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Abstract

We consider a class of Sevastyanov branching processes with nonhomogeneous Poisson
immigration. These processes relax the assumption required by the Bellman–Harris
process which imposes the lifespan and offspring of each individual to be independent.
They find applications in studies of the dynamics of cell populations. In this paper
we focus on the subcritical case and examine asymptotic properties of the process. We
establish limit theorems, which generalize classical results due to Sevastyanov and others.
Our key findings include a novel law of large numbers and a central limit theorem which
emerge from the nonhomogeneity of the immigration process.
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1. Introduction

Age-dependent branching processes with immigration are well suited to describe the tem-
poral evolution of populations in which individuals (for example, cells) appear randomly over
time in accordance with two distinct mechanisms. One mechanism, called immigration, is the
influx of new individuals in the population of which they are not natives. The other mechanism,
referred to as branching, is the process by which individuals of the population generate new
offspring. These models have attracted much attention since Sevastyanov’s seminal work on
continuous-time Markov branching processes with immigration [29]. Jagers [17] established
asymptotic properties in the age-dependent (Bellman–Harris) case. Other properties, also for
Bellman–Harris processes, were subsequently proven by Radcliffe [28], Pakes and Kaplan [27],
and Kaplan and Pakes [19], among others. Olofsson considered a process with a more general
branching mechanism [25]. These papers dealt with time-homogeneous immigration processes,
and Mitov and Yanev [21]–[23] investigated a Bellman–Harris process with state-dependent
immigration (see also [1, Chapter 3]). Age-dependent branching processes with immigration
have been proposed to study the dynamics of cell populations developing in vivo [7], [8], [12],
[15], [33], [34]. We refer the reader to [1]–[3], [6], [18], and [32] for general monographs on
branching processes.
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In this paper we consider a class of age-dependent branching processes with immigration,
in which

• the branching mechanism obeys the assumptions of a Sevastyanov process [31]–[33],
an extension of the Bellman–Harris process which allows lifespan and offspring to be
dependent;

• the immigration process is time-inhomogeneous.

In Section 2 these two assumptions are motivated by using a cell biology example. Mitov
and Yanev [24] and Hyrien et al. [10] studied critical processes for various intensities of
the nonhomogeneous Poisson immigration process, while Hyrien et al. [11] investigated the
supercritical case. Pakes [26] considered critical and subcritical Bellman–Harris processes
with a nonhomogeneous Poisson immigration process that converges weakly to a homogeneous
Poisson process. Yanev [35], [36] studied the Sevastyanov process when immigration is time-
homogeneous. Here, we investigate the subcritical case which is adapted to model the dynamics
of terminally differentiated cells.

The asymptotic properties are studied when the intensity of the Poisson immigration process
belongs to the class of power and exponential functions.

The process is formulated in Section 3. The asymptotic behavior of its expectation and
variance-covariance function is investigated in Section 4. All other limit theorems are stated
in Section 5. The conditional limiting distributions of Theorems 5.1–5.3 are akin to those
that have been established for continuous-time branching processes without immigration; see,
e.g. [1]–[3], [6], [18], [32]. Theorems 5.4–5.7 uncover behaviors in the form of a law of large
numbers (LLN) and the central limit theorem (CLT) that are novel for branching processes and
which arise from the nonhomogeneity of the immigration process. Theorem 5.8 generalizes a
classical result due to Sevastyanov [29] to the more general setting considered herein.

2. A biological motivation

The molecular events and pathways that control cell fate decision (e.g. division, death,
differentiation) in multicellular systems are not well understood and are the subject of intensive
basic science research. Experimental set-ups used in these studies often yield observations
about the composition of the system at discrete time points only. A viable approach to inferring
about cell fate on the basis of such data consists in modeling the dynamics of the cell population
in order to relate experimental observations to (unobserved) cell cycle outcomes. Key to the
success of this approach is an appropriate modeling framework in which the most prominent
features of cell proliferation are properly captured. The Bellman–Harris process has been
successfully used to develop stochastic models in this context. However, the rise of high-
throughput, high-dimensional data produced by modern technologies (e.g. flow cytometry,
imaging, sequencing) permits a wealth of cellular information to be produced at the single-cell
resolution. This information allows teasing apart more subtle models.

An assumption that is central to the make-up of the Bellman–Harris process is that the
duration of the lifespan, η, and the number of daughters, ξ , of any cell of the population are
independent random variables. This assumption was found inadequate in several studies [4],
[9], [13], [14], [16]. One of these studies investigated the generation of terminally differentiated
oligodendrocytes from their progenitor cells (PCs), known as the oligodendrocytes type-2
astrocytes PCs (O-2A/OPCs) [16]. These cells of the central nervous system produce the myelin
sheath that insulate axons that conduct electrical impulses to transmit information between
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Figure 1: Kernel density estimates of the distributions of the time to differentiation, the time to division,
and the time to death of O-2A/OPCs in the presence (right) and in the absence (left) of thyroid hormone
observed in time-lapse experiments (Hyrien et al. [16]). The plots indicate that the distribution of
the lifespan depended on the fate of the cell (here: differentiation, division, or death), and that these
distributions were affected by thyroid hormone. For example, the presence of thyroid hormone appeared
to shorten the time to differentiation and increase the time to death and the time to division. Unlike the
Bellman–Harris process, the Sevastyanov process is adapted to describe these features of the cell cycle.

neurons. It was observed in this study that the time to division, the time to death, and the time
to differentiation of these cells into oligodendrocytes had dissimilar distributions and that these
distributions could be differentially affected by exposure to external signals (see Figure 1). This
finding may be explained by the fact that fate-specific molecular events are triggered in order
for cells to reach their ultimate transformation. It also reflects the fact that the time at which a
specific fate is detected may be arbitrary and depends on the experimental set-up that is used.
The time at which a cell divides may be unambiguously defined as the time at which it splits
into two daughter cells at the end of cytokinesis. However, the definition of the time at which
a cell dies is debatable because the event that leads to the ultimate disintegration of the cell is
not observable, and the time of cell death is instead defined as the time at which an outcome of
death (e.g. fragmentation of the cell membrane) becomes experimentally detectable. Relaxing
the assumption of independence between η and ξ yields the class of Sevastyanov processes.

Populations of lineage-committed PCs that develop in vivo are sustained by influxes of
differentiated cells produced by multipotent stem cells or PCs. This mechanism ensures the
maintenance of terminally differentiated tissues that have limited self-renewing capabilities.
The influx may vary over time. For example, it may temporarily increase in order to accelerate
the repair of damaged downstream cellular compartments. The dynamics of such systems may
be described by subcritical branching processes with time-inhomogeneous immigration. Here
we ask whether the distribution of the population size can be characterized. We find under mild
assumptions that the process is asymptotically normal when immigration increases over time.

To avoid modeling the influx of new cells as a Poisson process, cell kinetics could be
alternatively formulated as a two-type reducible Sevastyanov branching process in which the
first type of cells would correspond to (unobservable) upstream stem and PCs, while the second
type would describe the pool of observable cells (Figure 2; see also Kesten and Stigum [20] for
a discrete-time version of the process). While conceptually simple, this formulation presents
several drawbacks, including the following.
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Figure 2: Left: schematic representation of a population consisting of two types of cells: those in box B
are observed, and those in box A are unobservable but contribute to the observed population (box B) via
immigration. Our process does not describe population dynamics within box A, but formulates the influx
of cells from box A into box B as a nonhomogeneous Poisson process, and models the dynamics within
box B as a Sevastyanov process. Right: an example of a branching mechanism allowed by the process
in which a cell may either die or divide; the Sevastyanov process allows the probabilities of division
and death to depend on the time elapsed since the cell was born. For instance, cell death may occur

stochastically earlier than cell division.

• It assumes that type-1 cells form a population of homogeneous cells. This assumption
may be too rigid in practice. For instance, the hematopoietic PCs that give rise to
the various blood cell lineages (e.g. myeloid (erythrocytes, megakaryocytes, monocytes,
neutrophils, basophils, or eosinophils) or lymphoid (T- and B-lymphocytes)) are known to
exhibit varying degrees of commitment to these lineages, thereby presenting dissimilar
probabilities of further specializing into any of them. By assuming that the offspring
distribution is identical among all type-1 cells, the two-type process would be less
realistic.

• It may lack the flexibility needed to capture the plasticity exhibited by stem and PCs in
order to respond to the varying needs of the body. Feedback mechanisms between the two
cell types could be included in the model to describe this plasticity. Such an extension,
however, would define a model that is considerably more challenging to study, especially
in the age-dependent case.

In contrast, our model restricts assumptions postulated on the unobservable cell population to
its influx into the pool of observable cells. The rate of this influx may be time-dependent, as
needed.

3. The process and its equations

3.1. The Sevastyanov process

We consider a branching process in which the joint distribution of the lifespan η and
offspring ξ of any cell is specified as P{η ∈ B, ξ = k} = ∫

B
pk(u) dG(u) for every Borel

set B ⊂ R, where G(u) = P{η ≤ u} and
∑∞

k=0pk(u) = 1 (u ≥ 0), and every cell evolves
independently of all other cells. Put h(u, s) = ∑∞

k=0pk(u)sk , |s| ≤ 1, for the associated proba-
bility generating functions (PGF). These assumptions define a (G, h)-Sevastyanov process [32].
Write {Z(t)}t≥0 for the population size at time t .
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Define the moments of the offspring and lifespan distributions a(t) = h′
s(t, s)|s=1, b(t) =

h′′
ss(t, s)|s=1, a = ∫ ∞

0 a(t) dG(t), b = ∫ ∞
0 b(t) dG(t), and μ = ∫ ∞

0 t dG(t), all assumed
finite. This paper is concerned with the subcritical case (a < 1), and we assume the existence
of α < 0, the Malthusian parameter, which solves

∫ ∞
0 e−αxa(x) dG(x) = 1. Let G(t) and

G
(α)
a (t) = ∫ t

0 a(u)e−αu dG(u) be nonlattice.
Throughout the paper, we will be assuming that∫ ∞

0
xe−αx dG(x) < ∞,

∫ ∞

0
x dG(α)

a (x) < ∞, (3.1)

and ∫ ∞

0
b(u)e−αu dG(u) < ∞,

∫ ∞

0
ub(u)e−αu dG(u) < ∞. (3.2)

Another key assumption is as follows.

Condition 3.1. The cumulative distribution function (CDF) Gα
a (t) = ∫ t

0 a(u)e−αu dG(u) is of

absolutely continuous type; that is, there exists k ≥ 1 for which the k-fold convolution of G(α)
a (·)

with itself has an absolutely continuous component (see [32, Definition 2, Chapter VIII.7]).

Put A(t) = E[Z(t) | Z(0) = 1]. When (3.1) holds, it is known that (see [32, Theorem 8.4])

A(t) = Aeαt (1 + o(1)), t → ∞, (3.3)

where

A =
∫ ∞

0 e−αt (1 − G(t)) dt∫ ∞
0 xe−αxa(x) dG(x)

.

Define B(t, τ ) = E[Z(t)Z(t + τ) | Z(0) = 1], B(t) = E[Z(t)(Z(t) − 1) | Z(0) = 1], and
V (t) = var[Z(t) | Z(0) = 1]. Then V (t) = B(t, 0) − A2(t) = B(t) + A(t) − A2(t).

Lemma 3.1. Assume that (3.1), (3.2), and Condition 3.1 hold. Then, for every fixed τ ≥ 0,
there exists a constant Dτ > 0 such that, as t → ∞,

B(t, τ ) = Dτ eα(t+τ)(1 + o(1)). (3.4)

Proof. Write B0(t, τ ) = B(t, τ )e−αt and A0(t) = A(t)e−αt . Then, we have

B0(t, τ ) =
∫ t

0
B0(t − u, τ) dG(α)

a (u) + I (t, τ ),

where

I (t, τ ) = eαt

∫ t

0
b(u)A0(t − u)A0(t − u + τ)e−2αu dG(u)

+
∫ t+τ

t

a(u)A0(t − u + τ)e−αu dG(u) + e−α(t+τ)(1 − G(t + τ))

= I1(t, τ ) + I2(t, τ ) + I3(t, τ )

(see [32, Equation (23), Chapter VIII.8]). Since A0(t) is bounded on [0, ∞), there exists K > 0
such that

I1(t, τ ) = eαt

∫ t

0
b(u)A0(t − u)A0(t − u + τ)e−2αu dG(u) ≤ 2Keαt

∫ t

0
b(u)e−2αu dG(u).
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Applying the line of argument used in the proof of Theorem 8.10 in [32] gives I1(t, τ ) ∈
L1[0, ∞) and I1(t, τ ) → 0 as t → ∞ for any fixed τ . Similarly, there exists K > 0 such that

I2(t, τ ) =
∫ t+τ

t

a(u)A0(t − u + τ)e−αu dG(u) ≤ K[1 − G(α)
a (t)].

The function K[1 − G
(α)
a (t)] ∈ L1[0, ∞) because of (3.2), hence so does I2(t, τ ). We deduce

from (3.1) that I3(t, τ ) = e−α(t+τ)[1 − G(t + τ)] ∈ L1[0, ∞). Therefore, I (t, τ ) ∈ L1[0, ∞)

and I (t, τ ) → 0 as t → ∞. Applying Theorem 7.9 from [32] completes the proof. �
An immediate consequence of Lemma 3.1 is that the variance satisfies

V (t) = D0eαt (1 + o(1)), t → ∞. (3.5)

3.2. Sevastyanov process with immigration

Let {Sk}∞k=1 be a sequence of increasing time points with S0 = 0 that arises from a non-
homogeneous Poisson process {�(t)}t≥0, where P{�(t) = k} = e−R(t)Rk(t)/k!, k ≥ 0,
with instantaneous and cumulative rates r(t) and R(t) = ∫ t

0 r(u) du, with r(t) ≥ 0. Let, for
every k = 1, 2, . . . , Ik denote the number of cells immigrating at time Sk , assumed mutually
independent. Put g(s) = E[sIk ], |s| ≤ 1 for its PGF, and γ = E[Ik] = g′(1) and γ2 = g′′(1) =
E[Ik(Ik − 1)] for its mean and second factorial moment. Let Y (t) denote the number of cells
in the population at time t described by a branching process with immigration in which the
branching mechanism obeys a (G, h)-Sevastyanov process. We decompose Y (t) as

Y (t) =

⎧⎪⎪⎨
⎪⎪⎩

�(t)∑
k=1

Ik∑
i=1

Z(k,i)(t − Sk) if �(t) > 0,

0 if �(t) = 0,

(3.6)

where {Z(k,i)(t)}t≥0, k, i = 1, 2, . . . , are independent and identically distributed (i.i.d.) copies
of {Z(t)}t≥0.

Define the PGF �(t; s) = E[sY (t) | Y (0) = 0]. Proceeding as in Yakovlev and Yanev ([34,
Theorem 1]), we obtain

�(t; s) = exp

{
−

∫ t

0
r(t − u)[1 − g(F (u; s))] du

}
, �(0, s) = 1, (3.7)

where the PGF F(t; s) = E[sZ(t) | Z(0) = 1] satisfies the integral equation

F(t, s) = s(1 − G(t)) +
∫ t

0
h(u, F (t − u, s)) dG(u)

with the initial condition F(0, s) = s. Under mild regularity conditions, F(t, s) is the only
solution of this equation that belongs to the class of PGFs (see [32]).

We note that {Y (t)}t≥0 is a time-inhomogeneous and non-Markov process. If {Uk =
Sk −Sk−1}∞k=1 are i.i.d. random variables with CDF G0(x) = P{Uk ≤ x} = 1−e−x/r0 (x ≥ 0),
the immigration process �(t) reduces to an ordinary Poisson process with instantaneous and
cumulative rates r(t) ≡ r0 and R(t) = r0t , respectively. Then we obtain the Sevastyanov
age-dependent branching process with homogeneous Poisson immigration proposed and inves-
tigated by Yanev [35].
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Define M(t) = E[Y (t) | Y (0) = 0]. Differentiating both sides of (3.7), we obtain

M(t) = � ′
s(t; s)|s=1 = γ

∫ t

0
r(t − u)A(u) du. (3.8)

Put �(s1, s2; t, τ ) = E[sY (t)
1 s

Y (t+τ)
2 | Y (0) = 0] for t, τ ≥ 0. Using a line of argument similar

to that used to prove (3.7) yields

�(s1, s2; t, τ ) = exp

{
−

∫ t

0
r(u)[1 − g(F (s1, s2; t − u, τ))] du

−
∫ t+τ

t

r(v)[1 − g(F (1, s2; t, τ − v))] dv

}
, (3.9)

where F(s1, s2; t, τ ) = E[sZ(t)
1 s

Z(t+τ)
2 ] is given in [32, Equation (22), Chapter VIII.8].

The proof also uses (3.6) and the line of argument used to prove Theorem 1 of Yakovlev and
Yanev [34]. Equation (3.9) implies that

C(t, τ ) = cov[Y (t), Y (t + τ)]
= log �(s1, s2; t, τ )′′s1s2

|s1=s2=1

=
∫ t

0
r(u)[γB(t − u, τ) + γ2A(t − u)A(t + τ − u)] du, (3.10)

with initial conditions B(0, τ ) = A(τ) and C(0, τ ) = 0. Setting τ = 0 in (3.10) yields

W(t) = var[Y (t)] =
∫ t

0
r(t − u)[γV (u) + (γ + γ2)A

2(u)] du. (3.11)

4. Asymptotic formulas for the moments

This section is concerned with the expectation, variance, and covariance of Y (t) as t → ∞.
We consider three cases distinguished based on the immigration rate.

(i)
∫ ∞

0 r(u)e−αu du < ∞ (Proposition 4.1).

(ii) r(t) = r0eρt , where r0 > 0, and ρ ∈ R (Propositions 4.2 and 4.3). In this case the
asymptotics depend on how the immigration parameter ρ compares to the Maltusian
parameter α.

(iii) r(t) = r0 × tθ or r(t) = r0 × (t +1)θ , where r0 > 0 and θ ∈ R. In this case the moments
either converge to 0 (if θ < 0) or diverge to ∞ (if θ > 0) (Proposition 4.4).

We will use the lemma and corollary below to derive asymptotics for the moments.

Lemma 4.1. Let f (t) ∼ Ctθ as t → ∞, where C > 0 and θ ∈ R. Assume that

sup
0≤x≤t

f (x) ≤ Dtmax(θ,0) for some D < ∞.

Let y(·) be any function such that y(t) ≥ 0 (t ≥ 0), y = ∫ ∞
0 y(u) du < ∞, and y(t) = o(tθ−1)

if θ < 0. Then, as t → ∞,

I (t) =
∫ t

0
f (t − u)y(u) du ∼ yf (t).
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Proof. For every 0 < δ < 1, we have I (t) = ∫ t

0 f (t−u)y(u) du = ∫ δt

0 +∫ t

δt
= I1(t)+I2(t).

When the assumptions of the lemma hold, we have, for every ε > 0 and when t is large enough,
that (C − ε)tθ ≤ f (t) ≤ (C + ε)tθ and

(C − ε)tθ
∫ δt

0

(
1 − u

t

)θ

y(u) du ≤ I1(t) ≤ (C + ε)tθ
∫ δt

0

(
1 − u

t

)θ

y(u) du.

To determine the limit of I1(t) as t → ∞, assume first that θ ≥ 0. Then

(C − ε)tθ (1 − δ)θ
∫ δt

0
y(u) du ≤ I1(t) ≤ (C + ε)tθ

∫ δt

0
y(u) du,(

1 − ε

C

)
(1 − δ)θy ≤ lim inf

t→∞
I1(t)

f (t)
≤ lim sup

t→∞
I1(t)

f (t)
≤

(
1 + ε

C

)
y.

Therefore, limt→∞[I1(t)/f (t)] = y. Assume next that θ ≤ 0. Then

(C − ε)tθ
∫ δt

0
y(u) du ≤ I1(t) ≤ (C + ε)tθ (1 − δ)θ

∫ δt

0
y(u) du,(

1 − ε

C

)
y ≤ lim inf

t→∞
I1(t)

f (t)
≤ lim sup

t→∞
I1(t)

f (t)
≤

(
1 + ε

C

)
(1 − δ)θy.

Hence limt→∞[I1(t)/f (t)] = y.
Likewise, to study I2(t) as t → ∞, assume first that θ ≥ 0. Then

I2(t) ≤ sup
0≤x≤t (1−δ)

f (x)

∫ t

δt

y(u) du ≤ Dtθ (1 − δ)θ
∫ t

δt

y(u) du,

which establishes that lim supt→∞[I2(t)/f (t)] = 0. Assume next that θ < 0. Then I2(t) ≤
sup0≤x≤t (1−δ) f (x)

∫ t

δt
y(u) du = o(tθ ), and lim supt→∞[I2(t)/f (t)] = 0.

We finally deduce that limt→∞[I (t)/f (t)] = y, which completes the proof. �
Corollary 4.1. Let f (t) and y(t) be nonnegative functions. Assume that f (t) is bounded in R

+,
and that there exists f ∗ < ∞ and y < ∞ such that limt→∞ f (t) = f ∗ and

∫ ∞
0 y(t) dt = y.

Then

lim
t→∞

∫ t

0
f (u)y(t − u) du = f ∗y.

Define, for every α < 0, r̂t (α) = ∫ t

0 r(u)e−αu du, and assume that

lim
t→∞ r̂t (α) = r̂(α) < ∞. (4.1)

Inequality (4.1) holds if, for example, the intensity of the immigration assumes the form r(t) =
O(eρt ) with ρ < α.

Proposition 4.1. Assume that (3.1), (4.1), and γ2 < ∞ hold. Then, as t → ∞,

M(t) = Aγ r̂(α)eαt (1 + o(1)). (4.2)

Moreover, if (3.2) and Condition 3.1 hold, then, as t → ∞,

C(t, τ ) = γ r̂(α)Dτ eα(t+τ)(1 + o(1)). (4.3)
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Proof. Equation (3.8) entails that

M(t) = γ eαt

∫ t

0
r(t − u)e−α(t−u)A(u)e−αu du.

Using (3.3) and (4.1) and applying Corollary 4.1 yields∫ t

0
r(t − u)e−α(t−u)A(u)e−αu du → Ar̂(α),

from which (4.2) follows. The proof of (4.3) relies on (3.3), (3.4), and (3.10), but remains
otherwise similar to that of (4.2). �

Therefore, when the assumptions of Proposition 4.1 hold, the variance W(t) satisfies

W(t) = D0γ r̂(α)eαt (1 + o(1)), t → ∞.

Proposition 4.2. Assume that (3.1), r(t) = r0eρt for some constant r0 > 0, and t → ∞
hold.

(i) If ρ > α then M(t) = γ r0Â(ρ)eρt (1 + o(1)), Â(ρ) = ∫ ∞
0 e−ρuA(u) du < ∞.

(ii) If ρ = α then M(t) = γ r0Ateαt (1 + o(1)).

(iii) If ρ < α then M(t) = (r0γA/(α − ρ))eαt (1 + o(1)).

Proof. (i) From (3.8), we have

M(t) = γ r0eρt

∫ t

0
e−(ρ−α)uA(u)e−αu du.

Since A(u)e−αu → A, u → ∞ (by (3.3)), and ρ − α > 0, the integral converges to Â(ρ),
which completes the proof.

(ii) In this case M(t) = γ r0eαt
∫ t

0 A(u)e−αu du and
∫ t

0 A(u)e−αu du ∼ At , t → ∞, which
completes the proof.

(iii) We have M(t) = γ r0eαt
∫ t

0 e(ρ−α)(t−u)A(u)e−αu du. Since A(u)e−αu → A, u → ∞,
(by (3.3)) and

∫ ∞
0 e(ρ−α)t dt = 1/(α − ρ) > 0, the proof follows from Corollary 4.1. �

Proposition 4.3. Assume that (3.1), (3.2), Condition 3.1, r(t) = r0eρt , r0 > 0, and t → ∞
hold.

(i) If ρ > α then C(t, τ ) = C(τ)r0eρt+ατ (1 + o(1)), where

C(τ) =
∫ ∞

0
e−ρu−ατ [γB(u, τ) + γ2A(u)A(u + τ)] du < ∞.

(ii) If ρ = α then C(t, τ ) = r0γDτ teα(t+τ)(1 + o(1)).

(iii) If ρ < α then C(t, τ ) = (r0γDτ/(α − ρ))eα(t+τ)(1 + o(1)).

Proof. We deduce from (3.10) that

C(t, τ ) = r0eρt+ατ

∫ t

0
e−(ρ−α)u[γB(u, τ) + γ2A(u)A(u + τ)]e−α(u+τ) du.
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In case (i), (3.3)–(3.5) entail that

[γB(u, τ) + γ2A(u)A(u + τ)]e−α(u+τ) → γDτ , t → ∞. (4.4)

Since ρ > α, the integral

C(τ) =
∫ ∞

0
e−(ρ−α)u[γB(u, τ) + γ2A(u)A(u + τ)]e−α(u+τ) du

converges. This completes the proof of (i).
In case (ii), it follows from (4.4) that∫ t

0
[γB(u, τ) + γ2A(u)A(u + τ)]e−αu du ∼ γDτ t, t → ∞,

which completes the proof of (ii).
In case (iii), we have

C =
∫ ∞

0
e−(α−ρ)u du = 1

α − ρ
∈ (0, ∞)

and the statement follows from (4.4) and Corollary 4.1. �

Corollary 4.2. Suppose that the assumptions of Proposition 4.3 hold and t → ∞.

(i) If ρ > α then W(t) = Weρt (1 + o(1)), where

W = r0

∫ ∞

0
e−ρu[γV (u) + (γ + γ2)A

2(u)] du < ∞.

(ii) If ρ = α then W(t) = r0γD0teαt (1 + o(1)).

(iii) If ρ < α then W(t) = (r0γD0/(α − ρ))eαt (1 + o(1)).

Proposition 4.4. Suppose that (3.1), (3.2), and Condition 3.1 hold, and assume further that
r(t) = r0 × tθ , 0 < θ < ∞, or r(t) = r0 × (t +1)θ , −∞ < θ < 0, where r0 > 0 is a constant.
Then, as t → ∞,

M(t) = Mtθ (1 + o(1)), M = γ r0

∫ ∞

0
A(u) du, (4.5)

W(t) = Wtθ (1 + o(1)), W = r0

∫ ∞

0
[γV (u) + (γ + γ2)A

2(u)] du, (4.6)

and, for any τ ≥ 0,
C(t, τ ) = C(τ)tθ (1 + o(1)), (4.7)

where C(τ) = r0
∫ ∞

0 (γB(u, τ ) + γ2A(u)A(u + τ)) du.

Proof. Equation (3.3) implies that
∫ ∞

0 A(u) du < ∞. Then (4.5) follows from (3.8) and
Lemma 4.1. Equation (4.6) is a consequence of (3.3), (3.5), (3.11), and Lemma 4.1. The proof
of (4.7) proceeds similarly using (3.3), (3.4), and (3.10). �
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5. Limit theorems

This section presents four classes of limit theorems. The first one is a conditional limit
theorem of the form limt→∞ P{Y (t) = k | Y (0) > 0} = qk , with

∑∞
k=1qk = 1, based on

the fact that Y (t)
P−→0 as t → ∞ when limt→∞ M(t) = 0, where ‘

P−→’ denotes convergence in
probability. This result is akin to a limit theorem for subcritical processes without immigration
(see [32, Section IX.3, Theorem 2]). The second one is an LLN that shows that Y (t)/M(t)

converges to 1 in some appropriate sense as M(t) → ∞. The third one is a CLT satisfied
by Y (t) when properly normalized. The fourth class of theorems generalizes a classical result
on the asymptotic distribution of Y (t) for Markov branching processes with immigration when
limt→∞ r(t) = r0 > 0 that is due to Sevastyanov [29].

One of the byproducts of these limit theorems is a classification of the process into three
subclasses:

(i) the subcritical-subcritical case for which conditional limiting distributions are obtained
(see Theorems 5.1–5.3);

(ii) the subcritical-supercritical case for which an LLN and a CLT are established (see
Theorems 5.4–5.7);

(iii) the pure subcritical case for which a stationary distribution exists and is characterized in
Theorem 5.8.

It is interesting to point out that in case (i) the probability of nonextinction converges
exponentially to 0 at rate α, the Malthusian parameter (see Theorem 5.1). In Theorem 5.2,
the convergence rate is ρ, the immigration rate, and in Theorem 5.3 it is regular varying at ∞
with exponent θ < 0 (the parameter of the immigration intensity).

In case (ii), we show that the asymptotic variance of the normalized process (σ 2) depends
on the parameter ρ of the immigration intensity in Theorem 5.5, whereas in Theorem 5.7 it is
independent of the corresponding parameter θ . In both cases we show that 0 < σ 2 < 1.

Theorem 5.1. Assume that (3.1), (3.2), and limt→∞ r̂t (α) = r̂(α) < ∞ hold. Then we have
the following.

(i) P{Y (t) > 0} = Ceαt (1 + o(1)), C > 0, as t → ∞.

(ii) There exists a conditional stationary distribution

lim
t→∞ P{Y (t) = k | Y (t) > 0} = qk > 0, k = 1, 2, . . . .

Proof. Under the assumptions of the theorem we obtain from [32, Section IX.3, Theorems 1
and 2], that, as t → ∞,

P{Z(t) > 0} = 1 − F(t, 0) = Qeαt (1 + o(1)), (5.1)

1 − F(t, s) = Q(s)eαt (1 + o(1)) for every s ∈ [0, 1]. (5.2)

Since 1 − g(s) = γ (1 − s)(1 + o(1)) it follows that, as t → ∞,

1 − g(F (t, 0)) = γQeαt (1 + o(1)), (5.3)

and, for every s ∈ [0, 1],
1 − g(F (t, s)) = γQ(s)eαt (1 + o(1)). (5.4)
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Define the conditional PGF

�∗(t; s) = E[sY (t) | Y (t) > 0] = 1 − 1 − �(t; s)

1 − �(t; 0)
. (5.5)

Note first that �(t; 0) = e−J (t), where J (t) = ∫ t

0 r(t −u)[1 − g(F (u; 0))] du. Then, (5.3) and
Lemma 4.1 entail that, as t → ∞,

J (t) = eαt

∫ t

0
r(t − u)e−α(t−u)e−αu(1 − g(F (u, 0)) du ∼ eαtγQr̂(α).

Furthermore, �(t; s) = exp{−J (t; s)}, where, from (5.4) and Lemma 4.1,

J (t; s) =
∫ t

0
r(t − u)(1 − g(F (u; s)) du

= eαt

∫ t

0
r(t − u)e−α(t−u)e−αu(1 − g(F (u; s)) du

∼ eαtγQ(s)r̂(α), t → ∞.

Since α < 0, J (t) → 0 and J (t; s) → 0, uniformly in s ∈ [0, 1]. Therefore, as t → ∞,

1 − �(t; s) = 1 − e−J (t;s) = J (t; s)(1 + o(1)) = eαtγQ(s)r̂(α)(1 + o(1)),

1 − �(t; 0) = 1 − e−J (t) = J (t)(1 + o(1)) = eαtγQr̂(α)(1 + o(1)).

The last two relationships show that, uniformly in s ∈ [0, 1],

lim
t→∞ �∗(t; s) = �∗(s) =

∞∑
k=1

qks
k = 1 − Q(s)

Q
,

which completes the proof of the theorem by invoking the continuity theorem for PGFs. �
Remark 5.1. The limiting PGF �∗(s) = ∑∞

k=1qks
k, 0 ≤ s ≤ 1, in Theorem 5.1 is similar to

that holding for the standard Sevastyanov process without immigration.

Theorem 5.2. Assume that (3.1), (3.2), and r(t) = r0eρt , r0 > 0, α < ρ < 0 hold. Then we
have the following.

(i) P{Y (t) > 0} = Keρt (1 + o(1)), K > 0, as t → ∞.

(ii) There exists a conditional stationary distribution

lim
t→∞ P{Y (t) = k | Y (t) > 0} = qk > 0, k = 1, 2, . . . ,

with limiting conditional PGF

�∗(s) = 1 −
∫ ∞

0 e−ρu[1 − g(F (u; s))] du∫ ∞
0 e−ρu[1 − g(F (u; 0))] du

, �∗(1) = 1.

Proof. Following the proof of the previous theorem, we obtain

J (t) = r0eρt

∫ t

0
e−ρu[1 − g(F (u; 0))] du ∼ r0Keρt , t → ∞,
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where K = ∫ ∞
0 e−ρu[1 − g(F (u; 0))] du < ∞. Similarly, for every s ∈ [0, 1),

J (t; s) = r0eρt

∫ t

0
e−ρu[1 − g(F (u; s))] du ∼ r0K(s)eρt , t → ∞,

where K(s) = ∫ ∞
0 e−ρu[1 − g(F (u; s))] du < ∞. Therefore, following the proof of Theo-

rem 5.1, we obtain, as t → ∞,

P{Y (t) > 0} = 1 − �(t; 0) ∼ r0Keρt , 1 − �(t; s) ∼ r0K(s)eρt .

Hence, by (5.5), there exists �∗(s) = limt→∞ �∗(t; s) = 1 − K(s)/K , which proves the
theorem. �
Theorem 5.3. Assume that (3.1), (3.2), and r(t) = r0 × (t + 1)θ , θ < 0, r0 > 0 hold. Then
we have the following.

(i) P{Y (t) > 0} ∼ −(r0γQ/α)tθ as t → ∞.

(ii) There exists a conditional stationary distribution {qk}∞k=1 such that

lim
t→∞ P{Y (t) = k | Y (t) > 0} = qk (k = 1, 2, . . .),

where �∗(s) = 1 − Q(s)/Q, �∗(1) = 1, and Q and Q(s) as defined in (5.1) and (5.2).

Proof. Consider the conditional PGF �∗(t; s) as defined in (5.5) and note that �(t; s) =
exp{−r0 × (t + 1)θJ1(t; s)}, where

J1(t; s) =
∫ t

0

(
1 − u

t + 1

)θ

[1 − g(F (u; s))] du

= (t + 1)

∫ 1−1/(t+1)

0
(1 − x)θ [1 − g(F (x(t + 1); s))] dx.

Setting s = 0, we deduce from (5.3) that

1 − g(F (x(t + 1); 0)) ∼ γ [1 − F(x(t + 1); 0)] ∼ γQeαx(t+1), t → ∞.

Therefore,

J1(t; 0) ∼ γQ × (t + 1)

∫ 1−1/(t+1)

0
(1 − x)θ eαx(t+1) dx, t → ∞.

Furthermore, as t → ∞,

(t + 1)

∫ 1−1/(t+1)

0
(1 − x)θ eαx(t+1) dx

= α−1
[

eαt (t + 1)−θ − 1 + θ

∫ 1−1/(t+1)

0
(1 − x)θ−1eαx(t+1) dx

]
→ −α−1,

since Lemma 4.1 ensures that

I (t) =
∫ 1−1/(t+1)

0
(1 − x)θ−1eαx(t+1) dx = (t + 1)−θ

∫ t

0
(t + 1 − u)θ−1eαu du ∼ −(αt)−1.
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Hence, limt→∞ J1(t; 0) = γQ/(−α) such that

1 − �(t; 0) ∼ 1 − exp

{(
r0γQ

α

)
tθ

}
∼ −

(
r0γQ

α

)
tθ , t → ∞,

which completes the proof of (i).
Similarly, (5.4) implies that, as t → ∞,

1 − g(F (xt; s)) ∼ γ [1 − F(xt; s)] ∼ γQ(s)eαxt .

Hence,

J1(t; s) ∼ γQ(s)(t + 1)

∫ 1−1/(t+1)

0
(1 − x)θ eαx(t+1) dx, t → ∞.

Therefore, limt→∞ J1(t; s) = γQ(s)/(−α), and 1 − �(t; s) ∼ 1 − exp{(r0γQ(s)/α)tθ } ∼
−(r0γQ(s)/α)tθ . Hence, limt→∞ �∗(t; s) = �∗(s) = 1 − Q(s)/Q. �
Corollary 5.1. (Markov case.) Assume that G(x) = 1 − e−x/μ (x ≥ 0) for some μ > 0,
h(·; s) ≡ h(s) for every |s| ≤ 1, and

0 < − log Q =
∫ 1

0

{
αx + f (1 − x)

xf (1 − x)

}
dx < ∞,

where f (s) = [h(s) − s]/μ is the infinitesimal generating function. Then

�∗(s) = 1 − exp

{
α

∫ s

0

dx

f (x)

}
with �∗(1) = 1.

Proof. We deduce from the assumptions and from [32, Chapter II.2, Theorem 1 and Chap-
ter II.4, Theorem 1], that

1 − F(t, 0) ∼ Qeαt , Q > 0,
1 − F(t, s)

1 − F(t, 0)
→ exp

{
α

∫ s

0

(
1

f (x)

)
dx

}
.

Therefore, we deduce from the proof of Theorem 5.3 that Q(s) = Q exp{α∫ s

0 dx/f (x)}.
Hence,

�∗(s) = 1 − Q(s)

Q
= 1 − exp

{
α

∫ s

0

(
1

f (x)

)
dx

}
. �

Theorem 5.4. Assume that (3.1) and (3.2), and Condition 3.1 hold. Assume further that r(t) =
r0eρt , r0 > 0, ρ > 0, γ2 < ∞. Then, as t → ∞,

ζ(t) = Y (t)

M(t)
→ 1 a.s. and in L2.

Proof. To establish the convergence in L2, it is sufficient to show that, as t → ∞,

�(t, τ ) = E[ζ(t + τ) − ζ(t)]2 → 0,

uniformly for τ ≥ 0. Note that E[ζ(t)] ≡ 1, and

�(t, τ ) = var(ζ(t + τ)) + var(ζ(t)) − 2 cov{ζ(t), ζ(t + τ)},
var(ζ(t)) = W(t)M(t)−2, cov{ζ(t), ζ(t + τ)} = C(t, τ )

M(t)M(t + τ)
.
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Since ρ > α, we deduce from Proposition 4.2(i), Corollary 4.2(i), and Proposition 4.3(i) that,
as t → ∞,

W(t)M(t)−2 = Weρt (γ r0Â(ρ))−2e−2ρt → 0,

W(t + τ)M(t + τ)−2 = Weρ(t+τ)(γ r0Â(ρ))−2e−2ρ(t+τ) → 0,

C(t, τ )(M(t)M(t + τ))−1 = C(τ)r0eατ+ρt (γ r0Â(ρ))−2e−ρ(2t+τ) → 0,

where the convergence in the last two relationships are uniform in τ ≥ 0. Therefore, we have
limt→∞ �(t, τ ) = 0 uniformly in τ ≥ 0, which proves the convergence in L2, and

�(t) = lim
τ→∞ �(t, τ ) = E[ζ(t) − 1]2 = W(t)

M2(t)
∼ K1e−ρt ,

where K1 = W/(γ r0Â(ρ))2. Therefore,
∫ ∞

0 �(t) dt < ∞ and by Theorem 21.1 of [6], we
deduce that ζ(t) converges a.s. to 1. �

Theorem 5.5. Assume that (3.1), (3.2), Condition 3.1, r(t) = r0eρt , r0 > 0, ρ > 0, and
γ2 < ∞ hold. Then

X(t) = Y (t) − M(t)√
W(t)

d−→ N(0, σ 2), t → ∞,

where

σ 2 =
∫ ∞

0 e−ρu(γB(u) + γ2A
2(u)) du∫ ∞

0 e−ρu(γB(u) + γA(u) + γ2A2(u)) du
∈ (0, 1) (5.6)

and ‘
d−→’ denotes convergence in distribution.

Proof. Let ϕt (z) = E[eizX(t)] denote the characteristic function of X(t). Then

ϕt (z) = exp

{
− izM(t)√

W(t)

}
E

[
exp

{
izY (t)√
W(t)

}]
= exp

{
− izM(t)√

W(t)

}
�

(
t; exp

{
iz√

W(t)

})
.

We deduce from (3.7) that

log ϕt (z) = − izM(t)√
W(t)

−
∫ t

0
r(t − u)

[
1 − g

(
F

(
u; exp

{
iz√

W(t)

}))]
du.

The following asymptotic expansions hold as s → 1 (see [32]):

1 − g(s) ∼ γ (1 − s) − 1
2γ2(1 − s)2, 1 − F(u; s) ∼ A(u)(1 − s) − 1

2B(u)(1 − s)2.

Moreover, 1 − ex = −x(1 + o(1)) as x → 0. Hence, as t → ∞,

log ϕt (z) ∼ − izM(t)√
W(t)

−
∫ t

0
r(t − u)

{
γ

[
1 − F

(
u; exp

{
iz√

W(t)

})]

− γ2

2

[
1 − F

(
u; exp

{
iz√

W(t)

})]2}
du, (5.7)
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and

1 − F

(
u; exp

{
iz√

W(t)

})
∼ A(u)

(
1 − exp

{
iz√

W(t)

})
− B(u)

2

(
1 − exp

{
iz√

W(t)

})2

∼ − izA(u)√
W(t)

+ z2B(u)

2W(t)
.

Therefore,∫ t

0
r(t − u)

{
γ

[
1 − F

(
u; exp

{
iz√

W(t)

})]
− γ2

2

[
1 − F

(
u; exp

{
iz√

W(t)

})]2}
du

∼ − izγ√
W(t)

∫ t

0
r(t − u)A(u) du + z2γ

2W(t)

∫ t

0
r(t − u)B(u) du

+ γ2z
2

2W(t)

∫ t

0
r(t − u)A2(u) du

∼ − izM(t)√
W(t)

+ z2

2

[
1 − M(t)

W(t)

]
.

Returning to (5.7), and letting t → ∞, we find that

log ϕt (z) ∼ −z2

2

[
1 − M(t)

W(t)

]
.

We deduce from Proposition 4.2(i) and Corollary 4.2(i) that

lim
t→∞

M(t)

W(t)
=

∫ ∞
0 e−ρuγA(u) du∫ ∞

0 e−ρu(γB(u) + γA(u) + γ2A2(u)) du
,

from which the expression for σ 2 given in (5.6) follows. Finally, limt→∞ ϕt (z) = e−z2σ 2/2,
which is the characteristic function of a normal distribution with mean 0 and variance σ 2, and
the assertion follows from the continuity theorem [5]. �
Corollary 5.2. Theorem 5.5, Proposition 4.2(i), and Corollary 4.2(i) entail the asymptotic
normality

Y (t)e−ρt ∼ N(r0γ Â(ρ), σ 2We−ρt ), t → ∞.

Theorem 5.6. Assume that (3.1), (3.2), γ2 < ∞, Condition 3.1, and r(t) = r0t
θ with θ > 0

and r0 > 0 hold. Then ζ(t) = Y (t)/M(t) → 1 in L2 as t → ∞. The convergence is almost
sure if θ > 1.

Proof. We first deduce from (4.5)–(4.7) that, as t → ∞,

var(ζ(t)) = W(t)M−2(t) ∼ WM−2t−θ , (5.8)

and
cov{ζ(t), ζ(t + τ)} = C(t, τ )(M(t)M(t + τ))−1 ∼ C(τ)M−2(t + τ)−θ . (5.9)

Then (5.8) and (5.9) entail that �(t, τ ) → 0 uniformly in τ ≥ 0, and the convergence in L2
follows.
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Assume now that θ > 1. Equations (5.8) and (5.9) entail that var(ζ(t + τ)) ∼ WM−2(t +
τ)−θ → 0 and cov{ζ(t), ζ(t + τ)} ∼ C(τ)M−2(t + τ)−θ → 0, τ → ∞. Hence, �(t) ∼
WM−2t−θ , t → ∞, and

∫ ∞
0 �(t) dt < ∞. We deduce from [6, Theorem 21.1] that ζ(t)

converges to 1 a.s. �
Theorem 5.7. Assume that (3.1), (3.2), γ2 < ∞, Condition 3.1, and r(t) = r0t

θ with θ > 0

and r0 > 0 hold. Then X(t) = [Y (t) − M(t)]/√W(t)
d−→ N(0, σ 2) as t → ∞, where

σ 2 =
∫ ∞

0 [γB(u) + γ2A
2(u)] du∫ ∞

0 [γB(u) + γ2A2(u) + γA(u)] du
∈ (0, 1).

Proof. Following the line of argument used in the proof of Theorem 5.5 yields

log ϕt (z) ∼ −z2

2

[
1 − M(t)

W(t)

]
, t → ∞. (5.10)

We deduce from (4.5) and (4.6) in Proposition 4.4 that limt→∞ M(t)/W(t) = M/W . Finally,
we obtain from (5.10) that limt→∞ ϕt (z) = e−z2σ 2/2, which is the characteristic function of
the normal distribution with mean 0 and variance σ 2. The assertion follows from the continuity
theorem (see, e.g. [5]). �
Corollary 5.3. Theorem 5.7 and Proposition 4.4 entail the asymptotic normality Y (t)t−θ ∼
N(M, σ 2Wt−θ ), t → ∞.

Theorem 5.8. Assume that (3.1), γ < ∞, and that limt→∞ r(t) = r0 > 0 hold. Then there
exists a limiting distribution Qk = limt→∞ P{Y (t) = k} > 0 (k = 0, 1, 2, . . . ), such that

�∗(s) =
∞∑

k=0

Qks
k = exp

{
−r0

∫ ∞

0
[1 − g(F (u, s))] du

}
, |s| ≤ 1.

Proof. Under the assumptions of the theorem, |1 − g(s)| ≤ γ |1 − s| and |1 − F(u; s)| ≤
A(u)|1 − s|. Therefore,∣∣∣∣

∫ t

0
r(t − u)[1 − g(F (u, s))] du

∣∣∣∣ ≤ γ |1 − s|
∫ t

0
r(t − u)A(u) du.

Corollary 4.1 implies that

lim
t→∞

∫ t

0
r(t − u)A(u) du = r0

∫ ∞

0
A(u) du < ∞.

Hence,

lim
t→∞ �(t; s) = �∗(s) = exp

{
−r0

∫ ∞

0
[1 − g(F (u, s))] du

}
uniformly in |s| ≤ 1. �

Pakes [26] obtained a similar limiting distribution for the Bellman–Harris process.

Corollary 5.4. If G(x) = 1 − e−x/μ (x ≥ 0), for some μ > 0, and h(u; s) ≡ h(s) then

�∗(t; s) = exp

{
−r0

∫ 1

s

1 − g(x)

f (x)
dx

}
.
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Proof. It follows from the assumptions that {Z(t)}t≥0 is a Markov branching process, and
it is characterized by the Kolmogorov differential equations

∂

∂t
F (t; s) = f (F (t; s)),

∂

∂t
F (t; s) = f (s)

∂

∂s
F (t; s), F (0; s) = s,

where f (s) = (h(s) − s)/μ (see, e.g. [6]). Therefore,

∂

∂s

∫ ∞

0
[1 − g(F (u, s))] du = −

∫ ∞

0
g′(F (u; s))

∂F (u; s)

∂s
du

= − 1

f (s)

∫ ∞

0
g′(F (u; s))

∂F (u; s)

∂u
du

= −1 − g(s)

f (s)
,

using the fact that F(∞; s) = 1 and F(0; s) = s. Hence,∫ ∞

0
[1 − g(F (u, s))] du =

∫ 1

s

1 − g(x)

f (x)
dx,

which completes the proof. �

Sevastyanov [29] obtained the same probability density function when r(·) ≡ r0 > 0.
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