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SUMMARY
A three-dimensional (3D) model of a novel 5-DoF type parallel manipulator with a couple-constrained
wrench is constructed and its couple-constrained wrench is analyzed. First, the formulas are derived
for solving the displacement, velocity, acceleration of the moving platform and moving links, and a
workspace is constructed. Second, the formulas are derived for solving the inertial wrenches of the
moving links. Third, a dynamics equation is established by considering the inertial wrenches and
friction, and the formulas are derived for solving the dynamically active forces and the dynamically
couple-constrained wrench. Finally, a numerical example is given to demonstrate the analytic solution
of the kinematics and the dynamics, and the analytical solutions are verified by utilizing a simulation
mechanism.
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Nomenclature

PM parallel manipulator
DoF degree of freedom
B, m the base, moving platform
O, o the center point of B, m
{B} coordinate O-XYZ on B
{m} coordinate o-xyz on m at o
P, R prismatic joint, revolute joint
U, S universal joint, spherical joint
Bi, bi the vertices of B and m
vi, ai the velocity and acceleration vectors
ri active leg of PM
δi the unit vectors of ri i = 1, 2, 3, 4, 5
Rα, Rβ, Rγ the axis of Euler angles
ei = e, Ei the distance from bi to o, Bi to O
θi angles of every vertices about center
α, β, γ Euler angles of m about (Y, X1,Y2)
vri scalar velocity along ri

v, ω linear and angular velocity of m at o
a, ε linear and angular acceleration of m
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V , A general velocity and acceleration of m
c1, c2 constrained force unit vectors of PM
L unit vector of the connection rod
c the unit vector of constrained force
τ the unit vector of constrained torque
xl , xm, xnyl , ym, ynzl , zm, zn nine orientation parameters of m
l unit vector of the vector b3b1

Xo,Yo, Zo the position components of o in B
vr, ar general input velocity, general input acceleration
V r, Ar generalized velocity and acceleration of branch
J, H Jacobian, Hessian matrix of PM with planar limb
||, ⊥, | parallel, perpendicular, collinear constraint
Fo, T o the central force and torque applied on m at o
Fa the combination of driving and constrained force

1. Introduction
Among less mobility parallel machine tools, the 5-DoF parallel machine tools have been used for
normal machining three-dimensional (3D) free-form surface of work pieces, such as the models of
automobile windshield, the impeller blades of ships or airplanes, launches and turbine.1−3 Currently,
several 5-DoF parallel machine tools have been developed.4−9 In this aspect, Gao et al. developed
a 5-DoF parallel machine tool with four PSS-type limbs and a composite 3UU-type limb,4,5 where,
P,U and S represent the prismatic joint, the universal joint and the spherical joint, respectively. Liu,6

Wang,7 Wu8 and Zhu9 et al. developed different 5-DoF hybrid machine tools in which a 3-DoF
parallel manipulator (PM) is combined with a 2-DoF tool head. Li et al. optimized the parameters
of a 5-DoF gasbag polishing machine tool.10 Generally, the 5-DoF parallel machine tools are be
developed from the 5-DoF PMs. In this aspect, Qi et al. proposed a 5-DoF PM with four UPS-type
limbs and a central UPU-type limb and analyzed its forward kinematics.11 Kong et al. synthesized
several 5-DoF PMs by utilizing the screw theory and the concept of virtual chains.12 Shirazi
et al. analyzed a 5-RPUR type PM and optimized its structure.13 Borràs proposed a 5-DoF PM
in which a rod (moving platform) is connected with five active limbs.14 Fang et al. synthesized a
class of 5-DoF over-constrained PMs with identical serial limbs.15 Motevalli16 and Piccin17 studied
the architecture synthesis of a 5-DoF PMs with three translational and two rotational movements.
Li et al. synthesized the 5-DoF PMs with three rotational and two translational movements by utilizing
the Lie group of displacements.18 Sangveraphunsiri designed a hybrid 5-DoF manipulator based on
an H-4 family PM with three rotational and one translational movements.19 You et al. proposed a
haptic device with pantograph parallel platform and they studied its kinematics.20 Lu et al. proposed
a 5-DoF 4SPS+1SPR parallel machine tool with two composite spherical joints21 and analyzed its
kinematics. In the aspect of dynamics and workspace of PMs, Wu et al. studied dynamics of a planar
3-DOF PM with actuation redundancy,22 a PM in a spray-painting equipment23 and a solar tracker
with parallel mechanism.24 Bonev and Gosselin determined the workspace of symmetrical spherical
PMs.25 Liu and Bonev studied two articulated tool heads with parallel kinematics.26 In fact, it is
difficult to manufacture a composite spherical joint. It is known based on the topology graph of the
mechanisms27 that the topology graph of the 5-DoF PM proposed by Gao5 includes two pentagonal
links, two quaternary links and groups of binary links. The topology graphs of the 5-DoF PMs in
Refs. [10-19,21] include two pentagonal links and some groups of binary links. These studies have
their merits and different focuses, and lay a theoretical foundation for this study.

Generally, many less mobility PMs include one or more constrained forces or constrained torques
which are mutually independent. If the constrained forces or constrained torques in a less mobility
PM are mutually dependent, this type less mobility PM is called as a PM with the couple-constrained
wrench. We have constructed several novel PMs with couple-constrained wrench by utilizing CAD
software, and found that they have a large position and orientation workspace, high rigidity, good
property of isotropy horizontal motion and easy to be manufactured. One of them is authorized a patent
with No. CN104369182B in China. Up to now, the dynamics of PMs with the couple-constrained
wrench have not been studied. Therefore, this paper focuses on the dynamics analysis of a novel
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Fig. 1. (a) A 3D model of novel 3SPU+2RPU+R type PM with couple-constrained wrench and its coordinate
system, (b) its revised topology graph, (c and d) two positions far from Z and (e) a position with large orientation.

3SPU+2RPU+R type PM with the couple-constrained wrench. Its kinematics of the moving links,
inertial wrenches, structure characteristics, couple-constrained wrench, dynamically active forces and
dynamically couple-constrained wrench are studied systematically.

2. Performances of Novel PM with Couple-Constrained Wrench and its DoFs
A 3D model of the novel 3SPU+2RPU+R type PM with the couple-constrained wrench is constructed,
see Fig. 1a. Its other three position orientations are shown in Fig. 1c-e. This novel PM includes a
moving platform m, a base B, a connection rod L, two RPU-type active legs ri (i =1, 3) and three SPU-
type active legs ri (i =2, 4, 5). Here, B has a central point O and five joints Bi (i =1, 3) and Bi (i =2,
4, 5), which are located in the two circumferences on the same plane of B. m has a central point o and
five joints bi (i =1, . . . , 5) which are uniformly located in the same circumference of m. L is connected
with B by two revolute joints Ri (i =1, 3) at points Bi. Each of the RPU-type active legs ri (i =1, 3) has
a translational actuator, its upper end is connected with m at bi (i =1, 3) by the universal joint Ui; its
lower end is connected with the two ends of L at Bi (i =1, 3) by the revolute joint Ri. Each of Ui (i =1,
3) includes two crossed revolute joints Rm1i and Rm2i. Each of SPU-type active legs ri (i =2, 4, 5) has
a linear actuator, its upper end connects with m at bi by the Ui joint; its lower end connects with B at Bi

by spherical joint S. Let (||, ⊥, |) be the parallel, perpendicular and collinear constraints, respectively.
Let m:o-xyz be a coordinate system attached on m at its central point o; B:O-XYZ be a coordinate
system attached on B at its central point O; l be a line from b3 to b1. The geometric constraints
R1||R3, z ⊥ m, x||l, Z ⊥ B, X ||L, Rm1i ⊥ Rm2i, Ri ⊥ L, Ri ⊥ ri, Rm1i|l, Rm2i||Ri, i =(1, 3) are satisfied.

DoF M of the novel 3SPU+2RPU+R type PM with the couple-constrained wrench is calculated
based on a revision Kutzbach Grubler equation in Ref. [2], as shown below:

M = 6(n0 − nk − 1) +
∑

Mi + ς − M0

= 6 × (13 − 16 − 1) + 3 × 3 + 5 × 2 + 3 × 1 + 5 × 1 + 3 − 1 = 5 (1)
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here, n0 =13 is the number of links for one m, one B, one L, five piston rods and five cylinder rods;
nk =16 is the number of kinematic pairs for three spherical joints, five universal joints, three revolute
joints and five prismatic joints; �Mi =27 is the sum of local DoFs of kinematic pairs for three spherical
joints, five universal joints, three revolute joints and five prismatic joints; ς =3 is for the redundant
constraint of a sub-plane mechanism; M0 =1 for one passive DoF due to Rm1i|l , (i =1, 3).

A revised topology graph of the novel 5-DoF PM with the couple-constrained wrench is constructed
by considering M0 and ς ,27,28 see Fig. 1b. It includes one pentagonal link for m, one quaternary link
for B, one ternary link for link L and 18+M + M0-ς =21 binary links for constructing two RPU-type
legs and three SPU-type legs. It can be found that the complicated composite spherical joints in some
PMs can be replaced by the revolute joints which have larger capability of pulling force bearing than
that of S joint, and have larger rotation angle than the rotation cone angle of S joint before interference,
and have higher rigidity.

3. Kinematics of Novel PM with Couple-Constrained Wrench

3.1. Inverse displacement
The novel PM includes a sub-planar mechanism formed from two RPU-type active legs ri (i =1, 3),
L and m. Let β1 be an angle between L and r1 and β2 be an angle between l and r1. Let (α, β, γ ) be
the three Euler angles of m in B and (Rα, Rβ, Rγ ) be the unit vector of rotational axis of (α, β, γ ),
respectively. Here, α is a rotational angle of m about L (i.e. about X ), β is an angle between l and L
about Y and γ is a rotational angle of m about l . Thus, (β = β1 + β2, Rα |L, Rβ |R1, Rγ |l) are satisfied,
see Fig. 1a. Based on above geometric constraints, set B

mR to be a rotation matrix from m to B in order
XYX,21 (xl , xm, xn, yl , ym, yn, zl , zm, zn) be the nine orientation parameters of m in B, (Xo,Yo, Zo) be
the position components of o in B and ϕ be one of (α, β, γ , θi). Set sϕ =sin ϕ and cϕ =cos ϕ. Let
mbi (i =1,. . . , 5) bi and o be the vectors of points bi and o on m in m and B, respectively; Bi be the
vectors of points Bi on B in B; (Xo,Yo, Zo), (Xbi,Ybi, Zbi) and (XBi,YBi, ZBi) be the position components
of (o, bi, Bi) in B, respectively. (B

mR, o,m bi, bi, Bi) are represented and derived as follows:

B
mR=

⎛
⎝xl yl zl

xm ym zm

xn yn zn

⎞
⎠ =

⎛
⎝ cβ sβsγ sβcγ

sαsβ cαcγ − sαcβsγ −cαsγ − sαcβcγ

−cαsβ sαcγ + cαcβsγ −sαsγ + cαcβcγ

⎞
⎠ , o =

⎛
⎝Xo

Yo

Zo

⎞
⎠ ,

mbi=ei

⎛
⎝cθ i

sθ i

0

⎞
⎠ , Bi=

⎛
⎝XBi

YBi

ZBi

⎞
⎠=Ei

⎛
⎝cθ i

sθ i

0

⎞
⎠ , bi=

⎛
⎝Xbi

Ybi

Zbi

⎞
⎠=B

mRmbi + o=
⎛
⎝ eicθ ixl + eisθ iyl + Xo

eicθ ixm + eisθ iym + Yo

eicθ ixn + eisθ iyn + Zo

⎞
⎠

(2)

here, ei = e (i =1,. . . , 5) are the distances from o to bi; Ei are the distances from O to Bi; θi are the
angles between x and line from o to bi, θi (i =1, . . . , 5)=(18o, 90o, 162o, 234o, 306o).

The vector ri (i =1,. . . , 5) of ri and its unit vector δi are derived from Eq. (2) as follows:

ri = bi − Bi =
⎛
⎝ eicθ ixl + eisθ iyl + Xo − Eicθ i

eicθ ixm + eisθ iym + Yo − Eisθ i

eicθ ixn + eisθ iyn + Zo

⎞
⎠ , δi = ri

|ri| (3)

Let l and L be the unit vectors of l and L, respectively. Since (l, L and r1) locate in the same plane,
and (l = x, L = X ) are satisfied, a constrained equation of plane is derived from Eqs. (2) and (3) as
follows:

l=x=
⎛
⎝xl

xm

xn

⎞
⎠=

⎛
⎝ cβ

sαsβ

−cαsβ

⎞
⎠ , r1 = b1 − B1 =

⎛
⎝Xb1 − XB1

Yb1 − YB1

Zb1 − ZB1

⎞
⎠ , L = X =

⎛
⎝1

0
0

⎞
⎠ ,

(lr1L) = 0 ⇒
∣∣∣∣∣∣

xl xm xn

Xb1 − XB1 Yb1 − YB1 Zb1 − ZB1

1 0 0

∣∣∣∣∣∣ = 0

(4)
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Fig. 2. The kinematics/dynamics model of the novel PM with couple-constrained wrench.

The relations among (Xo,Yo, Zo, α, β, γ ) are derived from Eqs. (2) and (4) as follows:

xm(Zb1 − ZB1) − xn(Yb1 − YB1) = 0 ⇒ esθ1cγ + Zosα + Yocα − E1sθ1cα = 0,

cγ = (E1sθ1cα − Zosα − Yocα )
/

(esθ1)
(5)

3.2. Analyses of velocity, couple-constrained wrench and singularity
Let (v, ω,V o) be the translational, angular and general velocities of m at o in B, respectively. Let vri

(i =1,. . . , 5) be the input velocity along ri of PM. Let vi be the translational velocity of m at bi in
B. Let ei be the vector from o to bi. Let T ci (i =1, 3) be the dynamic constrained torques exerted
onto L. Let f ci (i =1, 3) and ci be the dynamic couple-constrained forces exerted onto m and their
unit vectors. Let fci be scalar of f ci. A kinematics and dynamics model of the novel PM with the
couple-constrained wrench is shown in Fig. 2.

The formulas for solving (vri, vi) can be derived as follows:

vi = v + ω × ei, ei = bi − o, vri = vi · δi = (v + ω × ei) · δi,

vri = (
δT

i (ei × δi)
T

)
V o, V o =

(
v

ω

)
(6)

Generally, a 5-DoF PM has a general input velocity which includes five input velocity components
and a general output velocity which includes six velocity components (i.e. three translational and three
angular velocity components). Therefore, a 5×6 velocity mapped matrix J can be derived. However,
it is a challenging issue to derive the formulas for solving the acceleration of the moving links and the
dynamics of the 5-DoF PM by utilizing the 5×6 matrix J. Since most 5-DoF PMs include a decoupled
constrained force/torque which does not generate power, the 5×6 matrix J can be transformed into a
6×6 matrix J by utilizing the decoupled constrained force/torque based on the principle of the virtual
power.21 Thus, it is easy by utilizing the 6×6 matrix J to derive formulas for solving the acceleration
and dynamics of the 5-DoF PMs.

However, the novel 5-DoF PM includes two couple-constrained forces. Hence, a relation equation
of two couple-constrained forces must be derived. After that, a 6×6 matrix J can be derived
based on the relation equation of two couple-constrained forces and the principle of the virtual
power.

Based on the balancing condition of the dynamic constrained torques, (T c1 = T c3 and T ci|L) are
satisfied, see Fig. 2b. Therefore, the dynamically couple-constrained forces must satisfy

(r1 × fc1c1+r3 × fc3c3) · L = 0 ⇒ fc3 = k fc1, k = −(r1 × c1) · L
/

[(r3 × c3) · L] (7)
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Since neither the couple-constrained forces f ci (i =1, 3) nor the coupling constrained torques
ei × f ci (i =1, 3) generate power, ( f ci × ri = T ci and f c1|| f c3ci ⊥ δi and ci||Ri) must be satisfied.
Thus, from the principle of the virtual power, the couple-constrained wrench must satisfy

( fc1c1 + fc3c3) · v + (e1 × fc1c1+e3 × fc3c3) · ω = 0 (8)

Substitute fc3 = k fc1 in Eq. (7) into Eq. (8), it leads to

{[(r3 × c3) · L] · c1 − [(r1 × c1) · L]c3} · v +
{e1 × [((r3 × c3) · L) · c1 − ((r1 × c1) · L) · c3] + ll × ((r1 × c1) · L) · c3} · ω = 0 (9)

Equation (9) can be represented as follows:

cl · v + τ l · ω = 0, cl = [(r3 × c3) · L]c1 − [(r1 × c1) · L]c3,

τ l = e1 × {[(r3 × c3) · L]c1 − [(r1 × c1) · L]c3}+ll × [(r1 × c1) · L]c3
(10)

Since R1||R3, ci||Ri (i =1, 3) and Ri ⊥ L are satisfied, there are c3 = −c1, ci ⊥ l , (L × ri)||ci. Next,
cl and τ l are derived as follows:

cl = [(r3 × c3) · L]c1 − [(r1 × c1) · L]c3 = −[(r3 × c1) · L]c1 + [(r1 × c1) · L]c1

= −[(L × r3) · c1]c1 + [(L × r1) · c1]c1 = L × (r1 − r3) = L × (ll − LL) = lc,
τ l = e1 × c+ll × (r1 × c1) · Lc3 = e1 × c − l × [(r1 × c1) · L]c1

= e1 × c − ll × [(L × r1) · c1]c1 = e1 × c − ll × (L × r1) = lτ,

c = L × l, τ = e1 × (L × l ) − l × (L × r1)

(11)

From Eqs. (10) and (11), it leads to

cl · v + τ l · ω = 0 ⇒ c · v + τ · ω = 0 (12)

Since R1||(L × r1), τ ⊥ L, τ ⊥ R1 are satisfied. Hence, when l ||L is satisfied, the constrained
wrench is the constrained torque T c, and Tc = FcL, T c ⊥ L, T c ⊥ R1 are satisfied.

Let V r be a general input velocity of the novel PM. A formula of V r is derived from Eq. (6) and
Eq. (12) as follows:

V r = JV o, V r =

⎛
⎜⎜⎜⎜⎜⎝

vr1

vr2

vr3

vr4

vr5

0

⎞
⎟⎟⎟⎟⎟⎠ , J =

⎛
⎜⎜⎜⎜⎜⎜⎝

δT
1 (e1 × δ1)T

δT
2 (e2 × δ2)T

δT
3 (e3 × δ3)T

δT
4 (e4 × δ4)T

δT
5 (e5 × δ5)T

cT τT

⎞
⎟⎟⎟⎟⎟⎟⎠

,
c = L × l,

τ = e1 × c − l × (L × r1) (13)

here, J is a 6×6 Jacobian matrix of the novel PM.
Several singularities are determined as follows:

1. When ri|L (i =1, 3) and l ||L are satisfied, there are c = τ = 0, |J| = 0 in Eq. (13). A singularity
occurs.

2. When l =0 is satisfied, there are c = τ = 0, |J| = 0 in Eq. (13). A singularity occurs.
3. When L =0 and is satisfied, there are c = τ = 0, |J|=0 in Eq. (13). A singularity occurs.
4. When ri =0, i is one of (1, . . . , 5) is satisfied, there are δi = ei × δi = 0, |J| = 0. A singularity

occurs.

3.3. Acceleration model and Hessian matrix
The acceleration analysis is a pre-condition for deriving dynamics formulas. Let u, s(u) be a vector
and its skew-symmetric matrix and I be a 3×3 unit matrix. They satisfy1,2

u × =s(u) =û, s(u)T = − s(u), −s2(u) = − û2=I − uuT (14)

here, u may be one of L, l, ei, δi, r1, L × r1, L × l , (i =1, . . . , 5).
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Let (a, ε, Ao) be the translational, angular and general accelerations of m at o in B, respectively. Let
ari (i =1, 2, 3, 4, 5) be the input acceleration along ri of novel PM. Differentiate Eq. (6), ari (i =1, 2,
3, 4, 5) can be derived based on Eqs. (6) and (14) in Ref. [21] as follows:

ari =
(

δT
i (ei × δi)

T
)

Ao + V o
T hriV o,

hri
6×6

= 1
ri

(
h11 h12

h21 h22

)
,

h11= − s2(δi), h12=s2(δi)s(ei), h21= − s(ei)s2(δi),
h22 = ris(ei)s(δi) + s(ei)s2(δi)s(ei)

(15)

here, hri (i =1, 2, 3, 4, 5) is a 6×6 sub-Hessian matrix corresponding to active force along ri.
Differentiate Eq. (12), there are

c′ = (L × l )′ =L × (ω × l ) = (
0 −Q

)
V o, Q=s(L)s(l ),

τ′ = [e1 × (L × l ) − l × (L × r1)]′
= ω × e1 × (L × l )+e1 × (L × (ω × l )) − (ω × l ) × (L × r1) − l × (L × v1).

τ′ = (L × l ) × (e1 × ω) − e1 × [L × (l × ω)] − (L × r1) × (l × ω) − l × [L × v+L × (ω × e1)]
= s(L × l )s(e1)ω − s(e1)s(L)s(l )ω − s(L × r1)s(l )ω − s(l )s(L)v+s(l )s(L)s(e1)ω
= (−QT Q1

)
V o,

Q1=s(L × l )s(e1) − s(e1)s(L)s(l ) − s(L × r1)s(l )+s(l )s(L)s(e1)
(16)

From Eq. (16), it leads to

(
(cT )′ (τT )′

) = V T hc, hc =
(

03×3 −Q
−QT QT

1

)
(17)

here, hc is a 6×6 sub-Hessian matrix corresponding to constrained wrench.
Differentiate equation c · v + τ · ω = 0 in Eq. (12), it leads to

0′ = [
(

cT τT
)

V o]′ ⇒
0 = (

cT τT
)

Ao + (
(cT )′ (τT )′

)
V o

(18)

A formula for solving general acceleration is derived from Eqs. (15), (17) and (18) as follows:

Ari=JAo + V o
T HV o,

Ao=J−1[Ari − V T
ri(J

−1)T HJ−1V ri],
Ari=

(
ar1 ar2 ar3 ar4 ar5 0

)T
,

H=(
hr1 hr2 hr3 hr4 hr5 hc

)T

(19)

here, H is a 6 layer 6×6 Hessian matrix of the novel PM.

4. Workspace
The reachable workspace and the orientation workspace of PMs are two important indices to evaluate
their performance and dexterity.25 In this section, a reachable workspace W of the novel PM is
constructed by utilizing CAD variation geometry.29 Since this PM has a symmetry structure in OYZ
plane, its W is also symmetry in OXZ plane and is formed by an upper surface Su and a lower surface
Sl . Let rimax, rimin and 	ri (i =1, 2, 3, 4, 5) be the maximum extension of ri, the maximum extension
of ri and the variation increment of ri at each step. When set the basic parameters e =150, Ei =270
(i =1, 3), Ei =265 (i =2, 4, 5), rimax =850, rimin =650, 	ri =10 mm, the reachable workspace W
of the novel 5-DoF is constructed by utilizing Matlab and is transformed into Solidwork by utilizing
CAD variation geometry, see Fig. 3. The volume dimensions of W in (X,Y, Z) directions are (1350,
1371, 511) mm, respectively.

Let (φzX , φzY , φzZ ) be the angles between z and (X,Y, Z), respectively. The (φzX , φzY , φzZ ) of the
novel PM are solved by utilizing CAD variation geometry and the simulation mechanism, see Table I.
It is known that the novel PM has better property of isotropy horizontal motion.
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Table I. Orientation of the novel PM.

r1, mm r2, mm r3, mm r4, mm r5, mm φzX ,◦ φzY ,◦ φzZ ,◦

708.14 650 715.46 850 850 90 27.17 62.86
769.10 850 769.10 650 650 90 136.94 46.94
650 719.17 850 850 734.64 56.40 93.10 33.78
850 720.70 650 732.91 850 122.19 88.85 32.21
850 850 732.44 650 720.05 113.51 114 34.72
732.59 850 850 719.93 650 66.25 113.89 34.83

Fig. 3. A reachable workspace of novel PM. A top view (a), a side view (b), front view (c) and isometric view
of 3D (d).

5. Kinematics of Active Legs ri and Connected Rod L
Let ri (i =1, . . . , 5) and δi be the vector of the active leg ri and its unit vector, respectively. Let ei be
the vector from o to bi. Let vi be the translational velocity of ri at bi. Let ωri and εri be the angular
velocity and angular acceleration of ri. Let vri be the scalar velocity along ri.

The relative formulas among (ri, ei, v, ω, vi, ωri and vri) can be represented as follows:

vi=vriδi + ωri × ri, vi=v + ω × ei, vi − vriδi = ωri × ri (20)

Cross-multiply both sides of the first formula in Eq. (20) in the right by ri, it leads to

δi × vi = δi × vriδi + riδi × (ωri × δi) = riδi × (ωri × δi) = riωri − riδi(ωri · δi) (21)
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5.1. Kinematics of RPU type active legs ri (i=1, 3)
Let ri (i =1, 3) and δi be the vector of the RPU-type active leg ri. Let ωi1 and Ri1 be the scalar angular
velocities of ri about L and its unit vector. Let ωi2 and Ri2 be the scalar angular velocities of ri about
RBi and its unit vector. Since ri (i =1, 3) are connected with B by L, ωri (i =1, 3) are represented as
follows:

ωri = ωi1Ri1 + ωi2Ri2, Ri1 = L/|L|, Ri2 = (Ri1 × δi)/|Ri1 × δi| (22)

Cross-multiply both sides of Eq. (22) in the right by ri, from Eqs. (14), (20) and (22), it leads to

ωi1Ri1 × ri + ωi2Ri2 × ri = ωri × ri = vi − vriδi = vi − (vi · δi)δi

= (I − δiδ
T
i )vi = −s2(δi)vi = −s2(δi)(v + ω × ei) = −s2(δi)[v − s(ei)ω]

(23)

Dot multiply both sides of Eq. (23) in the right by Ri1 and Ri2, respectively, it leads to

ωi2(Ri2 × ri) · Ri1 = ωi2Di1 = −RT
i1s2(δi)[v − s(ei)ω],

ωi1(Ri1 × ri) · Ri2 = −ωi1Di1 = −RT
i2s2(δi)[v − s(ei)ω], Di1 = (Ri1 × Ri2) · ri

(24)

From Eq. (24), it leads to

ωi1 = RT
i2s2(δi)[v − s(ei)ω]

/
Di1,ωi2 = −RT

i1s2(δi)[v − s(ei)ω]
/

Di1 (25)

Substitute Eq. (25) into Eq. (22), a formula for solving ωri is derived as follows:

ωri = ωi1Ri1 + ωi2Ri2 = (Ri1RT
i2 − Ri2RT

i1)s2(δi)[v − s(ei)ω]
/

Di1,

ωri = JωiV , Jωi = Di2s2(δi)
(

I −s(ei)
)
/Di1, Di2 = Ri1RT

i2 − Ri2RT
i1

(26)

In order to solve εri, Eq. (26) is represented as follows:

ωri = (Ri1RT
i2 − Ri2RT

i1)s2(δi)[v − s(ei)ω]
/

Di1 = Di3/Di1,

Di3 = (Ri1RT
i2 − Ri2RT

i1)s2(δi)[v − s(ei)ω] = −Di2(vi − vriδi)
(27)

Differentiate Eq. (27), a unified formula for solving εri of ri (i =1, 3) is derived as follows:

εri = (D′
i3Di1 − D′

i1Di3)
/

D2
i1, δ′

i = (vi − vriδi)
/

ri,

D′
i3= (Ri2RT

i1 − Ri1RT
i2)′(vi − vriδi) + (Ri2RT

i1 − Ri1RT
i2)(vi − vriδi)′

= [(ωri × Ri2)RT
i1 − Ri1(ωri × Ri2)T ](vi − vriδi) + (Ri2RT

i1 − Ri1RT
i2)(ai − ariδi − vriδ

′
i),

D′
i1=[(Ri1 × Ri2)ri]′= (Ri1 × R′

i2)ri + (Ri1 × Ri2)r′
i = [Ri1 × (ωri × Ri2)]ri + (Ri1 × Ri2)vi

(28)

5.2. Kinematics of SPU-type active legs ri (i=2, 4, 5)
Let Ri j ( j =1, 2; i =2, 4, 5) be the two crossed revolute joints of the universal joint Ui of ri at bi, and
Ri1 ⊥ Ri2 is satisfied. Let Ri j be the unit vectors of Ri j joints. Let φ′

i j ( j =1, 2) be the scalar angular
velocities about Ri j . A kinematic equation among (ω, ωri, φ

′
i j) is represented as follows:

ωri + φ′
i1Ri1 + φ′

i2Ri2=ω, ωri=ω − φ′
i1Ri1 − φ′

i2Ri2 (29)

Cross-multiply both sides of Eq. (29) in the right by ri (i = 2, 4, 5), from Eq. (4), it leads to

ω × ri − φ′
i1Ri1 × ri − φ′

i2Ri2 × ri = ωri × ri (30)

Dot multiply both sides of Eq. (30) in the right by Ri j ( j =1, 2), respectively, it leads to

(ω × ri) · Ri1 − (φ′
i2Ri2 × ri) · Ri1=δ̂i

2
( − v + êiω)Ri1,

(ω × ri) · Ri2 − (φ′
i1Ri1 × ri) · Ri2=δ̂i

2
( − v + êiω)Ri2

(31)
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From Eq. (31), the formulas for solving φ′
i j (i =2, 4, 5; j =1, 2) are derived as follows:

φ′
i1 = [−(r̂iRi2)ω − δ̂2

i (v − êiω)Ri2]/di1, di1=(Ri1 × Ri2)ri, φ′
i2= [(r̂iRi1)ω + δ̂2

i (v − êiω)Ri1]/di1

(32)
From Eqs. (30) and (32), ωri (i =2, 4, 5) are derived as follows:

ωri = ω − φ′
i1Ri1 − φ′

i2Ri2

= ω − {[ − (r̂iRi2)ω − δ̂2
i (v − êiω)Ri2]Ri1 − [(r̂iRi1)ω + δ̂2

i (v − êiω)Ri1]Ri2}/di1

= ω − 1
di1

{(Ri1RT
i2 − Ri2RT

i1)r̂iω + (Ri1RT
i2 − Ri2RT

i1)δ̂2
i êiω − (Ri1RT

i2 − Ri2RT
i1)δ̂2

i v}
= ω + d i2(δ̂2

i v − r̂iω − δ̂2
i êiω)/di1= [d i2δ̂

2
i v + (di1I − d i2r̂i − d i2δ̂

2
i êi)ω]/di1,

ωri = JωriV o, Jωri= 1
di1

(
d i2δ̂

2
i di1I − d i2δ̂i(ri + δ̂iêi)

)
,

di1 = (Ri1 × Ri2) · ri, d i2=Ri1RT
i2 − Ri2RT

i1, Ri1 = −ei

|ei| , Ri2 = Ri1 × ri

|Ri1 × ri| , i= 2, 4, 5

(33)

In order to solve the angular acceleration of SPU-type active legs ri (i =3, 4, 5), Eq. (33) and its
relative items are written as follows:

ωri=ω + d i2Di
/

di1, d i2Di
/

di1=ωri − ω, Di=δ̂2
i v − r̂iω − δ̂2

i êiω,

vri=viδi, ari=ai · δi + vi · δ′
i, δ′

i= (vi − vriδi)/ri, ai=a+ε × ei + ω × (ω × ei),
di1=(Ri1 × Ri2)T ri, d i2=Ri1RT

i2 − Ri2RT
i1

(34a)

Here, d ′
i1 and d ′

i2 are derived as follows:

d ′
i1 = (Ri1 × Ri2)′ · ri + (Ri1 × Ri2) · r′

i

= (R′
i1 × Ri2 + Ri1 × R′

i2) · r1+(Ri1 × Ri2) · vi

= [(ω × Ri1) × Ri2 + Ri1 × (ωri × Ri2)] · r1+(Ri1 × Ri2) · vi

= (ω × Ri1) · (Ri2 × r1) + (ωri × Ri2) · (r1 × Ri1)+(Ri1 × Ri2) · vi

= (ω · Ri2)(Ri1 · r1) − (ω · r1)(Ri1 · Ri2)
+(ωri · r1)(Ri2 · Ri1) − (ωri · Ri1)(Ri2 · r1)+(Ri1 × Ri2) · vi

= (ω · Ri2)(Ri1 · r1)+(Ri1 × Ri2) · vi,

d ′
i2=R′

i1RT
i2 + Ri1R′T

i2 − R′
i2RT

i1 − Ri2R′T
i1

= (ω × Ri1)RT
i2 + Ri1(ωri × Ri2)T − (ωri × Ri2)RT

i1 − Ri2(ω × Ri1)T

(34b)

Differentiate Eq. (34a), a unified formula for solving the angular accelerations εri of ri (i =2, 4, 5)
is derived based on Eq. (34b) as follows:

εri=ε + [(ω − ωri)d ′
i1 + d ′

i2Di+d i2D′
i]
/

di1, (i= 2 4, 5),
εri=ε+{(ω − ωri)[(ω · Ri2)(Ri1 · r1)+(Ri1 × Ri2) · vi]

+[(ω × Ri1)RT
i2+Ri1(ωri × Ri2)T − (ωri × Ri2)RT

i1 − Ri2(ω × Ri1)T ](vriδi − vi − ri × ω)
+(Ri1RT

i2 − Ri2RT
i1)[ariδi − ai − ri × ε − vi × ω+vri(vi − vriδi)/ri]}/[(Ri1 × Ri2)T ri]

(35)

5.3. Kinematics of connected rod L
Let (vL, aL, ωL, εL,V L) be the translational velocity, translational acceleration, angular velocity,
angular acceleration and general velocity of L. Since L can be moved in translation, there is
vL = aL = 0. A formula for solving ωL and V L is derived from the first formula of Eq. (25) as
follows:

ωL=ω11R11=R11RT
12(δ̂2

1v − δ̂2
1ê1ω)

(R11 × R12) · r1
= JωLV o, JωL = R11RT

12

D11
δ̂2

1

(
I −ê1

)
,

ωL=DL
/

D11, DL = R11RT
12(vr1δ1 − v1), D11 = (R11 × R12) · r1,

V L =
(

vL

ωL

)
=

(
0
ωL

)
=JLV o, JL =

(
0

JωL

) (36)
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Differentiate Eq. (36), a formula for solving εL is derived as follows:

εL = D′
LD11−D′

11DL

D2
11

, δ′
1 = (v1 − vr1δ1)

/
r1,

D′
L=R11(ωr1 × R12)T (vr1δ1 − v1) + R11RT

12(ar1δ1 + vr1δ
′
1 − a1)

(37)

5.4. Velocity and acceleration of piston and cylinder of active legs ri (i=1, . . . , 5)
Each of RPU-type active legs ri (i =1, 3) and SPU-type active legs ri (i =2, 4, 5) is composed of a
piston rod and a cylinder. The piston rod of ri is connected with m at bi. The cylinder of ri is connected
with B at Bi. Let pi be the mass center of the piston rod in ri, lpi be the distance from bi to pi, qi be the
mass center of the cylinder in ri and lqi be the distance from Bi to qi, see Fig. 2b. Let (vg, ωg,V g, ag, εg)
be the translational velocity, the angular velocity, the general velocity, the translational acceleration
and the angular acceleration of g (g = pi, qi), respectively. vg, ωg,V g (g = pi, qi) in B are derived as
follows:

vpi=vriδri + ωri × (ri − lpi)δri=JvpiV o, ωpi=ωri=JωriV o, (i= 1, · · · , 5),
Jvpi=δri[ δT

ri (ei × δri)
T ] − (ri − lpi)δ̂riJωri, vqi=ωri × lqiδri= − lqiδ̂riJωriV o, ωqi=JωriV o,

V pi=
(

vpi

ωpi

)
=J piV o, V qi=

(
vqi

ωqi

)
=JqiV o, J pi=

(
Jvpi

Jωri

)
, Jqi=

(
−lqiδ̂riJωri

Jωri

) (38)

Differentiate vg and ωg (g = pi, qi), respectively, in Eq. (38) with respect to time, ag, εg (g = pi, qi)
are derived and represented as follows:

api=ariδri − (ri − lpi)δ̂riεri − 2vriδ̂riωri + (ri − lpi)ωri × (ωri × δri),
aqi= − lqiδ̂riεri + lqiωri × (ωri × δri), εpi=εqi=εri, (i= 1, · · · , 5)

(39)

6. Dynamics of Novel PM with Couple-Constrained Wrench
Let f τ , tτ , mτ , Gτ , Iτ and τ = o, L, pi, qi, (i =1, . . . , 5) be the inertial force, the inertial torque, the
mass, the gravity, the inertial moment and the general inertial wrench of the moving links at their
masse centers in B, respectively. Let (Fo, T o) be a working-load wrench applied on m at o. ( f d , td ) be
the damping force and torque applied on m at o. Let μ be a damping coefficient. ( f τ , tτ , Gτ , Iτ , f d , td )
are represented and solved as follows:

Gτ = mτ g, f τ = −mτ aτ , tτ = −Iτετ ,

f d = −μv, td = −μω, (τ = o, L, pi, qi; i = 1, · · · , 5) (40)

Let Fr , be the general dynamic input forces and constrained wrench. Let V r be the general input
velocity. They are represented as follows:

Fr = (
fa1 fa2 fa3 fa4 fa5 fc

)T

V r=
(
vr1 vr2 vr3 vr4 vr5 0

)T =JV o
, F=

⎛
⎝Fx

Fy

Fz

⎞
⎠ , T=

⎛
⎝Tx

Ty

Tz

⎞
⎠ (41)

When ignoring the friction of all the joints in the novel mechanism, based on the principle of virtual
work, a power equation is derived as follows:

FT
r V r+

(
Fo+Go+ f o+ f d

T o+to+td

)T

V o+
(

GL+ f L

tL

)T

V L+
n=5∑
i=1

[(
Gpi+ f pi

t pi

)T

V pi+
(

Gqi+ f qi

tqi

)T

V qi

]
=0

(42)
When considering the friction of all the joints in the mechanism, a coefficient (η ≤1) of this novel

PM can be added here. Thus, substitute Eqs. (25) and (38) into Eq. (42), a formula for solving the
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Table II. Given geometric parameters of m and B, mass and inertial moment of moving links, and workloads of
novel PM.

Symbol Value, unit Symbol Value, unit

ei (i =1, 2, 3, 4, 5) 150 mm Fo (10 10 500)T N
Ei (i =1, 3) 270 mm T o (0 0 1000)T N·m
Ei (i =2, 4, 5) 265 mm θ1, θ2, θ3, θ4, θ5 18o, 90o, 162o, 234o, 306o

η,μ 1, 0 Io, Il , Igi, Iqi 5I, 2I, 3I, 2I kg·m2
lp1 = lp3, lp2 = lp4 = lp5, lqi 100, 98, 50 mm mo, ml , mgi, mqi 3, 2, 3, 2 kg

general dynamic input forces and constrained wrench is derived as follows:

Fr= − (J−1)T

{
1

η

(
Fo+Go+ f o+ f d

T o+to+td

)
+ JT

l

(
Gl+ f l

t l

)
+

n=5∑
i=1

[
JT

pi

(
Gpi+ f pi

t pi

)
+JT

qi

(
Gqi+ f qi

tqi

)]}

(43)
The general dynamic constrained force fc can be solved from Eqs. (41) and (43). After that, the

formulas for solving the dynamic couple-constrained forces fc1 and fc3 and the dynamic constrained
torque T c exerted on to L are derived as follows:

fc = fc1 + fc3, fc1 = fc

1 + k
, fc3 = fc − fc1, T c1=r1 × fc1c1, k = (r1 × c1) · L

(r3 × c1) · L
(44)

7. Numerical Example of Kinematics/Dynamics and Analysis
The geometric parameters of the moving platform m, the base B and the workloads (Fo, T o) exerted
on m are given in Table II. A program is compiled in Matlab based on the derived relative analytic
formulas and the parameters in Table II.

The solving processes of the analytical solutions are explained as follows:

1. Give the five displacement components (Xo,Yo, Zo, α, β) of m at o in B of the novel PM, see Fig.
4a and f. Solve γ , and solve the velocities and accelerations of m at o in B of the proposed PM.
The solved results are shown in Fig. 4b-f.

2. Solve ri (i =1,. . . , 5) using Eq. 4. The solved results are shown in Fig. 4g.
3. Solve vri and ari of ri of the novel 5-DoF PM. The solved results are shown in Fig. 4h and i.
4. Given the workloads (Fo, T o) applied onto m in Table II, based on the solved ri (i =1,. . . , 5) of

active legs, solve the five dynamic active forces fai (i =1,. . . , 5) of the novel 5-DoF PM and the
dynamic couple-constrained forces fc1, fc3. The solved results are shown in Fig. 4j and k.

5. Solve the dynamic constrained torque Tc exerted onto the connection rod, see Fig. 4l.

The analytic solutions are verified by the simulation solutions of a simulation mechanism in
Matlab/Simulink/Mechanics. The characteristics of the novel PM are found from the solutions and
are analyzed as follows:

1. When the displacement, translational velocity and translational acceleration of m are varied
smoothly in a large range, the displacement, velocity and acceleration of ri, the dynamic active
forces, the dynamic couple-constrained force and dynamic couple-constrained torque are varied
smoothly. It implies that the novel PM has good characteristics of the kinematics and dynamics.

2. Comparing with the dynamic active forces, the dynamic couple-constrained forces are quite small.

Errors between analytic solutions and simulation solutions are given in Table III. It is known from
Table III that all derived analytical formulas of kinematics/dynamics are correct because the errors
between the analytic solutions and the simulation solutions are very small.
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Table III. Errors between analytic solutions and simulation solutions.

Absolute maximum errors Unit r1 r2 r3 r4 r5

Displacement error 	rimax mm −1.7E−09 1.0E−09 2.5E−09 −9.7E−09 −1.4E−09
Velocity error 	vrimax mm/s −5.0E−08 3.8E−08 8.1E−08 1.1E−09 −5.0E−08
Acceleration error 	arimax mm/s2 1.5E−09 1.3E−09 1.4E−09 1.3E−09 1.3E−09
Dynamic active force error 	Faimax N −0.017 0.019 −0.013 −0.003 0.009
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Fig. 4. Analytical solutions of kinematics and dynamics of novel PM.

8. Conclusions
A 3D model of the novel 3SPU+2RPU+R type parallel manipulator with the couple-constrained
wrench is constructed. It has five DoFs and is composed of a quaternary link for the fixed base, a
pentagonal link for the moving platform, a ternary link for the connection rod, two RPU-type active
limbs and three SPU-type active limbs. The novel parallel manipulator is simple in structure and its
capability of the load bearing and the rigidity are increased.

The kinematics formulas are derived for solving the displacement of the five active legs, Jacobian
matrix, Hessian matrix, and the velocities/accelerations of the moving links for the novel parallel
manipulator. Its dynamics formulas are derived for solving the dynamically active forces and the
dynamically couple-constrained torque/force.
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All derived analytical formulas of kinematics/dynamics are verified to be correct by utilizing a
simulation mechanism, and provide a theoretical foundation for the structure optimization, control,
manufacturing and applications of the different 5-DoF parallel manipulators with the couple-
constrained wrench.

Its position/orientation workspace is quite large and it has a good property of isotropy horizontal
motion. It implies that the novel parallel manipulator with the couple-constrained wrench has a large
moving workspace in any direction.

The novel parallel manipulator has potential applications for the hybrid hand, the surgical
manipulator, the 5-DoF parallel machine tool, the tunnel borer, the barbette of warship, the human
health robot and the satellite surveillance platform.
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