B̄, P33 = iα Pe Ū −

(
d2

dy2 − α2
)

+ Da Pe Ā, P34 = 0,

P41 = −iα Pe
dC̄
dy
, P42 = −Da Pe B̄, P43 = −Da Pe Ā, P44 = iα Pe Ū −

(
d2

dy2 − α2
)
,

Q11 = iα
(

d2

dy2 − α2
)
, Q12 = 0,Q13 = 0, Q14 = 0, Q21 = 0, Q22 = iα Pe, Q23 = 0,

Q24 = 0, Q31 = 0, Q32 = 0, Q33 = iα Pe, Q34 = 0, Q41 = 0,Q42 = 0, Q43 = 0, Q44 = iα Pe.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)
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The generalized eigenvalue problem (2.5) is solved numerically using the Chebyshev
spectral collocation method (implemented on a public domain linear algebra package
LAPACK). Due to the large gradients at the reactive fronts, a stretching function
(Govindarajan 2004) is used to have a large number of grid points there. It is to be noted
here that since the numerical solutions for the base state are obtained on a uniform grid,
the values are further reconstructed on the stretched Chebyshev grid (Govindarajan 2004)
by using the cubic spline interpolation.

To maintain the consistency with the LSA, in our DNS calculations, the previously
described base-state concentrations are perturbed at y = h (the location of initial
stratification) with a sinusoidal wave having amplitude 10−3 (Selvam et al. 2007; Sahu
& Govindarajan 2016) and wavelength λ = 2π/α = 1. The detailed algorithm and the
grid independence test can be found in Sahu & Govindarajan (2016) and Maharana &
Mishra (2021, 2022). For simplicity, in this paper, we fix h = 0.3, δ(Da,Pe) = 0.03 and
Re = 1000 for the comparison of the LSA and DNS results that are consistent with the
experimental work of D’olce et al. (2009).

3. Discussion

Figure 2 depicts the spatio-temporal distribution of the product C concentration obtained
from our DNS in three different scenarios, namely when the chemical reaction produces
a (a) less viscous (Rc = −3), (b) iso-viscous (Rc = 0) and (c) more viscous (Rc = 3)
product. For Rc = −3, the IP in the base velocity profile (see figure 1e) is at the B–C
front, while Ū′′ moves away from zero to obtain a negative global minimum at the
C–A front. As a result, the flow-directed Kelvin–Helmholtz (KH) billows develop at the
B–C front, while the C–A front has a stabilizing effect. Thus at a later dimensionless
time (t = 30), the C–A front becomes almost flat, and the mixing occurs between C
and B in the lower layer (see figure 2a). At this stage, the patterns in the lower layer
resemble a cat-eye-type instability pattern reported in Roediger et al. (2013). After a
while, at t = 40, under the reflexive lower boundary and vortex merging due to the
complex nonlinear phenomenon, the C–A front seems to have two crests and peaks. In
the second scenario, i.e. for Rc = 0, a stable RD front spreads transversely over time
with no interfacial deformations (figure 2b). In the third scenario, i.e. for Rc = 3, the
base velocity profile exhibits an IP at the C–A front. However, Ū′′ becomes negative at
the B–C front, albeit without having an IP (figure 1e). Thus the flow-directed roll-up-like
patterns are formed at the C–A front, while the B–C front spreads stably without any
deformation (figure 2c). For Rc = 3, the region comprising fluids C and A can be regarded
locally as a two-layer miscible non-reactive system, where a less-viscous fluid A overlies
a high-viscous fluid C, even though the product C is generated due to the chemical
reaction. Specifically, a comparison of our result shown inside the white dashed ellipse
in figure 2(c) with the experimental result of Hu & Cubaud (2018) (see figure 2(a), zone
(III), i.e. the inertial regime with a wavy interface of Hu & Cubaud 2018) reveals that
the C–A front mimics almost the same patterns. It is noteworthy that if Da = 0, then
the present system of Eqs. (2.1) switches to the miscible non-reactive model of Hu &
Cubaud (2018). Moreover, if the bottom fluid B is more viscous than the upper fluid A,
then the existence of zone (iv) of figure 2(a) of Hu & Cubaud (2018); i.e. the inertial
regime with viscous ligament entrainment from wave crests, is confirmed as the Reynolds
number increases. Also, if Rc > 0, then similar ligament formations with over-topping
of neighbour short waves are observed for the current reactive system (not shown
here).
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Figure 2. Spatio-temporal evolution of the product’s concentration C for (a) Rc = −3, (b) Rc = 0, (c) Rc = 3,
when h = 0.3, δ = 0.03 (t0 = 0.34), Re = 1000, Da = 100 and Pe = 2 × 104. (d) Interfacial lengths IBC (for
Rc = −3) and ICA (for Rc = 3, 0) versus time.

Besides the destabilizing effect at the B–C front for Rc < 0 (C–A front for Rc > 0) and
the stabilizing effect at the C–A front for Rc < 0 (B–C front for Rc > 0), we notice that
the interfacial deformation is severe for Rc < 0 when compared to Rc > 0. To analyse this
quantitatively, we plot the interfacial length of the unstable fronts, i.e. B–C for Rc = −3
(IBC) and C–A for Rc = 3 (ICA) in figure 2(d). Here, IBC = ∫∫

Ω
|∇B| dx dy and ICA =∫∫

Ω
|∇A| dx dy, where Ω is the domain size. For Rc = 0, IBC = ICA ≈ 4 up to a final

stopping time ts ≥ 0 before the horizontal diffusive interface reaches the top and bottom
boundaries. Figure 2(d) also shows clearly that IBC for Rc = −3 attains a much greater
value than that of ICA for Rc = 3, and also starts to amplify early. This signifies that if
the product’s viscosity is less, then the instability onsets early and becomes more severe
than in the case of a more-viscous product. These DNS results are limited to the initial
disturbance (a sine wave at y = h) of a fixed wavenumber α = 2π, so the growth quantified
using IBC or ICA is based on a particular interfacial morphology. Moreover, the regularity
of these multiple KH billows may be due to surpassing the most-unstable mode over all
other modes of disturbances (Gallaire & Brun 2017). Also, doubt is cast upon what is the
band of wavenumbers for which the instability occurs.

The dispersion curves (ωi versus α) obtained from LSA for different values of Rc are
shown in figure 3 for the same set of parameters as in figure 2. It can be seen that when
Rc = 0 (no viscosity stratification), ωi < 0 for all α, indicating that this situation is stable.
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Figure 3. Growth rate ωi = Im(ω) versus α for various Rc, with Da = 100, h = 0.3, δ = 0.03 (t0 = 0.34),
Re = 1000 and Pe = 2 × 104.

Increasing Rc to Rc = 0.5, the disturbance becomes unstable (ωi > 0) for α in the range
[5, 10] (figure 3). Close inspection also reveals that the maximum growth rateωi,max occurs
near α = 2π. In contrast, for Rc = −0.5, the band of unstable wavenumbers widens, with
its ωi,max larger than that for Rc = 0.5. For Rc = ±1, the band of unstable wavenumbers
increases, and the value of ωi,max is higher for Rc = −1 than for Rc = 1. Thus we can
conclude that the growth rate of the disturbance is higher when Rc < 0 as compared to
Rc > 0 with the same magnitude. In addition, figure 3 also shows the existence of stable
wavenumbers in the presence of viscosity stratification.

We summarize the obtained stable and unstable cases from LSA for any moderate
Da and Rc values, and compare them with the DNS results in figure 4. Figure 4(a)
shows the variation of Rcrit

c , which represents the minimum value of Rc for which the
growth rate becomes positive, with Da. A typical procedure to obtain Rcrit

c for a fixed
Da (= 40) is shown as an inset in figure 4(a). It can be observed from this inset that
increasing Rc increases ωi,max near the hump around α ≈ 2π in the dispersion curves,
and it becomes positive for Rcrit

c = 0.51. Figure 4(a) reveals that as Da increases, Rcrit
c

decreases in magnitude for both positive and negative cases. However, this decrease in
Rcrit

c is faster for Rc < 0 than for Rc > 0. Thus the Da–Rcrit
c plane in figure 4(a) shows

a stable region around Rc = 0, which is sandwiched between two unstable regions in an
asymmetric fashion. Also, for a fixed Da, if Rc > 0, then Rcrit

c has a higher magnitude
compared to that of Rc < 0. So the unstable region to the left of Rc = 0 covers more area
than the unstable region to the right of Rc = 0.

The LSA may not always predict the most unstable mode of the perturbation, but it is
an effective method that enables us to rationalize some of the flow features qualitatively
(Gallaire & Brun 2017). Here, as we see from LSA, for the critical Rcrit

c , the maximal
growth occurs around the wavenumber ≈ 2π, and we use a sine wave of this wavenumber
to perturb the initial condition in the DNS and solve the nonlinear problem. In figure 4(b),
we show the colour density profiles of the product’s concentration for Rc = −3 at t =
12 with increasing Da. As predicted by the LSA, the interfacial deformation by the KH
billows is more notable for a larger value of Da. Similar monotonic behaviour is also
noticed for Rc = 3 (see figure 4c). To compare these observed effects with LSA results
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Figure 4. (a) The Da–Rcrit
c plane obtained from the LSA; inset shows typical dispersion curves for Da = 40,

Rc > 0, where Rcrit
c = 0.51. Density plots of C for various Da, with (b) Rc = −3 (at t = 12), (c) Rc = 3 (at

t = 40). (d) The Da–Rcrit
c plane obtained from the DNS; insets show the zoomed density plot of C in stable

and unstable regions. The common parameters are h = 0.3, δ = 0.03, Re = 1000 and Pe = 2 × 104.

(figure 3), we differentiate the stable and unstable region in the Da–Rcrit
c plane again by

measuring the interfacial lengths. In DNS, we run a search algorithm that assigns a set
of parameters (Da,Rc) as unstable ones if the corresponding interfacial length (IBC for
Rc < 0, and ICA for Rc > 0) exceeds the reference value 4. Otherwise, we assign them
as a stable pair. In this way, we obtain the Rcrit

c values for various Da and plot them in
figure 4(d). Strikingly similar asymmetric behaviour is noticed as in LSA. The typical
stable and unstable patterns are shown as insets in figure 4(d) to differentiate the dynamics.

In Figure 5(a), we plot the boundary curves obtained from LSA that separate the stable
and unstable zones in the Da–Rcrit

c plane for varying Pe. As Pe decreases, the unstable
zones shrink for both Rc < 0 and Rc > 0, indicating that the flow is less unstable for
a lower Pe. Since Pe = Re Sc (where Sc = μ1/ρD is the Schmidt number, and Re =
ρQ/μ1), a change in Pe means that the variation is only in Sc as the Reynolds number is
fixed. So the decrease in Pe means that the diffusion dominates more over the momentum
transfer due to viscosity, resulting in a more stable flow. Also, the gaps between the
different boundaries for different Pe are less for Rc < 0 than for Rc > 0. This shows that a
change in Pe influences the stability of the flow more for Rc > 0 as compared to Rc < 0.
Again, we define R−

c = Rcrit
c /(80 Pe−0.4) when Rc < 0, and R+

c = Rcrit
c /(350 Pe−0.54)

when Rc > 0, by a naive observation of the correlation between the critical values for
different Pe. Then we plot these boundaries in the Da–R−

c plane and the Da–R+
c plane

in figures 5(b) and 5(c), respectively. It is clear that these scales merge the boundary
between stable and unstable zones for different Pe. This implies that the stability can be
made independent of the changes in solute diffusion by using these scales. Moreover, the
redefined boundaries follow the relations −0.24(R−

c )
η− − 0.12 (see the blue solid line in

figure 5b) and (R+
c )
η+ + 0.01 (see the red solid line in figure 5c), where η− = −0.58

and η+ = −0.31. Clearly, η− < η+ means that if Da increases, then Rcrit
c decreases for

Rc < 0 at a faster rate than for Rc > 0. Thus it signifies an asymmetric sandwiching
of the stable zone between the unstable zones with a larger instability region for cases
with Rc < 0 rather than Rc > 0. In figures 5(d,e), we validate the predicted results of
LSA with DNS by showing the density of the product’s concentration when Rc = −3 (at
t = 40) and Rc = 3 (at t = 50), respectively, for various Pe. For both Rc = −3 and Rc = 3,
the interfacial deformations increase with increasing Pe, which agrees with the LSA
predictions.
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Figure 5. (a) The Da–Rcrit
c plane for various Pe obtained from the LSA. (b) The Da–R−

c plane, where
R−

c = Rcrit
c /(80 Pe−0.4) and the boundary curve that follows −0.24(R−

c )
η− − 0.12, where η− = −0.58. (c)

The Da–R+
c plane, where R+

c = Rcrit
c /(350 Pe−0.54) and the boundary curve that follows (R+

c )
η+ + 0.01, where

η+ = −0.31. The density plots of C for various Pe with (d) Rc = −3 (at t = 40), (e) Rc = 3 (at t = 50), when
h = 0.3, δ = 0.03, Re = 1000 and Da = 100.

4. Conclusions

Despite its tremendous importance to industrial economics in terms of recovery costs if
suppressed or even reduced by only a few percent, the chemo-hydrodynamic instabilities
in the vicinity of viscosity stratification remained underdog and not studied in the
Navier–Stokes regime (Govindarajan & Sahu 2014; De Wit 2020). We found that a
A + B → C type reaction generates KHI patterns at both reactive fronts by creating
favourable IPs through a local viscosity modification in a layered channel flow. One such
pattern is analogous to that observed in the experiment of Hu & Cubaud (2018). Both our
LSA and DNS results demonstrate that the Da–Rcrit

c plane has an asymmetric property,
indicating that the flow is more unstable if the reaction’s product is less viscous. The flow
is more unstable for a higher Péclet number, and the stability can eliminate the changes in
solute diffusion by using appropriate scales.

Funding. M.M. acknowledges the financial support from SERB, Government of India through project grant
no. CRG/2020/000613. M.M. also gratefully acknowledges the financial support of the project grant of SPARC
(P-450), Government of India. K.C.S. thanks SERB, Government of India, for their financial support through
grant no. CRG/2020/000507. S.N.M. also acknowledges the support of UGC, Government of India, with a
research fellowship.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Surya Narayan Maharana https://orcid.org/0000-0002-6561-7410;
Kirti Chandra Sahu https://orcid.org/0000-0002-7357-1141;
Manoranjan Mishra https://orcid.org/0000-0001-9933-5828.

955 A36-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-6561-7410
https://orcid.org/0000-0002-6561-7410
https://orcid.org/0000-0002-7357-1141
https://orcid.org/0000-0002-7357-1141
https://orcid.org/0000-0001-9933-5828
https://orcid.org/0000-0001-9933-5828
https://doi.org/10.1017/jfm.2022.1061


S.N. Maharana, K.C. Sahu and M. Mishra

REFERENCES

CAULFIELD, C.P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech.
53 (1), 113–145.

DE WIT, A. 2020 Chemo-hydrodynamic patterns and instabilities. Annu. Rev. Fluid Mech. 52 (1), 531–555.
D’OLCE, M., MARTIN, J., RAKOTOMALALA, N., SALIN, D. & TALON, L. 2009 Convective/absolute

instability in miscible core-annular flow. Part 1: experiments. J. Fluid Mech. 618, 305–322.
DRAZIN, P.G. & REID, W.H. 1985 Hydrodynamic Stability. Cambridge University Press.
GÁLFI, L. & RÁCZ, Z. 1988 Properties of the reaction front in an A + B → C type reaction–diffusion process.

Phys. Rev. A 38, 3151–3154.
GALLAIRE, F. & BRUN, P.-T. 2017 Fluid dynamic instabilities: theory and application to pattern forming in

complex media. Phil. Trans. R. Soc. A 375 (2093), 20160155.
GÉRARD, T. & DE WIT, A. 2009 Miscible viscous fingering induced by a simple A + B → C chemical

reaction. Phys. Rev. E 79, 016308.
GOVINDARAJAN, R. 2004 Effect of miscibility on the linear instability of two-fluid channel flow. Intl J.

Multiphase Flow 30, 1177–1192.
GOVINDARAJAN, R., L’VOV, V.S. & PROCACCIA, I. 2001 Retardation of the onset of turbulence by minor

viscosity contrasts. Phys. Rev. Lett. 87, 174501.
GOVINDARAJAN, R. & SAHU, K.C. 2014 Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech.

46 (1), 331–353.
HEJAZI, S.H., TREVELYAN, P.M.J., AZAIEZ, J. & DE WIT, A. 2010 Viscous fingering of a miscible reactive

A + B → C interface: a linear stability analysis. J. Fluid Mech. 652, 501–528.
HORNER-DEVINE, A.R., HETLAND, R.D. & MACDONALD, D.G. 2015 Mixing and transport in coastal river

plumes. Annu. Rev. Fluid Mech. 47 (1), 569–594.
HU, X. & CUBAUD, T. 2018 Viscous wave breaking and ligament formation in microfluidic systems. Phys.

Rev. Lett. 121, 044502.
JAYAPRAKASH, V., COSTALONGA, M., DHULIPALA, S. & VARANASI, K.K. 2020 Enhancing the

injectability of high concentration drug formulations using core annular flows. Adv. Healthc. Mater. 9 (18),
2001022.

JOSEPH, D.D., BAI, R., CHEN, K.P. & RENARDY, Y.Y. 1997 Core-annular flows. Annu. Rev. Fluid Mech.
29 (1), 65–90.

LANDEL, J.R. & WILSON, D.I. 2021 The fluid mechanics of cleaning and decontamination of surfaces. Annu.
Rev. Fluid Mech. 53 (1), 147–171.

MAHARANA, S.N. & MISHRA, M. 2021 Reaction induced interfacial instability of miscible fluids in a
channel. J. Fluid Mech. 925, A3.

MAHARANA, S.N. & MISHRA, M. 2022 Effects of low and high viscous product on Kelvin–Helmholtz
instability triggered by A + B → C type reaction. Phys. Fluids 34 (1), 012104.

NAGATSU, Y., MATSUDA, K., KATO, Y. & TADA, Y. 2007 Experimental study on miscible viscous fingering
involving viscosity changes induced by variations in chemical species concentrations due to chemical
reactions. J. Fluid Mech. 571, 475–493.

NEPF, H.M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44 (1),
123–142.

PODGORSKI, T., SOSTARECZ, M.C., ZORMAN, S. & BELMONTE, A. 2007 Fingering instabilities of a
reactive micellar interface. Phys. Rev. E 76, 016202.

RAYLEIGH, LORD 1879 On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 1 (1),
57–72.

REGNER, M., HENNINGSSON, M., WIKLUND, J., ÖSTERGREN, K. & TRÄGÅRDH, C. 2007 Predicting the
displacement of yoghurt by water in a pipe using CFD. Chem. Engng Technol. 30 (7), 844–853.

RIOLFO, L.A., NAGATSU, Y., IWATA, S., MAES, R., TREVELYAN, P.M.J. & DE WIT, A. 2012 Experimental
evidence of reaction-driven miscible viscous fingering. Phys. Rev. E 85, 015304.

ROEDIGER, E., KRAFT, R.P., NULSEN, P., CHURAZOV, E., FORMAN, W., BRÜGGEN, M. &
KOKOTANEKOVA, R. 2013 Viscous Kelvin–Helmholtz instabilities in highly ionized plasmas. Mon. Not.
R. Astron. Soc. 436 (2), 1721–1740.

RONGY, L., TREVELYAN, P.M.J. & DE WIT, A. 2008 Dynamics of A + B → C reaction fronts in the presence
of buoyancy-driven convection. Phys. Rev. Lett. 101, 084503.

SAHU, K.C., DING, H., VALLURI, P. & MATAR, O.K. 2009 Linear stability analysis and numerical
simulation of miscible two-layer channel flow. Phys. Fluids 21 (4), 042104.

SAHU, K.C. & GOVINDARAJAN, R. 2016 Linear stability analysis and direct numerical simulation of two-layer
channel flow. J. Fluid Mech. 798, 889–909.

SCHMID, P.J. & HENNINGSON, D.S. 2001 Stability and Transition in Shear Flows. Springer.

955 A36-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1061


Reaction-induced Kelvin–Helmholtz instability

SELVAM, B., MERK, S., GOVINDARAJAN, R. & MEIBURG, E. 2007 Stability of miscible core-annular flows
with viscosity stratification. J. Fluid Mech. 592, 23–49.

SELVAM, B., TALON, L., LESSHAFFT, L. & MEIBURG, E. 2009 Convective/absolute instability in miscible
core-annular flow. Part 2. Numerical simulations and nonlinear global modes. J. Fluid Mech. 618, 323–348.

SHARMA, V., PRAMANIK, S., CHEN, C.-Y. & MISHRA, M. 2019 A numerical study on reaction-induced
radial fingering instability. J. Fluid Mech. 862, 624–638.

TALON, L. & MEIBURG, E. 2011 Plane Poiseuille flow of miscible layers with different viscosities: instabilities
in the Stokes flow regime. J. Fluid Mech. 686, 484–506.

TAN, C.T. & HOMSY, G.M. 1987 Stability of miscible displacements in porous media: radial source flow.
Phys. Fluids 30 (5), 1239–1245.

WINANT, C.D. & BROWAND, F.K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer growth at
moderate Reynolds number. J. Fluid Mech. 63 (2), 237–255.

955 A36-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1061

	1 Introduction
	2 Mathematical formulation
	2.1 Base-state concentrations, viscosity and velocity
	2.2 Linear stability problem

	3 Discussion
	4 Conclusions
	References

