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Abstract

A graph Γ is called (G, s)-arc-transitive if G ≤ Aut(Γ) is transitive on the set of vertices of Γ and the set of

s-arcs of Γ, where for an integer s ≥ 1 an s-arc of Γ is a sequence of s + 1 vertices (v0, v1, . . . , vs) of Γ such

that vi−1 and vi are adjacent for 1 ≤ i ≤ s and vi−1 , vi+1 for 1 ≤ i ≤ s − 1. A graph Γ is called 2-transitive

if it is (Aut(Γ), 2)-arc-transitive but not (Aut(Γ), 3)-arc-transitive. A Cayley graph Γ of a group G is called

normal if G is normal in Aut(Γ) and nonnormal otherwise. Fang et al. [‘On edge transitive Cayley graphs

of valency four’, European J. Combin. 25 (2004), 1103–1116] proved that if Γ is a tetravalent 2-transitive

Cayley graph of a finite simple group G, then either Γ is normal or G is one of the groups PSL2(11), M11,

M23 and A11. However, it was unknown whether Γ is normal when G is one of these four groups. We

answer this question by proving that among these four groups only M11 produces connected tetravalent

2-transitive nonnormal Cayley graphs. We prove further that there are exactly two such graphs which are

nonisomorphic and both are determined in the paper. As a consequence, the automorphism group of any

connected tetravalent 2-transitive Cayley graph of any finite simple group is determined.
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1. Introduction

All groups considered in the paper are finite and all graphs considered are finite,

simple and undirected. Given a group G and a subset S of G such that 1G < S and

S = S−1 := {x−1 | x ∈ S}, the Cayley graph of G relative to S is defined to be the graph

Γ = Cay(G, S) with vertex set VΓ = G and edge set EΓ = {{x, y} | yx−1 ∈ S}. It is readily

seen that Γ has valency |S|. It is also easy to see that Γ is connected if and only if S is a

generating set of G. In general, Γ has exactly |G : 〈S〉| connected components, each of

which is isomorphic to Cay(〈S〉, S), where 〈S〉 is the subgroup of G generated by S. So

we may focus on the connected case when dealing with Cayley graphs. Denote by GR
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the right regular representation of G. Define

A(G, S) := { x ∈ Aut(G) | Sx
= S }.

Then A(G, S) is a subgroup of Aut(G) acting naturally on G. It is not difficult to see that

Γ = Cay(G, S) admits GRA(G, S) as a subgroup of its full automorphism group Aut(Γ).

It is well known (see [5, 12]) that NAut(Γ)(GR) = GRA(G, S). Since GR � G, we may use

G in place of GR, so that GRA(G, S) is written as G.A(G, S). Γ is called a normal Cayley

graph if G is normal in Aut(Γ), that is, Aut(Γ) = G.A(G, S).

A fundamental problem in studying the structure of a graph is to determine its

full automorphism group. This is, in general, quite difficult. However, for a connected

Cayley graph Γ = Cay(G, S) of valency d, if Γ is normal, then we know that its

automorphism group is given by Aut(Γ) = G.A(G, S). Moreover, the subgroup A(G, S)

of Aut(G) acts faithfully on the neighbourhood Γ(α) of α ∈ VΓ, where Γ(α) is defined

as the set of vertices of Γ adjacent to α in Γ. Hence A(G, S) is isomorphic to a

subgroup of the symmetric group Sd of degree d. In other words, if Γ is a normal

Cayley graph, then the structure of Aut(Γ) is well understood. In contrast, it is more

challenging to determine the automorphism groups of nonnormal Cayley graphs. For

this reason, nonnormal Cayley graphs have attracted considerable attention in recent

years.

Given an integer s ≥ 1, an s-arc of a graph Γ is a sequence (v0, v1, . . . , vs) of

s + 1 vertices of Γ such that {vi−1, vi} ∈ EΓ for i = 1, 2, . . . , s and vi−1 , vi+1 for

i = 1, 2, . . . , s − 1. A graph Γ is called (G, s)-arc-transitive if G is a subgroup of Aut(Γ)

that is transitive on VΓ and transitive on the set of s-arcs of Γ. A (G, s)-arc-transitive

graph is called (G, s)-transitive if it is not (G, s + 1)-arc-transitive. In particular,

Γ is called s-arc-transitive if it is (Aut(Γ), s)-arc-transitive, and s-transitive if it

is (Aut(Γ), s)-transitive. A 1-arc-transitive graph is also called an arc-transitive or

symmetric graph.

For any integer s ≥ 1, a complete classification of cubic s-transitive nonnormal

Cayley graphs of finite simple groups was obtained by S. J. Xu, M. Y. Xu and

the first two authors of the present paper (see [13, 14]). In the tetravalent case,

C. H. Li, M. Y. Xu and the first author of the present paper proved [2, Theorem 1.1]

that, if Γ is a tetravalent 2-transitive Cayley graph of a finite simple group G, then either

Γ is normal or G is one of the following groups: PSL2(11) (two-dimensional projective

special linear group over F11), M11 (Mathieu group of degree 11), M23 (Mathieu

group of degree 23), A11 (alternating group of degree 11). However, for a long

time it was unknown whether Γ is normal when G is one of these four groups.

In this paper we settle these unsolved cases and classify all connected tetravalent

2-transitive nonnormal Cayley graphs of finite simple groups. As a consequence, the

automorphism group of any connected tetravalent 2-transitive Cayley graph of any

finite simple group is determined.

The main result of this paper is as follows, where the graphs Γ(∆1) and Γ(∆2) will

be defined in (3.3) in Section 3.
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THEOREM 1.1. Let G be a finite nonabelian simple group and Γ = Cay(G, S) a con-

nected tetravalent 2-transitive Cayley graph of G. Then one of the following occurs:

(a) Γ is normal and Aut(Γ) = G.A4 or G.S4;

(b) G = M11, Aut(Γ) = Aut(M12) = M12:2, Aut(Γ)α � S4 for α ∈ VΓ, Γ is nonnormal,

Γ � Γ(∆1) or Γ(∆2) and Γ(∆1) and Γ(∆2) are not isomorphic.

In the next section we introduce notation and give a few preliminary results.

In Section 3 we determine all tetravalent 2-transitive nonnormal Cayley graphs of

finite simple groups by analysing the four groups above. In Section 4 we settle the

isomorphism problem and thus complete the proof of Theorem 1.1. As we will see

shortly, even in the four innocent-looking cases above, considerable analysis and

computation will be needed in order to establish Theorem 1.1. We will also use

[2, Theorem 1.1] in our proof of Theorem 1.1.

2. Preliminaries

A permutation group G acting on a set Ω is said to be quasiprimitive if each of

its nontrivial normal subgroups is transitive on Ω. The socle of a group G, denoted

by soc(G), is the product of all minimal normal subgroups of G. In particular, G is

said to be almost simple if soc(G) is a nonabelian simple group. Given a graph Γ and a

group K ≤ Aut(Γ), the quotient graph ΓK of Γ relative to K is defined as the graph with

vertices the K-orbits on VΓ, such that two K-orbits, say, X and Y , are adjacent in ΓK

if and only if there is an edge of Γ with one end-vertex in X and the other end-vertex

in Y .

The following lemma determines the vertex stabilisers for connected tetravalent

2-transitive graphs (see [9, Theorem 4] or [6, Proposition 2.2]).

LEMMA 2.1. Let Γ be a connected tetravalent 2-transitive graph. Then the vertex

stabiliser of Γ is A4 or S4.

The next lemma describes possible structures of the full automorphism group of a

connected Cayley graph of a finite simple group.

LEMMA 2.2 ([4], Theorem 1.1). Let G be a finite nonabelian simple group and let

Γ = Cay(G, S) be a connected Cayley graph of G. Let M be a subgroup of Aut(Γ)

containing G.A(G, S). Then either M = G.A(G, S) or one of the following holds:

(a) M is almost simple and soc(M) contains G as a proper subgroup and is transitive

on VΓ;

(b) G · Inn(G) ≤ M = G · A(G, S) · 2 and S is a self-inverse union of G-conjugacy

classes;

(c) M is not quasiprimitive and there is a maximal intransitive normal subgroup H of

M such that one of the following holds:

(i) M/H is almost simple and soc(M/H) contains GH/H � G and is transitive

on VΓH;
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TABLE 1. Groups G and T for Lemma 2.2(c)(iii).

G T |VΓK |

1 A6 G 36

2 M12 G or Am 144

3 Sp4(q) G or Am or
q4(q2 − 1)2

4
(q = 2a > 2) Sp4r(q0) (q = qr

0
)

4 Sp4r(q0) (q = qr
0
)

q4(q2 − 1)2

2

5 PΩ+
8
(q) G or Am or

q6(q4 − 1)2

(2, q − 1)2

Sp8(2) (if q = 2)

(ii) M/H = AGL3(2), G = L2(7) and ΓH � K8;

(iii) soc(M/H) � T × T and GH/H � G is a diagonal subgroup of soc(M/H),

where T and G are given in Table 1.

Moreover, there are examples of connected Cayley graphs of finite simple groups in

each of these cases.

A subgroup K of a group G is called core-free if
⋂

g∈G Kg
= 1. Given a core-free

subgroup K of G and an element g ∈ G \ NG(K) such that g2 ∈ K and G = 〈K, g〉, the

coset graph Γ∗ = Γ(G, K, g) is defined by

VΓ∗ = [G : K] = {Kx | x ∈ G }, EΓ∗ = { {Kx, Ky} | xy−1 ∈ KgK }.

A well-known result due to Sabidussi [10] and Lorimer [8] asserts that Γ∗

is G-arc-transitive and up to isomorphism every G-arc-transitive graph can be

constructed this way. The following lemma is a refinement of this result (see

[3, Theorem 2.1]).

LEMMA 2.3. Let Γ be a finite connected (G, 2)-arc-transitive graph of valency d. Then

there exist a core-free subgroup K of G and an element g ∈ G such that:

(a) g < NG(K), g2 ∈ G, 〈K, g〉 = G;

(b) the action of K on [K : K ∩ Kg] by right multiplication is transitive, where

|K : K ∩ Kg| = d; and

(c) Γ � Γ(G, K, g).

Moreover, one can choose g to be a 2-element.

Conversely, if G is a finite group with a core-free subgroup K and an element g

satisfying (a) and (b) above, then Γ∗ = Γ(G, K, g) is a connected (G, 2)-arc-transitive

graph and G acts faithfully on the vertex set [G : K] of Γ∗ by right multiplication.
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3. Tetravalent 2-transitive nonnormal Cayley graphs

The purpose of this section is to prove the following proposition, which gives all

tetravalent 2-transitive nonnormal Cayley graphs of finite simple groups. We postpone

the definition of Γ(∆1) and Γ(∆2) to (3.3).

PROPOSITION 3.1. Let G be a finite simple group and Γ a connected tetravalent

2-transitive nonnormal Cayley graph of G. Then G = M11, Aut(Γ) = Aut(M12) =

M12:2, Aut(Γ)α = S4 and Γ is isomorphic to Γ(∆1) or Γ(∆2).

PROOF. Suppose that G is a finite simple group and Γ = Cay(G, S) is a connected

tetravalent 2-transitive nonnormal Cayley graph of G. Then, by [2, Theorem 1.1], G is

one of the following groups:

PSL2(11), M11, M23, A11. (3.1)

Write A = Aut(Γ). Then A = GAα with G ∩ Aα = 1 and Aα = A4 or S4 by Lemma 2.1.

We consider the following two situations separately.

Situation 1: A is quasiprimitive on VŴ. In this situation, A is almost simple by

Lemma 2.2. Let T = soc(A). Note that |S4| = 24 is divisible by |A : G|. It follows that

(T , G) is one of the pairs:

(M11, PSL2(11)), (M12, M11), (M24, M23), (A12, A11). (3.2)

Case 1. (T , G) ∈ {(M11, PSL2(11)), (M24, M23), (A12, A11)}.

First, we consider the case (T , G) = (M11, PSL2(11)) and we suppose that M11 =

PSL2(11)A4. It is well known that M11 has a faithful permutation representation

of degree 12 acting on Ω = {1, 2, . . . , 12}. In this representation, PSL2(11) is the

point-stabiliser and the subgroup A4 should be regular on Ω. However, according

to the permutation character χ = χ1 + χ11 taken from ATLAS [1, page 18], we have

χ(1A) = 12, χ(2A) = 4 and χ(3A) = 3. Therefore, the number of orbits of A4 on Ω is

1

|A4|

∑

g∈A4

χ(g) =
1

12
(12 · 1 + 4 · 3 + 3 · 8) = 4,

which contradicts the regularity of A4.

Next assume (T , G) = (M24, M23). In this case M24 = M23K for some subgroup

K � S4. Since K is regular onΩ = {1, 2, . . . , 24}, following the notation of [1, page 96],

the involution of K must be in class 2B and the elements of order 3 in 3B. There are two

classes of regular elements of order 4, namely 4A and 4C. However, the power map

shows that 4A2
= 2A, which cannot be the case. So the elements of order 4 in K must be

in 4C. Now suppose that a 2-element g ∈ M24 satisfies (a) and (b) in Lemma 2.3. Since

8A2
= 4B, 4A2

= 2A and 4B2
= 2A, we can only have g ∈ 2A, 2B or 4C. However,

an exhaustive search shows that, for such an element g, the subgroup 〈K, g〉 � M24,

a contradiction.
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Finally, we consider (T , G) = (A12, A11). If A = A12, then A = A11K for some

subgroup K � A4. Since K is regular on Ω = {1, 2, . . . , 12}, the involution in K must

be in conjugacy class 2B and the elements of order 3 in class 3C, following the

notation of [1, page 92]. Suppose that a 2-element g ∈ A12 satisfies (a) and (b) in

Lemma 2.3. It is evident that g has order 2 or 4. According to the power map of

conjugacy classes of A12, if g has order 4, then g2 cannot be in 2B. Thus g must

have order 2. Furthermore, |K ∩ Kg| = 3 implies that g normalises the element of 3C.

With the help of this information, an exhaustive search shows that 〈K, g〉 cannot be A.

Similarly, when A = S12, there is no 2-element satisfying (a) and (b) in Lemma 2.3.

The argument above shows that Case 1 does not occur.

Case 2. (T , G) = (M12, M11).

In this case, Γ is either (Aut(M12), 2)-arc transitive or (M12, 2)-arc-transitive.

Consider first Aut(M12) = M12:2. This group contains a unique class of subgroups

isomorphic to M11. Since |A : G| = 24, we have Aα = S4 by Lemma 2.1. Computation

using GAP [11] yields the following:

(a) A = M12:2 has a unique class of subgroups K � S4 such that K ∩M11 = 1;

(b) for a subgroup K in (a), there are in total sixteen 2-elements g ∈ A such that K and

g satisfy (a) and (b) in Lemma 2.3—denote the set of these 16 elements by ∆;

(c) NA(K) = K � S4 and the conjugate action of K on ∆ produces two orbits, denoted

by ∆1 and ∆2, with |∆1| = 12 and |∆2| = 4.

Let K = S4 be a subgroup obtained in (a). For any g satisfying (b), the coset graph

Γ(M12:2, S4, g) must be a nonnormal 2-transitive tetravalent Cayley graph of M11. For

a coset graph Γ(G, K, g), it is not difficult to verify that Γ(G, K, g) � Γ(G, Kx, gx) for

any x ∈ Aut(G) (see [3, Fact 2.2]). It then follows that all coset graphs Γ(M12:2 , K, g)

with g ∈ ∆i are isomorphic, for i = 1, 2. Fix gi ∈ ∆i for i = 1, 2. Define

Γ(∆i) := Γ(M12:2, S4, gi), i = 1, 2. (3.3)

These two graphs are, up to isomorphism, the only tetravalent 2-transitive nonnormal

Cayley graphs of M11, for Aut(Γ) = M12:2.

Next, we consider Γ(M12, K, g). Computation shows that M12 has a unique class

of subgroups K � A4 satisfying K ∩M11 = 1. So we may choose K = A4 such that A4

is a subgroup of S4 given in the previous case. In addition, there are in total twelve

2-elements g such that K and g satisfy (a) and (b) in Lemma 2.3. Moreover, these

2-elements are all in ∆1 above and K is transitive on ∆1 by conjugate action. Thus, up

to isomorphism, we obtain a unique tetravalent 2-transitive nonnormal Cayley graph

of M11, which is isomorphic to

Γ
∗(∆1) := Γ(M12, A4, g1)

for g1 ∈ ∆1.
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We claim that Γ∗(∆1) and Γ(∆1) are isomorphic. Note that A4 is contained in S4 and

M12 is transitive on both VΓ∗(∆1) and VΓ(∆1). Define

σ : A4x 7→ S4x, x ∈ M12.

It is straightforward to verify that σ is an isomorphism from Γ∗(∆1) to Γ(∆1).

Therefore, any quasiprimitive tetravalent 2-transitive nonnormal Cayley graph of a

finite simple group is isomorphic to Γ(∆1) or Γ(∆2).

Situation 2: A is not quasiprimitive on VŴ. In this case, let H be a maximal

intransitive normal subgroup of A. Recall that A = GAα with G ∩ Aα = 1, where

Aα � A4 or S4. By Lemma 2.2, we see that only (c)(i) in Lemma 2.2 occurs. This

means that A/H is an almost simple group and soc(A/H) contains GH/H � G and is

transitive on VΓH , where ΓH is the quotient graph of Γ relative to H. Set T = soc(A/H).

Case 1. T � G.

Since G is simple and H ⊳ A, we have H ∩ G = 1, which implies that |H| is a

divisor of |S4| = 24. If G acts on H nontrivially by conjugation, then G is isomorphic

to a subgroup of Aut(H). On the other hand, it is not hard to verify that this is not

the case for G = PSL2(11), M11, M23 or A11. So we assume that GH = G × H. Now

T � G. It follows that |Out(T)| = 1 for G = M11 and G = M23, while |Out(T)| = 2 for

G = PSL2(11) and G = A11. In the former case we have A = G × H and hence G ⊳ A,

which is impossible. In the latter case we have |A : G × H| = 1 or 2, which implies that

G ⊳ A, a contradiction. So Case 1 does not occur.

Case 2. T � G.

Clearly, G ∩ H = 1 and |H| divides |Aα|. So 24 is divisible by |H|. If 3 divides |H|,

then |T : GH/H| is a divisor of 8 = 23, which is impossible by [7]. So H is a 2-group

with |H| dividing 8. Further, if Hα , 1, then d(ΓH) = 2, and hence Aut(ΓH) is a dihedral

group, a contradiction. Hence H is semiregular on VΓ and d(ΓH) = d(Γ) = 4.

For α = 1 ∈ G = VΓ, set ᾱ = αH . Since Γ is A-arc-transitive, ΓH is A/H-arc

transitive. Since (A/H)ᾱ = {Hx | x ∈ Aα} and H ∩ Aα = 1, it follows that (A/H)ᾱ � Aα.

From this, ΓH is (A/H, 2)-arc transitive.

Next, we determine all pairs (T , G). Note that |A : G| divides 24. So |A/H : GH/H|

divides 24/|H|. Since H is a 2-group, 24/|H| is 6 or 12. Hence, by [1], (T , G) must be

one of the pairs

(M11, PSL2(11)), (M12, M11), (A12, A11). (3.4)

From this, |H| = 2 and soc(A/H) = A/H = T . Thus ΓH is (T , 2)-arc-transitive with

|VΓH | = |G|/2 and (T , G) given in (3.4).

Finally, we construct all (T , 2)-arc-transitive graphs for (T , G) as given in (3.4). Note

that |T |/|G| = 12, |VΓH | = |G|/2 and |Tᾱ| = 24. So Tᾱ � S4.

Consider T = M11 first. There is only one class of subgroups isomorphic to S4. Let

K be such a subgroup. Computation using GAP [11] shows that there is no 2-element

g in T satisfying (a) and (b) in Lemma 2.3, which is a contradiction.
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Consider T = M12. Computation shows that there are four classes of subgroups

isomorphic to S4. Using GAP [11], we see that there is no 2-element g ∈ T , together

with K � S4, satisfying (a) and (b) in Lemma 2.3, which is a contradiction.

Finally, consider T = A12. There are 24 conjugate classes of subgroups K � S4.

A systematic search using GAP [11] shows that there is no 2-element g ∈ T such

that K and g satisfy (a) and (b) in Lemma 2.3. This completes the proof of

Proposition 3.1. �

4. Proof of Theorem 1.1

By Proposition 3.1, a connected tetravalent 2-transitive nonnormal Cayley graph of

a finite simple group is isomorphic to Γ(∆1) or Γ(∆2). In this section we prove that

these two graphs are nonisomorphic and thus complete the proof of Theorem 1.1.

PROPOSITION 4.1. The graphs Γ(∆1) and Γ(∆2) defined in (3.3) are not isomorphic.

PROOF. Write Γi = Γ(∆i) and Xi = Aut(Γ)i, for i = 1, 2. It follows from Proposition 3.1

that Γ1 and Γ2 have the same vertex set and full automorphism group. Denote

V = VΓ1 = VΓ2 and X = X1 = X2 = Aut(M12) = M12:2. Now Xα = S4. Suppose by

way of contradiction that Γ1 � Γ2. Let φ be an isomorphism from Γ1 to Γ2. Then

φ ∈ NSym(V)(X) by [3, Fact 2.3]. Write N = NSym(V)(X) and C = CSym(V)(X). Then N/C

is isomorphic to a subgroup of Aut(X). Moreover, since the vertex stabiliser Xα � S4

is self-normalised in X (see Case 2, result (c) of Situation 1 in Section 3), C = 1 by

[3, Proposition 2.4] and hence N is a subgroup of Aut(X). Note that X = Aut(M12)

and Out(X) = 1. Thus N = X. It follows that φ ∈ X is an automorphism of Γ1, which

implies that Γ1 = Γ2. On the other hand, for α = S4 ∈ V , the neighbourhood Γi(α) of α

in Γi is given by

Γi(α) = {S4gix | x ∈ S4}, for i = 1, 2.

However, computation shows that Γ1(α) , Γ2(α), which contradicts the statement that

Γ1 = Γ2. Therefore, Γ1 and Γ2 are not isomorphic. �

PROOF OF THEOREM 1.1. By [2, Theorem 1.1], Lemma 2.1, Proposition 3.1 and

Proposition 4.1, we obtain Theorem 1.1 immediately. �
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[9] P. Potočnik, ‘A list of 4-valent 2-arc transitive graphs and finite faithful amalgams of index (4, 2)’,

European J. Combin. 30 (2009), 1323–1136.

[10] G. O. Sabiddusi, ‘Vertex-transitive graphs’, Monatsh. Math. 68 (1964), 426–438.

[11] The GAP Group, GAP – Reference Manual, Release 4.7.2, 2013, http://www.gap-system.org.

[12] M. Y. Xu, ‘Automorphism groups and isomorphisms of Cayley graphs’, Discrete Math. 182 (1998),

309–319.

[13] S. J. Xu, X. G. Fang, J. Wang and M. Y. Xu, ‘On cubic s-arc transitive Cayley graphs of finite

simple groups’, European J. Combin. 26 (2005), 133–143.

[14] S. J. Xu, X. G. Fang, J. Wang and M. Y. Xu, ‘5-arc transitive cubic Cayley graphs on finite simple

groups’, European J. Combin. 28 (2007), 1023–1036.

XIN GUI FANG, LAMA and School of Mathematical Sciences,

Peking University, Beijing 100871, P. R. China

e-mail: xgfang@math.pku.edu.cn

JIE WANG, LAMA and School of Mathematical Sciences,

Peking University, Beijing 100871, P. R. China

e-mail: wangj@pku.edu.cn

SANMING ZHOU, School of Mathematics and Statistics,

The University of Melbourne, Parkville, VIC 3010, Australia

e-mail: sanming@unimelb.edu.au

https://doi.org/10.1017/S0004972720001446 Published online by Cambridge University Press

http://www.gap-system.org
mailto:xgfang@math.pku.edu.cn
mailto:wangj@pku.edu.cn
mailto:sanming@unimelb.edu.au
https://doi.org/10.1017/S0004972720001446

	1 Introduction
	2 Preliminaries
	3 Tetravalent 2-transitive nonnormal Cayley graphs
	4 Proof of Theorem 1.1

