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TRANSFORMATIONS FOR
MULTIVARIATE STATISTICS

PATRICK MARSH
University of York

This paper derives transformations for multivariate statistics that eliminate asymp-
totic skewnessextending the results of Niki and Koniskl986 Annals of the
Institute of Statistical Mathemati&8, 371-383. Within the context of valid Edge-
worth expansions for such statistics we first derive the set of equations that such
a transformation must satisfy and second propose a local solution that is suffi-
cient up to the desired ordekpplication of these results yields two useful corol-
laries First, it is possible to eliminate the first correction term in an Edgeworth
expansionthereby accelerating convergence to the leading term normal approx-
imation Second bootstrapping the transformed statistic can yield the same rate
of convergence of the doubler prepivotedbootstrap of Berai1988 Journal of
the American Statistical Associati@8, 687—-697, applied to the original statis-
tic, implying a significant computational saving

The analytic results are illustrated by application to the family of exponential
models in which the transformation is seen to depend only upon the properties of
the likelihood The numerical properties are examined within a class of nonlinear
regression modeldogit, probit, Poissonand exponential regressions/here the
adequacy of the limiting normal and of the bootstfafilizing the k-step proce-
dure of Andrews2002 Econometrica70, 119-162 as distributional approxima-
tions is assessed

1. INTRODUCTION

Valid asymptotic corrections to limiting distributions the form of Edge-
worth expansionsare available for a variety of econometric estimators and.tests
However the use of such expansions specifically as inferential tools has proved
somewhat limited Instead Bartlett correctionthe bootstrapand Laplace or
saddlepoint approximations have proved more popiidact, all of these tech-
niques rely on the theory of Edgeworth expansions to justify their higher order
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validity. For example see the derivation of Bartlett corrections in McCullagh
(1987), the synthesis of the bootstrap and Edgeworth expansion in(£Ez902),
and the derivations of saddlepoint approximations in Darii€364 and Durbin
(1980, all of which illustrate this point

This paper attempts to make use of the Edgeworth expansion as a practical
tool. First we detail precisely the conditions under which the expansion is jus-
tified, ensuring that the required conditions are verifiable in a straightforward
way. Second we consider the statistic for which we want the expansion as a
choice in itself specifically by choosing a nonlinear transformation so as to fix
the properties of the resultant expansiéior example it will be shown that
it is possible to improve the rate of convergence of the leading,té&om
O(N™%¥2) to O(N™1), whereN is the asymptotic argument of the serigsmost
applications the sample size

The effect of nonlinear transformations upon the efficacy of asymptotic expan-
sions has been considered in the literatdRillips and Park1988 examine
the effect that different algebraic formulations of nonlinear hypotheses have on
the Wald testPhillips (19793 and Niki and Konishi(1986 derive Edgeworth
expansions for transformations of a univariate statistttereas Phillip$1979b,
Taniguchi (1991), and Marsh(2001) consider the Edgeworth expansion of
Fisher’'sz-transformation of the serial correlation coefficient

Here these results are generalized in the following.vitawyill be assumed
that the statisticor indeed an approximation to it suitable in distributiqer-
mits a valid that is with known order of errgrEdgeworth expansioihe sta-
tistic may be multivariate and the data from which it is derived may be dependent
and heterogeneously distributethen we identify what is perceived to be a
fundamental difficulty in the usage of such expansidrtss is that the oscilla-
tory nature of the polynomial corrections to the leading term asymptotic distri-
bution causes nonmonotonicitgarticularly in the tails of the distributign
so-called tail difficulty(see Niki and Konishi1l986 Hall, 1992 App. V). The
suggested transformation wills in Niki and Konishi{1986), thus be that which
eliminates the asymptotic skewness coefficient and thereby limits this tail dif-
ficulty to the greatest extent

The main results of this paper are contained in two theorems and two corol-
laries The first theorem derives the set of equatiéasube of coupled second-
order partial differential equationghat the transformation that removes
asymptotic skewness must satisfjnere will be in general a multiplicity of
solutions to these equatiarBpecializing the problem slightliessentially requir-
ing that the moments depend upon some set of parameters of fixed dimension
the second theorem vyields a particular solutidhe first corollary shows that
we may find a transformation such that the leading term has an order of error
of O(N™1), rather than the usu@(N~%?). Similarly, the second corollary shows
that if the bootstrap is used to approximate the distribution of the transformed
statistic the order of error committed @(N~%2). Although these results are
simply the usual orders of errors for both the limiting and bootstrap approxi-
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mations applied to symmetrically distributed statistexsd are therefore some-
what obvious they highlight a key point of the papewhich is that the
Edgeworth expansion may be employed in such a way as to turn a first-order
problem into a second-order ane

To be of practical use these results need to offer at least some advantage
over the techniques mentioned at the beginning of this introductiaa cer-
tainly true that derivation of Edgeworth expansions can be a formidable exer-
cise as exemplified by the derivations contained in Sarga®76), Phillips
(1977319771, Satchell(1984, Sargan and Satchel1986), and more recently
Linton (1997). However the same is true for both Bartlett corrections and sad-
dlepoint approximationsand indeed the latter are only available under more
restrictive conditions

The bootstrap has become by far the most widely used higher order inferen-
tial tool in econometricsSee for example Hall (1992, Horowitz and Savin
(2000, and Horowitz(2001), among many otherdlthough it depends upon
Edgeworth-type expansions for its validitgppropriate resampling schemes
negate the necessity of calculating the expansion it3élfis the theoretical
complexity of the expansion is replaced by the computational complexity of
Monte Carlo and resamplinglowever unlike approximations derived from an
expansion those from the bootstrap are conditional upon the sathpleis
they apply to the dataather than the modefFor any given samplealculation
of bootstrap critical values for a test is trivial given modern equipment and
software however this needs to be repeated for every sanfpl@vercome the
computational burden in nonlinear models Davidson and MacKini®99
and Andrew2002 propose a more convenient procedure requiring only a finite
number of steps in an iterative optimization routi@mbined with double
bootstrap or prepivoting in the language of Berdh988, and requiring only
two steps in the optimization we have potentially a very powerful,tdeliv-
ering an order of error o©O(N~%2). However even with a relatively modest
sample sizenumber of bootstrap iteratior{at both levels and Monte Carlo
replications in the thousanda single experiment would require the generation
of billions of pseudorandom numbemsven for a univariate statistiélthough
perfectly feasiblethis does require both time and the availability of sophisti-
cated pseudorandom number generators having very long periods

Recalling that a one-level bootstrap wilh general have an order of error
of O(N™1), in coverage probabilityand for the two-level bootstrap it will be
O(N~%¥2) (see Beran1988), this puts the results of the two corollaries of this
paper in contextThat is we may deliver the same order of error but at a sig-
nificantly lower computational cosalthough this must be offset by the cost in
deriving the relevant transformatiolhe computational saving may be quanti-
fied. If the last bootstrap level consists of 180B iterations the computation
length for the methods of this paper di¢B)% of those for the bootstrap yield-
ing the same order of errom some circumstancesuch as calculation of a
symmetric confidence interval or application of a symmetric, tdst error in

https://doi.org/10.1017/50266466604205084 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604205084

966 PATRICK MARSH

coverage and rejection probabilities for the one-level bootstra@éke 2). In
such cases the practical relevance of transformation methods appears limited in
comparisonbecause this order of error cannot always be attained by a leading
term approximation

The methods of this paper are illustrated in two separate secfitvesfirst
applies the theorems to the distribution of the sufficient statistic in the expo-
nential family Doing so reveals that the transformation required depends only
upon the log-likelihood and its derivativeBhis result adds to thosancluding,
for example Durbin (1980 and Armstrong and Hillief1999, in which prop-
erties of for instance maximum likelihood estimatoréMLE), are derived
directly from the likelihood not from the form of the statistic itselfThe sec-
ond illustration concerns the numerical properties of the two corolla@esr
four nonlinear regression moddlsrobit, logit, Poissonand exponential regres-
siong, the transformation that removes asymptotic skewness and delivers asymp-
totic normal inference of ordéd(N 1) is found Then standard normal quantiles
are used as approximations to those of the Mi&sobtained by Monte Carlo
simulatiorn) and those of the transformed statist®imilarly, bootstrap critical
values are obtained for both statisti@s the logit and exponential regression
casesand the nominal and true rejection probabilities analyzed

The plan of the paper is as followSection 2 describes the notation used
and the assumption required to justify the Edgeworth expansion for the density
and distribution of a multivariate statistiend it motivates consideration of trans-
formations of that statisticThe main results are then contained in Section 3
Section 4 applies the theorems to the cases where the statistic of interest is the
sufficient statistic and a linear combination of its elemeBtsction 5 provides
a numerical comparison first with respect to the limiting standard normal and
second with respect to the bootstrap within the nonlinear models mentioned
previously Section 6 then conclude$he proofs of the two theorems are con-
tained in the Appendix

2. PRELIMINARIES AND MOTIVATION

Before fixing the conditions under which the results of this paper agoiyne
notation is required for expansions for multivariate statisties Xy be ak x 1
random vector with densitf(x), distribution Fy(x), characteristic function
Mx(A), cumulant generating functiox(A) = In[Mx(A)], and vth cumulant
defined by

9"Kx (M)
OAL..LOAY

5 Zij:l}.

A=0 i

For a full account of the notation involved see McCulla@®87 Ch. 2), in
particular for the generalities of index notation and the summation convention
The statisticXy may be for example an estimator or a test derived from some
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sample of sizeN, or indeed an in-distribution approximation to @f suitable
order In general we will assume that & — oo, Xy —¢ N(0, xy'2) and that
the densityfy (x) may be expanded as

b
fn(X) = dr(X; k3 '2) {1"' %Cj,N(K)Qj(X)} +0o(N~(P~2/2), (1)
e

for someb = 3 and wherep, (x; K /I2) is thek-dimension normal density with
Covarlance:c'1 iz the COEﬁICIentﬂ:J)N(K) are an asymptotic sequenceNnand
depend upon the cumulants X¥f, and theg;(x) are (Hermite tensoralpoly-
nomials of degree3n the elements ox.

For details of relevant conditions and assumptions under wtiglnolds
the reader is referred to Sargd®76, Phillips (1977a, Bhattacharya and Ghosh
(1978, Durbin (1980, Sargan and Satche(ll986, and Hall (1992, among
many othersA sufficient—and more importantverifiable—condition is given
when the cumulants ofy satisfy the following condition

Assumption 1 Let )} be thejth cumulant ofXy. Then
Kl = N=(-272 EKQ"N_“_D’ 2)

where theO(1) cumulant coefﬁuentsxx, are free ofN and we also assume
K'l = 0.

Assumption 1 guarantees that {f) the coefficientsc \(«) are of order
O(N~U~2/2) "which in turn determine the rate of convergence of the approxi-
mation However this paper is concerned with the application (4§ as an
approximation to the finite sample density Xf,. Two aspects influence the
accuracy of such approximatiamspart from the number of correction terms
included (i.e,, b — 2), the accuracy will depend upon wherie the sample
space forXy, we evaluate the approximatioAs noted by Niki and Konishi
(1986 the polynomialsy;(x) tend to be highly oscillatory in particular for large

X (i.e, in the tail areas Moreover they find that the highest order polynomial
occurs for everyb, with the asymptotic skewness terfrﬂyl Therefore for the
univariate case they suggest transformiagvia a nonlinear function to remove
this term Other investigations of the impact of nonlinear transformations on
the accuracy of asymptotic approximations are contained in Houga8g®
(for univariate likelihood, Phillips (1979b (in autoregressionand Phillips and
Park (1988 (for Wald tests of nonlinear restrictions

An interesting slant on the problem is provided by HA®92 App. V), who
shows thatthe product,(X; «i'2)¢; (k)¢ (x) involves the dominant term

(N"2253) Iy ;3 2),
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so that the integraland hence the approximating distributjomill not con-

verge at all ifx = O(NY®). This is relevant becaustor example if we follow

some procedure that decreases the size of a hypothesis test for larger sample
sizes then the critical value of the test will grow witk. If we eliminate asymp-

totic skewness then the polynomiajg x) become of degreejif j is even or

2j — 1 (if j is odd), and so the distribution will not converge if now= O(N¥4),

Evidence that the oscillations of the polynomiaj$x) do cause tail diffi-
culty that is of concern may be found in the numerical analysis of the Edge-
worth series for the ordinary least squaf@4.S) estimator for the autoregressive
parameter in an ARL), contained in Phillipg1977hH. Nonmonotone behavior
of the approximating distribution function manifests itself even for moderate
values of the parameter and in reasonable sample. Samdar results are con-
tained in the analysis of Edgeworth approximations for the information matrix
test in Chesher and Spad¥991.

Later in this paper we consider a family of nonlinear regression models involv-
ing a single covariate{w: }\,. For eachit will be shown that the asymptotic
skewness coefficient of the bias-corrected Mifar the coefficient on that
covariate takes the form

K|3 _ ka rW

1™ \/N ’
whereh = h(g) is the bias-corrected version of the MLE k, is a constant
depending upon the particular model characteristae®l r,, is the skewness

coefficient of the covariates; (precise details are giver1 in Section Fo order
O(N™1) the Edgeworth expansion for the distributionfofs

k,r,(h?—1)
6VN

The approximation for the exponential regression case for whjch —1 for a
sample size oN = 25 and for two different covariate configurations having
skewness of approximately, ~ 125 andr,, ~ 5.7, respectivelyis plotted in
Figure 1

Clearly the approximation is nonmonotonin fact for (3) to be monotonic
whenr,, =~ 12,5, we would require over 5000 observationdf higher order
inference based upon Edgeworth expansions is to be made more prabgocal
the issue of nonmonotonicitand hence tail difficultyneeds to be overcome

Pr(h(B) = h) = d(h) — ¢(h){ } +O(N™). 3)

3. OPTIMAL TRANSFORMATIONS

In this section we first generalize the results of Phill{g®79a and Niki and
Konishi (1986 to the multivariate casd-ollowing the heuristic argument of
the previous sectigwe call a transformation optimal if it removes asymptotic
skewnessthereby reducing the degree of the highest order polynomiél)in
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2 4

Ficure 1. Edgeworth approximatio(B) for the distribution om(ﬁ), with N = 25, for
rv =~ 12.5 (solid) andr,, =~ 5.7 (dashedl in the exponential case

Suppose that we have thedimension statisticK = Xy, with density fy (%),
satisfying Assumption ,lwith Edgeworth expansion given kL) and cumu-
lants K;g and consider an arbitrary nonlinear transformation of the fgrm
g(X). We will consider transformations satisfying the following assumption

Assumption 2

(i) Let the dimension 0§(X) bed, whered = k.
(i) g(X) is v times differentiablewherev > b, with derivatives

d'g(X) Ko
9 axp Xy 2T
with the g, continuous in a neighbourhood of= ky = E[X] and all minors
of g,, bounded away from zero

Assumption 2 requires the followindrirst, because we are transforming a
multivariate statisticwe require the dimension of the transformation to be no
larger than the original statistiSecondwe will require that the functiog =
g(X) may be expandediroundr, as a power series of the form

9" =0+ >0 Z+O,(N 2 r=1...4d, ()
j=1
where
; 9'g(X)

and Z=(X-1)=0O,(N"Y2),

T XX |y
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Under Assumption 2the density and distribution af(X) permit a valid Edge-
worth approximation(see Skovgaardl981 Sargan and Satchell986. This
assumption is stronger than those used in the latter two papers only in that we
desire a transformation that will affect each of the terms in the expansion up to
and including orderb. The density ofg may be approximatedor example to

O(N—S/Z)’ by
ften = @ {6 N2y, (00 + gy, ()
-1
+ 12 (12K£If2h|3(x) + 3Ké‘,‘1h|4(x)
+ kg kg hy, J3(X))}- (5)

In (5) Klg'jj is thejth term in the expansion of theth cumulant array of the
statisticg. Becausgy is expressible as a power series{nthen the cumulants

of g are thus the generalized cumulantsXofas detailed in the AppendiXhe
transformation we want is such that the asymptotic skewness term vanishes

that is Kglfl = 0. This is achieved in the following theorem

THEOREM 1 Suppose X satisfies Assumption 1 ane- g(X) satisfies
Assumption 2. Then

kg =0
if and only if g(.) solves the d-cube of coupled partial differential equations
gll(T)KJfl + 39|2(T)K,|(,21 =0. (6)

Remarks

(i) The set of differential equation®) are invariant with respect to affine
transformation hence issues of standardizatiowith respect to the mean and
variance do not impact upon solutions to them

(ii) To eliminate asymptotic skewnegs.) must satisfy(6). However some-
times the exact cumulants of will be known rather than their expansion
Because by definition the exact cumulants and their leading term coincide asymp-
totically, it may be simpler to solve

a1, (1) k3¢ + 39, (1) K3z = 0. (7

(ii ) In general (6) and(7) describe a set ad® coupled second-order partial
differential equationsHence solutions even when they existmay be difficult
to find (see Hougaardl982, whereas ifd < k then there will not exist an
orthogonal basis for a solutiqisee McCullagh1987 Ch. 5). Overcoming this
problem will be the purpose of the next theorem
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(iv) The requirement here is only that asymptotic skewness be elimirated
much weaker condition than requiring that all excess skewness be removed
Thus to simplify the problemwe need only look for loca{up to an asymp-
totic order ofO(N~%?)) solutions This is still true even if the forn(7) is used

To implement the transformatiomhat is to find a feasible solution t¢6),
we need to specialize the proble®pecifically we impose a parameterization
that the density oK is fy(x;6) depending on a-vector of parameter$ and so
X has cumulants given by;(' = K>I<”(9). In this setupto solve(6) we make a
preliminary transformation of the form

X—=h=nh(X0),

depending both upon the statistic and the paramAggin we assume thdt
satisfies Assumption 1 and so permits a valid Edgeworth approximakios
transformation is novg = g(h). Hence a solution t6) is given by the follow-
ing theorem

THEOREM 2 Let g/ and gi denote the first and second derivatives of the
ith element of g with respect to the ith element of h, evaluateq;atThen a
solution to the set of d ordinary differential equations

gii K[i{’iii + 3gii’i = O; i= 1,...,d, (8)
where K" is the leading term of the expansion edm(h’,h',h"), is also a
solution to (6). Moreover a solution to (8) exists, unique up to constants of

integration.

Although Theorems 1 and 2 deliver transformations that remove the highest
order Hermite polynomial from anlgth order approximatigroften we are able
to obtain a stronger result

COROLLARY 1. Suppose that there exists an affine transformation of h,
h — h =d+ Dh, so thatr; = E[h] = 0+ O(N™') and henceq%,2 = 0. Defin-
ing the transformation, g= g(h), satisfying (8) and letting
z= (kgy?) Y2(g(h) — g(7s) + ©),
¢ = —xgy2(gy, (1), (1)) 7?g,(7),
wherex2 is the asymptotic covariance of g, then

f2(2) = ({1 + O(N"H)}, 9)

where¢,(z) is the standard normal density.
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Proof Because now alsej , = 0 then the only other term of ordét—Y/2 is
¢, as defined previousjywhich may be removed becau$®) is invariant to
affine transformation u

We may also consider the transformation in conjunction with an appropriate
one-step bootstrafBuppose that we have a samplg = (yi,..., yn) having
distribution Py . The statistic of interest iX = Xy = X(Vy,...,Yn), Which
may be for example an estimator fgror test uponthe unknown parameter of
interestd. Let Ay be anyN-consistent estimator of. Let Y,; be resampled
observations having distributid?, ; , that is the empirical distribution ofy,
and similarly letX*, h*, andg* denote the bootstrapped versions of the statis-
tics considered in Theorems 1 and 2 and Corollaryfie cumulative distri-
bution functions ofX, h, and g will be denoted byFy(., ), which are to
be approximated byy(.,fy), the empirical distribution of the bootstrapped
statistics

COROLLARY 2. Suppose that X has an Edgeworth expansion given by (1),
h satisfies the conditions of Corollary 1, and=gg(h) solves (8). Then

(i) Fn(X.0) = Fn(X.6n) = Op(N71),
(i) Fn(g,0) — Fu(g,6n) = On(N"%2).

Proof Following Beran(1988 the empirical distributiong (., 8y) permit
expansionsuniform in the first argument and local # of the form

Fu(X,6y) = Fy(X.0) + N72f,(X,6) + O(N™Y),
Fn (g, éN) = Fy(g,0) + N—lf_z(g’g) + O(N~%2),

wheref,(X,6) andf,(g,0) are polynomials derived from the respective Edge-
worth expansions foX andg and the rate of convergence is determined by the
leading term in that expansipthat is respectivelyfrom (1) and (9). Conse-
quently expandingf;(X,8) andf,(g, #) aroundédy and noting

fi(X,0) — fi(X, ) = Op(N~V2),

f2(9,0) — f2(g,6n) = Op(N"Y2)

proves the result u
Provided that there is an affine transformation that removesOii¢~%/?)

term in the expansion of the meaborollary 1 contains the stronger result that

asymptotic inference is optimized via use of a transformed statistic given by

Theorem 2 That is if we use the limiting normal to obtain probabilities or

quantilesthen the transformation minimizes the order of error for these values
Similarly, Corollary 2 optimizes the use of a one-step bootstiaghe sense
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that as is well knownthe bootstrap has a faster convergence rate for symmet-
ric rather than asymmetric distributiarie fact, the one-step bootstrap applied
to the transformed statistic can have a convergence rate equal to that of the
two-step bootstrap applied to the original statistic

With the general results in the preceding theorems and corolldniethe
next two sections we will analyze the resulting properties of such transforma-
tions first their analytic and then their numerical properties

4. ANALYTIC PROPERTIES IN THE EXPONENTIAL FAMILY
4.1. General Functions of the Sufficient Statistic

As a general applicatigrconsider a sampl¥ = {y,..., yn}, generated from a
member of the exponential famjlwith density

fy(y;0) = expit'n — K(n) + r(t), (10)

wheren = (), properties of which are detailed in Barndorff-Nielsen and Cox
(1989. Many interesting Gaussian econometric models are exponential mod-
els examples of which are contained in van Garde(E907).

Inference abou# will be conducted through functions of the minimal suffi-
cient statistict. In this section we will derive the transformationtpfis described
in the previous sectiarin particular it will be seen that this transformation is
defined only by the properties of the sample density itdeifst we need to
check when Assumption 1 holdshe cumulant generating function bfs

Ki(A) = Inf exp{t'n +t'A — K(n) +r(t)}dt
Rk
= K(A + 1) —K(n),
and hence the cumulants are

_9'K(A+ 1)
OAL.. O

K

=K (). (11)

A=0

To proceednote that ifs = At + a, whereA anda may depend upoi but not
7, then(i) sis a canonical statistic an@ ) the sample density may be written

fy(y;0) = exp{s'y — K(y) +r*(t).

Thus the exponential form of the density is preserved by affine transforma-
tions and moreover we may assume without loss of generality Efat = 0

by choosing the constaatappropriatelyIn particular we can define a canon-
ical statisticS = N¥?t, and if in addition the cumulants & satisfy

Kl = KW (y) = O(N), (12)
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then Assumption 1 holds because Bry = N~ Y2y, then(12) implies
ki = K (n) = O(N~?~1/2), (13)

noting that higher order terms in the cumulant expansion vaiista conse-
guencethe density oft admits a formal Edgeworth expansion

An analogous result for a nonlinear transformatigr= g(t), may be estab-
lished given only that(12) holds as in the following theorenproved in Marsh
(2002).

THEOREM 3 Given a transformation t> g(t), satisfying Assumption 2,
the density of g permits a valid Edgeworth expansion provided only that there
exists an S satisfying (12).

Because both and g permit Edgeworth approximations for their densities
we may apply the criterion of an “optimal” transformatidhwe consider the
case wherey = 0, implying thatfy(y;6) is full exponential(i.e.,, k = d), then
applying Theorem 2g(.) must satisfyusing(11),

9, (DK@ () + 3g,,(K?(6) = 0, (14)

wherer = E(t) = K’(6). Notice that(14) is specified purely in terms of the
properties of the sample densifyhat is if we define the log-likelihood for the
sample byl (6) = 0't — K(#) + h(y), thenK®(9) = —1®(9) for v = 2, and
T =1—1"(6). A solution to (14) is found by applying Theorem. Define a
symmetricP = p' such that

PPl = —1?(g)

and letz = Pt, so the cumulants of are

Kkp'2 = pliplzKivia();  kplz's = piplzpiKivizis(g);

then the optimal transformation must satisfy

ol (r)rzy' +3gi(r,) =0, i=1...4d, (15)

wherer, = Pr.

This explicit dependence on the likelihood is a further result in the spirit of
Durbin (1980, Hougaard(1982, and Armstrong and Hillie1999. In those
papers the object is to derive exact or higher order asymptotic densities of esti-
mators and testpurely in terms of functionals of the likelihood and its deriv-
atives Herg the optimal transformation is defined entirely in terms of a
differential equation in the derivatives of the log-likelihood
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4.2. Tests of a Particular Form

Often even for multivariable hypothesewe require a univariate statistitn

this section we analyze the properties of the transformation acting upon a
weighted average of the components of the sufficient statisti slightly altered
setup consider the full exponential model

fy(y;v) = exp{s'y — K(y)},

wheres = {s,,...,s}" andy = {y4,...,7«}, and the set of statistics defined by
k
h= 2 s, (16)
i=1

the set of weighted averages of the canonical statiStiatistics such aél6)
encompass point optimal and locally most powerful testslgfy = vy, against
Hq.:y = v, (see van Gardereri998 and also statistics with asymptotically
optimal propertiegsee Elliotf Rothenbergand Stock 1996. As a conse-
quencewe look for a transformation df, g = g(h), satisfying the conditions
of Theorem 2 Defining

t=As A=diag{a},

then the density may be written

f(y;v) = fy(y;60) = exp{t'6 — K(6) + r(t)},

andh then becomeb = Zikzlti. Now from (11), the cumulants of are

J. 31K (0)
K -
o901 90

> =i

Ji
and hence the cumulants bfare

. 5 31K (0)

J1 Ik
j1+...+]‘k:j 801 . 80k

and in particular

K 9K ()
E(h)=7m=> ——, (17)
=1 00
so that
; ajTh
kKh= >

i1 Jk*
j1+"'+jk:j*1 601 .o 60k
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On applying Theorem,lthe optimal transformation df is given by
ajTh ajTh
"(h) ———— | +39"(m) — 5 |=0
947 jl+---2+jk=2 00{*...00.x 9t jl+~--2+jk=1 007*...06)
(18)

Solutions to(18) will obviously depend upon the particular form of the likeli-
hood however rearranging gives

aj’Th
din[g/(r)] 1| i+"Ti=2 96406
dTh - 3 8jTh

jot - ti=1 801“...80;2"

so thaf noting (17), the shape of the transformatiomnce againis explicitly
determined by the shape of the likelihodthe general solution t018) is

(ry) = Cy + exp]C +J ( = o
= ex a 20t apix
9(7h . Py R 3\ j+ T2 061 ... 00"

alr, -1
X 2 i h i dTh )
S 000 a6

for constant<C; andC..

5. NUMERICAL ANALYSIS

In this section we apply the results of Section 3 to some simple likelihood based
analysis of nonlinear regression problerrsparticular we considera) expo-
nential and(b) Poisson regression models and also two binary choice regres-
sion modelg(c) logit and (d) probit. In general small sample results for these
models are relatively scarcBome exceptions are the work of McCulladi®87,
Ch. 7), who calculates Bartlett corrections for the first two mogdglsnstrong
and Hillier (1999, who derive an expression for the exact distribution of the
MLE for exponential regressigmnd Horowitz(1994) and Horowitz and Savin
(2000 who apply higher order bootstrap methods in binary probit

Before proceedingwe note some crucial properties of likelihood based on
independent observatignehich will vastly simplify application of the trans-

formation for all these modelsety;,i =1,...,N, be independent observations
with densityf;(8) depending upon som@ X 1 parameterB, and with sample
log-likelihood

N
In(B) = __Elln[ £ (B)]

and denote the MLE foB by 3. Define the generalized mean information mea-
sures(see McCullagh1987, Ch. 7) by
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a v b
PR | LTI Sy (UL
v N [\ 9B1...0Bq ol ...oBY

where2, j, = v and for example —Z; ;, is Fisher informationAs a conse-
quencethe first three cumulants g8 are asymptotically

K(B) = B+ NN T'wTlz(T, ;. T, 1.,) + O(N™?),
kZ(B) = N"'T; i, + O(N™?),
KE(B) = N2l T (T o = T ,)- (19)

For all the models listed previously we will consider approximating the distri-
bution of the standardizetbias-corrected MLEgiven by

h= h(ﬁ) = Vz-il,izm(lé —Bo— l(Ill T JZ(IIZ iz iz,jljz)))’ (20)
with asymptotic cumulants
Kiy = O(N™%?2),
Ky = lg + O(N™h),
|3 = N2 VZII gAY lz(Zl Joko |212k2) + O(N 3/2) (21)

Crucially, by standardizing the MLE as i(0), the following points should
be noted From (21) Assumption 1 holds foh(3) (with b = 3) and moreover
for any function satisfying Assumption The elements oh(g), (hy,...,hg),
are asymptotically independetaind therefore the conditions for Theorem 2 are
met that is we may transform thé; individually. Finally, by considering the
bias-corrected MLE the conditions of Corollary 1 are nastd the transforma-
tion will be optimal As a consequencand also to keep the algebra as brief as
possible we will only consider the case where the mean function for all of the
regressions depends only updn= exp{a + Bw;}, for covariatesw; satisfying
> w; = 0. We will assumex is known and that we are interested in a homo-
geneity hypothesjghat is Hy: 8 = 0. Assuminge is unknown and replacing
it with an \/N-consistent estimator would not affect the order of error of the
approximation

For each casehe density of theth observation is

(@ f(B) = A texp{—yi /Al
(b) fi(B) = exp{=A A /!,

. A
(© fi(B)=y™A=y)"P  pu= o
In[A;]
(d) f(B) =y A=y @i= f $(2)dz (22)

where¢(z) is the standard normal density
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The simplifications we have placed upon the regressions fiveeach case
and undeHgy: 8 = 0,

N
> we
1
wherek, is a constant depending upon the valuexadind the particular char-

I3 — N-1/2 i=
k N )3/2’
acteristics of each likelihoodndeed after some algebrave find

Kh1 =

(23)

HM

(a) exponentialk, = —1,
(b) Poissonk, = —2e*/2

(e* -1,
1+e”
(d) probit: k, = (daPa(l = @) 2 (a®u(1 = @) + o),

a

(c) logit: k, =2

whered, = [* ¢(z)dzand¢, = e*“Z/Z/VZW. Sq given a valuew, the suc-
cess of Iow—qrder Edgeworth approximations for the density of the standard-
ized MLE h(B), even for these very simple caseepends crucially upon the
value of

5w
GuF

the sample skewness coefficient of the covariate (ws,...,wy)'"
Because in all cases the conditions of Theorem 2 are tmetransformation
we seek satisfies

g”(h) + 3k, ryg'(h) =0, (25)

(24)

fw

||'M

so that upon standardization
A g(h(B)) — g(h(0))

"B) = m( g'(h(0)

and solving(25) we find

exp{—3k,r h(B)}
3k, ry

) —4 N(0,2), (26)

g(h(pB)) =

To assess the numerical performante@ each model we fixx = 1 and
N = 25 and consider two sets 6fenteredl covariates Set (i) was generated
from an exponential random variable with meai@1B and setii) from a uni-
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form [0,5], giving values of(24); r!) = 12538 andr !’ = 5.693 respectively
Based on likelihoods froni22) and settingd = 0, h(3) andr(8) were simu-
lated with 2Q000 replicationsusing the internal numerical optimization rou-
tine in Mathematica

The quantiles for the empirical distribution lof 3) andr (3), for each model
configuration are given in Table Jlalong with those for the standard normal
the limiting distribution for eitherAlthough the numerical accuracy of the trans-
formation is by no means perfethere is an obvious improvement over that of
the bias-corrected MLEThis is particularly so for the binary choice models
and when the covariate has significant skewn&hsis for these casgthe theo-
retical improvement implied by Corollary 1 manifests itself in the improved
ability of the standard normal to approximate the distribution of the trans-
formed statistiq26).

The second set of experiments concerns the application of the bootstrap in
these nonlinear modelspecifically the logit and exponential regressiofd
interest will be the true cumulative probabilities of bootstrap critical values for

TasLE 1. Quantiles of the empirical distribution of the bias-corrected ML(B)
and the transformed statisti¢3)

re) ~125 ra) ~57 rg) ~125 ra) ~57

NO1) h(g) r(B) hB) (B hB rB)  hB) 1B

(a) Exponential Regression (b) Poisson Regression
—-1282 —-1143 -1292 -1308 —-1306 —-1197 —-1225 —-1200 -1.225
—-0.842 —-0.771 —-0.796 —-0.909 -0.844 —-0.753 —0.850 —0.753 —-0.850
—-0.524 -0481 —-0503 —0582 —-0535 —-0.480 —-0579 -0.481 -0.558
—0.253 —-0.249 -0.260 —-0.284 -0.262 —-0.261 -—-0.332 —0.259 -0.303
0 —0.030 —-0.032 —-0.013 —-0.011 —-0.036 —0.040 —-0.029 -0.043
0.253 Q149 Q178 Q216 Q254 Q151 Q201 Q151 Q208
0524 Q343 Q419 Q452 Q527 Q341 Q486 Q342 Q489
0.842 Q567 Q722 Q735 Q864 0563 Q851 Q566 0848
1.282 Q864 1167 Q110 1305 Q0838 1361 Q846 1322

(c) Binary Logit (d) Binary Probit
—1.282 -0.588 —-1.070 —0.645 —1.136 —0.467 —0.976 —0.942 —-1.092
—-0.842 -0.371 -0.671 —-0422 —-0.753 —-0.323 —-0.695 —0.619 -0.790
—0.524 -0.247 -0442 -0.254 -0464 —-0.161 —-0.457 —-0.375 —0.467
—-0.253 -0.113 -0.214 -0.115 -0.229 Q037 -0.181 -0.153 -0.219
0 0.052 Q034 (0021 Q004 Q192 Q057 Q081 Q030
0253 Q0274 0282 Q161 0241 0339 Q295 0320 0266
0.524 Q489 0551 0325 Q492 0523 0536 0595 0549
0842 Q784 (0861 0546 Q832 Q908 Q941 0942 (0884
1.282 1339 1295 Q894 1342 1616 1474 1493 1353
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both the standardized MLE(B) and the transformed statisti¢3). The pro-
cedure used is thiestep bootstrap described by Andre(@902).

Let Yy = (v4,...,Yn) be the data having likelihootl(Yy;8) and yielding
MLE S. A bootstrap sampl¥;; is generated from the likelihodd Y;:; 3) and a
k-step bootstrap estimator based on a Newton—Raphson iterative routine is
defined by
2 *, -1 *,
9 Inf(YN,,B)> <alnf(YN,B)> - 27)

BIB" /B=Bi-v B B=PBik1

where B, = B. For the parametric bootstrap to be employed here it is suffi-
cient to considek = 1,2 for the one- and two-step bootstrap to have the same
order of error in coverage probability as a bootstrap procedure based on full
estimation of the parametésee Andrews2002.

Define thek-step standardized MLE and transformed statistichpy =
h(Biy) andry, = r(Bj) and letF, n = Fy(hgy;8) andF n = Fn(rz;8)
be their empirical bootstrap distributions based Brbootstrap iterations
Notice that for the transformed statistic at least two steps are needed to en-
sure thatr and r(B) have coincident asymptotic skewne&¥e will also
consider the two-step bootstrap fby,). Following Beran(1988 let F, \ =
FZ,N(FN(h(Z);sz));E) denote the empirical bootstrap distribution of the pre-
pivoted standardized MLHE-inally, denote the bootstrap critical valye$ nom-
inal sizep, by, respectivelyc, y(p), ¢ n(p), andcy n(p) as the pB]th element
in the bootstrap empirical distributior§, v, Fr N, andF, y. These critical val-
ues have error in probabilities of ord&(N 1), O(N~¥2), andO(N~%?) (see
Beran 1988 and Corollary 2 in Section 3 of this paper

Details of these experiments are as followsr both the logit and exponen-
tial regressiondata were generated with = 0 anda = 1, for two sample
sizes N = 25 andN = 50; the set of regressor$) was usedin the caseN =
50, the same set was sampled twic€he full bias-corrected MLE was evalu-
ated say B, for m=1,...,2,500 Monte Carlo replicationgor each value of
Bm @ bootstrap sampl&, was generated and usin@7) the k-step boot-
strap estimates calculateahd from tha,th(bf), hf’zl), andr(%, for b, =1,...,400
bootstrap iterationsSimilarly the distribution ofhz’zl) itself was bootstrapped
(prepivoted giving vaIuesFrEfZN for b, = 1,...,200 double bootstrap replica-
tions The bootstrap critical value®f nominal sizep are then found as the
[pB]th entry in the sorted values fd1|(b11), r(%, and F,ﬁf?N, giving chn(p),
¢.n(p), andcy n(p), respectivelyThe true cumulative probability of these crit-
ical values is then calculated from the empirical distributions of hhém),
r(Bm), and theh?zl) for the double bootstrapThe results are presented in
Table 2

The results confirm the relevance of CorollaryThat is the one-step boot-
strap applied to the transformed statistic does seem to have improved finite
sample performance compared with the one-step bootstrap applied to the stan-

Bl = Bk-1 — <
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TaBLE 2. Monte Carlo cumulative probabilities for bootstrap critical values for
the bias-corrected MLE(3) and the transformed statisti¢3)

N = 25 N =50

P Chn(p) c.nip) cin(p) Chn(p) c.nip) cyn(p)
0.05 0208 Q166 Q207 Q089 Q090 Q089
0.10 0267 Q237 Q267 Q204 Q200 Q203
0.90 Q709 Q728 Q747 Q679 Q804 Q799
0.95 0775 Q783 Q819 Q765 Q898 Q901
0.05 0234 Q195 Q177 Q183 Q101 Q081
0.10 0242 Q245 Q0238 Q233 Q162 Q136
0.90 0696 Q717 Q709 Q708 Q846 Q815
0.95 0747 Q798 Q759 Q801 Q926 Q858

dardized estimatoHowever the asymptotic improvement offered by the trans-
formation appliesin this caseonly for one-sided coverage probabilitidsor
symmetrical confidence intervals the error orders are identical

The performance of the doubler prepivoted bootstrap is not significantly
better than that of the transformed statistidhereas the computation time for
the latter is 200 times that of the one-step bootstidye experiments were run
on a 2 MHz PCA single Monte Carlo replication of 400 bootstrap iterations
for a sample size of 25 required approximatel 8econdsand a period of
160 seconds was required for a double bootstrap with 200 iterations at the sec-
ond level Consequentlywith 2,500 Monte Carlo replications the single boot-
strap required just over an hour of computation time whereas the double bootstrap
required approximately 1 weeKimes for the experiments involving a sample
size of 50 were approximately a third longer

6. CONCLUSIONS

This paper has generalized the results of Phil{iti#79a and Niki and Konishi
(1986 on transformations in univariate Edgeworth series to the multivariate
case To solve the system of differential equations that the transformation must
satisfy (6), more structure on the inferential problem was imposgelding an
asymptotically local solutiorAlthough we lose some generality in the progess
the resultant theorenmheorem 2seems a powerful tool for higher order infer-
ence in a multivariate settindghis is particularly the case if the conditions
required for Corollaries 1 and 2 hol8pecifically we can achieve accelerated
asymptotic that is O(N~1) normal inference and thus utilize the appropriate
tabulated critical values and confidence intervisreover in combination with

the bootstrapinference of orde©(N~%2) is available with a single bootstrap
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offering a considerable computational saving over the equivaierdgrder of
error, double bootstrap

A full analysis of the properties of the transformation is obtained in the spe-
cial case of the exponential familifor general functions of the sufficient sta-
tistics the transformation is defined by a set of second-order partial differential
equations in the derivatives of the log-likelihaddl similar result is obtained
for transformations of the class of statistics defined as a weighted average of
the components of the sufficient statistRerhaps more important than the ana-
lytic are the numerical propertieBor the class of simple nonlinear regression
models considered heréhe transformation is relatively simple to apply and
has reasonable numerical properties

Although the theoretical properties of such transformations are precisely
detailed in this papeone potential weakness is the practical difficulty of obtain-
ing the transformation in cases more complex than considered Hieeerans-
formed statistic is found by solving the set of equations giver{8n how
demanding this might be will vary from case to cadewever a possible way
forward might be to utilize methods analogous to those of André2@92:
specifically to find numerical solutions to these equations that are equivalent
to the analytic onesup to some appropriate order
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APPENDIX

We will require the cumulants of products of the elementXothe generalized cumu-
lants as detailed in McCullaghl987, Ch. 3). For our purposes the first four will suffice
and for referenceare

Kivizia = ivizia 4 liyiaia 4 laginiz
Kiizials = giviziais 4 iaginiaia[3] + kivizgiais[3] + kivizkiaxie[3],
Kiizials = eivizinis 4 eiyclzinla[2] + glagivizia[2] + xiviagizia[2],
+ Kkirgiakizla[4],

Kivizisia = pinizisia o Ki3Ki1’i2’i"[2] + KilvisKizin[Z]’ (A.1)
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where [i] implies summation over similar objectfor example x'viskiz4[2] =
Kil’i3Ki2’i4 + Kil’i4Ki2’i3.

Proof of Theorem 1. The transformed statistic,isipon expansian

1
g=9(7) + (X=17)g, (1) + > Xy = 1), ,(Xy = 7) + -+,

and becaus&(Xy — 7) = Op(N~%2), then it is sufficient to consider only up to the
quadratic termWe write

g =g +Girlzil+girl,izxilxi2; r=1,...,d,

whereZ =X — 7, g, = (9"g(X)/0X;*...9%&)|x—, and note thag" andg" have identical
asymptotic skewness termsghich follows from before and the expansion of cumulants
in terms of generalized cumulantdence for notational convenience we drop the tildes
Following McCullagh(1987 Ch. 3),

= (G, + GL+GyZ',

where(G{ + G] + Gj}) is an operator acting oX, with, for example G}Z containing all
quadratic and bilinear terms in the elementsXofDenote this operator bp', for a
generic element of; then the cumulant generating functiongfs simply

Kg(A) = exp{A, D" }xy; (A.2)

that is exp{A,; D"} is an operator acting upon the cumulantsXfExpansion of this
cumulant operator gives

Kg(A) = {1+ A, D"+ A, A,,D"D" + A, A, A, DD™?D"s + ... }xy,
with

D'y, = g™ + Glrky + - ! 5 Ol K,

The compound operators produce terias example for the cubic
G*GPPGE = §/19i2G3k '3

and so onConsequentlythe cumulant generating function may be written as

1 :
Kg(A) = [fl+g’1x +3 gxx]

+ AL A GGk + GIRO2 ki PR[2] + G124, 002, k0]

i, i3 iz, ig

+ Arl)\rz/\r3[glrllgl r3 |1 i2,iz | grlg g|3 K |1 i2,isia[ 3]

+ 0207202 k2> 4s[3] + g1 g2, gr3 kp'zielalsle]

+ [Higher order termk (A.3)
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Now, for the skewness ternenclosed in the third set of bracket®nsider the objects
in the third termywhich contribute to the asymptotic skewnesgphamely

070701 k= + 01017013 i, k114 3].

From (A.1) we have that

K;g’iz’i3i4 = K;g’iZ’i&iA + K;%K;f’i3’i“[2] + K;g’iZK;g’i"[Z],

sq noting the cumulant expansions given in Assumptiopdrticularly

Kk =0, and kip'ziele=0O(N™?),

denoting asymptotic equivalence by, that is a, ~ b, = a,/b, = O(1), we have
Kipizisia ~ gelvizelaia[ 2] ~ iclyi2icizy'4[2].

Further again becausej}, = 0,

K;g’iz = K;(3’i4 =3 =var[X]~ Kj(f’liz,

which implies that

Kip 12 isle ~ 2(i32)2, (A9

becausdE [X'1X 2] = E[X'2X1].
We note tha{A.4) holds for all permutations ovet, i, is, i, giving

ilpiziaia[3] = 6(x4)2

Thus to reduce asymptotic skewness to zeéooour desired orderand because
K213 ~ 332 we need to solve

0110120 2 k2 + 6412612012, (k142)% = 0.

Premultiplying twice by the inverse of the first derivative matwhich exists by Assump-
tion 2(ii)) gives

sicipiais 4 6073, (kipf2)2 = 0, (A.5)
and noting the definition og;2;,, forrs =1,...,d, (A.5) proves the result |

Proof of Theorem 2. Suppose initiallyk = d. Now X has asymptotic cumulants(}l,
K'x12'2, and so onand in particular consider

kiziz = 0(6),

which is a function of then parameters and is by definition is positive definittnder
the null Ho: 6 = 6o; k"2 = 3(6o) with 6, a fixed point in€Q,. Hence there exists a
positive definite matrixPy 2 = P(6y)~* such that

PolPol=3(6y).
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We define
ZO = POX’
i1 1y, ki2721s, and so onFor anyd € Q) = {6:16 — 6| < 8/\N}

we sayz is locally canonical for fam|||e$Y(y, 0o + 5/\/_) Moreovey for € O, and
zy = P(0)x we have

soz has cumulantg!:

Pr{|z, — z,,| > 8} = O(N~%/2),
and denoting the cumulants of appropriately gives

Ky, = Ky, {1+ O(N"V2)} (A.6)
forall |I]| =j.

That is the asymptotic cumulants @ andz,, agree Becausgasymptoticallythe ele-
ments ofzy are independent we choose tiib element ofg to be a function of theth
element ofzy alone Thus we have the derivatives gf.) as
gt . O 0, . O o . o
G,=|* .o and g, ;,=|: A ISR I . (A7)
of . .0 .+ Gl

Substituting(A.7) into system(6) gives

g ki + 30 =0, i=1...,d, (A.8)

defined for the range ofizt in RY, Q,, say implicitly defined by the sef)),, such that
(A.6) holds To prove the existence of a solution we note first that each equation in
system(A.8) is uncoupled from every otheand second that each is simply a linear
homogeneous second-order differential equatfamally, a sufficient condition for a solu-
tion is thatx,"! is a continuous function of}: ,for 2 ; € Q,, and sufficient for this is
thatP(0) is contlnuous imM,. Consider

P2(0)P = 4.

Denoting derivatives with respect toby P, and>,, we have

PSP 1+P 3P, =3,

and, exists inQj, becauséd = 3 in Assumption 1then so doe®,. HenceP is con-

tinuous in a neighborhood @
Returning to the&k > d case we make a “pre-preliminary” transformation as

0
X — (c)’ (A.9)
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wheref is the MLE for6, ¢ = Bx, andB is a(k — d) X k matrix and is choserusing the
implicit function theoremsuch that

a6

——| =0 and BB =l _g. A.10
OXq e X [ s kd (A.10)

Now 4 is locally sufficient in anO(N~%2) neighborhood of), (see McCullagh1984)
in that the density oX may be factored
fi(x;:0) = G(8;6){1+ O(N~¥2)},

and by(A.10) 4 andc are independent in this neighborhoéténce marginalizing locally
noting from(A.10) that the Jacobian of the transformatigh9) does not depend oB,
and then transforming froréi to z = P4, wherePP’ = Var(#) retains the local proper-
ties required for the solution in the= d case the analysis follows similarly n
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