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SUMMARY
This paper analyses lumped-parameter dynamics of a pair of
robot fingers with soft and deformable tips pinching a rigid
object under the effect of a gravity force. The dynamics of
the system in which area contacts between the finger-tips
and the surfaces of the object arise are compared with those
of a pair of rigid robot fingers with rigid contacts with an
object, with or without effect of the gravity. It is then shown
that there exists a sensory feedback from measurement of
finger joint angles and the rotational angle of the object to
command inputs to joint actuators, and this feedback
connection from sensing to action realizes secure grasping
of the object in a dynamic sense and regulation of the object
posture. It is further shown that there are various types of
other feedback connections from sensing to action, which
can be used in combination of feedback signals for stable
grasping and posture control of the object for realizing
sophisticated object manipulation.

KEYWORDS: Robot fingers; Soft tips; Gravity; Stable pinching;
Lumped-parameter dynamics.

1. INTRODUCTION
In the early 1980s, “Robotics” was defined by Winston
(Professor of MIT) as an interdisciplinary research frontier
dedicated to “intelligent connection from perception to
action”.1 It was also around the early 1980s that roboticists
dreamed enthusiastically about creating “intelligent robots”
through looking at the successful employment of a number
of robot arms in automation processes and assembly lines in
factory. In that decade a variety of multi-fingered robot
hands that more or less mimic human hands were designed
and manufactured (for example, see Shimoga.2) On the
other hand, much theoretical works on motion plannings
and stability problems of object grasping and manipulation
by means of multi-fingered hands has been published in the
vast literature, as seen in an extensive survey by Shimoga2

and others.3–5 One of noteworthy results obtained was
concerned with sufficient conditions guaranteeing secure
grasping of an object with a geometric shape.6,7 In addition,
there is a great number of interesting works that pointed out
important roles of tactile and/or vision sensings in stable

grasping and object manipulation, and carried out actual
experiments by using those sensors (see Cutkovsky8 or more
recent papers.9–12) Motion control has been also discussed
on the basis of a computed torque of complicated nonlinear
dynamics of an overall system, including fingers and a rigid
object, by assuming pointwise contacts between finger-tips
and object surfaces.13 However, there is a dearth of papers
that attempted to analyze sufficient conditions for secure
grasping from a dynamic viewpoint, based on full dynamics
of motion of such a multi-fingered hand manipulating an
object through area contacts between deformable finger-tips
and surfaces of the rigid object. Actually, it should be
pointed out that a more realistic model of dynamics of a
total finger-object system with soft area contacts was neither
derived nor analyzed until a recent publication of a series of
papers,14–16 though some important roles of soft area contact
were pointed out early in 1980s.8 More surprisingly, there
are very few papers concerned with finding an explicit
sensory feedback path connecting from tactile or/and vision
sensing to motor control at finger joints, that is crucial in
guaranteeing secure grasping in a dynamic sense and
dexterous control of object manipulation.

“Sensory-motor coordination” is also one of the most
important research subjects in developmental psychology.
In fact, much data of observation, concerning the emergence
of bimanual coordination from the early patterns observable
at birth to the bimanual coordination involved in object
manipulation typical of a one-year-old child has been
gathered, and theoretical approaches that best account for
such development are analyzed.17,18 In particular, E. Thelen
et al.l8 claim that, concerning the development of bimanual
coordination, the dynamic point of view postulates that new
spaciotemporal orders emerge not from centrally prescribed
programs in the infant central vervous system but from
the system dynamics. More precisely, E. Thelen et al.19

concludes that, concerning the emergence of reaching for
object grasping, “the infant’s CNS does not contain
programs that detail hand trajectory, joint coordination and
muscle activation patterns. Rather, these patterns are the
consequences of the natural dynamics of the system and the
active exploration of the match between those dynamics and
the task”. However, these observations and theories are
concerned with reaching, grasping, and bimanual coordina-
tion by using a couple of arms, but not concerned with
inter-fingers coordination for pinching by using a couple of
thumb and index fingers. However, even in the case of
sensory-motor coordination for pinching, the intrinsic
dynamics must play an important role and, in particular, the
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theories developed by Thelen et al.18,19 suggest the existence
of a certain family of sensory-motor feedback paths.

This paper aims at finding a sensory feedback path from
sensing to motor control at finger joints guaranteeing secure
grasping in the case that a pair of multijoint fingers with soft
and deformable finger-tips are in contact with a parallelepi-
ped object and placed in a vertical plane. In previous
papers,14–l6 a full dynamics of the overall finger-object
systern has been derived in the case that dynamic behaviour
of finger-tips is lumped-parametrized by assuming that the
soft material is composed of massless springs distributed in
all directions, and the finger-tip shape is a hemisphere,
motion of the system is confined to a horizontal plane, and
therefore the effect of gravity force can be neglected. This
paper treats the case that motion of the overall finger-object
system is affected directly by the gravity force and,
therefore, its dynamics differs from that of the same
mechanism whose motion is confined into a horizontal
plane. Even in the situation that the system is directly
affected by the gravity, it is possible to find an analytic
feedback path from joint position sensings (optical encoders
at joint actuators) and sensing of the rotation angle of the
object (by means of optical range sensors mounted at a
finger link) to control commands at joint actuators. It is
shown theoretically that feedback control realizes secure
grasping in a dynamic sense and eventually regulates the
object in the vicinity of the upright position. It is also
discussed that a similar but more simplified feedback path in
the case of rigid contacts between finger-tips and object
surfaces can be found. In a final section, some possible
extensions of the theoretical argument developed in the
paper are presented, which include an alternative analysis
when the mass of the object is unknown or another feedback
path for regulating the posture of the object is taken into
account.

2. DYNAMICS OF A PAIR OF MULTI-DOF
FINGERS WITH SOFT TIPS PINCHING OF A
RIGID OBJECT
In previous papers,l4–l6 the dynamics of a pair of multi-
degrees of freedom robotic fingers with soft and deformable
tips pinching of a rigid object, as shown in Figure 1, has
been derived. In those papers it is assumed that the motion
of the overall finger-object system is confined to a
horizontal plane and, thereby, the effect of the gravity force
can be ignored. As seen in Figure 1 both finger-tips are soft
and deformable and their shape is hemi-spherical. It is also
assumed implicitly that the material of soft finger-tips is
non-compressible and purely elastic. This naturally induces
area contacts between both finger-tips and corresponding
object surfaces, and their corresponding holonomic contra-
ints are expressed by the following algebraic equation:

�Y1 =(x01 �x) sin �+( y01 �y) cos �

Y2 =(x02 �x) sin �+( y02 �y) cos �
(1)

where (x, y) denotes the cartesian coordinates of the mass
center O of the object. In fact, note that rolling of the last

link of a robot finger againt a rigid object generates
movement of the center of area contact, as seen in Figure 2,
where it is also assumed implicitly that there does not arise
any slip between the finger-tip and object surface (this is
called in this paper “tight area contact”). The rolling induces
equation (1), where Yi can be defined as

�Y1 =c1 �r1�1 =c1 �r1(�q11 �q12 +�+� )

Y2 =c2 �r2�2 =c2 �r2(�q21 �q22 �q23 +��� )
(2)

and ci is some constant (for i=1, 2). The dynamic behaviour
of finger-tips can be approximately expressed by concen-
trated contact forces fi (�xi ) (i=1, 2) by means of
lumped-parametrization of distributed massless springs, as
shown in Figure 3. These contact forces fi (i=1, 2) arise in
the directions normal to the object surfaces and press the
object at both sides of the object from opposite directions.
According to the Appendix of the previous paper,14 the
magnitude of the lumped-parametrized reproducing force
fi (�xi ) can be expressed as

fi (�xi )=Ki (�xi )
2 (3)

where �xi denotes the maximum length of deformation of
the soft tip of finger i. Then, by introducing Lagrange’s
multipliers �1 and �2 corresponding to the equalities

Fig. 1. A pair of 2-DOF and 3-DOF fingers with soft tips.

Fig. 2. Geometric constraint induced by tight area contact and
rolling.
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Yi �ci +ri �i =0 (for i=1, 2) where Yi stand for equation (1),
and applying the Hamilton’s principle to the Lagrangian, we
have

L=K�P+�
i=1,2

�i �i (4)

where

K=
1
2�

i=1,2

q̇T
i Hi (qi )q̇i +

1
2

(Mẋ2 +Mẏ2

+I�̇ 2) (5)

P=�
i=1,2

� �xi

0
fi (	 )d	 (6)

�i =Yi � (ci �ri �i ), i=1, 2 (7)

It is possible to derive Lagrange’s equation of the overall
finger-object system:

Li +(�1)i�1fi 

T
i +� i p

T
i =ui , i=1, 2 (8)

Mẍ� ( f1 + f2) cos �+(� 1 +� 2) sin �=0 (9)

Mÿ+( f1 + f2) sin �+(� 1 +� 2) cos �=0 (10)

I�̈� (Y1 f1 �Y2 f2)+� 1(l/2��x1)��2(l/2��x2)=0 (11)

where q1 =(q11, q12)
T, q2 =(q21, q22, q23)

T,

Li =�Hi (qi )
d
dt

+
1
2

Ḣi (qi )�q̇i +Si (qi , q̇i )q̇i (12)


T
i =JT

0i� cos �

� sin ��, pT
i =JT

0i�sin �

cos ���ri�1

1� (13)

and J0i denote the Jacobian matrices of (x0i , y0i ) with respect
to (qi) for i=1, 2.

3. STABLE PINCHING UNDER THE EFFECT OF
GRAVITY
When the overall finger-object system is placed in a vertical
plane, the motions of fingers and the object are directly
affected by the gravity force (see Figure 4). Then, the
dynamics of the overall system becomes as follows:

Li +(�1)i�1fi 

T
i +�i p

T
i + [gi (qi )]=ui , i=1, 2 (14)

Mẍ� ( f1 + f2) cos �+(� 1 +� 2) sin �=0 (15)

Mÿ+( f1 + f2) sin �+(� 1 +� 2) cos �� [Mg]=0 (16)

I�̈� (Y1 f1 �Y2 f2)+� 1(l/2��x1)��2(l/2��x2)=0 (17)

Note that the terms enclosed by the bracket [ ] appear
additionally to the equations (8) to (11).

First we assume that all finger link masses, mass M of the
object, and length from the mass center of each finger link
to its corresponding joint center are known. Then, it is easy
to calculate gi (qi ) for i=1, 2 in real-time, which can be
included in command inputs, respectively, for i=1, 2 in
order to compensate the effect of gravity force in equation
(14). However, the motion equations (14)–(17) of the object
cannot be controlled directly by control commands ui , that
is, either of ui (i=1, 2) does not enter in equations
(15)–(17). Hence, the gravity terms in equation (16) should
be compensated indirectly through physical quantities fi and
� i which can be controlled by ui through finger dynamics of
equation (14).

Thus, we introduce the control commands ugi (i=1, 2) in
the following way:

ugi =�ci q̇i +gi (qi )+(�1)iri fd (Y1 �Y2)/(r1 +r2)� (�1)i
T
i fd

+
T
i (Mg/2) sin �+pT

i (Mg/2){cos �� (�1)i(Y1 +Y2)	
�1}

where 	=l��x1 ��x2. Here, it is important to note that the
individual Yi cannot be calculated from the measurement
data of qi and � differently from the value of Y1 �Y2. At this
first stage we assume that Y1 +Y2 is accessible for the
construction of the feedback path. However, in the sequel
we will use the data on Ẏi which is composed of q̇i and �̇ that

Fig. 3. Lumped-parameterization of the dynamics of a soft
material.

Fig. 4. Grasping of a rigid object.
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can be calculated from the measurement data. Substituting
ui =ugi into equation (14) yields the closed-loop finger
dynamics of the following form:

Li +ci q̇i � (�1)i ri fd

r1 +r2

(Y1 �Y2)

� (�1)i� f �i 

T
i +��i p

T
i =0

(19)

where

� f �i =� fi + (�1)i(Mg/2) sin � (20)

��i =� i � (Mg/2){cos �� (�1)i	�1(Y1 +Y2) sin �} (21)

The dynamics of the object are the same as equations
(15)–(17) but it is convenient to rewrite them into the
forms:

Mẍ� (� f �1 �� f �2) cos �+(��i +��2) sin �=0 (22)

Mÿ+(� f �1 �� f �2) sin �+(��1 +��2) cos �=0 (23)

I�̈+� f �1Y1 �� f �2Y2 +��1(l/2��x1)���2(l/2��x2)

� fd (Y1 �Y2)+(Mg/2)(��x1 +�x2) cos �=0 (24)

It is important to see that equations (19) to (24) are
similar to the closed-loop equations (8) to (11) with
ui =�ci q̇i + (�1)i fd ri (Y1 +Y2)/(r1 +r2)� (�1)i 
 T

i fd, except
the last term of equation (24) if � fi and � i are replaced with
� f �i and ��i respectively. Bearing this in mind, we apply a
similar argument to the proof of the case without the effect
of gravity for equations (19) to (24). Firstly, let us take inner
products between q̇i and equation (19), and (ẋ, ẏ, �̇) and
equations (22), (23) and (24), respectively. This yields

d

dt
{K+�P+fd (Y1 �Y2)

2/2(r1 +r2)}�
i=1,2

ci � q̇i �2

� (�ẋ1 ��ẋ2)(Mg/2) sin ���̇ (�x1 ��x2)(Mg/2) cos �=0

(25)

where

�P=Af1 +Af2

Afi = � �xi

0
{ fi (�xdi +)� fd}d (26)

and �xdi = f�1
i ( fd ) (see Figure 5). This is also rewritten in the

form

d

dt 	{K+fd (Y1 �Y2)
2/2(r1 +r2)}+�

i=1,2

{(�1)iAgi +Afi +�o}

=��

i=1,2

ci � q̇i �2 (27)

where �o is the area defined in Figure 5 and

Agi =(Mg/2)�xi sin � (28)

Note that if �/4≥ �� � >0 and fd >Mg, then (�1)iAgi +
Afi +�0i is positive for any �xi ≥0 for i=1, 2, as shown in
Figure 5. Thus, it is possible to state the following result:

Stable Grasping under Gravity:

If the state z and ż at initial time t=0 satisfies

0<E(0)< min
i=1,2

{Di } (29)

where Di is the area indicated in Figure 5 and E stands for
the total energy-like quantity equivalent to the content of
bracket [ ] of the left hand side of equation (27), then
grasping is maintained for all t≥0 and

ż → 0, fi + (�1)i(Mg/2) sin � → fd,

Y1 �Y2 → 0, �x1 ��x2 → 0, (30)

� i � (Mg/2){cos �� (�1)i	�1(Y1 +Y2) sin �} → 0

as t → �. In particular, if r1 =r2 and f1(�x)=f2(�x) for any
�x≥0, that is, the characteristics of reproducing force of the
soft finger-tips are the same, then

�(t) → 0 as t → � (31)

which implies that the object posture converges asymptot-
ically to the upright position.

It should be remarked that equation (30) determines the
values for 6 physical variables (� f �1, � f �2, Y1 �Y2,
�x1 ��x2, ��1, ��2) at the steady state. Hence at least the
composition of a pair of 2-DOF and 3-DOF fingers together
with 3-DOF of the object is required, because the two
algebraic constraints arising from the tight area contacts
should be taken into account.

The proof is composed of many steps as in the following
way:

(1) It follows from equation (27) that E(t)≤E(0) and
thereby �xi >0 (i=1, 2) for all t≥0.

(2) Then it follows from equation (27) too that q̇i �L2(0,�)
for i=1, 2. Further, it is possible to show that q̇i → 0 as
t → � for i=1, 2.

(3) Next, owing to geometric constraints of tight
area contacts, �̇(t) → 0, Ẏ1(t)� Ẏ2(t) → 0, ẋ sin �+
ẏ cos � → 0 and ẍ sin �+ÿ cos � → 0 as t → �. This
implies that � 1 +� 2 �Mg cos → 0 as t → � from equa-
tions (22) and 23).

(4) Since it is possible to show that z̈ are bounded, ż(t) is
uniformly continuous. In particular, since q̇1, q̇2 and

Fig. 5. Quantity of the artificial potential at the initial time is less
than D=�xd fd �

1
2 Mg sin ��xd �� �xd

0 f ( )d.
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�̇ → 0 as t → �, q̈1, q̈2 and �̈ should converge to zero as
t → �. Hence, stationary terms of equations (19) and
(24) (that are not related to any component of ż and z̈)
converge to some constant, which can be written in the
following way:

A�b�→
r1e1

�r2e2

� (r1 +r2)
fd (Y1 �Y2)/(r1 +r2)

→ const. (32)

as → �, where

A�=


T
1

0

�Y1

0
�
T

2

Y2

�pT
1

pT
2

	

0

0

�
Mg

2
cos �

,

b�=

� f �1
� f �2
��1

�x1 ��x2

(33)

Note that �x1 +�x2 → const. as t → � and thereby
	 → const. as t → �. Hence � f �i → const. as t →�.

(5) Then, it is possible to show that ẍ and ÿ → 0 as t → �
and � f �1 �� f �2 → 0 as t → �. Thus, stationary terms of
equations (19) and (24) must converge to zero as t → �,
which can be written in the following way:

Ab → 0 as t → � (34)

where

A=


T
1

�
T
2

�Y1 +Y2

�pT
1

pT
2

	

r1e1

�r2e2

� (r1 +r2)

0
0

�
Mg

2
cos �

,

b=

� f �1
��1

fd

r1 +r2

(Y1 �Y2)

�x1 ��x2 (35)

and e1 =(1, 1)T, e2 =(1, 1, 1)T. Since the rank of A is 4,
b → 0 as t → �. Thus, the proof has been completed.

4. FURTHER DISCUSSIONS
In the case of pointwise contacts between rigid finger-tips
and a rigid object, the dynamics of the overall system
formally become similar to equations (8) and (11) (without
the effect of gravity) or equations (14)–(17) (under the
effect of gravity), if �xi (i=1, 2) are regarded as zero.
However, contact forces fi (i=1, 2) must be determined as
Lagrange multipliers corresponding to the following alge-
braic constraints:

(x01 �x) cos � � (y01 �y) sin �+r1 +l/2=0 (36)

�{(x02 �x) cos � � (y02 �y) sin �}+r2 +l/2=0 (37)

Note that the left hand side of equation (36) is equal to �x1

and that of equation (37) to �x2 in the case of area contacts.
Then, it is also possible to consider sensory feedbacks
similar to ugi mentioned in previous sections. In the case of
a gravity force, a similar property of dynamic stable
grasping already treated in previous papers an absence14–16

can be concluded. However, in the latter case, the situation
differs considerably. Firstly, the magnitude of contact forces
fi cannot be evaluated theoretically in a simple form. This
means that there arises a certain possibility that contact
between finger-tips and the object may be broken, which
may lead to certain slipping between finger-tips and the
object. Secondly, control of the posture of the object to the
vicinity of its upright position cannot be realized by simply
using ugi (i=1, 2) even if r1 =r2.

Some extensions of the argument in the previous section
are possible to the cases that (1) the mass M of the object is
unknown, (2), in addition, all masses of finger links are
uncertain, and (3) the signal Y1 +Y2 in equation (18) is
replaced with that of � T

0 (Ẏ1 +Y2) d� that can be calculated
from q̇i and �̇. In the case of (1), it is possible to use the
estimate M̂ for M defined as

M̂(t)=M̂(0)��
i=1,2

� t

0
��1[
i sin ��pi

� {cos �� (�1)i	�1(Y1 +Y2) sin �}]q̇i d� (38)

where � is an appropriate positive constant. Then, instead of
ugi in equation (18), we are able to use

ūgi =ufi +gi (qi )+
T
i (M̂g/2) sin ��pT

i (M̂g/2)

� {cos �� (�1)i	�1 (Y1 +Y2) sin �} (39)

where

ufi =�ci q̇i + (�1)i � ri fd

r1 +r2

(Y1 �Y2)�1

1�� fd

T
i � (40)

and to conclude the same statement on dynamic stable
grasping under the effect of gravity, provided that the initial
guess M̂(o) does not so differ from M. As a matter of course,
it is possible to use estimated values for masses of finger
links in order to treat the case of (2).

In order to avoid the use of individual Yi (t) in construc-
tion of feedback signals, it is necessary to use the signal

Y1(t)+Y2(t)�{Y1(0)+Y2(0)}= � t

0
{Ẏ1(�)+ Ẏ2(�)} d� (41)

which can be evaluated from the measured data on �̇ and
q̇i (i=1, 2), as is shown in equation (2). However, it should
be remarked that if the quantity of equation (41) is used
instead of Y1(t)+Y2(t) in the feedback signal of equation (39)
then there arises an offset in the closed-loop dynamics
which may derive from the introduction of Y1(0)+Y2(0), as

Soft tips 245

https://doi.org/10.1017/S0263574701003976 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574701003976


is described in the left hand side of equation (41). In order
overcome this problem, we introduce a position feedback
defined as

ki {qi (t)�qi (0)}=ki � t

0
q̇i (�) d� (42)

Thus, we define the feedback command signals in the
following way:

ūgı =ufi +gi (qi )�ki� t

0

q̇i (�) d�

+
Mg
2 	
T

i sin ��pT
i �cos �� (�1)i	�1 sin �� t

0

{Ẏ1 + Ẏ2} d��

(43)

Then, the closed-loop dynamics of fingers are expressed as

Li +ci q̇i +ki q̄i � (�1)i ri fd

r1 +r2

(Y1 �Y2)� (�1)i � f �i 

T
i +��i p

T
i

�pT
i (�1)i	�1{Y1(0)+Y2(0)} sin �=0 (44)

where

q̄i =qi (t)�qi (0)= � t

0
q̇i (�) d� (45)

As discussed in the previous paper,15 an addition of the last
term in the left hand side of equation (44) rewrites the
relation of equation (27) into the form

d

dt 	K+
fd

2(r1 +r2)
(Y1 �Y2)

2 +�
i=1,2

((�1)iAgi +Afi )

+{Y1(0)+Y2(0)}(cos �+c0)
=��
i=1,2

ci � q̇i �2
(46)

Note that the quantity of the last term inside the bracket [ ]
arises additionally, where the constant c0 should be chosen
as

c0 =��1 Y1(0)+Y2(0)<0
+1 otherwise

(47)

If the magnitude of �Y1(0)+Y2(0)� is relatively small in
comparison with min{Di }, then it is possible to conclude a
similar statement to that of the Stable Grasping under
Gravity.

A control of the posture of the object at a given desired
angle of rotation (say, �=�d) is not so easy if �d differs from
zero, contrarily to the case when there is no gravity effect.
Nevertheless, it is meaningful to introduce an additional
feedback path constructed as

u�i = (�1)i{	�1���+��̇}pT
i (48)

if ��d� is relatively small. Then, the overall feedback signals

ui = ūgi +u�i (49)

for the dynamics of equation (19) yields the closed-loop
dynamics

Li +ci q̇i +ki q̄i � (�1)i ri fd

r1 +r2

(Y1 +Y2)� (�1)i � f �i 

T
i

+��i p
T
i �pT

i (�1)i	�1[{Y1(0)+Y2(0)} sin � (50)

+���+	��̇]=0

This dynamics together with dynamics of the object yields
the passivity relation in the following form:

d

dt 	K+
fd

2(r1 +r2)
(Y1 �Y2)

2 +�
i=1,2

((�1)iAgi +Afi )

+{Y1(0)+Y2(0)}(cos ��cos �d)+
1
2

��� 2

=��

i=1,2

ci� q̇i �2 �	��̇ 2 (51)

When �d =0, it is possible to choose �>0 sufficiently large
so that

1
2

��� 2 +{Y1(0)+Y2(0)}(cos ��1)≥0 (52)

Then, it is possible to show that the feedback signals defined
by equation (49) can regulate the posture of the object to
attain an upright position.

5. SIMULATION RESULTS
In order to verify the theoretical findings, we carry out
simulation work in which the proposed control input (43)
has been applied to the dynamic equations of dual 2-d.o.f.
and 3-d.o.f. fingers. Physical parameters of the fingers and
object are presented in Tables I and II. Figures 6 and 7 show

Table I. Parameters of links.

Mass [kg] Length [m] I [kgm2] s [m]

link11 0.3 0.08 0.00016 0.04
link12 0.25 0.07 0.0000102 0.035
link20 0.163 0.05 0.0000034 0.025
link21 0.163 0.05 0.0000034 0.025
link22 0.163 0.05 0.0000034 0.025

Table II. Parameters of object.

Mass [kg] Width [m] I [kgm2]

0.05 0.05 0.0000104
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that fi � fd +(�1)i(Mg/2) sin � for i=1, 2 converge to zero in
0.2 second. Figure 8 shows the convergence of rotational
angle of the object to a constant value, and Figure 9
demonstrates that the balance of two rotational moments at
two sides of the object is attained also very fast. Figures 10
and 11 point out that

��1 =� 1 � (Mg/2)(cos �� (Y1 +Y2)	
�1 sin � ) → 0

and

�� 2 =� 2 � (Mg/2) (cos �+(Y1 +Y2)	
�1 sin � ) → 0

respectively. However, � does not converge to zero, but to a
nonzero constant value. Next, we add the sensory feedback
input u�i of equation (48) to equation (43) so that the control
input in this case has been designed in equation (49) with
�=0. The desired rotational angle of the object at this case
is chosen as �d =0[Rad] and it is assumed that r1 =r2 and
f1(�x)=f2(�x) for all �x≥0. It has been shown that the
fi � fd +(�1)i(Mg/2) sin � for i=1, 2 converge to zero very
quickly, as shown in Figures 12 and 13, respectively, and

Fig. 6. f1 � fd �Mg/2 sin �.

Fig. 7. f2 � fd +Mg/2 sin �.

Fig. 8. Rotational angle of the object.

Fig. 9. Difference between Y1 and Y2.

Fig. 10. �1 �Mg/2(cos ���1(Y1 +Y2) sin �).
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� → �d =0 in Figure 14. The convergence of � → �d =0 as
t → � implies convergences of fi → fd and �x1 ��x2 → 0 as
t → �. Thus, the simulation results reconfirm the correct-
ness of the theoretical findings.

6. CONCLUSIONS
This paper has shown the existence of a sensory-motor
coordination for dynamic stable grasping of a rigid object
by means of a pair of multi-DOF fingers with soft and
deformable finger-tips under the effect of gravity. Computer
simulation has verified that the sensory feedback realizes
not only stable grasping in a dynamic sense but also controls
an object posture in the vicinity of its upright position.
Preliminary experimental results in the case that a setup of
a pair of fingers and a rigid object is placed in a horizontal
plane will be presented in a future paper.20 Some new results
regarding the experiment of the case that the setup is placed
in a vertical plane will be presented in a future paper.
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Fig. 13. f2 � fd +Mg/2 sin � (Case 2).

Fig. 14. Rotational angle of the object (Case 2).

Soft tips248

https://doi.org/10.1017/S0263574701003976 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574701003976


9. H. Maekawa, “Grasp and manipulation by a multifingered
hand using tactile information”, Proc. of the 32nd ISR (Int.
Symp. on Robotics), Seoul, Korea, pp. 790–797 (2001) .

10. G. Casalino, G. Connata, G. Panin and A. Caffaz, “On a two-
level hierarchical structure for the dynamic control of
multifingered manipulation”, Proc. of the 2001 IEEE Int.
Conf. on Robotics and Automation, Seoul, Korea, pp. 77–84
(2001) .

11. T. Schlegl, M. Buss, T. Omata and G. Schmidt, “Fast dextrous
regrasping with optimal forces and contact sensor-based
impedance control”, ibid, 103–108 (2001).

12. J. Butterfass, M. Grebenstein, H. Liu and G. Hirzinger, “DLR-
Hand II: Next generation of a dextrous robot hand”, ibid.,
109–114 (2001).

13. A. Cole, J. Hauser and S. Sastry, “Kinematics and control of
multifingered hands with rolling contact”, Proc. of the 1988
Int. Conf. on Robotics and Automation (1988) pp. 228–233.

14. S. Arimoto, P.T.A. Nguyen, H.-Y. Han and Z. Doulgeri,
“Dynamics and control of a set of dual fingers with soft tips”,
Robotica 18, Part 1, 71–80 (2000).

15. S. Arimoto, K. Tahara, M. Yamaguchi, P.T.A. Nguyen and
H.-Y. Han, “Principle of superposition for controlling pinch

motions by means of robot fingers with soft tips”, Robotica
19, Part 1, 21–28 (2001).

16. S. Arimoto, “Reduction of complexity in learning dexterous
multi-fingered motions: A theoretical exploration into a future
problem C.E. Shannon raised”, Communications in Informa-
tion and Systems 1, No. 1, 1–14 (2001).

17. J. Fagard, “Manual strategies and interlimb coordination
during reaching, grasping, and manipulating throughout the
first year of life”, In: S.P. Svinnen, J. Massion, H. Heuer and
P. Casa (eds.) Interlimb Coordination Neural, Dynamical, and
Cognitive Constraints (Academic Press, New York, 1994)
pp. 439–460.

18. E. Thelen, J.A.S. Kelso and A. Fogel, “Self-organizing
systems and infant motor development”, Developmental
Review 7, 39–65 (1987).

19. E. Thelen et al., “The transition to reaching: Mapping
intention and intrinsic dynamics”, Child Development 63,
1058–1098 (1993).

20. H.-Y. Han, S. Arimoto, K. Tahara, M. Yamaguchi and P.T.A.
Nguyen, “Robotic pinching by means of a pair of soft fingers
with sensory feedback”, Proc. of the 2001 IEEE Int. Conf. on
Robotics and Automation, Seoul, Korea (2001) pp. 87–102.

Soft tips 249

https://doi.org/10.1017/S0263574701003976 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574701003976

