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The polymer coil–stretch mechanism in turbulent drag reducing flows is analysed
using direct numerical simulations of viscoelastic finitely extensible nonlinear elastic
fluids with the Peterlin approximation. The study is carried out taking into account low
and high drag reduction regimes. The polymer stretching and the alignment between
the conformation tensor and other relevant entities are investigated using statistical
and tensor analysis. The significant alignment between the former and the velocity
fluctuations product tensor indicates that the initial polymer stretching due to the mean
shear is increased by the flow stress fluctuations, providing a supplementary polymer
extension. In addition, interactions between the turbulence and the polymer are
evaluated from an instantaneous turbulent energy exchange perspective by considering
streamwise work fluctuating terms in elliptical and hyperbolic flow regions separately.
Near the wall, polymers not only release energy to the streaks, but also to the
elliptical (or vortical) and hyperbolic (or extensional) structures. However, polymers
can also be dragged around near-wall vortices, passing through hyperbolic regions
and experiencing a significant straining within both these turbulent structures and
storing their energy. Hence, polymers weaken elliptical and hyperbolic structures
leading to a tendency toward relaminarization of the flow. Polymer release of energy
occurs primarily in the streamwise direction, which is in agreement with the enhanced
streamwise velocity fluctuation observed in drag reducing flows. A detailed polymer
coil–stretch mechanism is provided.

Key words: drag reduction, non-Newtonian flows, turbulence simulation

1. Introduction
The addition of a small amount of polymers of high molecular weight can lead to

a pressure drop decrease in turbulent flows. Since the first observations reported by
Forrest & Grierson (1931), Toms (1948) and Mysels (1949), numerous experimental
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studies have been conducted in attempts to make practical use of polymer-induced
drag reduction (DR), including long-distance transport of liquids (Sellin et al. 1982),
oil well operations (Burger & Chorn 1980), fire fighting (Fabula 1971), transport of
suspensions and slurries (Golda 1986) and biomedical applications (Greene, Mostardi
& Nokes 1980). In a remarkable and pioneering paper, Virk, Mickley & Smith (1967)
performed a careful analysis with an experimental turbulent pipe flow apparatus
and showed that if the friction drag for pipe flows is plotted in Prandtl–Kármán
coordinates, it departs from the Prandtl–Kármán law (the onset of DR) to its bound,
the so-called maximum drag reduction (MDR) or Virk’s asymptote, as a result of an
increase in either the Reynolds number, the polymer concentration or the polymer’s
molecular weight. Over the years, researchers have successfully analysed relevant
aspects of this phenomenon and a significant literature is available, e.g. Hershey &
Zakin (1967), Paterson & Abernathy (1970), Virk, Mickley & Smith (1970), Virk
(1975), Bewersdorff (1982), Bewersdorff & Singh (1988), Moussa & Tiu (1994), Gyr
& Tsinober (1995), Kalashnikov (1998). However, up to now, there has been no
definitive consensus concerning the interactions between the turbulent energy and the
deformations of the polymer.

Phenomenological explanations for polymer drag reduction gravitate around two
major theories. According to the viscous theory, independently proposed by Lumley
(1969) and Seyer & Metzner (1969) and supported by Ryskin (1987), polymer
stretching in a turbulent flow produces an increase in the effective viscosity in a
region outside of the viscous sublayer and in the buffer layer, which suppresses
turbulent fluctuations, increasing the thickness of the buffer layer and reducing the
wall friction. The elastic theory postulated by Tabor & de Gennes (1986) assumes
that the elastic energy stored by the polymer becomes comparable to the kinetic
energy in the buffer layer. Since the corresponding viscoelastic length scale is larger
than the Kolmogorov scale, the usual energy cascade is inhibited, which thickens the
buffer layer and reduces the drag (see also Joseph 1990).

Numerically, polymer-induced drag reduction theories have been intensively
investigated for over a decade since the first simulations conducted by den Toonder,
Nieuwstadt & Kuiken (1995) and Orlandi (1996). Using an inelastic generalized
Newtonian fluid to analyse pipe (den Toonder et al. 1995) and channel (Orlandi
1996) flows, both researchers argued that DR seems to be closely related to the
anisotropy of the elongational viscosity, a parameter that measures the resistance
of the fluid against stretching deformations. Such an argument was also presented
by Sureshkumar, Beris & Handler (1997), who performed the first self-consistent
direct numerical simulation (DNS) of turbulent channel flow of a viscoelastic finitely
extensible nonlinear elastic in the Peterlin approximation (FENE-P) fluid (Peterlin
1961), at a zero shear friction Reynolds number of 125. Their results suggest a partial
suppression of turbulence within the buffer layer after the onset of drag reduction,
which is linked with an enhanced effective viscosity attributed to the extension of
polymers dispersed in the flow.

The explanations proposed in the three papers referred to above (den Toonder et al.
1995; Orlandi 1996; Sureshkumar et al. 1997) seem to corroborate Lumley’s theory.
In an attempt to quantify this viscous scenario, L’vov et al. (2004) used conservation
principles to show that an additional effective viscosity growing linearly with the
distance from the wall in the buffer layer has similar effects to those observed by
the addition of flexible polymers in turbulent flows. This theoretical prediction was
later confirmed by De Angelis et al. (2004), who performed a DNS of Newtonian
turbulent flows with an added viscosity profile obtaining results previously observed
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in viscoelastic FENE-P simulations. Additionally, using this simple linear viscosity
model, De Angelis et al. (2004) were able to predict the maximum drag reduction
asymptote, a point discussed in detail by Benzi et al. (2005).

It is important to note that the elastic theory has also been actively explored. Min
et al. (2003) conducted a DNS of turbulent drag reducing channel flows in which
the dilute polymer solution is simulated using the Oldroyd-B model. Their results
showed good agreement with previous theoretical and experimental predictions of the
onset of DR at specific friction Weissenberg numbers which is interpreted based on
the elastic theory. Min et al. (2003) and Dallas, Vassilicos & Hewitt (2010) describe
an elastic scenario in which the elastic energy stored in the near-wall region due to
the uncoiling of polymer molecules is transported to and, to some extent, released in
the buffer and log-law layers. This storage of energy around the near-wall vortices
was confirmed by Dubief et al. (2004), who performed a DNS of turbulent polymer
solutions in a channel using the FENE-P model, although, in contrast to Min et al.
(2003) and Dallas et al. (2010), they proposed an autonomous regeneration cycle of
polymer wall turbulence in which the coherent release of energy occurs in the very
near-wall region, just above the viscous sublayer. In order to clarify the dynamics of
the polymer–turbulence interaction, Thais, Gatski & Mompean (2012) used the DNS
of a fully developed turbulent channel flow of Newtonian and viscoelastic FENE-P
fluids at zero shear friction Reynolds numbers up to 1000 and carefully examined the
budgets of turbulent kinetic energy and the elastic energy budget in drag reducing
flows. The authors showed that the elastic energy production is small in the very
near-wall region, growing with the distance from the wall and reaching a maximum
value in the log-law region. This elastic energy production acts simultaneously as
the dominant source of elastic energy and as the dominant sink of turbulent energy.
This is rather in line with Tabor and De Gennes’s description. However, recently,
Thais, Gatski & Mompean (2013) emphasized that at Reτ0 = 1000, the elastic coupling
between the turbulence and the polymer does not depend on the drag reduction regime
(the level of viscoelasticity), which is in disagreement with the elastic theory.

Despite the discrepancies between the two most prominent theories, what seems
to be in accordance with both scenarios is the relevance of the polymer coil–stretch
process, which further imposes a transient behaviour on the drag reduction as well
as a subsequent polymer degradation, a consequence of polymer elongation (Merrill
& Horn 1984; Pereira, Andrade & Soares 2013; Soares et al. 2015). In order to
understand the polymer coil–stretch process, Bagheri et al. (2012) presented direct
numerical simulations of turbulent channel flow with passive Lagrangian linear
(Oldroyd-B) and nonlinear (FENE) polymers. For the FENE model, the polymers
are more elongated within the near-wall region although such extension becomes
less heterogeneous as the Weissenberg number increases. Furthermore, a much
stronger orientational trend is seen close to the wall, where the polymers are well
aligned along the streamwise direction. The authors also verified the alignment of the
end-to-end vector with respect to the principal directions of the rate-of-strain tensor
and the vorticity vector. Nevertheless, they did not identify possible tensors capable
of stretching the polymers, which would reveal more details about the uncoiling
mechanism.

It is clear that the DR phenomenon is not completely understood and many aspects
of the problem remain unclear. Any attempt to completely elucidate polymer-induced
drag reduction must consider, at least, four important issues: the mechanism of
polymer coil–stretch; the development of turbulent structures in viscoelastic flows;
the exchange of energy between the turbulence and the polymers; and the breaking
of the polymer molecules.
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In the present paper, we investigate the polymer coil–stretch process with the
aid of direct numerical simulations of the turbulent channel flow of a viscoelastic
FENE-P fluid taking into account a wide range of zero shear friction Reynolds
numbers (from 180 up to 1000). Tensorial and statistical analyses are developed in an
attempt to highlight the role played by three relevant kinematic tensor entities in the
polymer extension mechanism: the velocity fluctuation product tensor (which can be
physically interpreted as an instantaneous Reynolds stress), the rate-of-strain tensor
and the rate-of-rotation tensor. As the primary focus, the relative polymer stretch
and the alignment between the conformation tensor and these three important tensor
entities will be confronted. Additionally, joint probability density functions will be
used in order to correlate the polymer–turbulence exchanges of energy and polymer
orientations. Lastly, the flow will be divided into two distinct regions, following the
Q-criterion of vortex identification (see Hunt, Wray & Moin 1988): an elliptical (or
vortical) part where the second invariant of the velocity gradient tensor is positive
and a hyperbolic (or extensional) part which is determined by the negative values of
the second invariant of the velocity gradient tensor. The polymer work fluctuation
will then be investigated within these regions, separately. The analyses that came out
from these tools enable the proposition of a polymer coil–stretch mechanism based
on the autonomous regeneration cycle reported by Dubief et al. (2004), which in turn
was based on that conceived for Newtonian turbulent flows, previously presented by
Jiménez & Pinelli (1999).

Following the description of the physical formulation and numerical methodology
presented in § 2, our main results are separated into three parts: §§ 3–5. In the first part
(§ 3), some classical time-averaged quantities are initially presented. In § 4, we analyse
the distribution of polymer stretch across the wall distance, of which the effects on
near-wall vortices and the dependence on L and Wiτ0 are investigated as well, as
exposed in § 4.1. Tensor analyses are conducted in § 4.2 in an attempt to verify the
alignment between the conformation tensor and the other three relevant entities. In
§ 5, joint probability density functions are used in order to correlate the polymer–
turbulence exchanges of energy and polymer alignments (§ 5.1). Additionally, the coil–
stretch polymer process is linked with the coherent structures within the flow (§ 5.2).
In § 6, these interactions are finally employed to describe a detailed cyclic mechanism
of the polymer–turbulence interaction.

2. Physical formulation and numerical methodology
A turbulent channel flow of an incompressible dilute polymer solution is considered.

Such a geometry is commonly adopted in direct numerical simulations due to its
simplicity as well as its attractiveness for both experimental and theoretical studies
of near-wall turbulent interactions. Here, the channel streamwise direction is x1 = x,
the spanwise direction is x2 = y and the direction normal to the wall is x3 = z.

The instantaneous velocity field in the respective directions is (ux, uy, uz)= (u, v,w)
and is solenoidal (∇ · u = 0, where u denotes the velocity vector). The governing
equations are scaled with the channel half-width, h, the bulk velocity, Uh, and the
fluid density, ρ.

The scaled momentum equations are

∂ui

∂t
+ uj

∂ui

∂xj
=−

∂p
∂xi
+
β0

Reh

∂2ui

∂x2
j
+

1
Reh

∂Ξij

∂xj
. (2.1)

In (2.1), p is the pressure, β0 is the ratio of the Newtonian solvent kinematic viscosity
(νN) to the total zero shear kinematic viscosity (ν0= νN + νp0) and the bulk Reynolds
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number is Reh =Uhh/ν0. The extra stress tensor components are denoted by Ξij. The
formalism of (2.1) includes the assumption of a homogeneous polymer concentration
which is governed by the viscosity ratio β0, where β0= 1 yields the limiting behaviour
of the Newtonian case.

The extra stress tensor components (Ξij) in (2.1) represent the polymer’s contribution
to the stress of the solution. This contribution is accounted for by a single
spring–dumbbell model. We employ here the FENE-P kinetic theory (Bird, Armstrong
& Hassager 1987), which is the most preferred one due to its physically realistic finite
extensibility of the polymer molecules and to its relatively simple second-order closure.
This model employs the phase-averaged conformation tensor, C. The components of
the extra stress tensor are then

Ξij =
(1− β0)

Wih
( f {tr(C)}Cij − δij), (2.2)

in which Wih = λUh/h is the bulk Weissenberg number (λ being the relaxation
time scale), δij is the Kronecker delta operator and f {tr(C)} is given by the Peterlin
approximation

f {tr(C)} =
L2
− 3

L2 − tr(C)
, (2.3)

where L is the maximum polymer molecule extensibility and tr(·) represents the trace
operator. The governing equation for the conformation tensor are

∂Cij

∂t
+ uk

∂Cij

∂xk
−
∂ui

∂xk
Ckj −

∂uj

∂xk
Cki +

f (tr(C))Cij − δij

Wih
=

(
1

SccReh

)
∂2Cij

∂x2
k
, (2.4)

in which Scc= ν0/κc is the Schmidt number defined as the ratio of the total kinematic
zero shear rate viscosity (ν0) to an artificial stress diffusivity κc. This explicit elliptic
diffusion term included in (2.4) is an artefact used to improve numerical stability
in pseudo-spectral simulations of viscoelastic fluids. This dissipative term was first
introduced in this context by Sureshkumar & Beris (1995), and the methodology
was subsequently validated under a variety of flows and material parameters (see
Housiadas & Beris 2003).

Since the numerical scheme for DNS was already given in detail by Thais et al.
(2011), we present here a brief description of the mathematical and numerical
approaches. The hybrid MPI/OPENMP algorithm used was tailored to run properly in
massively parallel architectures. The hybrid spatial scheme includes Fourier spectral
accuracy in the two homogeneous directions (x and y) and sixth-order compact finite
differences for the first- and second-order wall-normal derivatives (z direction). Time
marching can be up to fourth-order accurate by the use of the Adams–Moulton scheme
for the viscous terms and Adams–Bashforth for the explicit terms. Pressure–velocity
coupling is facilitated by a higher-order generalization of the semi-implicit fractional
step method on a non-staggered grid arrangement analysed by Armfield & Street
(2000). In order to attenuate high wavenumber energy accumulation, de-aliasing
and fourth-order filtering are performed in the two homogeneous and wall-normal
directions, respectively.

The parameters for the turbulent Newtonian and FENE-P channel flows studied
here are summarized in table 1. Our simulated cases were chosen keeping in mind
that viscoelastic fluids can have significantly different statistical behaviour from a
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Reτ0 Weτ0 L β Nx ×Ny ×Nz ∆+x ×∆
+

y ×∆
+

z,min ∆+z,max DR (%)

180 0 0 1 512 × 128 × 129 8.8 × 6.6 × 0.2 7.1 0
180 50 30 0.9 512 × 128 × 129 8.8 × 6.6 × 0.2 7.1 28.5 (LDR)
180 115 30 0.9 512 × 128 × 129 8.8 × 6.6 × 0.2 7.1 38.4 (LDR)
180 50 100 0.9 512 × 128 × 129 8.8 × 6.6 × 0.2 7.1 47.0 (HDR)
180 115 100 0.9 512 × 128 × 129 8.8 × 6.6 × 0.2 7.1 62.3 (HDR)
395 0 0 1 1024 × 256 × 257 9.7 × 7.3 × 0.2 7.9 0
395 115 100 0.9 1024 × 256 × 257 9.7 × 7.3 × 0.2 7.9 62.0 (HDR)
590 0 0 1 1536 × 512 × 257 9.7 × 5.4 × 0.5 10.4 0
590 115 100 0.9 1536 × 512 × 257 9.7 × 5.4 × 0.5 10.4 61.0 (HDR)
1000 0 0 1 1536 × 768 × 385 12.3 × 6.1 × 0.5 12.1 0
1000 115 100 0.9 1536 × 768 × 385 12.3 × 6.1 × 0.5 12.1 58.0 (HDR)

TABLE 1. Parameters for the DNS of Newtonian and FENE-P turbulent channel flows.

Newtonian fluid. For a given turbulence level, as parametrized by the zero shear
friction Reynolds number Reτ0 (defined as Reτ0 = uτh/ν0, where uτ denotes the
friction velocity), this effect can vary with the friction Weissenberg number, Wiτ0

(where Wiτ0 = λuτ
2/ν0) and the maximum polymer extension length, L. In this

paper, four Newtonian flows and seven viscoelastic flows were examined, keeping
the viscosity ratio β0 fixed at 0.9 and taking into account four different values of
the zero shear friction Reynolds number (Reτ0 = 180, Reτ0 = 395, Reτ0 = 590 and
Reτ0 = 1000) and two different values of the friction Weissenberg number and the
maximum polymer molecule extensibility (Wiτ0 = 50; Wiτ0 = 115; L = 30; L = 100),
which provided drag reduction regimes from 28.5 % up to 62.3 %.

The simulations were conducted at constant pressure gradient, leaving the mass
flow rate of non-Newtonian flows to increase and then oscillate about a steady state
characterized by a new time-averaged Reynolds number, Reh. The drag reduction is
evaluated as

DR= 1−µ2(1−n)/n
w

(
Reh,NEWT

Reh

)(2/n)
, (2.5)

where

µw =

(
2Reτ0β0

2Reτ0 + 1− β0

)
〈τw〉 (2.6)

accounts for the shear-thinning property of the FENE-P model (Housiadas & Beris
2004). In this expression, Reh,NEWT is the bulk Reynolds number related to the
corresponding Newtonian case (the Newtonian case at the same Reτ0), <τw > denotes
the area-averaged wall shear stress and n = 1.14286 is the exponent of the Dean
correlation, which relates the bulk and friction Reynolds numbers for Newtonian
turbulent channel flow (Dean 1978). Time averaging of DNS data is taken in time
over some 500 flow snapshots spanning several eddy turnover times, while spatial
averaging (indicated by ‘〈 〉’) is taken in the two homogeneous channel directions
(x, y).

Two drag reducing regimes are shown in table 1: the high drag reduction (HDR;
DR> 40 %) regime and the low drag reduction (LDR; DR6 40 %) regime. Physically,
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the main difference between these two regimes consists in the fact that for LDR flows,
the Reynolds stresses play a major role, whereas in the HDR regime, the near-wall
dynamics of the flow is dominated by the polymer stresses (White & Mungal 2008).

The channel extent for the flow cases at Reτ0 up to of 590 was Lx×Ly×Lz = 8π×

1.5π × 2.0. For the highest zero shear friction Reynolds number flow, Lx × Ly × Lz
= 6π× 1.5π× 2.0. The number of mesh points (Nx×Ny×Nz) shown in table 1 for
each case corresponds to a grid resolution of 8.861x+6 12.3, 5.461y+6 7.3, and
0.261z+6 12.1. The superscript ‘+’ indicates normalization by the friction velocity,
defined by uτ =

√
τw/ρ, and the total kinematic zero shear rate viscosity. The Schmidt

number Scc = 0.1 was necessary to keep the algorithm stable and the conformation
tensor symmetric positive definite.

3. Statistics of the flow
3.1. Time-averaged statistics

The distributions of the mean velocity in wall coordinates, 〈Ux
+

〉, for turbulent
channel flows of Newtonian and viscoelastic solutions are displayed in figure 1(a).
The bar indicates the time average and ‘〈 〉’ denotes the x–y plane average. The
grey circles represent the Newtonian mean velocity profile at Reτ0 = 180 while the
other symbols represent the viscoelastic flows. In the viscous sublayer (0 < z+ < 5),
where the total stress is predominantly associated with viscous effects, the mean
velocities converge to the same linear shape 〈Ux

+

〉 = z+ represented by the solid
grey line. As the wall distance increases, the Reynolds stress becomes important and
comparable to the viscous stress within the Newtonian buffer layer (5 < z+ < 30).
Then, the Newtonian mean velocity departs quickly from the linear profile, taking on
a logarithmic dependence on z+ (grey dashed line) in the Newtonian log-law region,
z+ > 30, 〈Ux

+

〉 = (1/κ) ln(z+) + A1 where κ is commonly called the von Kármán
coefficient (1/κ is the slope) and A1 is the intercept at z+= 1. For Newtonian channel
flows over a hydraulically smooth wall, κ = 0.4 and A1 = 5.5 (Kim, Moin & Moser
1987). In order to better describe our results, we use the boundaries of the viscous
sublayer, the buffer layer and the log-law Newtonian regions to define regions I, II
and III, respectively. It is important to emphasize, however, that regions II and III do
not necessarily represent the buffer layer and the log-law region for the viscoelastic
cases, since the polymers can increase the former layer, reducing the latter.

The interactions between the viscoelastic fluid dynamics and the turbulent flow
dynamics result in changes in the mean velocity profile relative to the Newtonian
fluid. The polymer drag reduction phenomenon leads to an increased bulk mean
velocity, as observed by comparing the viscoelastic profiles plotted in figure 1. When
a high enough polymer concentration is used, the maximum level of drag reduction
(MDR) is attained. In that state, the velocity profile is commonly represented by the
Virk’s asymptote (Virk et al. 1970), 〈Ux

+

〉 = 11.7 ln(z+) + 17.8 which is a matter
of recent controversy (White, Dubief, & Klewicki 2012). Experimental and recent
numerical results based on DNS (Escudier, Presti & Smith 1999; Ptasinski et al. 2001;
Escudier, Nickson, & Poole 2009; Thais et al. 2012) indicate a parallel upward shift
of the logarithmic region of the mean velocity profile with increasing DR, which is
clearly perceived at high Reynolds numbers (see Thais et al. 2013). Such a behaviour
suggests a significant extension of the buffer layer region into the channel caused by
the polymers. For viscoelastic fluids, the cross-over to a presumed Newtonian plug
flow occurs at a distance from the wall where the Reynolds stress momentum flux
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FIGURE 1. (Colour online) Mean velocity profiles in the streamwise direction (a), 〈Ux
+

〉,
and normal components of the Reynolds stress (b–d) for Newtonian and viscoelastic
channel flows, against the normalized wall distance.

is no longer negligible compared to that of the polymer/viscous stress. Figure 1(b–d)
show the normal components of the Reynolds stress tensor, whose components are
defined as the time average of the velocity fluctuation product (u′iu′j

+). The mean
effect of the polymer on the turbulence is anisotropic and induces an increase in
the streamwise normal Reynolds stress component (figure 1b), while weakening both
the spanwise (figure 1c) and the wall-normal (figure 1d) terms, as experimentally
found by many researchers such as Pinho & Whitelaw (1990), Warholic, Massah
& Hanratty (1999) and White, Somandepalli & Mungal (2004). This effect is more
pronounced as the elasticity increases, as indicated by the solid black arrows. In the
most elastic flow at Reτ0 = 180 (orange inverted triangles), for instance, the peak

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

33
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.332


Analysis of polymer coil–stretch in drag reducing channel flow 143

0 30 60 90 120 150 180

Turbulent channel profile:
DNS result

 0.1

0.2

 0.3

0.4

 0.6

0.8

 0.5

0.7

 0.9

1.0

 0.1

0.2

 0.3

0.4

 0.6

0.8

 0.5

0.7

 0.9

1.0

0 0.2 0.4 0.6 0.8 1.0

(a) (b)

FIGURE 2. (Colour online) (a) Evolution of the mean relative polymer extension,
〈tr(C)/L2

〉, against the normalized wall distance. (b) Effects of mean shear stress profile
on polymer extension.

of 〈u′xu′x
+
〉 moves from z+ ≈ 12 (region II) to z+ ≈ 32 and its value is one order of

magnitude greater than the Newtonian one (grey open circles). In addition, the other
components also shift away from the wall, but their peaks decrease by one order
of magnitude compared to the Newtonian flow. Since vortices produce significant
transverse fluctuations, the reduction of both u′y and u′z suggests a strong interaction
between these intermittent structures and polymers (Dubief et al. 2004). Lastly, the
dashed arrows indicate that the normal Reynolds stress components are an increasing
function of Reτ0 . Their peaks move towards the channel centre with increasing
Reynolds number.

The variations in polymer mean stresses across the channel can be highlighted by
analysing the polymer mean stretch, which is linked with the former by the Peterlin
function (2.3). The distribution of the relative polymer mean stretch 〈tr(C)/L2

〉 as
a function of z+ is displayed in figure 2(a), for all viscoelastic cases studied in
the present paper. As a common point, the polymer molecules exhibit a significant
extension at the wall, which increases in the buffer layer, where its peak is attained.
This peak magnitude, as well as its location, is a decreasing function of L, but
increases with increasing Wiτ0 (these trends are discussed in § 4.1). As the wall
distance increases further, 〈tr(C)/L2

〉 becomes less pronounced until achieving
its minimum level at z+ = 180. A very simple method to clarify the polymer
stretching mechanism consists in solving (2.4) using different mean velocity profiles.
The result is illustrated in figure 2(b), where the less elastic flow is considered
(grey open circles), as well as the polymer extension produced in this fluid by a
turbulent-channel-like velocity profile Ux = (9/8)[1− (z/h)8] (Dallas et al. 2010). As
the derivative of the mean velocity with respect to the wall-normal direction increases,
the polymers stretch considerably, due to the increase of the shear stress. More
specifically, the profile of 〈tr(C)/L2

〉 follows the mean viscous shear stress feature.
Comparing the relative polymer extensions obtained from a turbulent-like mean
velocity profile (orange inverted triangles) and DNS results (grey open circles), it is
interesting to observe that both curves depart from the same level (≈0.54), at z+ = 0.
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However, as the wall distance increases, the discrepancy between them becomes
pronounced. In fact, near the wall, the increasing 〈tr(C)/L2

〉 noticed for the grey
circles curve suggests that in this region there is a particular flow topology capable
of producing an increase in the polymer extension beyond the viscous mean shear
level represented by the orange inverted triangles. In other words, the viscous mean
stress is responsible for a relevant polymer stretching, which is incremented since the
turbulent structures interact with the polymer molecules, providing a supplementary
polymer extension. We believe these intermittent polymer–turbulence interactions are
also responsible for the polymer coil–stretch process, which will be analysed in later
subsections from statistical and tensorial perspectives.

All the trends discussed above considering Reτ0 = 180 are also observed at higher
zero shear friction Reynolds numbers, as previously reported by Thais et al. (2012)
and Thais et al. (2013).

4. Polymer stretching and alignment
In order to analyse the effects of instantaneous polymer stretching on the flow, the

following data and results were evaluated at the same instant of simulation, after a
statistical steady state was achieved. Such an instantaneous analysis is justified by
the fact that in turbulent flows, the polymer action is likely to be as intermittent as
the near-wall vortices (see Dubief et al. 2004). Hence, these intermittent events may
be hidden by a time-averaging procedure. In other words, such an analysis of the
instantaneous quantities could reveal less expressive but important events for the DR
phenomenon.

Although in this subsection we analyse the effects of the elasticity on the stretching
and alignment of the polymers at a low zero shear friction Reynolds number, Reτ0 =

180, it is important to emphasize that the trends shown below are observed for all
viscoelastic cases studied. In other words, the physical aspects of DR discussed here
are not affected by low Reynolds number effects.

4.1. Polymer stretching
The three-dimensional structures shown in figure 3 represent the isosurfaces of the
vortical regions, defined as the positive second invariant of the velocity gradient
tensor, ∇u, in Newtonian (a) and viscoelastic (b–e) flows. For incompressible flows,
the second invariant of ∇u, Q, can be used to identify vortical structures, the so-called
Q-criterion (see Hunt et al. 1988), and simplified as

Q= 1
2(‖W‖

2
− ‖D‖2) > 0, (4.1)

which indicates the spatial regions where the Euclidean norm of the rate-of-rotation
tensor, ‖W‖, dominates that of the rate of strain, ‖D‖ (the Euclidean norm of a
generic second-order tensor A is ‖A‖ =

√
tr(A · AT )). These structures follow an

organized hierarchy across the channel. In the vicinity of the wall (z+ < 20), eddies
are found to be pairs of counter-rotating quasi-streamwise vortices, while for z+> 30,
these eddies resemble hairpins (the so-called horseshoe vortices). The formation of
such morphologies is induced by combined second-quadrant ejection (u′x < 0, u′z > 0;
Q2 event) and fourth-quadrant sweep (u′x > 0, u′z < 0; Q4 event) events within the
flow (see Adrian 2007). Specifically, the hairpin vortices are composed of three well
defined parts. The legs are regions of rotation quasi-aligned with the streamwise
direction. The head is a rotation part aligned with the spanwise direction. The necks
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FIGURE 3. (Colour online) The three-dimensional structures represent isosurfaces of
vortical regions defined as a positive value of the second invariant of velocity gradient
tensor, ∇u. The colours indicate the polymer stretching, tr(C)/L2.

are the connections between the legs and the head of the hairpin. These three parts,
as well as the velocity fluctuations associated with them, can be seen in detail in
figure 4, where a typical hairpin extracted from our less elastic flow (Reτ0 = 180,
Wiτ0 = 50 and L= 30) is coloured by the Q events.
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(head)
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Q4
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Q4

xy

z

FIGURE 4. (Colour online) Typical hairpin extracted from a viscoelastic flow (Reτ0 = 180;
Wiτ0 = 50; L= 30) with Q= 0.7 and coloured by the Q1 (u′x> 0, u′z> 0), Q2 (u′x< 0, u′z> 0),
Q3 (u′x < 0, u′z < 0) and Q4 (u′x > 0, u′z < 0) events.

Comparing figure 3(a–e), it can be seen that the number of vortices with a value
of the Q-criterion equal to 0.7 decreases with increasing elasticity (We and L). For
Wiτ0 = 115 and L= 100, which provides DR= 62.3 %, the vortices with Q= 0.7 are
completely gone and the vortices with Q= 0.1 (figure 3e) are only found close to the
walls. In viscoelastic flows, the vortical structures are significantly weaker than in the
Newtonian flow, which is considered fundamental evidence of the polymer–turbulence
interactions and the consequent drag reduction (Terrapon et al. 2004; Kim et al. 2007,
2008; White & Mungal 2008). As the elasticity increases, some characteristics of
the vortices change: their thicknesses and streamwise lengths increase, while their
strengths weaken, which is clearly observed by comparing figure 3(a,e). Furthermore,
the vortices become more parallel to the wall. In the log-law region, the hairpin
head is strongly weakened. It has been experimentally and numerically shown that
in drag reducing flows, the streamwise component of the Reynolds normal stresses
increases relative to the Newtonian case, while the other components of the Reynolds
stress tensors decrease (Wei & Willmarth 1992; Warholic et al. 1999; Ptasinski
et al. 2001; Kim et al. 2007; Thais et al. 2012). These variations seem to be closely
connected with the coil–stretch polymer transition and the consequent vortex structural
changes (Dimitropoulos et al. 2005). The colours in figure 3(b–e) indicate the relative
polymer stretch, tr(C)/L2. The y–z planes show that for all four viscoelastic flows,
the polymers are more stretched close to the wall (yellow and red regions). In
contrast, the polymer extensions are less pronounced in the middle of the channel
(blue regions). The isosurface colours and those of the intersections between vortical
structures and y–z planes show that the polymers are more extended around the
near-wall vortices.
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FIGURE 5. (Colour online) Normalized conformation tensor as a function of the
normalized wall distance. Streamwise normal components of C and tr(C)/L2 (open and
solid in a, respectively). Spanwise normal component of C (b). Wall-normal component
of C (c). Cross-components (d).

The stretching of the polymers can be seen more clearly in figure 5(a), where
the evolution of the x–y-plane-averaged normalized trace of the instantaneous
conformation tensor, 〈tr(C)/L2

〉, is plotted against the wall distance z+ (solid symbols)
together with the normalized streamwise normal component of the conformation
tensor, 〈Cxx/L2

〉 (open symbols). The percentage of polymer extension, 〈tr(C)/L2
〉, is

relatively high at the wall, achieving a peak in the very near-wall region (z+< 20), the
exact location of which varies with L and Wiτ0 . This peak is commonly associated with
the streamwise vortices (see Dubief et al. 2004; Dimitropoulos et al. 2005; Dallas
et al. 2010). After this point, 〈tr(C)/L2

〉 starts to decrease, until reaching its minimum
at the channel centre. In comparing the grey solid circles with the red solid diamonds,
or the blue solid triangles with the green solid squares, it can be clearly seen that
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〈tr(C)/L2
〉 decreases with increasing L, for fixed Reτ0 and Wiτ0 , which suggests that

the large polymer molecules could be less susceptible to chain scission degradation
(Pereira & Soares 2012). A further comparison of the grey solid circles with the blue
solid triangles, or of the red solid diamonds with the green solid squares, reveals that
the relative polymer extension becomes greater as the friction Weissenberg number
increases, since higher values of the polymer time scale induce the polymer molecules
to be influenced by a wider spectrum of time scales of the flow (Dallas et al. 2010).
Figure 5(a) also shows that the dominant contribution to the trace of the conformation
tensor comes from Cxx, i.e. 〈tr(C)/L2

〉 ≈ 〈Cxx/L2
〉 (especially near the wall and for

the highest value of L, L = 100). This distribution suggests a significant stretching
of the polymers in the streamwise direction. The other component with a non-zero
wall value is the off-diagonal component Cxz, normalized and displayed in figure 5(d).
However, its value at the wall is almost two orders of magnitude smaller than that of
the Cxx component. Moreover, as Wiτ0 and L increase, the profile of 〈Cxz/L2

〉 follows
the same tendencies noted in figure 5(a), reaching its peaks at z+ not much different
from those observed for Cxx. The peak magnitude of the off-diagonal component
Cxz is comparable to that of the Czz component (plotted in figure 5b), although both
are only slightly smaller than the peak magnitude of the Cyy component (shown in
figure 5c). It is worth noting that 〈Cxz/L2

〉 is an increasing function of the molecular
relaxation time (the variations of which are here computed by changing Wiτ0 at fixed
Reτ0) although a saturation effect is observed when increasing the elasticity (the red
diamonds and green square curves are close). This saturation effect is also seen for
Czz (figure 5b) and Cyy (figure 5c). The peak magnitude of the normal components
Czz and Cyy are both one order of magnitude smaller than that of the Cxx component,
starting with a zero wall value. Lastly, as Wiτ0 increases, Czz and Cyy increase. The
opposite behaviour is observed with increasing L. These two normal components
exhibit maximum values within region III (60 < z+ < 90), as previously reported
by Thais et al. (2012), which is currently linked to the straining flows around the
vortices (Dubief et al. 2004; Dimitropoulos et al. 2005).

In figure 5, it is worth noting that Cxx�Cyy>Czz≈Cxz indicates a strong anisotropic
behaviour of the conformation tensor. This anisotropy seems to dramatically influence
the statistics of the fluctuating velocity fields, especially at small scales. The analysis
of the trace of the conformation tensor reveals two locations of interest that will
be systematically explored in this paper: z+ = 8.2, the approximate position where
〈tr(C)/L2

〉 is a maximum; z+ = 180, where the trace of the conformation tensor
reaches its minimum value with respect to L2.

4.2. Polymer alignment
Figure 6 shows the average values in the x–y plane of the cosines of the angles
Ψ between the first principal direction, e1, of our three relevant tensor entities
(the eigenvector related to the largest eigenvalue) and the three unit vectors ex

(streamwise; figure 6a), ey (spanwise; figure 6b) and ez (wall normal; figure 6c)
against the normalized wall distance, for the Newtonian case.

The alignment between the first principal direction of the velocity fluctuation
product tensor, τ ′ (whose components are defined by u′iu

′

j), and ex, indicated in
figure 6(a) by the blue open triangles, is accentuated near the wall, growing within the
buffer layer, where 〈cosΨ (eτ ′1 , ex)〉 achieves its peak magnitude (≈0.85) at z+ ≈ 8.2.
This is consistent with the fact that u′xu

′

x is the most important component of τ ′ in the
near-wall region. However, as the wall distance increases, u′yu

′

y, u′zu
′

z and u′xu
′

z become
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FIGURE 6. (Colour online) Average values in the x–y plane of the cosines of the angles
between the principal directions of a given tensor and the three unit vectors ex, ey and
ez (which represent the streamwise, spanwise and wall-normal directions) against the
normalized wall distance.

important while u′xu
′

x decreases, considerably reducing 〈cosΨ (eτ ′1 , ex)〉 in the middle
of the channel (≈0.57). A different behaviour is observed by analysing the angles
between eτ

′

1 and both the spanwise and wall-normal directions as functions of z+, as
shown in figures 6(b) and 6(c), respectively. Firstly, at the wall, 〈cosΨ (eτ ′1 , ey)〉≈ 0.48
while 〈cosΨ (eτ ′1 , ez)〉 = 0. Although an increase in 〈cosΨ (eτ ′1 , ez)〉 with z+ is noted,
the buffer layer favours the alignment between τ ′ and the streamwise direction.
Consequently, 〈cosΨ (eτ ′1 , ey)〉 decreases, reaching a minimum value of 0.37 at z+≈15.
Lastly, in the middle of the channel, both 〈cosΨ (eτ ′1 , ey)〉 and 〈cosΨ (eτ ′1 , ez)〉 are
approximately 0.5, indicating a random tendency of the alignment of τ ′ with both
the y and z directions.

The orientation of the rate-of-strain tensor presented in figure 6(a–c) exhibits an
interesting behaviour as the wall distance increases. Since in the viscous sublayer the
Reynolds stress tensor is negligible compared to the viscous stress tensor (Dubief
et al. 2004), the flow in this region is laminar and, consequently, 〈cosΨ (eD

1 , ex)〉 ≈√
2/2, 〈cosΨ (eD

1 , ey)〉 ≈ 0, and 〈cosΨ (eD
1 , ez)〉 ≈

√
2/2. In contrast, in the log-law

region, the flow is driven by the turbulence, and 〈cosΨ (eD
1 , ex)〉 ≈ 〈cosΨ (eD

1 , ey)〉 ≈
〈cosΨ (eD

1 , ez)〉 ≈ 0.5, which emerges from a weak velocity gradient, of which the
tendency of direction is not clear.

The green open squares in figure 6(a–c) show the orientation of the vorticity vector.
Following the rate-of-strain tensor, beyond the buffer layer (60< z+< 180), a chaotic
alignment is perceived, since 〈cosΨ (ω, ex)〉 = 〈cosΨ (ω, ey)〉 = 〈cosΨ (ω, ez)〉 ≈ 0.5.
However, close to the wall (z+< 20), the vorticity vector tends to be strongly aligned
with the spanwise direction.

Following the method described above, the effects of a polymer on the average
orientation of our three relevant tensor entities are plotted against the wall distance
in figures 7 and 8 for two drag reduction regimes: the less elastic (DR = 28.5 %,
Wiτ0 = 50 and L = 30) and the most elastic (DR = 62.3 %, Wiτ0 = 115 and L = 100).
In this subsection, we use the acronyms LDR and HDR to refer to these two cases.
The orientation of the conformation tensor is also considered.

The polymer alignment in the LDR case is shown in figure 7(a–c). The grey
open symbols indicate that in the viscous sublayer, the conformation tensor is well
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FIGURE 7. (Colour online) Average values in the x–y plane of the cosines of the angles
between the principal directions of a given tensor and the three unit vectors ex, ey and ez
against the normalized wall distance.

100 102101 100 102101 100 102101

1.0
0.9

0.5
0.6
0.7
0.8

0.2
0.1

0

0.3
0.4

1.0
0.9

0.5
0.6
0.7
0.8

0.2
0.1

0

0.3
0.4

1.0
0.9

0.5
0.6
0.7
0.8

0.2
0.1

0

0.3
0.4

(a) (b) (c)

I II III

I II III

I II III

FIGURE 8. (Colour online) Average values in the x–y plane of the cosines of the angles
between the principal directions of a given tensor and the three unit vectors ex, ey and ez,
against the normalized wall distance.

oriented along the streamwise direction. This preferential alignment between eC
1 and

ex is maintained within the buffer layer. However, it weakens as 〈cosΨ (eC
1 , ey)〉 and

〈cosΨ (eC
1 , ez)〉 increase from z+ = 30 to z+ = 180, at which point both profiles reach

a peak (≈0.4) and 〈cosΨ (eC
1 , ex)〉 exhibits its minimum value (≈0.6). Nevertheless,

it is worth noting that even in the LDR middle region, where the Reynolds stresses
are more pronounced, a slight preferential orientation of C with ex is observed. A
comparison of figures 7 and 8 reveals that cos Ψ (eC

1 , ex) is an increasing function
of the elasticity. In the HDR case, the angle between eC

1 and ex is approximately
zero for all z+, indicating that the polymers are strongly aligned with the streamwise
direction throughout the whole channel.

The alignment between the first principal direction of τ ′ and ex for the LDR case
displayed in figure 7(a) is accentuated at the wall (≈0.85), where 〈cosΨ (eτ ′1 , ex)〉
is approximately 6 % greater than that of the Newtonian case. In addition, the peak
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magnitude of 〈cosΨ (eτ ′1 , ex)〉, which is located in the buffer layer (z+ ≈ 8.2), is also
6 % larger than for the Newtonian flow. As the wall distance increases, the alignment
between eτ

′

1 and ex decreases, achieving its minimum value (〈cosΨ (eτ ′1 , ex)〉 ≈ 0.6) at
the middle of the channel. Analysing the angles between eτ

′

1 and both spanwise and
wall-normal directions, we initially note that at the wall, 〈cosΨ (eτ ′1 , ey)〉 ≈ 0.35 and
〈cosΨ (eτ ′1 , ez)〉= 0. The increasing fluctuation in the streamwise velocity in the buffer
layer favours the alignment between τ ′ and ex, which reduces 〈cosΨ (eτ ′1 , ey)〉 to its
minimum value (≈0.3) at z+≈15. After this point, similar to the Newtonian behaviour,
〈cosΨ (eτ ′1 , ey)〉 and 〈cosΨ (eτ ′1 , ez)〉 increase, reaching their peak magnitude (≈ 0.45)
at the middle of the channel. Since, at this location, 〈cosΨ (eτ ′1 , ex)〉 ≈ 0.6, we can
conclude that the addition of a polymer reduces the initial random tendency of the
orientation of τ ′ observed for the Newtonian flow. This polymer effect is more clearly
perceived in figure 8(a–c). In the HDR case, 〈cosΨ (eτ ′1 , ex)〉 changes from 0.96, at the
wall, to the maximum value of 0.98 within the region II. In contrast, 〈cosΨ (eτ ′1 , ex)〉

decreases across the region III, reaching its minimum value (≈0.85) at z+ = 180.
Additionally, 〈cosΨ (eτ ′1 , ey)〉 changes from 0.12, at z+ = 0, to 0.1, in the region II,
after which it starts to increase, achieving its peak magnitude (≈0.26) at z+ = 180.
Moreover, 〈cosΨ (eτ ′1 , ez)〉 smoothly increases from zero to 0.22 across one half of the
channel. Lastly, it is important to note that in the HDR case, 〈cosΨ (eτ ′1 , ex)〉> 0.85
and 〈cosΨ (eτ ′1 , ez)〉< 〈cosΨ (eτ ′1 , ey)〉< 0.3 for all z+. In other words, the addition of
polymers induces a preferable alignment of τ ′ with the streamwise direction in the
whole channel.

The effects of a polymer on the orientation of the rate of strain in the LDR case are
indicated by the red open diamonds in figure 7(a–c). In the viscous sublayer, a laminar
characteristic eigenvector emerges. Consequently, 〈cosΨ (eD

1 , ex)〉 = 〈cosΨ (eD
1 , ez)〉 ≈√

2/2, and 〈cosΨ (eD
1 , ey)〉 ≈ 0. These typical orientations gradually change to random

orientations at z+ = 180, which differs from the fast transition observed in the
Newtonian case, for which a chaotic tendency of alignment is noted throughout the
entire log-law region. In the HDR regime, the alignment is not random, as can be
seen in figure 8(a–c). The angle between eD

1 and ex is equal to 45◦ from the wall to
z+ = 155. In addition, 〈cosΨ (eD

1 , ey)〉< 0.5 and 〈cosΨ (eD
1 , ez)〉> 0.4 for all z+. Such

a behaviour is consistent with the fact that polymers weaken the normal components
of D while no significant difference is perceived for its off-diagonal terms compared
with the Newtonian case. Thus, polymers act in the flow by partially suppressing the
turbulence, making the rate-of-strain tensor more laminar.

Figure 7(a–c) also shows the orientation of the vorticity vector in the LDR regime.
The green open squares indicate that although the variations of 〈cosΨ (ω, eα)〉 across
the half-channel are smoother than those for the Newtonian flow, there are similarities
between both the LDR and the Newtonian cases, such as the preferable alignment
of ω with the y direction in the region I, and the chaotic orientation of this vector
within the region III. Nevertheless, the analysis of the alignment of the vorticity for
the HDR flow displayed in figure 8(a–c) reveals that an increasing elasticity amplifies
〈cosΨ (ω, ey)〉, which results from the fact that polymers weaken both 〈ωx〉 and 〈ωz〉

in the region III, but do not affect 〈ωy〉.
Figures 6–8 bring out the complexity of the near-wall dynamics in a Newtonian

turbulent flow and how much this region is affected by polymers. In the high
drag reduction regime, polymer effects are perceived even far from the wall
(60 < z+ < 180). The most evident polymer effects shown in these figures are
the strong alignment of C and τ ′ with x, which increase with increasing elasticity.
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FIGURE 9. (Colour online) Average values in the x–y plane of the cosines of the angles
between the principal directions of the conformation tensor and other relevant entities.

These preferable streamwise orientations indicate not only that the most significant
turbulence–polymer energy exchanges should occur in the x direction, but also that
C and τ ′ present an significant alignment between them, which can be linked with
the coil–stretch process of the polymer. Thus, in order to clarify the role played by
the three considered tensors in the polymer extension mechanism, it is convenient
to compute their alignments with respect to the local conformation tensor (the
eigenvectors of C are the local reference frames), as shown in figures 9 and 10 for
the same LDR and HDR regimes previously analysed in this subsection.

The cosines of the angles between the eigenvectors of C and eτ
′

1 in the LDR
case are displayed in figure 9. Following the blue open triangles in figure 9(a), we
notice that 〈cosΨ (eC

1 , eτ
′

1 )〉 departs from an accentuated value at the wall (≈0.85).
Furthermore, the alignment between eC

1 and eτ
′

1 becomes more pronounced while
moving across the viscous sublayer, achieving its peak magnitude (≈0.9) at z+ = 8.2,
the exact same location as the maximum polymer extension (〈tr(C)/L2

〉 ≈ 0.8)
observed in figure 5. This peak is maintained until z+ ≈ 12, from which point
〈cosΨ (eC

1 , eτ
′

1 )〉 starts to decrease to its minimum value (≈0.58), located at the
middle of the channel. In contrast, 〈cosΨ (eC

2 , eτ
′

1 )〉 and 〈cosΨ (eC
3 , eτ

′

1 )〉 exhibit
opposite behaviours across the channel, as shown by the blue open triangles in
figure 9(b,c), respectively. The former is small at the wall and, after reaching its
minimum value (≈0.27) at z+ = 8.2, tends to 0.5. The latter is very close to zero
in the viscous sublayer. However, it slightly increases as the wall distance increases,
achieving a peak of 0.4 at z+ = 180. In the HDR case, shown in figure 10(a–c),
〈cosΨ (eC

1 , eτ
′

1 )〉 changes from 0.96, at the wall, to 0.98 at z+ ≈ 10, which represents
a peak magnitude 9 % greater than that of the LDR case. This value is sustained until
z+ ≈ 15, from which point the alignment between eC

1 and eτ
′

1 gently decreases to its
minimum value (≈0.85), situated at the centre of the channel. In the opposite sense,
increasing elasticity decreases 〈cosΨ (eC

2 , eτ
′

1 )〉 and 〈cosΨ (eC
3 , eτ

′

1 )〉. It is worth noting
that the alignment between the first eigenvectors of C and τ ′ is significant even at
the middle of the channel, where 〈cosΨ (eC

1 , eτ
′

1 )〉 is approximately 47 % greater than
in the case of the LDR. This indicates that the interaction between C and τ ′ is an
increasing function of the elasticity, whose effects are perceptible not only near the
wall, but also in the region III.
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FIGURE 10. (Colour online) Average values in the x–y plane of the cosines of the
principal directions of the conformation tensor and other relevant entities.

In the viscous sublayers of both the low and the high drag reduction regimes
(figures 9 and 10, respectively), while eC

2 and eD
1 are almost orthogonal, there is an

angle of ≈ 45◦ between eC
3 and eD

1 , as well as between eC
1 and eD

1 . Interestingly,
Ψ (eC

1 , eD
1 ) is maintained across the channel. In contrast, in the LDR scenario,

both Ψ (eC
3 , eD

1 ) and Ψ (eC
2 , eD

1 ) become random as the wall distance increases. However,
in the HDR regime, this tendency of chaotic alignment within the region III is
attenuated, and, in consequence, 〈cosΨ (eC

3 , eD
1 )〉 ≈ 0.6 and 〈cosΨ (eC

2 , eD
1 )〉 ≈ 0.25.

Thus, as Wiτ0 and L increase, the polymer becomes more exposed to the rate-of-strain
tensor not only in regions I and II, but also in region III.

Near the wall, the polymer molecules exhibit a weak tendency to lie in the plane
perpendicular to ω since 〈cosΨ (eC

1 ,ω)〉 and 〈cosΨ (eC
3 ,ω)〉 are almost zero, as can be

seen in figures 9 and 10. However, one can note that in this region, 〈cosΨ (eC
2 ,ω)〉 ≈

1.0. This occurs because, near the wall, eC
2 is oriented along the ey direction (not

shown here), as is ω (see figures 7 and 8).

5. Polymer–turbulence energy transfer
5.1. Global exchanges of energy

As pointed out in previous subsections, near-wall polymers are highly aligned
with τ ′ and, consequently, strongly exposed to flow stress fluctuations. The latter
are responsible for the generation of intermittent quasi-streamwise vortices, which
play a very important role in the momentum exchange as well as in the increase
of the turbulent friction drag (see Kravchenko, Choi & Moin 1993). Hence, our
tensorial and statistical analyses suggest that polymers primarily interact with these
intermittent structures, exchanging energy with them. Aiming to characterize such
energy exchanges, we consider the work fluctuation terms. These energy terms are that
exclusively related to the fluctuating fields which appear in the right-hand side of the
work fluctuation equation, which in turn is obtained by decomposing the variables
of the momentum equation into mean flow (U+α , p+ and Ξ

+

αj) and fluctuations
(u′α
+, p′+ and Ξ ′αj

+), and then multiplying the resulting equation by the streamwise
velocity fluctuations (u′α

+). A detailed deduction of the work equations is provided in
appendix A. The work terms exclusively linked with the fluctuating fields are then:
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FIGURE 11. (Colour online) The open symbols show the normalized instantaneous
streamwise work fluctuating terms against the normalized wall distance. The solid symbols
in (c,d) show the profiles of 〈tr(C)/L2

〉 and 〈cosΨ (eC
1 , eτ

′

1 )〉 across the channel half-width,
respectively.

E′α
+
= (u′α

+
(∂Ξ ′αj

+
/∂x+j )), A′α

+
= [−u′α

+
(∂(u′α

+u′j
+
)/∂x+j )], P′α

+
= (−u′α

+
(∂p′+/∂x+))

and V ′α
+
= [(β0)u′α

+
(∂2u′α

+
/∂x+j

2
)]. Since the turbulent energy exchanges in the x

direction constitute more than 90 % of that considering the streamwise, the spanwise
and the wall-normal directions, we analyse here only the streamwise work fluctuation
terms (α= x). Hence, the instantaneous polymer work term, E′x

+, indicates the amount
of energy stored (E′x

+
< 0) or released (E′x

+
> 0) by the polymers from the fluctuating

velocity field in the streamwise direction, u′x
+ (the fluctuations are denoted by the

superscript ‘′’). The supplementary fluctuating work terms denote the advection, A′x
+,

the pressure redistribution, P′x
+, and the viscous stress, V ′x

+. The sum A′x
+
+P′x

+
+V ′x

+

is referred to as the Newtonian fluctuating work, N ′x
+.

In figures 11 and 12, the x–y plane average of the instantaneous streamwise work
fluctuating terms against the normalized wall distance are considered. In addition,
both 〈tr(C)/L2

〉 and 〈cosΨ (eC
1 , eτ

′

1 )〉 are plotted. These quantities are denoted by the
solid symbols in figures 11(d) and 11( f ), respectively. Different levels of elasticity
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FIGURE 12. (Colour online) The open symbols show the normalized instantaneous
streamwise work fluctuating terms against the normalized wall distance. The solid symbols
in (c,d) show the profiles of 〈tr(C)/L2

〉 and 〈cosΨ (eC
1 , eτ

′

1 )〉 across the channel half-width,
respectively.

are considered in figure 11 fixing the Reynolds number, while the effects of Reτ0 are
shown in figure 12 maintaining Wiτ0 = 115 and L= 100. Our lowest Reynolds number
case (Reτ0 = 180) and the seven viscoelastic flows detailed in table 1 are considered.

Very close to the wall (I), where the turbulent stresses are negligible, the work
fluctuation terms are close to zero. The streamwise viscous work fluctuation
(figures 11c and 12c) and the streamwise polymer work fluctuation (figures 11d
and 12d) exhibit a different behaviour in the vicinity of the wall. For the less elastic
case (blue open triangles), the former decreases from the wall to z+ ≈ 10, where
its minimum value is located. The latter, one order of magnitude smaller than V ′x,
increases throughout the viscous sublayer, reaching its peak magnitude at z+ ≈ 5. It
is worth noting that both the inflexion point of 〈E′x

+
〉 and the minimum value of

〈V ′x
+
〉 are located at the same wall distance for each case analysed here. Additionally,

the maximum values of 〈tr(C)/L2
〉 (solid symbols in figures 11c and 12c) and

〈cosΨ (eC
1 , eτ

′

1 )〉 (solid symbols in figures 11d and 12d), quantities which develop
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parallel profiles, are observed at the same location (z+ ≈ 10 for the less elastic
case). Both the advection and pressure terms become less pronounced as elasticity
increases, playing a less important role in the fluctuating energy budget under LDR
flow conditions (figure 11). In the opposite trend, more significant values of 〈A′x

+
〉

and 〈P′x
+
〉 are observed at higher Reτ0 (figure 12).

The black arrows in figure 11 indicate that increasing elasticity makes 〈A′x
+
〉, 〈P′x

+
〉,

and 〈V ′x
+
〉 close to zero. This effect of increasing elasticity is more pronounced in the

viscous term and, consequently, in the Newtonian term (A′x
+
+P′x

+
+V ′x

+) of which the
minimum value changes from 〈N ′x

+
〉≈ 0.225 for the Newtonian case to 〈N ′x

+
〉≈−0.07

for the most elastic case (not shown). Furthermore, the minimum and the maximum
values observed in figure 11 move away from the wall as Wiτ0 and L increase. On the
other hand, as indicated by the black arrows in figure 12, for a fixed elasticity, the
magnitude of the energy budget terms increases with increasing Reynolds number.

Intermittent energy transfers may be hidden even by instantaneous spatial-averaging
procedures. Further evidence regarding such energy transfers are provided by figure 13,
which shows five different joint probability density functions (JPF) for the x–y planes
related to the less elastic case and located at z+ ≈ 5.0, where 〈E′x

+
〉 is a maximum,

as well as that situated at z+≈ 50, where 〈E′z
+
〉 is a minimum (not shown here). The

black solid line represents the JPF of E′α versus u′α (where α can denote either x
or z), whereas the red solid line represents the JPF which considers the instantaneous
streamwise polymer work fluctuation and the cosine of the angle between the first
principal directions of C and τ ′. Similar JPFs are displayed in figure 14 for the
Newtonian work fluctuation at the same x–y planes. The work fluctuation terms
were normalized by their temporal root mean square spatially averaged over the
corresponding x–y plane. In this figure, the most probable events are indicated by
internal lines. Although only our less elastic fluid is treated in this figure, all the
supplementary viscoelastic cases present qualitatively similar trends.

Firstly, with regard to figure 13(a), it is important to observe that the polymer
molecules are allowed to coil (E′x> 0) and stretch (E′x< 0) within the near-wall region
(z+ ≈ 5.0). At such a location, the polymer molecules are predominantly injecting
energy into the flow (E′x > 0) and, as a consequence, increasing both the negative
and the positive streamwise velocity fluctuations as well as the absolute value of T ′x
(see figure 11). Moreover, this injection of energy is closely related (has a higher
probability) to negative values of u′z, as shown in figure 13(b). Interestingly, the red
solid lines in figure 13(b) reveal that more pronounced polymer–turbulence exchanges
of energy occur when the conformation tensor is predominantly oriented along the
first principal direction of τ ′ (cos Ψ (eC

1 , eτ
′

1 ) ≈ 1), which reinforces the relevance of
the alignment between C and τ ′ for the polymer–turbulence exchange of energy.

Figure 13 also shows that at z+ ≈ 50, polymers primarily extract energy from
the flow (E′z < 0), which preferentially occurs where u′x < 0 (figure 13c) and u′z < 0
(figure 13d). However, the suppression of ejection flows (u′x < 0 and u′z > 0; Q2
region) is also a moderately likely event.

Comparing figures 13 and 14, it is interesting to note that in the very near-wall
region, E′x and N ′x tend to have opposite signs. Hence, at z+ ≈ 5, injection events are
strongly related to E′x > 0 and N ′x < 0. Similarly, at z+≈ 50, the ejection and injection
events are linked with E′z < 0 and N ′z > 0.

5.2. Elliptical and hyperbolic exchanges of energy
In order to better understand the polymer coil–stretch process from the energy
perspective, we divide the flow into three different regions by using the Q-criterion
discussed in § 4.1. Instead of the usual approach, where a threshold is chosen to
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FIGURE 13. (Colour online) Joint probability density functions of instantaneous polymer
work versus instantaneous velocity fluctuation for the x–y planes located at z+= 5.0 (a,b)
and z+ = 50 (c,d). Fluctuation terms are normalized by their temporal root mean square
spatially averaged over the corresponding x–y plane.

produce a Boolean picture of the flow, as in figure 3, for example, we adopt the
Q-criterion as a measure of the intensity of stretching/rotation activity, i.e. we plot
the Q field. To this end, Q is normalized in order to produce values between 0 and
1 (Martins et al. 2016) and thus takes the form

Qnorm =
1
π

cos−1

(
‖W‖2

− ‖D‖2

‖W‖2 + ‖D‖2

)
. (5.1)

Normalized values 06Qnorm< 0.5 represent swirling-like or elliptical regions, whereas
0.5<Qnorm 6 1 indicates a non-swirling-like or hyperbolic region. A value of Qnorm=

0.5 represents transition surfaces where the magnitudes of W and D are equal. This
normalized vortex identification criterion was applied to the centre x–z plane (at y=
0.75π) for all viscoelastic flows corresponding to Reτ0 = 180, as shown in figure 15.
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FIGURE 14. Joint probability density functions of instantaneous Newtonian work versus
instantaneous velocity fluctuation over the x–y planes located at z+ = 5.0 (a,b) and z+ =
50 (c,d). Fluctuation terms are normalized by their respective temporal root mean square
spatially averaged over the corresponding x–y plane.

The vortical regions (swirling-like) are shown in blue, while the extensional regions
(non-swirling-like) are shown in red. Green indicates the transition regions, generally
referred to as parabolic, where the intensities of the rotational and extensional motions
are close to each other. The lines around vortical regions represent the intersections
between the x–y plane and vortices with Q = 0.01 (consequently, the lines surround
the blue parts). These lines are black or white, which indicates polymer stretching
(E′x < 0) or coiling (E′x > 0) in the streamwise direction, respectively.

Analysing figure 15, we first notice that both the vortical and extensional motion
are weakened by increasing elasticity. Hence, green regions are more frequent in the
HDR cases (c,d). Furthermore, the lines indicate that the morphology of the vortices
changes with an increase of Wiτ0 and/or L, since their thicknesses and streamwise
lengths increase, while they become more parallel to the wall, something also seen
in figure 3. Concerning the polymer–vortex interactions, it is apparent that the lines
around the elliptical parts are predominantly black. Such a result reveals that polymers
essentially stretch in such a region, extracting energy from the vortices. In addition,
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FIGURE 15. (Colour online) Contour of normalized Q-criterion, Qnorm. The lines around
vortical regions (blue and green regions) represent intersections between the x–y plane and
vortices with Q= 0.01. These lines are black or white, which indicates polymer stretching
or coiling, respectively.

we note that far from the wall, polymers also store a significant amount of energy
from the hyperbolic regions, which are mostly surrounded by black lines as well (not
shown for clarity).

The extraction of energy from the elliptical and hyperbolic structures by the polymer
is further explored in figure 16, where the contours of the normalized Q-criterion were
applied to the centre y–z plane (at x= 4.0π) for our less elastic case. The arrows in
figure 16(a) indicate the direction and the sense of the vectors resulting from u′y and u′z,
while those in figure 16(b) illustrate the direction and the sense of the vectors resulting
from polymer force fluctuations ( f ′α = E′α/u

′

α) in both the spanwise and wall-normal
directions (the vector magnitudes are not considered in these figures). Comparing both
of these figures, it is apparent that, fundamentally, the polymer forces oppose the
vortical motion (blue regions) by imposing a counter-torque around such structures.
However, it is important to stress that in the extensional structures (yellow and red
regions) the polymer forces also oppose the fluctuating velocities. Similar results were
obtained for the other case (not shown here).
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FIGURE 16. (Colour online) Velocity (a) and polymer body force (b) fluctuation vectors
on the y–z plane at x = 4.0π. Contours of the normalized Q-criterion, Qnorm, are also
overlaid, with blue regions indicating large swirling strength and red regions representing
large extensional deformations.

The energy exchanges between the polymers and turbulent structures are highlighted
by the open symbols in figures 17 and 18, where the x–y plane average of the
streamwise polymer work fluctuations (a) and the streamwise Newtonian work
fluctuations (b) are plotted against the wall distance for both the elliptical (c,d) and
the hyperbolic (e, f ) regions, separately. Additionally, a similar analysis is displayed
for 〈cosΨ (eC

1 , eτ
′

1 )〉 plotted against z+ (solid symbols in figures a,c,e).
Considering the whole channel evaluated in figures 17(a,b) and 18(a,b) it is

found that polymers essentially release energy within the viscous sublayer, since
〈E′x
+
(z+ < 5)〉 > 0. In contrast, after reaching its maximum value at z+ ≈ 5.0, 〈E′x

+
〉

becomes negative and reaches expressive negative values in region II (20 6 z+ 6 30).
Negative values of 〈E′x

+
〉 are also observed within region III. Hence, the polymers
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FIGURE 17. (Colour online) The open symbols show the normalized streamwise polymer
(a,c,e) and Newtonian (b,d, f ) work fluctuations against the wall (z+) distance considering
the whole channel (a,b) as well as the elliptical (c,d) and hyperbolic (e, f ) regions,
separately. The solid symbols in (a,c,e) show the profile of 〈cosΨ (eC

1 , eτ
′

1 )〉 against the
wall distance, in the same three domains.
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FIGURE 18. (Colour online) The open symbols show the normalized streamwise polymer
(a,c,e) and Newtonian (b,d, f ) work fluctuations against the wall (z+) distance considering
the whole channel (a,b) as well as the elliptical (c,d) and hyperbolic (e, f ) regions,
separately. The solid symbols in (a,c,e) show the profile of 〈cosΨ (eC

1 , eτ
′

1 )〉 against the
wall distance, in the same three domains.
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store turbulent energy in both regions II and III (E′α < 0), and release it into the
viscous sublayer (E′x > 0) by coiling along the streamwise direction, which increases
the streamwise velocity fluctuations (see figure 1b).

Inside the elliptical and hyperbolic structures, the streamwise polymer work
fluctuation profiles follow the same trends as those described for the whole channel.
Polymers release energy to elliptical (figures 17c and 18c) and hyperbolic (figures 17e
and 18e) parts located in the near-wall region (I), which had been previously extracted
from such structures in regions II and III. These results corroborate those shown in
figure 15. On the other hand, in the wall-normal direction as well as in the spanwise
direction (not shown here), the polymer molecules predominantly store turbulent
energy from the elliptical and hyperbolic structures by stretching in region III,
which reinforces our remarks concerning figure 16. It is important to emphasize
that the polymer–turbulence exchanges of energy are more pronounced in hyperbolic
regions, especially in the streamwise direction. Lastly, regarding 〈cosΨ (eC

1 , eτ
′

1 )〉
(solid symbols), the more significant alignments between C and τ ′ are situated in the
hyperbolic regions (figures 17e and 18e). These alignments decrease monotonically
from the viscous sublayer to the centre of the channel.

More significant elastic and inertial effects are observed for 〈N ′x
+
〉 (figures 17b and

18b), which is essentially negative along z+ and reaches its minimum value in the
region II (z+ ≈ 20). This term is one order of magnitude greater than 〈E′x

+
〉 and

becomes close to zero as Wiτ0 and L increase, and Reτ0 decreases. Within the elliptical
region (figures 17d and 18d), no positive values of 〈N ′x

+
〉 are observed (figures 17d

and 18d). However, in the hyperbolic regions (figures 17f and 18f ), after achieving
its minimum value, 〈N ′x

+
〉 increases and reaches a positive peak magnitude at z+≈ 70.

Concerning figures 17 and 18, it is also important to note that, for each viscoelastic
case, the profiles given by the sum of the energy terms shown in figure 17(c,e), and
in figure 18(c,e) at each z+ are approximately equal to those displayed in figures 17(a)
and 18(a), respectively, which is also valid for figures 17(b,d, f ) and 18(b,d, f ). Such
a result indicates that the amount of energy exchanged between the polymers and
turbulence in the parabolic regions is negligible compared to that occurring in elliptical
or hyperbolic regions.

In order to illustrate the role played by the addition of a polymer in the hyperbolic
structures of the domain, consider the hyperbolic counterpart of figure 3. Since the
magnitude of the second invariant of the velocity gradient is not altered when one
interchanges the Euclidean norms of D and W , a negative value of Q with the same
magnitude as the ones depicted in figure 3 would give the hyperbolic structure an
intensity corresponding to the elliptical structure intensity of that figure, as measured
by Q. In this connection, what is seen in figure 19 is a distribution over the domain
of hyperbolic structures corresponding to: Q=−0.7 for the Newtonian (figure 19a);
Q=−0.7 for the viscoelastic case with Wiτ0 = 50, L= 30 (figure 19b); Q=−0.7 for
the viscoelastic with Wiτ0 = 115, L = 30 (figure 19c); Q = −0.7 for the viscoelastic
case with Wiτ0 = 50, L= 100 (figure 19d); and Q=−0.1 for the viscoelastic case with
Wiτ0 = 115, L= 100 (figure 19e). A direct comparison between figures 3 and 19 shows
a remarkable similarity in the intensity of the structures. Although there are clear
differences in the morphology of the corresponding hyperbolic structures, figure 19
shows that these turbulent entities are also weakened by the action of the polymer. As
the elastic character of the polymer becomes more prominent, the hyperbolic structures
are reduced in intensity and size in a quite similar fashion to what happened with the
elliptical structures displayed in figure 3. We can deduce that the polymer molecules
interact with the turbulence, damping the elliptical and hyperbolic turbulent structures
and leading to a tendency of a dominant parabolic character in the flow domain.
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FIGURE 19. (Colour online) The three-dimensional structures represent the isosurfaces
of hyperbolic regions defined as a negative value of the second invariant of the velocity
gradient tensor, ∇u. The colours indicate polymer stretching, tr(C)/L2.

6. The DR mechanism

Recently, Andrade, Pereira & Soares (2014) experimentally showed that the polymer
drag reduction phenomenon undergoes at least three stages over time: A, B and C,
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FIGURE 20. (Colour online) Sketch of the polymer-induced drag reduction mechanism.

as shown in figure 20(a). In stage A, referred to as the developing time (td), the
DR is first negative, due to an instantaneous increase in the local extensional
viscosity caused by a large and abrupt polymer stretching. This initial process
requires a significant energy input, which comes predominantly from the mean flow
(Pereira et al. 2017), besides a lesser but still important amount of energy that
is extracted from the elliptical and hyperbolic structures, since the polymers are
strongly exposed to τ ′. After reaching a minimum value (DRmin), the polymers start
their coil–stretch cycle and, in consequence, the DR increases in response to the
polymer-flow interactions, achieving a maximum value (DRmax), which makes for
the beginning of stage B. The duration of stage B is referred to as the resistance
time (tr). Such a stage is characterized by a negligible polymer degradation, during
which the DR is maintained at its maximum value. In order to describe the polymer
coil–stretch mechanisms during stage B, we invoke the autonomous regeneration
cycle discussed by Dubief et al. (2004), in which we include new details concerning
the polymer–turbulent exchanges of energy shown in figure 20(b). This autonomous
cycle is originally based on that put forward by Jiménez & Pinelli (1999) and
conceived for Newtonian turbulent flows. In the viscous sublayer, the polymers are
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highly exposed to the mean flow, which acts as a source of elastic potential energy
(see Thais et al. 2013). Additionally, just above the viscous sublayer (z+ ≈ 5), the
polymers enhance the streamwise momentum in the elliptical and hyperbolic regions
by releasing streamwise turbulent energy (E′x > 0) to such structures (see figure 17).
However, polymers can be also pulled around the near-wall vortices, passing through
hyperbolic regions and experiencing a significant strain within both these turbulent
structures. Thereby, as shown in figure 17, the polymers store turbulent energy
from the elliptical and hyperbolic parts (E′α < 0) in regions II and III (where they
probably also release a non-negligible amount of energy to the mean flow). Lastly,
the polymer can be injected (or re-injected) into the very near-wall region, there
releasing streamwise turbulent energy and being more exposed to the mean shear. It
is worth mentioning that, as shown by the red JPF in figure 13(b), more pronounced
polymer–turbulence exchanges of energy occur where cosΨ (eC

1 , eτ
′

1 )≈ 1.
Since the amount of energy stored by the polymer from the fluctuating velocity

field in regions II and III is greater than that released just above the viscous sublayer,
there is a weakening of the elliptical and hyperbolic turbulent structures, as indicated
by both the blue and red arrows in figure 20(c), resulting in the growth of the
parabolic domain. This flow parabolization trend is accompanied by the reduction of
the Newtonian work fluctuation as the elasticity increases.

During their coil–stretch cycle, polymer molecules can be mechanically degraded as
a result of excessive polymer stretching, which reduces their ability to act as energy
exchange agents. Hence, when polymer degradation becomes pronounced, the DR
decreases, as represented by stage C in figure 20(a), until achieving an asymptotic
value (DRasy), which indicates that the degradation has stopped and the molecular
weight distribution has reached a steady state.

The coil–stretch mechanism discussed above and sketched in figure 20 highlights
the role played by the polymers in the self-sustained wall turbulence interacting with
the mean shear, nonlinear interactions, near-wall elliptical and hyperbolic structures in
viscoelastic drag reducing flows, considering a DR which evolves over time from the
very start of the phenomenon until reaching its asymptotic value.

7. Concluding remarks

The statistical and tensorial analysis of the polymer coil–stretch mechanism in a
drag reducing channel flow were conducted by using direct numerical simulations
employing the viscoelastic FENE-P model. Four Newtonian flow and seven viscoelastic
flows were examined, keeping the viscosity ratio β0 fixed at 0.9 and taking into
account four different values of the zero shear friction Reynolds number (Reτ0 = 180,
Reτ0 = 395, Reτ0 = 590 and Reτ0 = 1000) and two different values of the friction
Weissenberg number and the maximum polymer molecule extensibility (Wiτ0 = 50;
Wiτ0 = 115; L= 30; L= 100), which provided drag reduction regimes from 28.5 % up
to 62.3 % (the simulation details are in table 1, § 2).

The polymer modifies the mean flow velocity, increasing its streamwise component,
which departs from the Prandtl–Kármán law (the onset of DR) up to Virk’s asymptote,
as Wiτ0 and L increase. A similar effect is found for the streamwise Reynolds stress
normal component, although the other normal components of this tensor decrease
(figure 1 in § 3). Concerning the relative polymer extension, the polymer molecules
exhibit a significant stretch level close to the wall, which reaches its maximum within
the buffer layer but is minimal, yet still relevant, at the centre of the channel. Such
an extension profile cannot, however, be sustained exclusively by the mean flow,
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although the mean viscous shear stress is the most relevant stretch agent in the very
near-wall region (figure 2 in § 3). As pointed out in § 4, the stretching produced by
the mean flow is increased, since the turbulent structures interact with the polymers
molecules, providing a supplementary polymer extension. In fact, polymer molecules
are strongly exposed to flow stress fluctuations, which is evidenced by the high degree
of alignment between the instantaneous conformation tensor and the instantaneous
velocity fluctuation product tensor (especially in the very near-wall region). As Wiτ0

and L increase, this alignment between both the first principal directions of the
conformation tensor (C) and the velocity fluctuation product tensor (τ ′) becomes
more pronounced.

The thickening of the buffer layer was also evidenced by the tensorial and statistical
analysis, as shown in § 4.2. For the most viscoelastic flow, for instance, the angle
between eD

1 and ex is equal to 45◦ from the wall to z+ = 155, a typical orientation
which indicates that the polymers act on the flow by partially suppressing the
turbulence, making the rate-of-strain tensor more laminar, viscometrically speaking.

The Q-criterion was used as a measure of the intensity of elliptical (vortices)
and hyperbolic structures. A normalized dimensionless version of this criterion was
constructed in order to partition the domain into elliptical, hyperbolic and parabolic
regions. The strong interactions between the polymers and intermittent turbulent
structures were investigated using perspective of the Q-criterion (§ 5). Figure 16
showed that the previously documented counter-torque action (see Kim et al. 2007,
2008) on the turbulent elliptical structures (vortices) corresponding to blue regions
where Qnorm < 0.5 (or Q> 0) is accompanied by a counter-stretch force acting on the
hyperbolic structures corresponding to red regions where Qnorm > 0.5 (or Q < 0). To
illustrate the polymer–turbulence interactions in the hyperbolic structures, figure 19
showed how these structures are weakened as the elasticity is increased from the
Newtonian to our maximum drag reduction case. The similarities with respect to
the effect on the elliptical structures in terms of the intensity of the structures are
remarkable (see figure 3). The conclusion reached at this point was schematically
represented in figure 20(c). An important consequence of the addition of a polymer to
turbulent shear flows is the weakening of elliptical and hyperbolic structures, inducing
the enhancement of the parabolic domain, which is typical of a viscometric laminar
response to an imposed shear flow.

The instantaneous turbulent energy exchange represented by the streamwise work
fluctuation terms (§ 5) was analysed in this paper by splitting the domain into
elliptical and hyperbolic flow regions. Such analyses, combined with the tensorial
and statistical ones, allowed us to include more details concerning the polymer
coil–stretch mechanism on the autonomous regeneration cycle discussed by Dubief
et al. (2004) and originally based on that put forward by Jiménez & Pinelli (1999)
conceived for Newtonian turbulent flows. The Newtonian fluctuating term, 〈N ′x

+
〉

exceeds by one order of magnitude the elastic fluctuating term, 〈E′x
+
〉, revealing an

important manifestation of the nonlinearity of the problem, and, therefore, needs to
be taken into account in the description of the DR mechanism. We have noticed
higher intensities of these quantities in the hyperbolic domain than in the elliptical
ones. In the very near-wall region, polymers not only release energy to the streaks
(as previously pointed out by Dubief et al. 2004; Terrapon et al. 2004), but also to
the elliptical and hyperbolic structures. However, these two turbulent structures are
damped within the buffer layer. Joint probability functions have shown that more
pronounced polymer–turbulence exchanges of energy occur when the conformation
tensor is predominantly oriented along the first principal direction of τ ′ (figure 13).
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Fundamentally, in elliptical regions, the polymer stores turbulent energy by applying a
counter-torque around the vortices, damping the ejection (Q2) and sweep (Q4) events,
while, in the hyperbolic regions, polymers take energy from the flow by opposing
the extensional deformation. Lastly, it is important to remark that a polymer release
of energy occurs almost exclusively in the streamwise direction since 〈E′y

+
〉6 0 and

〈E′z
+
〉6 0 across the channel half-width (not shown here), which is in agreement with

the increase in the velocity streamwise fluctuation observed in drag reducing flows.
Polymers store energy from the mean flow (as recently reported by Thais et al. 2013)
in order to have a considerable stretch in the very near-wall region, and we believe
that they can also release energy to the mean flow within the buffer layer, a fact with
which the increase in u′x could be also related, since the mean flow also acts as a
source of turbulent kinetic energy in this region.
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Appendix A
In this work, we are focusing our analysis on the energy terms exclusively related

with the fluctuating fields. As shown in § 4, our tensorial and statistical analyses
indicate that the conformation tensor is considerably exposed to the Reynolds
stress tensor, which suggests a strong energy transfer between the polymers and
the turbulent structures. Aiming to characterize such energy exchanges, we consider
the work fluctuating terms. These energy terms are those exclusively related to the
fluctuating fields which appear in the right-hand side of the work equations, which
in turn are obtained by decomposing the variables of the momentum equations into
mean components (Uα, p and Ξαj) and fluctuation ones (u′α, p′ and Ξ ′αj), and then
multiplying the resulting equations by the velocity fluctuation (u′α).

We provide below a deduction of the work equations considering, initially, the
scaled momentum equations:

∂uα
∂t
+ uj

∂uα
∂xj
=−

∂p
∂xα
+
β0

Reh

∂2uα
∂x2

j
+

1
Reh

∂Ξαj

∂xj
. (A 1)

The variables of the momentum equations are then decomposed into mean
components (Uα, p and Ξαj) and fluctuating ones (u′α, p′ and Ξ ′αj):

∂(Uα + u′α)
∂t

+ (Uj + u′j)
∂(Uα + u′α)

∂xj

=−
∂(p+ p′)
∂xα

+
β0

Reh

∂2(Uα + u′α)
∂x2

j
+

1
Reh

∂(Ξαj +Ξ
′

αj)

∂xj
. (A 2)
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Then,

∂(Uα)

∂t
+
∂(u′α)
∂t
+ (Uj)

∂(Uα)

∂xj
+ (Uj)

∂(u′α)
∂xj
+ (u′j)

∂(Uα)

∂xj
+ (u′j)

∂(u′α)
∂xj

=−
∂(p)
∂xα
−
∂(p′)
∂xα
+
β0

Reh

∂2(Uα)

∂x2
j
+
β0

Reh

∂2(u′α)
∂x2

j
+

1
Reh

∂(Ξαj)

∂xj
+

1
Reh

∂(Ξ ′αj)

∂xj
. (A 3)

Rearranging the terms,

∂(Uα)

∂t
+
∂(u′α)
∂t
=

[
−Uj

∂Uα

∂xj

]
+

[
−
∂p
∂xα

]
+

[
β0

Reh

∂2Uα

∂x2
j

]
+

[
1

Reh

∂Ξαj

∂xj

]
+

[
−Uj

∂u′α
∂xj

]
+

[
−u′j

∂Uα

∂xj

]
+

[
−u′j

∂u′α
∂xj

]
+

[
−
∂p′

∂xα

]
+

[
β0

Reh

∂2u′α
∂x2

j

]
+

[
1

Reh

∂Ξ ′αj

∂xj

]
. (A 4)

Multiplying the resulting equations by the velocity fluctuations (u′α):

u′α
∂(Uα)

∂t
+ u′α

∂(u′α)
∂t

=

[
−u′αUj

∂Uα

∂xj

]
+

[
−u′α

∂p
∂xα

]
+

[
u′α
β0

Reh

∂2Uα

∂x2
j

]
+

[
u′α

1
Reh

∂Ξαj

∂xj

]
+

[
−u′αUj

∂u′α
∂xj

]
+

[
−u′αu′j

∂Uα

∂xj

]
+

[
−u′αu′j

∂u′α
∂xj

]
+

[
−u′α

∂p′

∂xα

]
+

[
u′α
β0

Reh

∂2u′α
∂x2

j

]
+

[
u′α

1
Reh

∂Ξ ′αj

∂xj

]
. (A 5)

Lastly, since the flow is incompressible (∇ · u = 0), we can rewrite the advection
terms as [−u′αUj(∂Uα/∂xj)] = [−u′α(∂(UαUj)/∂xj)], [−u′αUj(∂u′α/∂xj)] = [−u′α
(∂(u′αUj)/∂xj)], [−u′αu′j(∂Uα/∂xj)] = [−u′α(∂(Uαu′j)/∂xj)], and [−u′αu′j(∂u′α/∂xj)] =

[−u′α(∂(u
′

αu′j)/∂xj)]. Hence, the work equations assume the following form:

[
u′α
∂(Uα)

∂t

]
+

[
1
2
∂(u′α

2
)

∂t

]

=

[
−u′α

∂(UαUj)

∂xj

]
+

[
−u′α

∂p
∂xα

]
+

[
β0

Reh
u′α
∂2Uα

∂xj
2

]
+

[
1

Reh
u′α
∂Ξαj

∂xj

]
+

[
−u′α

∂(u′αUj)

∂xj

]
+

[
−u′α

∂(Uαu′j)

∂xj

]

+

[
−u′α

∂(u′αu′j)

∂xj

]
︸ ︷︷ ︸

A′α

+

[
−u′α

∂p′

∂xα

]
︸ ︷︷ ︸

P′α

+

[
β0

Reh
u′α
∂2u′α
∂xj

2

]
︸ ︷︷ ︸

V ′α

+

[
1

Reh
u′α
∂Ξ ′αj

∂xj

]
︸ ︷︷ ︸

E′α

. (A 6)
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In order to evaluate the contribution of each work term as a function of its direction,
the summation is not applied to the subscript α (α = x or α = y or α = z).

The work terms exclusively linked with the fluctuating fields in the right-hand
side of the work equations are then: A′α = [−u′α(∂(u

′

αu′j)/∂xj)], P′α = (−u′α(∂p′/∂x)),
V ′α = [(β0/Reh)u′α(∂

2u′α/∂xj
2)] and E′α = 1/Reh(u′α(∂Ξ

′

αj/∂xj)). Since the turbulent
energy exchanges in the x direction constitute more than 90 % of those exchanges, we
analyse only the streamwise work fluctuation terms (α= x). Hence, the instantaneous
polymer work term, E′x, indicates the amount of energy stored (E′x < 0) or released
(E′x>0) by the polymers from the fluctuating velocity field in the streamwise direction,
u′x (the fluctuations are denoted by the superscript ‘′’). The supplementary fluctuating
work terms denote the advection, A′x, the pressure redistribution, P′x and the viscous
stress, V ′x. The sum A′x+P′x+V ′x is referred to as the Newtonian fluctuating work, N ′x.
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