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Non-modal stability in sliding Couette flow
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The problem of an incompressible flow between two coaxial cylinders with radii a
and b subjected to a sliding motion of the inner cylinder in the axial direction is
considered. The energy stability and the non-modal stability have been investigated
for both axisymmetric and non-axisymmetric disturbances. For the non-modal stability,
we focus on two problems: response to external excitations and response to initial
conditions. The former is studied by examining the ε-pseudospectrum, and the latter
by examining the energy growth function G(t). Unlike the results of the modal
analysis in which the stability of sliding Couette flow is determined by axisymmetric
disturbances, the energy analysis shows that a non-axisymmetric disturbance has a
critical energy Reynolds number for all radius ratios η = a/b. The results for non-
modal stability show that rather large transient growth occurs over a wide range of
azimuthal wavenumber n and streamwise wavenumber α, even though the Reynolds
number is far below its critical value. For the problem of response to external
excitations, the response is sensitive to low-frequency external excitations. For all
values of the radius ratio, the maximum response is achieved by non-axisymmetric and
streamwise-independent disturbances when the frequency of external forcing ω = 0.
For the problem of response to initial conditions, the optimal disturbance is in
the form of helical streaks at low Reynolds numbers. With the increase of Re, the
optimal disturbance becomes very close to straight streaks. For each η, the maximum
energy growth of streamwise-independent disturbances is of the order of Re2, and
the optimal time is of the order of Re. This relation is qualitatively similar to
that for plane Couette flow, plane Poiseuille flow and pipe Poiseuille flow. Direct
numerical simulations are applied to investigate the transition of the streamwise vortex
(SV) scenario at Re = 1000 and 1500 for various η. The initial disturbances are
the optimal streamwise vortices predicted by the non-modal analysis. We studied the
streak breakdown phase of the SV scenarios by examining the instability of streaks.
Moreover, we have investigated the sustainment of the energy of disturbances in the
SV scenario.

Key words: channel flow, transition to turbulence

1. Introduction
The onset of turbulent fluid motion in a plane channel or a pipe, such as plane

Couette flow (PCF), plane Poiseuille flow (PPF) and Hagen–Poiseuille flow (HPF),
has received considerable attention over the past few decades. Sliding Couette flow
(SCF) is a flow between two co-axial cylinders subjected to a sliding motion of the
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inner cylinder in the axial direction. This type of flow occurs in many industrial
applications and medical contexts (Arney et al. 1993; Frei, Lüscher & Wintermantel
2000; Walton 2003, 2004, 2005). In comparison with PCF, PPF and HPF, SCF has
not been intensively investigated until now, even though the flow has a very simple
geometry.

The sliding Couette flow was first investigated by Preziosi & Rosso (1990).
However, they did not find any indication of linear instability. Gittler (1993) studied
the stability to axisymmetric perturbations for the same problem. The results show that
instability occurs for η 6 0.1415 (where η is the ratio of the cylinder radii a/b) at quite
high Reynolds numbers and the linear critical state is absent for η > 0.1415. Recently,
Deguchi & Nagata (2011) have studied the stabilities and bifurcations in SCF. They
confirm the linear stability result of Gittler (1993). Moreover, they have extended their
analysis to the non-axisymmetric case and found that the stability of the flow is still
determined by the axisymmetric perturbations. Their nonlinear analysis shows that
finite-amplitude axisymmetric solutions exist far below the critical Reynolds number
for η < 0.1415, and non-axisymmetric travelling wave solutions appear abruptly at a
finite Reynolds number regardless of the value of η.

Traditionally, a first step in investigating hydrodynamic stability problems is the
normal-mode analysis. For this approach, it is assumed that each mode has an
exponential time dependence, thus the base flow is considered to be unstable if
an eigenvalue is found in the unstable complex half-plane. The eigenvalue analysis
has successfully predicted the instability behaviours for some fluid systems, such as
Rayleigh–Bénard convection and Taylor–Couette flow. However, for other instability
problems, particularly the instability in shear flows, this approach fails to match most
experimental results. For example, eigenvalue analysis shows that plane Couette flow
and pipe Poiseuille flow are always stable to infinitesimal disturbances at all Reynolds
numbers. However, transition to turbulence is observed for plane Couette flow at
Reynolds number Re ' 360 (Tillmark & Alfredsson 1992) or 370 (Malerud, Måløy &
Goldburg 1995), and for pipe Poiseuille flow at Re' 2000 (Wygnanski & Champagne
1973; Wygnanski, Sokolov & Friedman 1975). Experiments show that the route to
turbulence is highly dependent on the initial conditions and on the continuous forcing
that background noise can provide. Such discrepancies between the modal analysis
and experiments have been recognized by some authors, and the limiting nature of
the eigenvalue approach has led to the emergence of novel ways to investigate the
transition from laminar flow to turbulence. In the last few decades two different
modelling approaches for transition to turbulence have been proposed. The first one
is the non-modal theory which is based on the algebraic transient growth exhibited
by the optimal perturbations. The second approach seeks nonlinear wave solutions of
the Navier–Stokes equations, by using the concept of self-sustaining processes, and
continuation methods.

In the normal-mode analysis, the instability behaviour is inferred from the spectrum
of the governing linear operator. Linear systems governed by a normal operator,
such as Rayleigh–Bénard convection and Taylor–Couette flow, have orthogonal
eigenfunctions. For these normal systems, the spectrum is sufficient to determine
the stability of perturbations. However, for a non-normal system the spectrum only
describes the asymptotic fate of the perturbations and fails to capture short-term
characteristics. The main point of departure of the non-modal theory from the
traditional eigenvalue analysis is the fact that even if all of the eigenvalues of a
linear system are distinct and lie well inside the stable half-plane, inputs to that
system may be amplified by substantially large factors if the linear operator is
non-normal. In the non-modal theory, stability is redefined in a broader sense as
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the response behaviour of the governing equations to general input variables in the
form of initial conditions, external forcing and internal uncertainties. Trefethen et al.
(1993) addressed the general concept of the non-modal stability theory and studied
the transient energy growth and response to external excitations for plane Poiseuille
flow and plane Couette flow. Reddy & Henningson (1993) have studied the energy
growth in viscous channel flows. The results show that there can be a substantial
transient growth in the energy of small perturbations to plane Poiseuille and Couette
flows at Reynolds numbers far below the critical value. Schmid & Henningson (1994)
have studied the transient energy growth in Hagen–Poiseuille flow. It was found that
maximum amplification of initial energy density is realized by disturbances with no
streamwise dependence and azimuthal wavenumber n = 1. The concept of transient
growth has frequently been applied to various hydrodynamic stability problems. For
more information on the non-modal stability of hydrodynamic problems, we refer the
readers to the review article by Schmid (2007) and the references therein. For more on
the mathematics of the behaviour of non-normal linear operators, we refer the readers
to the book by Trefethen & Embree (2005).

Given the apparently potent linear amplification of the optimal disturbances
predicted by non-modal theory, interest was naturally focused on examining how
energy could be fed back from the streaks into the secularly decaying rolls so
that the process could be sustainable and thereby accomplish transition. Waleffe
(1997) proposed the ‘self-sustaining process’ (SSP) to understand how turbulence is
maintained rather than initiated at low Reynolds numbers. As is well known, the SSP
consists of three distinct phases: formation of streamwise streaky flow by streamwise
vortices, instability of streaky flow and the regeneration of the streamwise vortices.
During streak breakdown, a set of nonlinear interactions re-energizes the streamwise
vortices, leading to formation of a new set of streaks, and completing the regeneration
cycle. Hamilton, Kim & Waleffe (1995) performed a direct numerical simulation of
the cycle for this process consisting of streak formation, breakdown of streaks and
regeneration of the streamwise vortices. Reddy et al. (1998) studied streak instability
in plane channel flow establishing the generic nature of the process. They also
performed a direct numerical simulation to investigate the mechanisms of transition
for the streamwise vortex (SV) and oblique wave (OW) scenarios. The results showed
that streak instability is a fundamental phase of transition initiated by SV and OW
scenarios.

A recent new direction in investigating the transition of many wall-bounded
shear flows focuses on seeking alternative nonlinear solutions to the Navier–Stokes
equations. Coherent solutions, generally unstable and in the form of steady states or
travelling waves, have been found for plane channel flow by using homotopy from
Taylor–Couette flow (Nagata 1990; Faisst & Eckhardt 2000). The physical mechanism
responsible for the coherent structures consists of a three-dimensional, nonlinear self-
sustaining process. Following the ideas behind the SSP, Faisst & Eckhardt (2003) and
Wedin & Kerswell (2004) have identified some unstable travelling wave solutions for
pipe flow.

Stability problems of classical shear flows, such as PCF, PPF and HPF, have been
intensively studied using the non-modal theory. However, a careful look at previous
work indicates that studies on the stability of SCF have been mostly limited to the
framework of classical modal analysis. Until now, the non-modal stability in SCF has
attracted much less attention. To the best of our knowledge, the studies on the transient
mechanism of SCF are very limited. In addition to the basic wish to understand the
stability of SCF, a further reason for the interest is that the narrow-gap limit of SCF
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recovers plane Couette flow. One aim of the present paper is to present analogous
results for PCF.

In the present work, we aim to study the non-modal stability and transition in SCF,
to provide physical insights into the transition from laminar flow towards turbulence.
In the non-modal analysis, two types of problems are of particular interest, i.e.
response to external excitations and the transient energy growth of initial conditions.
We should note that the non-modal analysis in the present paper is based only on
a linear local analysis, whereas it is recognized today that the non-modal global
approach and nonlinear analysis are important for understanding the transition process
(Chomaz 2005). Recently, Cherubini et al. (2010) studied the three-dimensional global
optimal dynamics of a boundary layer flow by means of an adjoint-based optimization
strategy.

After obtaining the optimal disturbances by non-modal theory, we present one
scenario in which transition is initiated by optimal streamwise vortices in SCF.
Schematically:

(SV) streamwise vortices H⇒ streamwise streaks H⇒ streak breakdown H⇒
transition.

This scenario has been shown to be pertinent in parallel shear flows, such as
boundary layers (Schmid & Henningson 2001), plane Couette and plane Poiseuille
flows (Reddy et al. 1998). The optimal perturbations in the form of two-dimensional
streamwise rolls evolve into streamwise streaks via the lift-up mechanism. The
amplification of the optimal disturbances can be sufficiently large that the result is the
modification of the basic flow rendering it unstable to three-dimensional perturbations.
This secondary instability, also referred to as streak breakdown, leads to turbulence. In
the present paper, we investigate the streak breakdown phase of the SV scenario via a
direct numerical simulation. The breakdown of streaks is necessary but not sufficient
for transition to occur. We also studied the sustaining of optimal disturbances in the
SV scenario. We should note that the transient growth mechanism is only a possible
path in the transition scenario. Recently, some other possible paths of transition have
been revisited for typical shear flows. Bottaro, Corbett & Luchini (2003) studied the
effect of base flow variation on the stability of plane Couette flow and showed that
relatively small changes in the base flow are destabilizing, although the linear base
flow in PCF is unconditionally stable.

The remainder of the present paper is organized as follows. In § 2 , the mathematical
formulation of the physical model is presented. In § 3, the numerical method for
the linear stability problem is presented. In §§ 4 and 5, we present the results
and discussions on the energy stability and non-modal stability problem. In § 6, we
present the results of direct numerical simulation of the nonlinear evolution for the SV
scenario. Finally, we summarize the results and present the conclusions in § 7.

2. Mathematical formulation
Figure 1 illustrates the physical model of the present study. Consider an

incompressible flow between two infinitely long concentric cylinders with radii a
and b (b > a). The inner cylinder is pulled with an constant speed U in the axial
direction while the outer cylinder is kept at rest. The equations governing the evolution
of fluid flow are the Navier–Stokes equations expressed as

∇ ·v= 0, (2.1)
∂v
∂t
+ v ·∇v=− 1

ρ
∇p+ µ∇2v. (2.2)
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FIGURE 1. Sketch of the geometry of sliding Couette flow. (x, y, z) is a Cartesian coordinate
system with z the axial coordinate along the cylinder. A cylindrical coordinate system (r, θ) is
chosen at the cylinder centreline r = 0.

The boundary conditions on the inner and outer cylinders at r = a and b are

u|r=a = v|r=a = 0, w|r=a = U, u|r=b = v|r=b = w|r=b = 0. (2.3)

Here ρ is the density, p is the pressure, v = uer + veθ + wez is the velocity vector, in
which u, v and w denote the radial, azimuthal and axial components of the velocity.
To non-dimensionalize the problem, we choose the scales of length, time, velocity and
pressure as (b − a)/2, (b − a)/2U, U and ρU2. The velocity of the base flow can be
expressed as

w̄(r)= ln r(1− η)/2
ln η

. (2.4)

Our starting point for the analysis of infinitesimal disturbances in sliding Couette
flow is the linearized Navier–Stokes equations. The controlling equations in cylindrical
coordinates are expressed as

∂u′

∂r
+ u′

r
+ 1

r

∂v′

∂θ
+ ∂w′

∂z
= 0, (2.5)

∂u′

∂t
+ w̄

∂u′

∂z
=−∂p′

∂r
+ 1

Re

[
1u′ − u′

r2
− 2

r2

∂v′

∂θ

]
, (2.6)

∂v′

∂t
+ w̄

∂v′

∂z
=−1

r

∂p′

∂θ
+ 1

Re

[
1v′ − v

′

r2
+ 2

r2

∂u′

∂θ

]
, (2.7)

∂w′

∂t
+ dw̄

dr
u′ + w̄

∂w′

∂z
=−∂p′

∂z
+ 1

Re
1w′, (2.8)

in which u′, v′, w′ denote non-dimensional disturbance velocity components, and p′

denotes non-dimensional pressure disturbance. The boundary conditions on the inner
and outer cylinders at ri = 2η/(1− η), and ro = 2/(1− η) are

u′ = v′ = w′ = 0. (2.9)

We expand u′, v′,w′ and p′ as superpositions of complex Fourier modes of the form

[u′, v′,w′](r, θ, z, t)= [û, v̂, ŵ](r, t)ei(nθ+αz), p′(r, θ, z, t)= p̂(r, t)ei(nθ+αz), (2.10)

in which α is the streamwise wavenumber and n is the azimuthal wavenumber,
and the hats denotes the Fourier amplitudes of disturbances. The presence of two
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homogeneous directions allows us to further reduce the equations to the more
convenient radial velocity (û)–radial vorticity (η̂) form as suggested by Burridge &
Drazin (1969):(

∂

∂t
+ iαw̄

)
T Φ̂ = iαrk2 ∂

∂r

(
1

rk2

dw̄

dr

)
Φ̂ + 1

Re
T T Φ̂ − 2αn

Re
T Ω̂, (2.11)(

∂

∂t
+ iαw̄

)
Ω̂ = in

k2r3

dw̄

dr
Φ̂ + 2αn

Re

1
k4r4

T Φ̂ + 1
Re

S Ω̂, (2.12)

in which

k2 = α2 + n2

r2
, (2.13)

Φ̂ =−irû, Ω̂ =− η̂

ik2r
= αrv̂ − nŵ

k2r2
. (2.14)

The operators T and S are

T = k2r
∂

∂r

(
1

k2r

∂

∂r

)
− k2, (2.15)

S = 1
k2r3

∂

∂r

(
k2r3 ∂

∂r

)
− k2. (2.16)

The original variables can be recovered from

û= iΦ̂
r
, v̂ =− n

k2r2

∂

∂r
Φ̂ + αrΩ̂, ŵ=− α

k2r

∂

∂r
Φ̂ − nΩ̂. (2.17)

At r = ri, ro, the boundary condition are given by the no-slip assumption and can be
written in the form

Φ̂ = ∂

∂r
Φ̂ = Ω̂ = 0. (2.18)

The Orr–Sommerfeld equation and the Squire equation can be expressed in vector
form as

B
∂

∂t
q=A q, (2.19)

in which q= (Φ̂, Ω̂)T, and the matrices A , B are

B =
[
T 0
0 1

]
, A =

[
LOS Ld

Lc LSq

]
. (2.20)

The operators LOS, LSq, Lc and Ld can be written as

LOS =−iαw̄T + iαrk2 ∂

∂r

(
1

rk2

dw̄

dr

)
+ 1

Re
T T , (2.21)

LSq =−iαw̄+ 1
Re

S , (2.22)

Lc = in

k2r3

dw̄

dr
+ 2αn

Re

1
k4r4

T , (2.23)

Ld =−2αn

Re
T . (2.24)
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finally, we obtain the linear initial value problem

∂

∂t
q=−iL q, (2.25)

in which L = iB−1A .

3. Numerical method
In the present paper, we will examine the non-modal stability, including response

to external excitations and initial conditions. We need to compute the eigenvalues
and eigenvectors of the operator L , the pseudospectrum, the numerical range, and
the energy growth function G(t). The spectral method can yield great accuracy for
hydrodynamic instability problems. We use a Chebyshev-collocation method to solve
the eigenvalue problem, and an eigenmode expansion method to solve the non-modal
problem.

We begin with the computation of eigenvalues and eigenvectors. We first transform
the [ri, ro] domain to the Chebyshev domain [−1, 1] by introducing

ζ = 2(r − ri)

ro − ri
− 1. (3.1)

A Chebyshev collocation method is implemented to solve the eigenvalue problem. The
variables Φ̂ and Ω̂ are expanded as

Φ̂ =
N∑

n=0

anTn(ζ ), Ω̂ =
N∑

n=0

bnTn(ζ ), (3.2)

in which Tn denotes the nth Chebyshev polynomial.
Using the Chebyshev series (3.2) and substituting ∂/∂t with −iω, the governing

equations and the no-slip boundary conditions can be written in discrete form

A x= ωBx, (3.3)

in which x = [a0, . . . , aN, b0, . . . , bN]T, and A ,B arise from discretization of the
controlling equations and boundary conditions.

This system of equations is required to solve for 2N + 2 unknowns. The numerical
method for general eigenvalue problems in the form A x = ωBx has been described
by Canuto et al. (1993) and Schmid & Henningson (2001). The Orr–Sommerfeld-like
equation, (2.11), is fourth-order, so the equation is applied at N − 3 internal collocation
points and at each boundary the equations are replaced by two boundary conditions.
The Squire-like equation (2.12) is second-order, and it is applied at N − 1 internal
collocation points with only one boundary condition applied at each boundary. The
details of imposing boundary conditions in the collocation method are described by
Canuto et al. (1993).

We have solved the eigenvalue problem for different values of n and α at a wide
range of Reynolds numbers. The convergence and reliability of the code have been
checked. Some of the results reported here are compared with previous work in table 1.
After we solve the eigenvalue problem, an eigenmode expansion method can be used
to compute the transient energy growth and the response to external excitations. The
computational method is a standard procedure, and we refer the readers to the works
by Reddy & Henningson (1993) and Schmid & Henningson (1994).

In non-modal stability theory, stability is redefined in a broader sense as the
response to general input variables, including initial conditions, impulsive and
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(n, α) η Re N ωr ωi

Present work (3, 3) 1/3 1000 50 0.19232143 −0.12378071
Present work (3, 3) 1/3 1000 100 0.19232143 −0.12378071
Preziosi &
Rosso (1990)

(3, 3) 1/3 1000 30 0.1923 −0.1238

Present work (0, 0.6546) 0.1 3.6×106 150 0.62980689 −0.00000201
Present work (0, 0.6546) 0.1 3.6×106 240 0.62980687 −0.00000201
Deguchi &
Nagata (2011)

(0, 0.6546) 0.1 3.6×106 140 0.62980833 −0.00000202

Present work (1, 2.0) 0.01 4× 107 550 0.00432150 −0.00117465
Present work (1, 2.0) 0.01 4× 107 600 0.00432150 −0.00117465
Deguchi &
Nagata (2011)

(1, 2.0) 0.01 4× 107 600 0.00432150 −0.00116964

TABLE 1. Leading eigenvalues for several typical cases.

continuous external excitations. Like most previous work on the subject of non-modal
analysis on hydrodynamic stabilities, we are interested in responses to continuous
external excitations and initial conditions.

Now we begin with the responses to external excitations. Suppose a fluid system is
driven by a signal of the form

qin(x, y, z, t)= exp(−iωt)Qin(x, y, z), (3.4)

in which ω is the complex frequency. Then the response qout(x, y, z, t) and the input
signal qin(x, y, z, t) satisfy the equation

∂

∂t
qout =−iL qout + exp(−iωt)Qin. (3.5)

From (3.5), we obtain the response qout in the form of

qout(x, y, z, t)= i (ωI −L )
−1 qin(x, y, z). (3.6)

Here I is the identity matrix. The solution operator (ωI −L )
−1 is known as the

resolvent. We denote the maximum amplification of a disturbance at frequency ω by
R(ω). R(ω) is equal to the norm of the resolvent and expressed as

R(ω)= sup
qin 6=0

‖qout‖
‖qin‖

= ‖ (ωI −L )
−1 ‖. (3.7)

Here ‖ · ‖ denotes a norm on CN , ‘sup’ denotes the maximum. An eigenvalue of L is
a number ω such that ‖ (ωI −L )

−1 ‖ →∞. Generalizing this result leads naturally
to the definition of the ‘ε-pseudospectrum’ (Trefethen & Embree 2005). For any ε > 0,
the ε-pseudospectrum of L is defined as

Λε(L )= {ω ∈ C : ‖ (ωI −L )
−1 ‖> ε−1}. (3.8)

The quest for maximum amplification of initial conditions is of particular interest in
many hydrodynamic stability problems. For the linear system (2.25), the solution has
the form

q(t)= exp(−iL t)q(0). (3.9)
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The maximum amplification of the initial condition can be described by the growth
function G(t) as

G(t)= max
q(0)6=0

‖q(t)‖2

‖q(0)‖2 = ‖e−iL t‖2
. (3.10)

We should note that R(ω) and G(t) are related to the choice of definition of the norm
‖ ·‖. In the present paper, we choose the norm ‖ ·‖ as the energy norm. For variable q,
we will make use of a scalar product based on energy density defined as

(q1, q2)M = π
∫ ro

ri

r

[
DΦ̂1DΦ̂∗2

k2r2
+ Φ̂1Φ̂

∗
2

r2
+ k2r2Ω̂1Ω̂

∗
2

]
dr, (3.11)

in which ∗ denotes the complex conjugate. Based on this scalar product, the associated
energy norm is given as follows:

‖q‖2
M = (q, q)M = π

∫ ro

ri

r[|û|2+ |v̂|2+ |ŵ|2] dr. (3.12)

The computation of response to external forcing and the energy growth function can
be accomplished using an eigenvector expansion method; see Reddy & Henningson
(1993) and Schmid & Henningson (1994) for details of the procedure.

4. Condition for no energy growth
In this section, we are interested in the condition for which there is no growth of

the perturbation kinetic energy. Energy methods give conditions for no energy growth.
From (2.25) we have:

d
dt

E = d
dt
‖q‖2

M = 2 Im (L q, q)M , (4.1)

in which E is the kinematic energy. There is no energy growth if and only if all the
eigenvalues of the antisymmetric parts of L , (L −L H)/2, lie in the lower half-plane.
The energy method shows that there is no energy growth if the Reynolds number is
less than a certain value. We denote this critical energy Reynolds number by Re1. In
order to determine its value, two methods can be used: compute the eigenvalues of
(L −L H)/2, or solve the optimization problem using a variational method. Reddy &
Henningson (1993) used the variational method to study the energy stability of plane
Couette and Poiseuille flow. Joseph & Munson (1970) and Hung, Joseph & Munson
(1972) studied the energy stability of spiral flow between rotating and sliding cylinders.
For hydrodynamics stability problems, the linear stability theory gives the sufficient
conditions for instability, and the energy theory gives the sufficient conditions for
stability.

We now examine the condition below which the kinetic energy of an infinitesimal
disturbance decays monotonically. Let σ be the leading eigenvalue of (L − L H)/2.
The initial energy growth is determined by σ(n, α, η,Re). For a fixed radius ratio η,
the condition with no energy growth is given by the energy Reynolds number Re such
that σ = 0. For a given η, the global critical energy Reynolds number is given by
Recrit =minn,α Re(n, α), in which σ(n, α, η,Re)= 0.

Figure 2 presents the critical energy Reynolds number versus the wavenumber for
various azimuthal wavenumbers at some typical values of the radius ratios. Figure 2(a)
displays the curves of the energy Reynolds number for η = 0.01, which is close to
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FIGURE 2. Critical energy Reynolds number versus the streamwise wavenumber for various
η. (a) η = 0.01; (b) η = 0.1; (c) η = 0.5; (d) η = 0.8; (e) η = 0.98.

the wide-gap limit of η→ 0. In this figure, it is shown that for the axisymmetric
case of n = 0, the minimal critical energy Reynolds number is ∼200 at α ' 2.0. The
critical energy Reynolds number for n= 1 is much lower than that of the axisymmetric
case of n = 0 at all streamwise wavenumbers. The structures of the curves of n > 1
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are similar and the minimal critical value is always realized at the long-wave limit
of α = 0 and the energy Reynolds number increases with the increase of α. For
n > 1, the energy Reynolds number significantly increases with the increase of n at
all streamwise wavenumbers. The streamwise-uniform disturbance with n = 1 has the
lowest critical energy Reynolds number of Re1 ' 53 for η = 0.01.

In figure 2(b), the curves of the critical energy Reynolds number are displayed
for η = 0.1. The structures of the curves of the axisymmetric case (n = 0) and non-
axisymmetric cases (n > 1) are similar to those of η = 0.01 in figure 2(a). However,
the lowest critical energy Reynolds number is given by mode n = 2 instead of n = 1
for η = 0.01 in figure 2(a). For n > 2, the critical value increases with the increase of
n at all streamwise wavenumbers.

In figure 2(c–e), the curves of narrow-gap cases are displayed for several typical
values of η = 0.5, 0.8 and 0.98. In these figures, the structures of the curves of
the axisymmetric case are similar to those of the wide-gap cases in figure 2(a,b).
For n = 0, the minimal critical value of Re decreases with the increase of η in
the wide-gap case. An increase in η has almost no influence on the value of the
critical energy Reynolds number. As η→ 1, SCF reduces to the limit case of PCF.
For the axisymmetric case of n = 0, the critical value of Re1 for η = 0.98 is ∼88.9
at α ' 1.95, which is very close to the result for PCF in which Re1 ' 44.6 at
α ' 1.9 for spanwise-uniform disturbances (Liu & Liu 2011). (Note that in SCF, the
velocity scale is twice that in PCF.) For axisymmetric cases, the two-dimensional
Reynolds stress mechanism is responsible for the energy growth of the disturbance
with streamwise variations. In these figures the critical energy Reynolds numbers for
n = 0 tend to infinity as the streamwise is close to zero, because for α = 0 there
is no streamwise variation of the disturbance. For non-axisymmetric disturbances in
the form of streamwise vortices, the lift-up mechanism is responsible for the energy
growth of disturbances. In figure 2(a–e) for non-axisymmetric cases with n 6= 0, the
critical energy Reynolds number is finite as α tends to zero due to the lift-up effect.
In figure 2(a,b), for each value of n 6= 0, the streamwise wavenumber of the critical
mode with the lowest Re1 is close to zero. In figure 2(c–e) for narrow-gap cases, it is
interesting that for some curves with n 6= 0, the critical mode is in the form of oblique
waves, i.e. disturbances with n 6= 0 and α 6= 0. For η = 0.5, 0.8 and 0.98 with n = 1,
2 and 20, it is found that the spanwise wavelengths of these modes are much larger
than unity. So, for these modes of disturbance the variations in the spanwise direction
are small. In these cases, the lift-up effect is weak and the two-dimensional Reynolds
stress mechanisms are dominant. Thus, for the modes with long spanwise wavelengths,
the critical modes are in the form of oblique waves instead of streamwise vortices.

In figure 2(c–e), modes n = 5, 15 and 164 have the lowest critical energy Reynolds
number, respectively. For η = 0.98, the lowest critical energy Reynolds number
Re1 ≈ 42. This value is consistent with that for PCF in which Re1 ≈ 21 (Schmid
& Henningson 2001). For PCF, it has been shown that the optimal disturbance
has a spanwise wavenumber β ' 1.6. We infer that in the narrow-gap case for
SCF, the azimuthal wavelength is close to the spanwise wavelength in PCF, i.e. the
relation between the azimuthal wavenumber n of the critical mode and the spanwise
wavenumber β for PCF is given by n' β(1+ η)/(1− η). As shown in figure 2(e), for
η = 0.98 the azimuthal wavenumber of the critical mode obtained from the numerical
method is 164. The estimated value of the spanwise wavelength is 1.657 for SCF,
which is very close to β ≈ 1.6 for PCF.

In linear stability analysis, the stability of SCF is determined by axisymmetric
perturbations. Only when η 6 0.1415, can SCF become linearly unstable when the
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Reynolds number exceeds the critical value. However, the results of our energy
analysis indicate that the condition with no energy growth is determined by non-
axisymmetric perturbations for all radius ratios.

5. Transient behaviour and non-modal stability
In the non-modal theory, two types of problems are of particular interest, i.e.

response to external excitations and transient energy growth of initial conditions. For
the former, the norm of the resolvent denotes the maximum amplification of external
excitations; for the latter, the growth function G(t) identifies the optimal growth of
energy at time t. For the initial problem, we may be interested in the energy growth
rate at the initial stage. The concept of numerical range can be used to link the
operator to the initial energy growth. The numerical range is defined as

W(A)= {x∗Ax : x ∈ CN, ‖x‖ = 1}, (5.1)

in which A ∈ CN×N . The numerical abscissa of A is defined as:

ω(A)= sup
z∈W(A)

Re(z)= lim
t→0

d
dt
‖eAt‖. (5.2)

The main application of numerical range is to the analysis of energy growth for initial-
value problems. The numerical abscissa of −iL corresponds to the initial growth
rate of the energy growth function (Reddy & Henningson 1993; Trefethen & Embree
2005).

Before we present the results of the non-modal stability of SCF, it is helpful to
examine the mechanisms of perturbation growth and decay. As discussed in previous
works, the two-dimensional Reynolds stress mechanism exists in plane shear flows
(Pedlosky 1987). We will show that a similar mechanism also exists in SCF. We
consider the energy equation for inviscid perturbation:

∂e

∂t
+W

∂

∂z
e=−1

r

∂

∂r
(rup)− 1

r

∂

∂θ
(pv)− ∂

∂z
(pw)− uwW ′, (5.3)

in which e= (u2 + v2 + w2)/2, W is the mean axial flow, and the prime denotes d/dr.
Upon volume-integration, the advection and pressure-work terms drop out, yielding

d
dt

E =−
∫

uwW ′ dV. (5.4)

This expression indicates that a disturbance can extract energy from the mean shear,
and positive Reynolds stress uw> 0 is necessary for energy growth. To understand this
mechanism, let us consider the axisymmetric perturbation. We define a perturbation
streamfunction ψ , with w = r−1∂ψ/∂r, u = −r−1∂ψ/∂z. We can distinguish two types
of streamlines: ‘positive-tilt’ streamlines are those tilting towards the mean shear, i.e.
positive uw, whereas ‘negative-tilt’ streamlines are those tilting in the streamwise
direction, i.e. negative uw. This mechanism has also been discussed by Orr associated
with conservation in a strain field of spanwise perturbation vorticity (Orr 1907),
and it will be referred to as the Orr mechanism. Farrel & Ioannou (1993) studied
this mechanism in plane shear flows. In the present paper, we have extended this
mechanism from plane shear flows to sliding Couette flow.

In addition to the two-dimensional Reynolds stress mechanism, another growth
mechanism, i.e. the ‘lift-up’ effect, plays an important role in the amplification of
disturbances in shear flows. In experiments, streamwise streaks, i.e. narrow regions
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where the streamwise velocity is larger or smaller than the average, are very
commonly observed in plane shear flows (Kline et al. 1967; Kitoh, Nakabyashi &
Nishimura 2005). These alternating longitudinal high- and low-velocity streaks are
independent of the two-dimensional Tollmien–Schlichting (TS) waves. Transition that
does not follow the traditional route of exponential instability is known as ‘bypass
transition’ (Schmid & Henningson 2001). The mechanism for the transient growth in
shear flows has been noted to be inviscid in nature. It has been shown that, for inviscid
shear flows, the streamwise velocity grows linearly with time for disturbances with
no streamwise variation (Ellingsen & Palm 1975). This growth mechanism has been
labelled lift-up and vortex stretching, or more accurately vortex tilting. As explained
by several authors (Butler & Farrell 1992; Trefethen et al. 1993), for viscous shear
flows the streamwise velocity grows linearly with time via the lift-up effect before
being damped by the viscosity. In order to find the growth mechanism of streamwise-
uniform streaks in SCF, it is helpful to recall the linearized momentum equation for
the streamwise velocity component w of streamwise-uniform disturbances:

∂

∂t
w=−W ′u. (5.5)

The components u, v of the streaks are independent of time and z, so the streamwise
component w increases linearly with time. To understand further the effect of mean
shear on the tilting or stretching of vorticity, we consider the inviscid vorticity
equation for streamwise-independent disturbances:

∂Ωr

∂t
=W ′

(
1
r

∂u

∂θ

)
, (5.6)

where Ωr is the radial vorticity component. Note that −W ′ is the azimuthal component
of the mean vorticity. From this expression, the mean shear generates and amplifies
Ωr whenever u is non-zero. Farrel & Ioannou (1993) studied the optimal excitation
of three-dimensional perturbations in viscous plane shear flows, and found that the
optimal structures can be interpreted as combinations of two fundamental types of
motion associated with the lift-up mechanism and the two-dimensional Reynolds stress
mechanism.

5.1. Pseudospectrum and response to external excitations
The behaviour of a non-normal operator depends not solely on the eigenvalues
(spectrum), but also on the structure of ε-pseudospectra. As discussed in § 3, the
resolvent norm represents the amplification of response to external forcing. In order
to find the response to external excitations, we plot the ε-pseudospectra for several
typical parameters.

In figure 3, we plot the ε-pseudospectra and the spectrum for axisymmetric and
non-axisymmetric disturbances in a wide-gap case of η = 0.1 at Re= 2000. As shown
in figure 3(a,b) for the disturbances with α = 1, the structure of the spectrum consists
of three branches. For plane and pipe Poiseuille flow, the eigenvalues are located on
three main branches, called A, P and S (Schmid & Henningson 2001). The A modes,
which have largest variation close to the wall, have rather small phase velocities,
whereas, the P modes, which have their maxima close to the centre of the channel,
have much higher phase speeds. The S modes, which are highly damped, have a phase
speed that is nearly equal to 2/3. In figure 3, the spectra of sliding Couette flow do
not contain a P branch, but have two A branches. The spectrum on the left branch and
the right branch are the wall modes related to the outer and inner walls, respectively.
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FIGURE 3. (Colour online) Pseudospectra for the sliding Couette flow with Re = 2000 and
η = 0.1 for various n. (a) n = 0, α = 1.0; (b) n = 1, α = 1.0; (c) n = 1, α = 0; (d) n = 2,
α = 0. •, Eigenvalues (spectrum); – – –, boundary of the numerical range; —, contours from
outermost to innermost (ith) represent levels from ε = 10−1 to 10−i.

In figure 3(a,b), the intersection region between the A mode and S mode has very
small values of ε. This means that this region is highly sensitive to disturbances. For
n = 0 and 1, the numerical abscissa is positive. This means that at the initial time the
energy of the disturbance is growing. Comparing figure 3(a) with 3(b), it is found that
the numerical range protrudes deeper into the upper plane for n = 1 than for n = 0.
This result indicates that the energy of non-axisymmetric disturbances grows more
rapidly than that of axisymmetric disturbances at the initial stage.

In figure 3(a) for the axisymmetric case, the eigenvalues of the inner wall mode
are nearly in a straight line. However, in figure 3(b) for the non-axisymmetric case,
being similar to plane Couette flow, the eigenvalues of both the outer wall mode and
the inner wall mode are on three straight lines. Being different from the plane Couette
flow, these two A branches are not symmetric about the S branch. Figure 3(c,d) show
the ε-pseudospectrum and spectrum for streamwise-uniform disturbance for n = 1
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FIGURE 4. (Colour online) Pseudospectra for the sliding Couette flow with α = 1.0, n = 0
at Re = 2000. (a) η = 0.2; (b) η = 0.8. •, Eigenvalues (spectrum); − − −, boundary of
the numerical range; —, contours from outermost to innermost (ith) represent levels from
ε = 10−1 to 10−i.

and 2; the structures of the pseudospectrum and eigenvalues are qualitatively similar to
the Squire mode of plane Couette flow.

The radius ratio is an important parameter influencing the stability in SCF. We plot
in figure 4 the pseudospectrum and spectrum of a streamwise non-uniform disturbance
with α = 1, n = 0 for η = 0.2 and 0.8. For η = 0.2, the structure of the spectrum is
similar to that of n = 1 and η = 0.1 in figure 3(b). As the ratio increases to 0.8, the
two A branches become almost symmetric about the S branch. Increasing the value
of η further (not shown), we find that the S branch moves towards the location of
ωr = 0.5 which coincides with the location of the S branch in PCF. We infer that in
the narrow-gap case the response behaviour of axisymmetric disturbances in SCF is
close to the spanwise-uniform disturbance in PCF. We also computed the spectrum of
streamwise-independent cases for various values of η. The structures of the spectrum
of α = 0 and n> 0 are qualitatively similar to figure 3(c,d).

In the complex-ω-plane, we are particularly interested in the resonance along the
real axis because it corresponds to external excitations at real frequencies. Schmid &
Henningson (2001) derived the bounds on the maximum response as

1
dist(Λ(L )− ω) 6 R(ω)6

cond(F )

dist(Λ(L )− ω) (5.7)

where cond(F ) is the condition number of the matrix F and dist(Λ(L ) − ω) is the
closest distance between ω and the eigenvalue of L . Here FF ∗ = M, where M is the
matrix defined in terms of the inner product

Mi,j = (q̃i, q̃j), (5.8)

in which q̃i and q̃j are the ith and jth eigenvectors. It follows from (5.7) that there are
in principle two distinct ways to get a large response: either the forcing frequency ω
is close to an eigenvalue of the linear operator or there is a large condition number
cond(F ) that indicates that the linear operator is highly non-normal. The first case
is called ‘at resonance’. The second case is called ‘off-resonance’, i.e. the difference
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FIGURE 5. The curves of the maximum response R(ω) to the harmonic external forcing
versus the real frequency ω at Re = 2000. (a) α = 1.0, η = 0.1; (b) α = 0, η = 0.1; (c)
α = 1.0, η = 0.5; (d) α = 0, η = 0.5.

between the forcing frequency and the spectrum can be large, and yet can exhibit a
large response (Schmid & Henningson 2001).

In figure 5, we plot the maximum response to spatially harmonic forcing at a wide
range of frequencies. As shown in figure 3(a,b), the eigenmodes are mainly located
on three main branches. The intersection region is very sensitive to disturbances.
For α = 1 in figure 5(a,c), all the curves show that external forcing is significantly
amplified in a limited band of frequency. The inner region of the plateau shape is
mainly due to the resonance between the intersection region and disturbances (off-
resonance), and the boundary region is mainly due to the resonance of the left and
right branches (at resonance). As shown in figure 5(a,c) for the streamwise-dependent
case, the magnitudes of the response due to ‘at resonance’ and ‘off-resonance’ are
comparable. Outside the plateau region, the points of the real axis in the complex-ω-
plane are far from the eigenmode branches, so the resonance is weak.
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For the wide-gap case of η = 0.1 as shown in figure 5(a), the axisymmetric external
forcing is amplified the least in comparison with other modes. The external forcing of
n = 1 is amplified the most at a frequency close to the frequency of the inner wall
mode. As n increases to 2, the amplification decreases in the right-hand region and
increases in the left-hand region. As n increases further, the curves of n = 2, 3, 4, 5
show that the amplification gradually decreases in the right-hand region. However,
with the increase of n from 2 to 5, the amplification in the left-hand region of the band
is insensitive to n. In figure 5(c) for η = 0.5, the curves of amplification become flatter
in the limited band than the curves in figure 5(a) for η = 0.1.

For the streamwise-independent case, as shown in figure 3(c,d) the spectra are
located on the imaginary axis in the stable half-plane. The isolines of ε-pseudospectra
show that the spectra are sensitive to disturbances. The resonance between the
spectra and disturbance results in a substantial response to external forcing in
the low-frequency range. With the increase of the frequency of forcing (ω), the
resonance becomes weaker because the frequency differences between the eigenmodes
and external forcing increase. Figure 5(c,d) displays the curves of the maximum
amplification of streamwise-independent external forcing for η = 0.1 and 0.5. The
external forcing is amplified most in the low-frequency limit of ω = 0, and the
amplification decreases with the increase of the magnitude of ω. Comparing figure 5(c)
with 5(a) and 5(d) with5(b) shows that the maximum amplification of the streamwise-
independent forcing is much higher than that of the streamwise-dependent case. As
shown in figure 3, the least stable eigenvalue in the streamwise-independent case is
closer to the real axis than in the streamwise-dependent case. So, in the ‘at resonance’
case, the response in the streamwise-independent case is much higher than in the
streamwise-dependent case. This result is qualitatively similar to that for plane Couette
flow and Poiseuille flow.

Figure 5 only provides us with the maximum response to a spatially harmonic
forcing. In order to obtain the maximum response to stochastic external forcing, we
need to examine the global behaviour of the operator L for continuous streamwise
wavenumbers and various azimuthal wavenumbers. In figure 6, the ε-pseudospectra
and the spectrum of n = 0 and n = 5 are plotted for η = 0.5 at Re = 2000. For each
(α, n) pair, the spectrum is discrete. We fix n and change α; all the eigenvalues of
L are within the shaded region. In figure 6(a,b), the spectrum is located in the
lower half-plane, and the isolines of log ε are plotted. Comparing figure 6(a) with
figure 6(b), the isoline with the same value protrudes deeper into the upper plane for
n = 5 than for n = 0. This result means that the non-axisymmetric external forcing
of n = 5 is amplified by a higher factor than the axisymmetric one. Trefethen et al.
(1993) have plotted the spectrum of the continuous operator L for plane Couette
flow and Poiseuille flow. The structures of the shaded region in figure 6 are similar
to that of plane Couette flow in Trefethen et al. (1993). We should remark that for
plane shear flows, the spectrum is continuous in the shaded region in the ω-plane.
However, for sliding Couette flow, the spectrum of the continuous operator is only
restricted in the shaded region instead of fulfilling it. The eigenvalues are located
within the shaded region, but they are discrete. In figure 7, the ε-pseudospectra and
the spectrum of n = 0 and n = 1 are plotted for a wide-gap case of η = 0.01 at
Re = 2000. Comparing figure 7(a) with figure 6(a), it is found that the shaded region
of the spectrum significantly shrinks in the ω-plane with the decrease of η. Comparing
figure 7(b) with figure 7(a), it is also found that the response of the non-axisymmetric
external forcing is higher than that of the axisymmetric one.
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FIGURE 6. (Colour online) Pseudospectra for sliding Couette flow at Re= 2000, η = 0.5. (a)
n= 0; (b) n= 5. The contours represent the level of log ε.
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FIGURE 7. (Colour online) Pseudospectra for sliding Couette flow at Re= 2000, η = 0.01.
(a) n= 0; (b) n= 1. The contours represent the level of log ε.

In order to find the characteristics of the response to stochastic external forcing
at real frequencies, we plot in figures 8 and 9 the curves of maximum response
R(ω) versus the frequency ω for η = 0.01 and 0.5 at Re = 2000. In figure 8(a), the
maximum response of each curve is realized at the low-frequency limit of ω = 0.
The amplitude of the response in the axisymmetric case is much lower than that in
the cases of n = 1, 2, 3. Of all modes, n = 1 has the largest response to external
forcing. In figure 8(b), the curves of the streamwise wavenumber corresponding to the
most amplified external forcing are plotted. It is found that the wavenumber increases
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FIGURE 8. (a) The curves of the response to continuous external excitations versus the
real frequency ω at Re = 2000 and η = 0.01. (b) The curves of streamwise wavenumber
corresponding to the maximal response at Re= 2000.
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FIGURE 9. (a) The curves of the response to continuous external excitations versus the
real frequency ω at Re = 2000 and η = 0.5. (b) The curves of streamwise wavenumber
corresponding to the maximal response at Re= 2000.

with the increase of frequency. In the low-frequency range, the curves of streamwise
wavenumber are almost indistinguishable for different azimuthal wavenumber n.

In figure 9(a), we plot the curves of the maximum response to external forcing
with various azimuthal wavenumbers for η = 0.5 at Re = 2000. From n = 0 to 5, the
axisymmetric external forcing has the lowest amplification of response. As n increases
from 0 to 5, the response increases with the increase of n at all frequencies. In
figure 9(b), curves of the wavenumber corresponding to the maximum response are
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almost indistinguishable at all frequencies. The results in figures 8 and 9 indicate
that the largest amplification is achieved by time-independent excitations and the
response is more sensitive to lower-frequency external forcing. In figures 8(b) and
9(b), the streamwise wavenumber of the most amplified external forcing is always
zero. This result means that the most amplified response is in the form of streamwise-
independent streaks.

In order to know more about the physical mechanism of the response to external
forcing, we present the spatial structures of the optimal input of spatially harmonic
forcing and the output for several typical values of η at Re = 2000 in figure 10.
As the optimal frequency is ω = 0, only plots of input and output are needed. We
have computed the velocity fields of the optimal input and output. The results show
that the streamwise components of input disturbances are very weak and the radial
and azimuthal velocity components have most of the perturbation kinetic energy. For
the optimal output, the magnitudes of radial and azimuthal velocity components are
smaller in comparison with the streamwise component. The velocity field uer + veθ
associated with the optimal input is plotted in figure 10(a,c,e) for η = 0.5, η = 0.1 and
η = 0.01 at Re= 2000. The flow of the input field is characterized by pairs of counter-
rotating vortices. The optimal output of the amplitude of the streamwise velocity
component w is plotted in figure 10(b,d,f ) for η = 0.5, 0.1 and 0.01, showing that
the counter-rotating vortices of the input result in streaks of output. The flow fields of
the optimal input and output in figure 10 imply that the dominant physical mechanism
for the response to excitation is the lift-up effect. From the flow patterns for various
values of η, it is found that with the increase of η, the optimal azimuthal wavenumber
increases. For different η, the radial size and the azimuthal size of the input vortices
and output streaks are comparable. Being similar to the problem of energy stability
analysis, we can link the azimuthal wavenumber of the optimal disturbance of SCF to
PCF. For SCF, the azimuthal wavenumber of the optimal response to external forcing
can be estimated by n' β(1+ η)/(1− η), in which β is the spanwise wavenumber of
optimal response to external forcing for PCF. For example, for η = 0.5 the azimuthal
wavenumber of the most amplified external excitation is n = 5. For η = 0.5, the
estimated value of spanwise wavelength is 1.67 for SCF. This value is very close to
β ≈ 1.6 for PCF.

5.2. Transient growth and optimal disturbances

In this subsection, we focus on the problem of response to initial conditions. We can
define the energy growth maximized over time as:

Gmax = G(tmax)=max
t>0

G(t). (5.9)

If the Reynolds number is less than the critical energy Reynolds number Re1, then
G(t) 6 1 for all time. In this case, Gmax = 1 and tmax = 0. If the Reynolds number
exceeds the linear critical Reynolds number Re2 such that the operator L has an
unstable eigenvalue, then Gmax →∞ as tmax →∞. If Re1 < Re < Re2, the flow is
linearly stable but has a transient energy growth. For general instability problems,
these three types of behaviour should be considered. Deguchi & Nagata (2011) have
studied the linear stability of SCF, and found that the flow becomes unstable at
rather high Reynolds number of the order of 107 for η 6 0.1415. When examining
the characteristics of the transient growth, we only need to consider the case of
Re1 < Re< Re2.
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 10. Cross-stream (r–θ ) view of the optimal input and output flow fields of the
response to harmonic forcing at Re = 2000, α = 0. (a,c,e) The velocity components of u and
v of the input. (b,d,f ) Isolines of the velocity component w of the output. η = 0.5 and n = 5
for (a,b), η = 0.1 and n= 2 for (c,d), η = 0.01 and n= 1 for (e,f ).
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FIGURE 11. The curves of transient energy growth function G(t) versus time t for various
azimuthal wavenumbers at Re = 2000. (a) η = 0.01, α = 1.0; (b) η = 0.5, α = 1.0; (c)
η = 0.01, α = 0; (d) η = 0.5, α = 0.

In figure 11(a,b), the curves of maximum response to initial conditions are plotted
for streamwise-dependent disturbances with α = 1 at Re = 2000 for η = 0.01 and
0.5. In these two figures, each curve shows that the disturbance experiences a rapid
transient growth and then decays after tmax because of the effect of viscosity. In
the case of n = 0, the two-dimensional Reynolds stress mechanism is responsible for
the rapid transient growth of the axisymmetric disturbance. In the cases of n > 1,
in addition to the two-dimensional Reynolds stress mechanism, the lift-up effect is
responsible to the rapid transient energy growth. In figure 11, the amplification of
response to disturbances in the axisymmetric case is much lower than that in the non-
axisymmetric case. For η = 0.01, the disturbance of n = 1 has the greatest maximum
energy growth. For n > 1, with the increase of n, the energy growth decreases in
the growth stage. In the viscous stage, the energy growth of n = 1 decreases more
rapidly than for n = 2 and 3. In figure 11(b) for η = 0.5, mode n = 6 has the greatest
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maximum amplitude of response. For n 6 6, with the increase of n the amplitude of
response increases. For n > 6, the amplitude of response decreases with the increase
of n.

In figure 11(c,d), the curves of maximum energy growth are plotted for streamwise-
independent disturbances. In the case of α = 0, the lift-up effect is responsible for the
energy growth of the streaks. From (5.6), we can see that for the axisymmetric case of
n = 0, the effect of stretching of vorticity is absent. Our numerical result also shows
that there is no transient energy growth for the axisymmetric case. In figure 11(c)
for η = 0.01, the curve of n = 1 has the largest maximum energy growth. With the
increase of n, both the maximum energy growth and the optimal time tmax decrease.
This result is different from the case as shown in figure 11(a) for α = 1 and n= 1, 2, 3
in that the optimal time tmax increases with the increase of n. In figure 11(d) for
η = 0.5, the curve of n = 5 has the most amplified response. For n 6 5, the maximum
response increases with the increase of n. For n> 5, the maximum response decreases
with the increase of n. In this figure, it is shown that with the increase of n the optimal
time tmax decreases.

We have examined the transient behaviours of streamwise-independent and
streamwise-dependent spatially harmonic disturbances. In order to show the energy
growth of spatially stochastic disturbances, we will present the maximal energy growth
Gmax for continuously varying α and various n. Figure 12(a,b) displays the curves of
Gmax versus the streamwise wavenumber α with various n at Re= 2000. As shown, the
structure of the curve of n = 0 is significantly different from that of n > 1. For n = 0,
the transient energy growth is absent in the long-wave range, and the optimal energy
growth is achieved by disturbances in the medium- or short-wave range. In this case,
the two-dimensional Reynolds stress mechanism is responsible for the transient energy
growth. For the non-axisymmetric cases, the disturbance is significantly amplified in
the long-wave range and then gradually decreases with the increase of the streamwise
wavenumber. In figure 12(a,b), it is shown that the streamwise wavenumber of the
most amplified disturbance is non-zero in the long-wave range. This means that the
optimal response of n > 1 is in the form of slightly oblique streaks.

In order to show the influence of the Reynolds number on the optimal response
to initial conditions, we plot in figure 12(c,d) the curves of the optimal response
for η = 0.5, n = 5 and 0.01, n = 1 at various Reynolds numbers. It is apparent that
the response increases with the increase of the Reynolds number at all streamwise
wavenumbers. At low Reynolds number of Re = 500, the optimal response is
realized at α ' 0.2 and 0.5 for η = 0.5 and 0.01, respectively. With the increase
of the Reynolds number, the optimal streamwise wavenumber decreases. At the high
Reynolds number of Re= 10 000, the optimal streamwise wavenumber is very close to
zero. In this case, the optimal response is close to streamwise-independent streaks. We
have computed the energy growth for the optimal initial disturbances in the form of
streamwise vortices at a wide range of Reynolds numbers for different radii ratios η. It
is found that the relationship G(t)/Re2 = f (t/Re) is always satisfied. Having obtained
the energy growth function G(t) at Re = 2000, we can obtain the energy growth at
different Re from this relationship.

The results of the dependence of optimal growth of streamwise-independent
disturbance on Reynolds number are summarized in table 2. We have computed the
optimal transient energy growth together with the optimal time for a wide range of
radius ratios. It is shown that for each η, at high Reynolds numbers the optimal energy
growth is of order Re2 and the optimal time is proportional to Re. For the narrow-gap
case of η > 0.5, the relation between Gmax and Re is quantitatively close to that for
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FIGURE 12. The maximum transient energy growth Gmax versus the streamwise wavenumber
α. (a) η = 0.5 and (b) η = 0.01 for various n at Re = 2000; (c) η = 0.5, n = 5 and (d)
η = 0.01, n= 1 for various Re.

SCF η n Gmax(10−4) tmax

0.01 1 0 1.06Re2 0.142Re
0.1 2 0 1.93Re2 0.122Re
0.5 5 0 2.81Re2 0.122Re
0.8 15 0 2.90Re2 0.138Re
0.98 164 0 2.90Re2 0.138Re

PCF — — 0 2.91Re2 0.141Re

TABLE 2. Reynolds number dependence of Gmax and tmax , for α = 0, for a sliding Couette
flow in comparison with that of a plane Couette flow.
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plane Couette flow. It is interesting that the relation between Gmax and Re for SCF is
qualitatively similar to that for other shear flows, such as plane Couette flow, plane
Poiseuille flow and Hagen–Poiseuille flow.

In order to know more about the physical mechanism for the energy growth of
optimal disturbances, we plot the flow fields for two typical cases: the azimuthal-
independent and the streamwise-independent disturbances. Figure 13 displays isolines
of the streamfunction of the axisymmetric optimal disturbances at the initial stage, at
the optimal time and after the optimal time for η = 0.01 and 0.5 at Re = 2000. As
shown in figure 13(a,b), the vortex structure of the initial flow field tilts opposite to
the mean flow. As explained by the two-dimensional Reynolds stress mechanism, the
disturbance gains energy from the mean shear. Comparing figure 13(a) with 13(b), it
is observed that with the increase of η, the vortex tilts further in the direction opposite
to the mean flow. This means that for a narrower-gap case, the disturbance can extract
more energy from the mean flow at the initial stage. As shown in figure 13(c,d), at the
optimal time the flow patterns become upright. In this case, the disturbance gains no
energy from the mean shear. For η = 0.01 the centre of the circulation is located near
the outer cylinder, and for η = 0.5 it is located near r = (ri + ro)/2. This means that
the mean shear near the outer cylinder provides more energy than that near the inner
cylinder for a wide-gap case. After the optimal time, as shown in figure 13(e,f ) the
vortex structure tilts towards the streamwise direction. At this stage, the disturbance
energy is returned to the mean flow.

In figure 14, we plot the flow fields of the optimal streamwise-independent
disturbance for various η at Re = 2000. At the initial time t = 0 and optimal time
t = tmax , the flow fields are characterized by pairs of counter-rotating vortices and
optimal streaks. For the wide-gap cases of η = 0.01 and 0.1, the centre of the streak
is located near the inner wall. For the narrow-gap case of η = 0.5, it is located
near r = (ri + ro)/2. As discussed above, the lift-up effect is responsible for the
energy growth of the streamwise-independent disturbance. Being different from the
two-dimensional Reynolds stress mechanism, in the wide-gap case, the mean shear
near the inner wall provides more energy to the disturbance than near the outer wall
because the velocity gradient of the base flow is larger near the inner wall than near
the outer wall. Comparing each part of figure 14 with those in figure 10, we find
that the structures of the initial and optimal flow fields in figure 14 are very similar
to those of the response to external forcing shown in figure 10. Being similar to the
problem of the response to external forcing, at the initial time, the kinetic energy of
the flow is mainly in the components u and v. At the optimal time, it is contained
mainly in the w component. For example in the cases of η = 0.01, 0.1 and 0.5, the
ratios of the kinetic energy of w to that of u and v are 0.0667 %, 0.0288 % and
0.0206 % at the initial time, and 99.98 %, 99.99 % and 99.99 % at the optimal time.

For streamwise-dependent disturbances, both the lift-up effect and the two-
dimensional Reynolds stress mechanism are responsible for the transient growth of
the disturbances. In figure 12(c,d), we observed that at low Reynolds numbers, the
optimal response is in the form of oblique streaks instead of streamwise streaks. In
order to find the effect of the streamwise wavenumber on the energy growth, we list
in table 3 two energy ratios at the initial time and the optimal time at Re = 2000:
the ratio of the energy in the u, v components and the total kinetic energy; and the
ratio of the energy in the w component and the total kinetic energy. For η = 0.01 and
α = 0.3, at the initial time, 95.43 % of the kinetic energy is in u and v. At the optimal
time, 95.95 % of the kinetic energy is in w. These two ratios are lower than those
of streamwise-independent case. As α increases to 1.0, these two ratios decrease to
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FIGURE 13. An (r–z) view of the flow patterns of the streamfunction for the optimal
axisymmetric disturbance at Re = 2000. (a,b) Flow field at the initial time t = 0; (c,d) flow
field at the optimal time (t = 20.1 and t = 19.3 resp.) ; (e,f ) flow field after the optimal time
(t = 40 and t = 30 resp.). (a,c,e) η = 0.01, Gmax = 2.85, tmax = 20.1, α = 1.0; (b,d,f ) η = 0.5,
Gmax = 11.17, tmax = 19.3, α = 1.0. For η = 0.01, ri = 0.0202, ro = 2.0202; for η = 0.5,
ri = 2, ro = 4.
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 14. The cross-stream (r–θ ) view of the optimal input and output flow fields of the
response to initial conditions at Re = 2000, α = 0. (a,c) The velocity components of u and v
of the input. (b,d) Isolines of the velocity component w of the output. η = 0.01 and n = 1 for
(a,b), η = 0.1 and n= 2 for (c,d), η = 0.5 and n= 5 for (e,f ).
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(a) (b)

(c) (d )

FIGURE 15. (Colour online) Isosurfaces of the axial component of the disturbance velocity
of the streaks at the optimal time. (a) Mode n = 1; (b) combination of modes of n = ±1 for
η = 0.01; (c) mode n= 2; (d) combination of modes of n=±2 for η = 0.1. Other parameters
are Re= 500 and α = 0.3. The red (dark grey in print) and green (light grey in print) surfaces
correspond to the fast and the slow streaks, respectively.

η n α
Eu,v(0)
E(0)

Ew(0)
E(0)

Eu,v(tmax)

E(tmax)

Ew(tmax)

E(tmax)

0.01 1 0 0.9993 6.67× 10−4 2.28× 10−4 0.9998
0.01 1 0.3 0.9543 0.0457 0.0405 0.9595
0.01 1 1.0 0.8415 0.1585 0.1597 0.8403
0.1 2 0 0.9997 2.88× 10−4 1.36× 10−4 0.9999
0.1 2 0.3 0.9725 0.0275 0.0307 0.9693
0.1 2 1.0 0.8402 0.1598 0.1878 0.8122
0.5 5 0 0.9998 2.06× 10−4 6.66× 10−5 0.9999
0.5 5 0.3 0.9646 0.0354 0.0417 0.9583
0.5 5 1.0 0.7275 0.2725 0.3185 0.6815

TABLE 3. The energy ratios at the initial time and optimal time at Re= 2000.

84.15 % and 84.03 %. For other radius ratios, the effect of the streamwise wavenumber
on the energy ratios at the initial time and the optimal time is similar to that of
η = 0.01. In table 3, for the streamwise wavenumber in the range from 0 to 1.0, at the
optimal time the kinetic energy is mainly in the streamwise component w. This means
that the optimal disturbance is in the form of straight streaks or helical streaks.

For a streamwise-independent disturbance, at the optimal time the disturbance is
in the form of streaks parallel to the axial direction. For a streamwise-dependent
disturbance, the optimal disturbance of n 6= 0 is in the form of helical streaks. For
each pair of wavenumbers (α, n), if (Φ̂, Ω̂) satisfy the controlling equations, it can be
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shown that (Φ̂,−Ω̂) is the solution for (α,−n). So, in computation we only consider
the case of positive azimuthal wavenumber n. For (α,−n), the components of u and
w are identical to the solution for (α, n) and the component of v has the opposite
sign to that of (α, n). If we combine the optimal disturbances of ±n, we can obtain
another form of streaks. The isosurfaces of the streamwise velocity component of the
optimal disturbance at the optimal time are shown in figure 15. The structures of
optimal response in the form of helical streaks are shown in figure 15(a,c) for η = 0.01
and 0.1, respectively. The structures of the response of combination modes are shown
in figure 15(b,d) for η = 0.01 and 0.1, and are in the form of streamwise-dependent
straight streaks.

6. Nonlinear evolution of the optimal disturbances
In this section, we will investigate the streak breakdown phase and the transition

initiated by streamwise vortices in the SV scenario via a direct numerical simulation.
We solve the incompressible Navier–Stokes equations with the velocity components
u, v, w and the pressure p as the independent variables. A time-splitting method is
used for solving the momentum equation and imposing the divergence-free condition
in the three fractional steps. The temporal integration is based on the Crank–Nicholson
scheme for the viscous terms and the second-order Adams–Bashforth scheme for
the nonlinear terms. The flow variables are expanded in terms of truncated Fourier
series in the streamwise and azimuthal directions and Chebyshev polynomials in the
radial directions. Splitting methods in conjunction with Fourier–Chebyshev spectral
method have been used with success in simulating the nonlinear evolution in plane
channel and pipe Poiseuille flows (Orszag & Kells 1980; Orszag & Patera 1983). The
flow is assumed to be periodic in the streamwise and azimuthal directions, with the
fundamental streamwise and azimuthal wavenumbers α and the n. The energy density
of a disturbance is given by

E = 1
2V

∫∫∫
period

(u2 + v2 + w2)2πr dr dθ dz, (6.1)

where the region of integration is one periodic box, and V is the volume of the
periodic box. The amplitude of the disturbance is defined as ε = (E/2)1/2.

We begin by examining the formation of streamwise streaks generated by the
nonlinear evolution of the optimal streamwise vortices. The time evolution of the
energy of optimal streamwise vortices with finite amplitude is shown in figure 16
for various η at Re = 1000. The initial condition is given by the streamwise-uniform
vortices predicted by linear non-modal analysis. The amplitudes of initial disturbances
ε vary from 0.001 to 0.05. In figure 16(a–c), for the low value of ε = 0.001 the
contribution of the nonlinear terms is slight. The curves of ε = 0.001 almost coincide
with the curves of the linear optimal disturbances. For larger amplitudes of ε > 0.01,
at small t the growth of the energy is mainly due to the linear transient mechanism.
So, as shown in figure 16, at initial stage the nonlinear curve for ε > 0.01 follows the
linear curve. Because of the streamwise independence of the optimal vortices, the rolls
have no energy source. The flow undergoes a viscous decay after the initial transient
growth and the disturbances are eventually damped. In each of figures 16(a) to 16(c),
both the amplification of the energy of disturbance and the maximum growth time
tmax decrease with the increase of ε. Comparing the curves for ε = 0.05 with different
η it is obvious that in the wide-gap case the amplification of the energy of optimal
disturbance is lower than that in narrow-gap cases.
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FIGURE 16. Time evolution of the amplification of kinetic energy associated with optimal
streamwise vortices at Re = 1000. (a) η = 0.01, n = 1; (b) η = 0.1, n = 2; (c) η = 0.5, n = 5.
The grid is composed of 16 × 16 × 32 physical grid points in the streamwise, azimuthal and
radial directions.

Streaky structures elongated in the streamwise direction play a fundamental role
in the transition and the sustainment of turbulence in wall-bounded shear flows. The
amplitude of the initial disturbance is an important factor in the formation of streaky
structures. In figure 17, we present contours of the streamwise velocity at Re = 1000
for various η with ε = 0.01 and 0.05. In figure 17(a,c,e) for ε = 0.01, it is obvious
that the contours have been distorted with respect to the base state. As ε increases to
0.05, streamwise streaks of high- and low-speed fluid have been formed by the lift-up
mechanism and modified by the nonlinear effect.

If the streak amplitude is sufficiently large, the streaks can break down. The
breakdown of streaks is similar to a Kelvin–Helmholtz instability. In plane Couette
and Poiseuille flows, as the vortices evolve, the streamwise velocity profile of streaks
develops inflection points in both the normal and spanwise directions. It has been
shown that streak breakdown is primarily a spanwise inflectional instability (Reddy
et al. 1998). In previous works, two approaches have been used to investigate the
instability of streaks: linear stability analysis and direct numerical simulation. Waleffe
(1995) have studied the breakdown of streaks in plane channel flows using a linear
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 17. Contours of the streamwise velocity of the streaky structure at Re = 1000. (a)
η = 0.01, n = 1 at t = 100; (b) η = 0.01, n = 1 at t = 50; (c) η = 0.1, n = 2 at t = 100; (d)
η = 0.1, n = 2 at t = 50; (e) η = 0.5, n = 5 at t = 150; (f ) η = 0.5, n = 5 at t = 100. (a,c,e)
ε = 0.01; (b,d,f ) ε = 0.05. The grid is composed of 16 × 16 × 32 physical grid points in the
streamwise, azimuthal and radial directions.

stability analysis. In this analysis, it is assumed that the time scale for decay of
streaks is longer than the time scale for streak instability. Thus, the streak velocity
profile at fixed t is assumed to be steady and used as the base state. Hamilton
et al. (1995) studied the streak breakdown phase via a direct numerical simulation.
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Reddy et al. (1998) used both approaches to study the instability of streaks in plane
channel flows. The results have shown that the time growth rate obtained via linear
stability analysis is consistent with that obtained via direct numerical simulation.

Having examined the formation of streaky structures, we now examine the instability
of streaks generated by the initial optimal vortices via a direct numerical simulation. In
order to investigate the instability of streaks, we add a disturbance of the form

v′ =
K∑

k=−K

M∑
m=−M

Fmk(r, t)eimαzeiknθ (6.2)

to the streamwise vortices at the initial time. The functions Fmk are linear combinations
of Stokes modes (Reddy et al. 1998). The initial energy density of each mode is 10−12.

In figure 18, we present the evolution of the energy density of the disturbance of
various modes with m = 1 at Re = 1000. In figure 18(a) for η = 0.01, the initial
amplitude of the streamwise vortices is ε = 0.01. At the initial stage, some modes
of disturbances experience a transient growth and then rapidly decrease with time.
In figure 16(a), after t ≈ 50 the energy of streamwise vortices was shown to have
significantly increased. In figure 18(a) for ε = 0.01, it is observed that with the
increase of the amplitude of streaks, all modes experience an exponential growth after
t ≈ 50. This means that as the amplitude of streaks increases to a high value, they can
become unstable. In figure 16, the energy of the streaks decreased with time after it
reached its maximum value. In figure 18(a), it is observed that the energy of all modes
eventually decreases with time due to the decrease of the amplitudes of the streaks. In
figure 18(b), the evolution of the energy density is plotted for η = 0.01 and ε = 0.05.
Comparing figures 18(a) and 18(b) it is shown that with the increase of ε the energy
of each mode increases more rapidly. In figure 18(c,e), the evolution of the energy
density for various modes is plotted for η = 0.1 and 0.5 with ε = 0.01, and shows that
the energy of all modes significantly decreases with time after the initial stage. This
result means that the streaks generated by vortices with ε = 0.01 are stable for η = 0.1
and 0.5 at Re = 1000. In figure 18(d,f ) for ε = 0.05, after an initial transient phase,
the energy density grows with the increase of the amplitude of streamwise streaks.
Comparing figure 18(c) with 18(d) and 18(e) with 18 (f ), it is shown that for η = 0.1
and 0.5, at Re = 1000 the initial amplitude of ε = 0.01 is not sufficient to trigger
the secondary instability; however, ε = 0.05 is sufficient. Comparing figure 18(a) with
18(c) and 18(e), it is shown that although the potential of the energy growth of
streamwise vortices for the wide-gap case is lower than for the narrow-gap case, the
threshold energy of the initial disturbance for triggering secondary instability of streaks
is lower for the wide-gap than narrow-gap cases.

The streak instability is necessary but not sufficient for transition. We will explore
the transition to turbulence triggered by the nonlinear evolution of the optimal
streamwise vortices. To trigger the transition, weak three-dimensional noise is added
to the optimal vortices at the initial time t = 0. The initial energy density of each
mode of the noise is 10−12. In figure 19, the nonlinear evolution of energy growth of
disturbances with ε = 0.05 is presented for η = 0.1 and 0.5. At Re = 1000, as shown
in figure 18(d,f ) the streaks generated by optimal vortices of ε = 0.05 are unstable.
However, no transition to turbulence was detected at Re = 1000 in figure 19(a,b).
In figure 19(c,d), it is observed that the growth of the energy of noise is followed
by decay and eventual relaminarization. This result indicates that for streamwise
vortices with ε = 0.05, Re = 1000 is not sufficient to trigger transition. As shown
in figure 19(a,b), at Re = 1500 transition has been triggered and the energy of
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FIGURE 18. Evolution of the energy density for disturbances with wavenumbers (α, kn). (a)
η = 0.01, ε = 0.01, n = 1; (b) η = 0.01, ε = 0.05, n = 1; (c) η = 0.1, ε = 0.01, n = 2;
(d) η = 0.1, ε = 0.05, n = 2; (e) η = 0.5, ε = 0.01, n = 5; (b) η = 0.5, ε = 0.05, n = 5.
The Reynolds number Re = 1000, and the streamwise wavenumber α = 1. The grid is
composed of 16 × 16 × 32 physical grid points in the streamwise, azimuthal and radial
directions.
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FIGURE 19. Time evolution of the amplification of the energy of disturbances. The initial
conditions are given by optimal streamwise vortices with noise for (a) η = 0.1 and (b) η = 0.5
at both Re = 1000 and 1500. (c–f ) Evolution of the energy density for disturbances with
wavenumbers (α, kn). (c) η = 0.1, n = 2, Re = 1000; (d) η = 0.1, n = 2, Re = 1500; (e)
η = 0.5, n = 5, Re = 1000; (f ) η = 0.5, n = 5, Re = 1500. The streamwise wavenumber
α = 1, the amplitude of initial optimal streamwise vortices ε = 0.05. The grid is composed of
16× 16× 32 physical grid points in the streamwise, azimuthal and radial directions.
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FIGURE 20. Time evolution of the amplification of the energy of disturbances. The initial
conditions are given by optimal streamwise vortices with noise for η = 0.01. The streamwise
wavenumber α = 1, the amplitude of initial optimal streamwise vortices ε = 0.05. The grid
is composed of 16 × 16 × 32 physical grid points in the streamwise, azimuthal and radial
directions.

the disturbances can be sustained. In figure 19(e,f ), transition has been observed
at t ≈ 120 and 200 for η = 0.1 and 0.5, respectively. Comparing the curves with
Re = 1500 in figure 19(a,b) it is found that for η = 0.1 the energy of the disturbances
can be sustained in a lower level than that for η = 0.5.

In figure 20, the nonlinear evolution of energy growth of disturbances with ε = 0.05
is presented for η = 0.01 at Re= 1000 and 1500. At Re= 1000, no transition has been
detected for η = 0.01. As the Reynolds number increases to 1500, transition occurs
after the energy of streaks reaches the maximum value. However, the transition cannot
be sustained for long time. Comparing figure 20 with figure 19(a,b), it is shown that
for fixed Re and ε, the energy of a disturbance is easier to sustain in the narrow-gap
case than in the wide-gap case.

In order to show the characteristics of the structures of the flow field in the
nonlinear stage after transition, we plot the disturbance flow field for η = 0.1 and
0.5 at Re = 1500 in figures 21 and 22. It can be observed that slow-speed streaks
occupy the region near the inner cylinder, whereas fast-speed streaks are located near
the outer cylinder. The structure in figures 21 and 22 is qualitatively similar to the
exact coherent structures in SCF (Deguchi & Nagata 2011). Comparing figures 21
and 22 with figure 14, we find that the structure of the flow field in the nonlinear
stage is significantly different from the structure of the optimal disturbance in which
slow-speed and fast-speed streaks alternate in the spanwise direction.

7. Summary and conclusions
In the present paper the linear stability and nonlinear evolution in sliding Couette

flow have been investigated using the energy method, the non-modal stability theory
and direct numerical simulations.

We investigated the condition with no energy growth for both axisymmetric and
non-axisymmetric disturbances. In the results of the eigenvalue analysis, instability
only occurs in the case of η 6 0.1415 and the stability of the flow is determined
by axisymmetric perturbations. However, our results of the energy stability analysis
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(a) (b)

(c) (d )

FIGURE 21. The disturbance flow field at t = 400 for η = 0.1, n = 2 and Re = 1500. The
streamwise wavenumber α = 1, and the amplitude of initial optimal streamwise vortices ε =
0.05. The arrows indicate the projection of the velocity on the cross-section z = (k/4)(2π/α),
k = 0, 1, 2, 3 for (a–d) respectively. Grey scale represents the axial velocity component (light:
fast, dark: slow). Positive and negative disturbance axial velocity components are denoted by
the solid and the dashed lines.

are significantly different from those of the eigenvalue analysis. The results show
that for all values of η, each mode of n can experience an energy growth at the
initial time. In the wide-gap limit of η→ 0, the critical condition is determined by
the non-axisymmetric disturbance with n = 1. For all values of η, the most unstable
disturbance is in the form of streamwise-independent streaks. With the decrease of
η, the azimuthal wavenumber of the most unstable mode increases. The azimuthal
wavenumber of the most unstable mode can be estimated by n' 1.6(1+ η)/(1− η).

The main focus of the present paper is the non-modal stability of sliding Couette
flow. We study the response to external excitations and initial conditions. The response
to external excitations is characterized using the ε-pseudospectrum, and the response
to initial conditions is described by the energy growth function G(t). For each value
of η, both the axisymmetric and non-axisymmetric external forcing can be amplified
by a rather large factor. However, the amplification of response to the axisymmetric
external forcing is much lower than that to the non-axisymmetric one. Results show
that the most amplified disturbance is achieved by streamwise-independent forcing at
ω = 0. With the increase of the frequency, the amplitude of the response to streamwise-
independent external forcing decreases significantly. For each mode n, the maximum
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(a) (b)

(c) (d )

FIGURE 22. As figure 21 but for η = 0.5, n= 5.

response is realized at α = 0. The streamwise wavenumber corresponding to the most
amplified response increases with the increase of frequency. These results show that
the streaks have the potential to be substantially amplified by external forcing through
the lift-up effect.

We have also studied the transient energy growth of initial conditions. The
results show that even if the Reynolds number is lower than the critical value
predicted by linear stability analysis, the disturbance can be amplified substantially.
For axisymmetric disturbances, the two-dimensional Reynolds stress mechanism is
responsible for the transient energy growth. At the initial time, the flow pattern of the
isolines of the streamfunction tilts opposite to the mean flow and the disturbance gains
energy from the mean shear. At the optimal time, the flow pattern becomes upright
and the disturbance neither gains energy from nor returns energy to the mean shear.
After the optimal time, the flow pattern tilts towards the mean flow and returns energy
to the mean flow. For non-axisymmetric disturbances, both the lift-up mechanism and
the two-dimensional Reynolds stress are responsible for the transient energy growth.
For all values of η, the most amplified disturbance is in the non-axisymmetric form.
We studied the transient energy growth of various streamwise wavenumbers for a
wide range of the Reynolds number. At low Reynolds numbers, for each n 6= 0 the
maximum transient energy growth is realized at a non-zero streamwise wavenumber.
In this case, the optimal response is in the form of helical streaks. This result is
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different from that of pipe and plane Poiseuille flows in which the optimal response
is in the form of straight streaks. With the increase of the Reynolds number, for
each n 6= 0 the streamwise wavenumber of the most amplified disturbance decreases
and tends to zero. This means that with the increase of the Reynolds number, the
optimal response changes from a helical streak to a straight streak. We also studied the
dependence of maximum energy growth on the Reynolds number. It is found that the
maximum transient energy growth is of the order of Re2 and the optimal time is of the
order of Re. This relationship is qualitatively similar to the case of plane Couette flow,
plane Poiseuille flow and pipe Poiseuille flow (Schmid & Henningson 2001). In our
results, as η increases from 0.01 to 0.98, the maximum energy growth increases from
1.06×10−4Re2 to 2.90×10−4Re2. The latter is very close to the result for plane Couette
flow. We studied the possible structures of optimal disturbances and found that the
optimal response to initial conditions can be in three forms: streamwise-independent
straight streaks, helical streaks and streamwise-dependent straight streaks.

Direct numerical simulations are applied to investigate the scenario of transition
based on the transient growth of the optimal streamwise vortices and subsequent
secondary instability of the modified base flow. The transient mechanism and nonlinear
modification are responsible for the formation of the streaks. We perform a nonlinear
simulation of the evolution of streamwise vortices with initial amplitude of ε. For
small ε, the amplification of the energy of disturbances follows that of the linear case.
With the increase of ε, both the maximum growth of energy and the maximum growth
time decrease. For fixed Re and ε, the maximum growth of energy is lower in the
wide-gap case than in the narrow-gap case. We studied the streak breakdown phase in
the SV scenario by examining the instability of streamwise streaks. At fixed Re and η,
the growth rate of the noise for breakdown increases with the amplitude of streamwise
vortices. For ε = 0.01, streak instability occurs in the case of η = 0.01 at Re = 1000.
However, ε = 0.01 is not sufficient to trigger streak instability in narrower-gap cases
of η = 0.1 and 0.5. This means that even though the potential of streamwise vortices
in the wide-gap case is lower than in the narrower-gap cases, the streak is more
unstable in the wide-gap case for fixed Re and ε. The time evolution of the energy
of the streamwise vortices with ε = 0.05 is examined for various η at Re = 1000 and
1500. For η = 0.1 and 0.5, the energy of disturbance is damped at Re = 1000. As the
Reynolds number increases to Re = 1500, the energy of disturbance can be sustained.
For the wide-gap case of η = 0.01, even for Re = 1500 the energy of disturbance
gradually decays.
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