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We consider a competition–diffusion system and study its singular limit as the interspecific

competition rate tend to infinity. We prove the convergence to a Stefan problem with zero

latent heat.

1 Introduction

The understanding of the interaction of biological species arising in ecological systems has

recently developed as a central problem in population ecology. In particular, problems of

coexistence and exclusion of competing species have been theoretically investigated using

models based on partial and ordinary differential equations. Among many models pro-

posed so far, reaction–diffusion equation models are used to study the spatial segregation

of competing species which move by diffusion.

Consider a competing system which consists of n species living in a habitat Ω ⊂
RN (N > 1). We denote by ui(x, t) (i = 1, 2, . . . , n) their population densities at position

x ∈ Ω and time t > 0. The evolution of ui(x, t) (i = 1, 2, . . . , n) is described by

uit = di∆ui +

ri − ai ui − n∑
j=1

bij uj

 ui (i = 1, 2, . . . , n) x ∈ Ω, t > 0, (1.1)

where di is the diffusion rate, ri the intrinsic growth rate, ai the intraspecific competition

rate, that is the competition between members of the same species ui, and bij the interspe-

cific competition rate, that is the competition between members of the different species ui
and uj . All the rates are positive constants. We suppose that Ω is bounded and impose

the no-flux boundary conditions on the boundary ∂Ω,

∂ui
∂ν

= 0, (i = 1, 2, . . . , n) x ∈ ∂Ω, t > 0, (1.2)

where ν is the outward normal unit vector to ∂Ω. The initial conditions are given by

ui(0, x) = u0i(x) > 0 (i = 1, 2, . . . , n) x ∈ Ω. (1.3)

The long time behaviour of solutions of Problem (1.1)–(1.3) has been extensively

analysed with the purpose of studying the spatio-temporal segregation of competing
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species. We first point out the special case when all the diffusion rates di are large with

respect to the other parameters. In this situation, the diffusion processes are dominant,

and therefore one easily finds that any (nonnegative) solution of Problem (1.1)–(1.3) tends

to be spatially homogeneous as t→ ∞ [CHS]. In other words, the asymptotic behaviour

of solutions of Problem (1.1)–(1.3) is qualitatively the same as that of the diffusionless

system corresponding to (1.1),

dvi

dt
=

ri − ai vi − n∑
j=1

bij vj

 vi (i = 1, 2, . . . , n) t > 0. (1.4)

Thus we know that in this case (1.1) exhibits no spatial segregation for competing species.

We should note that (1.4) exhibits temporal segregation, depending on the values of the

parameters ri, ai and bij . We shall not study this phenomenon here, but we refer for

instance to an article by Mimura [M].

Our main interest in (1.1)–(1.3) involves the case when at least one of the diffusion co-

efficients di is not necessarily large from the viewpoint of spatial segregation of competing

species. To analyse this case, we discuss the simplest case of (1.1) with n = 2, namely{
u1t = d1∆u1 + (r1 − a1 u1 − b1 u2)u1 x ∈ Ω, t > 0 (1.5a)

u2t = d2∆u2 + (r2 − a2 u2 − b2 u1)u2 x ∈ Ω, t > 0. (1.5b)

with the boundary conditions

∂u1

∂ν
= 0,

∂u2

∂ν
= 0, x ∈ ∂Ω, t > 0. (1.6)

We first note that the stable attractor of (1.5), (1.6) consists of equilibrium solutions only

[H, MM]. Therefore, for the study of the asymptotic behaviour of solutions of (1.5), (1.6)

we only need to focus our attention on the existence and stability of equilibrium solutions.

Along this line, Kishimoto & Weinberger [KW] showed that if Ω is convex, then any

spatially inhomogeneous equilibrium solution – whenever it exists – is unstable. If we

suppose that two species are strongly competing, that is if the interspecific competition

rate is stronger than the intraspecific one so that we require that

a1

b2
<
r1

r2
<
b1

a2
, (1.7)

then one finds that the only stable equilibrium solutions of (1.5), (1.6) are given by

(u1, u2) = (r1/a1, 0) and (u1, u2) = (0, r2/a2). In ecological terms, this implies that the

two competing species can never coexist under strong competition. This is called Gause’s

competitive exclusion.

On the other hand, if the domain Ω is not convex, the structure of equilibrium solutions

is complicated, depending on the shape of Ω [EFM]. In fact, if Ω takes a suitable dumb-

bell shape in two dimensions, there exist stable spatially inhomogeneous equilibrium

solutions which exhibit spatial segregation in the sense that u1 and u2 take values close

to (r1/a1) in one subregion and close to (0, r2/a2) in the other one. Thus, the results

above give us information on the asymptotic behaviour of solutions. However, from the

viewpoint of ecological applications, it is more interesting to know the transient behaviour

of solutions. For this purpose, we consider the situation where the diffusion rates d1 and
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d2 are sufficiently small or all of the other rates ri, ai and bi are sufficiently large and

satisfy (1.7). We rewrite (1.5) as{
u1t = ε2∆u1 + (r1 − a1 u1 − b1 u2)u1 x ∈ Ω, t > 0 (1.8a)

u2t = dε2∆u2 + (r2 − a2 u2 − b2 u1)u2 x ∈ Ω, t > 0 (1.8b)

in which ε is a small parameter. If the competing species segregate according to (1.8)

it is natural to define the subregions Ω1(t) = {x ∈ Ω: (u1, u2) (x, t) ≈ (r1/a1, 0)} and

Ω2(t) = {x ∈ Ω: (u1, u2) (x, t) ≈ (0, r2/a2)}.
To study the dynamics of the segregation between u1 and u2, we take the limit ε ↓ 0

in (1.8) so that the internal layers which exist for small values of ε > 0 become sharp

interfaces, say Γ (t), which is the boundary between two regions Ω1(t) and Ω2(t). Using

singular limit analysis, Ei & Yanagida [EY] derived the following evolution equation to

describe the motion of the interface Γ (t):

V = εL(d) (N − 1)κ+ c, (1.9)

where V is the normal velocity of the interface, κ the mean curvature of the interface, L(d)

a positive constant depending on d such that L(1) = 1 and c the velocity of the travelling

wave solution (u1, u2) of the one-dimensional system corresponding to (1.5) with d1 = 1

and d2 = d, namely{
u1t = u1xx + (r1 − a1u1 − b1u2)u1 x ∈ R, t > 0, (1.10a)

u2t = du2xx + (r2 − b2u1 − a2u2)u2 x ∈ R, t > 0, (1.10b)

with the boundary conditions at infinity

(u1, u2) (−∞, t) =

(
r1

a1
, 0

)
and (u1, u2) (∞, t) =

(
0,
r2

a2

)
. (1.10 c)

Kan-on [K] proved that the velocity of the travelling wave solution of Problem (1.10) is

unique for fixed values of the rates ri, ai and bi (i = 1, 2). In particular, if a1 is a free

parameter and the other parameters are fixed and satisfy the inequalities (1.7), then there

exists a unique constant a∗ > 0 such that c = 0 if a1 = a∗, c > 0 if a1 > a∗, and c < 0 if

a1 < a∗. For the special case when c = 0, (1.9) becomes the equation of motion by mean

curvature, which has been analytically and numerically investigated (see, for instance,

[C]). The manifold Γ (t) obtained from (1.9) provides information on the dynamics of the

spatial segregation between the two competing species.

This result clearly shows the similarity between this class of problems and the Allen-

Cahn equation first studied by Keller, Sternberg & Rubinstein [KSR], where the limiting

interface moves according to its mean curvature.

In this paper, we consider a different situation from the one obtained above, namely

the case that only the interspecific competition rates b1 and b2 are very large. To study

this situation, it is convenient to rewrite (1.5) as{
u1t = d1 ∆u1 + r1(1− u1)u1 − bu1 u2 x ∈ Ω, t > 0 (1.11a)

u2t = d2 ∆u2 + r2(1− u2)u2 − αbu1 u2, x ∈ Ω, t > 0. (1.11b)

where b and α are positive constants. We assume that b is the only parameter which is

large and that all the other parameters are of order O(1). The coefficient α > 0 is the
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(a ) (b)

Figure 1a, b. For caption see facing page.

competition ratio between the two species u1 and u2. If α > 1, then u1 has a competitive

advantage over u2, while if α < 1, the situation is reversed.

To study how the segregation of two competing species depends on the value of b

we present two-dimensional numerical simulations of System (1.11), together with the

boundary conditions (1.6) in a rectangular domain (see Figure 1). We take b as a free

parameter and keep the other parameters d1, d2, r1, r2 and α fixed. For values of b which
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(c )

Figure 1. Two-dimensional patterns of (u1, u2) in the domain {(x, y), 0 < x < 1, 0 < y < 1} with

homogeneous Neumann boundary conditions in the case that d1 = d2 = 0.5, r1 = r2 = 20.0 and

α = 1. (a) b = 500; (b) b = 3000; (c) b = 15000.

are neither large nor small, it is shown that u1 and u2 exhibit spatial segregation with a

rather wide zone of overlap. When the value of b increases, the zone of overlap becomes

narrower. Thus, taking the limit b → ∞, one can expect that u1 and u2 have disjoint

supports (habitats) with only one common curve, which separates the habitats of the two

competing species.
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The purpose of this paper is to derive the limiting system as b→∞, which is called the

spatial segregation limit, to describe the time evolution of the supports of u1 and u2. As

it will be proved below, the limiting system can be described by a free boundary problem

which is a two-phase Stefan-like problem with reaction terms.

Let Γ (t) be the interface which separates the two subregions

Ω1(t) = {x ∈ Ω: u1(x, t) > 0, u2(x, t) = 0}
and

Ω2(t) = {x ∈ Ω: u1(x, t) = 0, u2(x, t) > 0}
in Ω (see Figure 1). Then u1 and u2 satisfy

u1t = d1 ∆u1 + r1(1− u1)u1 x ∈ Ω1(t), t > 0 (1.12a)

u2t = d2 ∆u2 + r2(1− u2)u2 x ∈ Ω2(t), t > 0 (1.12b)

∂u1

∂ν
= 0,

∂u2

∂ν
= 0, x ∈ ∂Ω, t > 0. (1.12c)

On the interface,

u1 = 0, u2 = 0 x ∈ Γ (t) for t > 0, (1.12 d)

and

0 = −αd1
∂u1

∂ν
(x, t)− d2

∂u2

∂ν
(x, t) x ∈ Γ (t) for t > 0, (1.12 e)

where ν is a unit vector normal to Γ (t). The initial conditions are given by

ui(x, 0) = ui0(x), x ∈ Ω1(0) (i = 1, 2), (1.13 a)

and are such that their support is separated by the line

Γ (0) = Γ0. (1.13 b)

The problem is to find functions (u1(x, t), u2(x, t)) and Γ (t)) which satisfy (1.12)–(1.13). If

this problem can be solved, the interface Γ (t) determines the segregating patterns between

the two strongly competing species. One notices that the system (1.12)–(1.13) is quite

similar to the standard two-phase Stefan problem except for the two following points: (i)

the system (1.12 a)–(1.12 b) for u1 and u2 is not the heat equation, but the logistic growth

equation which is well-known in theoretical ecology; (ii) the interface equation (1.12 e)

is such that the latent heat is zero. The strength ratio α of the interspecific competition

between u1 and u2 is contained in (1.12 e).

In § 2, we precisely formulate the problem which we study and derive some a priori

estimates. In § 3, we study the limiting behaviour of the solution of (1.11)–(1.6) as b tends

to ∞ and prove that it converges to the solution of a free boundary problem. In § 4,

we consider the one-dimensional limiting free boundary problem. We present a thorough

analysis of the equilibrium solutions and discuss the large time behaviour. Finally, we

present some remarks in § 5.

This paper extends a similar study due to Evans [E] in the case of a slightly simpler

system without growth terms, which he considered with more restrictive hypotheses on

the initial data. Also, let us mention results by Dancer & Du [DD] about the limiting

behaviour of equilibrium solutions in higher space dimensions. For a study of the limiting
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free boundary problem without growth terms, we refer to Cannon & Hill [CH] and to a

recent paper by Tonegawa [To], who proves regularity properties of the solution and of

the interface.

In a forthcoming article, we will show how our method of analysing the spatial

segregation limit can be applied to some three component competition–diffusion systems.

2 Formulation of the problem and some basic properties

In this section we formulate the reaction-diffusion system which we shall be studying and

derive a number of basic properties of its solutions. As announced in the Introduction,

we shall consider the problem

(Pk)



ut = d1∆u+ {f(u)− kv}u in Q = Ω × R+ (2.1a)

vt = d2∆v + {g(v)− αku}v in Q = Ω × R+ (2.1b)

∂u

∂ν
= 0,

∂v

∂ν
= 0 on S = ∂Ω × R+ (2.1c)

u(x, 0) = uk0(x), v(x, 0) = vk0(x) for x ∈ Ω. (2.1d)

We shall make the following hypotheses about the functions f and g and the initial

functions u0 and v0.

H1. The functions f and g are continuously differentiable on [0,∞) such that

f(s) > 0, g(s) > 0 for s ∈ (0, 1) and f(s) < 0, g(s) < 0 for s > 1.

We shall write

`0 = max{f(s): 0 6 s 6 1} and `1 = max{sf′(s) + f(s): 0 6 s 6 1},
m0 = max{g(s): 0 6 s 6 1} and m1 = max{sg′(s) + g(s): 0 6 s 6 1}.

H2.

uk0, v
k
0 ∈ C(Ω), 0 6 uk0 6 1, 0 6 vk0 6 1,

uk0 ⇀ u0, vk0 ⇀ v0, weakly in L2(Ω) as k →∞.
By a solution of Problem (Pk) we shall understand a pair of functions (u, v) such that

u, v ∈ C(Q) ∩ C2,1(Ω × [δ, T ]) for any δ ∈ (0, T ). We begin with a priori bounds for

solutions of Problem (Pk).

Lemma 2.1 Let (uk, vk) be a solution of Problem (Pk). Then

0 6 uk 6 1 and 0 6 vk 6 1 in Q.

Proof Define

L1(u)
def
= ut − d1 ∆u− {f(u)− kv}u,

L2(v)
def
= vt − d2 ∆v − {g(v)− αku}v.

Since

Li(0) = 0 (i = 1, 2) and Li(1) > 0 (i = 1, 2),

the assertion follows from the maximum principle. q
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The existence and uniqueness of the solution of Problem (Pk) follows from Lunardi [L,

proposition 7.3.2].

In the next three lemmas we shall obtain a priori bounds for the solution (uk, vk) of

Problem (Pk) which are uniform with respect to the parameter k in the equations. This will

enable us to study the properties of the family of solutions (uk, vk) for large values of k.

Lemma 2.2 We have ∫ T

0

∫
Ω

uk vk 6
|Ω|
k

(`0T + 1).

Proof Integration of the equation for u over QT yields

k

∫ T

0

∫
Ω

uk vk = d1

∫ T

0

∫
∂Ω

∂uk
∂ν

+

∫ T

0

∫
Ω

f(uk)uk −
∫
Ω

uk(T ) +

∫
Ω

u0k 6 (`0 T + 1)|Ω|.

Lemma 2.3 There exists a positive constant C, which does not depend on k, such that∫ T

0

∫
Ω

|∇uk|2 6 C and

∫ T

0

∫
Ω

|∇vk|2 6 C.

Proof We multiply (2.1 a) by u and integrate over Ω. This yields

1

2

d

dt

∫
Ω

u2
k + d1

∫
Ω

|∇uk|2 + k

∫
Ω

u2
k vk 6 `0|Ω|,

where we have used Lemma 2.1. When we now integrate over (0, T ) we obtain the first

estimate. The second estimate is proved similarly.

Next we consider the function

wk = uk − 1

α
vk,

which appears when we eliminate the terms involving k from (2.1 a) and (2.1 b). It satisfies

wkt = d1∆uk − d2

α
∆vk + ukf(uk)− 1

α
vkg(vk) in QT (2.2 a)

∂wk
∂ν

= 0 on ST (2.2 b)

Lemma 2.4 The family {wkt} is bounded in L2(0, T ; (H1(Ω)′), uniformly with respect to k.

Proof We multiply (2.2 a) by ζ ∈ L2(0, T ;H1(Ω)) and integrate over QT = Ω × (0, T ).

Then we obtain, after integration by parts,∫ T

0

〈wkt, ζ〉 = −d1

∫ T

0

∫
Ω

∇uk · ∇ζ +
d2

α

∫ T

0

∫
Ω

∇vk · ∇ζ +

∫ T

0

∫
Ω

{uk f(uk)− 1

α
vk g(vk)}ζ.

Hence, by Lemmas 2.1 and 2.3, we have∣∣∣∣ ∫ T

0

〈wkt, ζ〉
∣∣∣∣ 6M ‖ζ‖L2(0,T ;H1(Ω)), (2.3)
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in which M is a positive constant, which does not depend on k or ζ. Thus, if we denote

the duality product between the spaces H1(Ω) and (H1(Ω))′ by 〈·, ·〉, we have shown that∣∣∣∣ ∫ T

0

〈wkt, ζ〉
∣∣∣∣ 6M ‖ζ‖L2(0,T ;H1(Ω)) for all ζ ∈ L2(0, T ;H1(Ω)).

This means that

‖wkt‖L2(0,T ;(H1(Ω))′) 6M. (2.4)

and the proof is complete. q

3 The limit problem

We deduce from Lemmas 2.1, 2.3 and 2.4 that the families {uk} and {vk} are bounded in

L2(0, T ;H1(Ω)) and that the family {uk − 1
α
vk} is precompact in L2(QT ) [T, theorem 2.1].

Thus, there exist subsequences of {uk} and {vk}, which we denote again by {uk} and {vk},
and functions u, v ∈ L2(0, T ;H1(Ω)) such that 0 6 u, v 6 1 and

uk ⇀ u and vk ⇀ v weakly in L2(0, T ;H1(Ω)) (3.1)

and

wk = uk − vk

α
→ w in L2(QT ) and a.e. in QT as k →∞. (3.2)

Furthermore, it follows from Lemma 2.2 that the product

ukvk → 0 as k →∞ in L1(QT ) and a.e. in QT . (3.3)

Next we relate the functions u, v and w.

Lemma 3.1 (a) The subsequences uk and vk are such that

uk → w+ and vk → αw− as k →∞
in L1(QT ) and a.e. in QT .

(b) u = w+ and v = αw− and so w = u− v

α
.

Proof (a) Let (x, t) ∈ QT be such that

wk(x, t) =
(
uk − vk

α

)
(x, t)→ w(x, t) and (ukvk) (x, t)→ 0 as k →∞.

(i) We first consider the case that w(x, t) > 0. Then there exists a positive constant k0

such that

uk(x, t) >
w(x, t)

2
> 0 for all k > k0,

which implies that

vk(x, t)→ 0 and uk(x, t)→ w(x, t) = w+(x, t) as k →∞.
(ii) Next we consider the case that w(x, t) < 0. Then there exists a positive constant k1

such that

vk(x, t) > −α
2
w(x, t) > 0 for all k > k1,
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so that

uk(x, t)→ 0 and vk(x, t)→ −αw(x, t) = αw−(x, t) as k →∞.
(iii) Finally, we consider the case that w(x, t) = 0. If a subsequence of uk(x, t), which

we denote again by uk(x, t), is such that uk(x, t) → λ > 0, then vk(x, t) → 0, so that

uk(x, t) − 1
α
vk(x, t) → λ which contradicts the fact that w(x, t) = 0. Similarly, it is

impossible to have that vk(x, t)→ µ > 0. Hence

uk(x, t)→ 0 and vk(x, t)→ 0 as k →∞.
The convergence in L1(QT ) follows from the boundedness of uk and vk .

Finally, Part (b) is an immediate corollary of Part (a). q

Lemma 3.2 Let T be an arbitrary positive number. The pair of functions (u, v) defined in

(3.1) is such that∫ T

0

∫
Ω

{(
u− 1

α
v
)
ϕt − ∇

(
d1 u− d2

α
v
)
∇ϕ

+
(
uf(u)− 1

α
vg(v)

)
ϕ
}

= −
∫
Ω

(
u0 − v0

α

)
ϕ(0), (3.4)

for all functions ϕ ∈ C∞(QT ) such that ϕ(T ) = 0.

Proof When we multiply (3.2 a) by a test function ϕ ∈ C∞0 (QT ) such that ϕ(T ) = 0, and

integrate by parts, we obtain the identity∫ T

0

∫
Ω

{(
uk − 1

α
vk

)
ϕt − ∇

(
d1 uk − d2

α
vk

)
∇ϕ

+
(
uk f(uk)− 1

α
vkg(vk)

)
ϕ
}

= −
∫
Ω

(
uk0 − vk0

α

)
ϕ(0). (3.5)

We now let k →∞ along the sequence for which (3.1) holds. Then, because

uk → u, and vk → v as k →∞ a.e. in QT ,

and |uk|, |vk| 6 1 for all k > 1, it follows by the dominated convergence theorem that∫ T

0

∫
Ω

uk f(uk)→
∫ T

0

∫
Ω

uf(u) as k →∞.
A similar result holds for the sequence {vk g(vk)}. Passing to the limit in (3.5), we obtain

(3.4). This completes the proof. q

Next we show that the limit function w defined in Lemma 3.1 is a weak solution of the

problem

(P)


wt = div (d(w)∇w) + h(w) in Q

∂w

∂ν
= 0 on ∂Ω × R+

w(x, 0) = w0(x)
def
= u0(x)− v0(x)

α
for x ∈ Ω,
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where

d(s) =

{
d1 if s > 0

d2 if s < 0,

and

h(s) =

{
f(s)s if s > 0

g(−αs)s if s < 0.

Definition 3.3 A function w is a weak solution of Problem (P) if

(i) w ∈ L∞(Ω × R+) ∩ L2(0, T ,H1(Ω)) ∩ C([0,∞);L2(Ω));

(ii)

∫
Ω

w(T )ϕ(T )−
∫ ∫

QT

{wϕt − d(w)∇w ∇ϕ+ h(w)ϕ} =

∫
Ω

w0ϕ(0)

for all ϕ ∈ C1(Ω × R+).

Lemma 3.4 The function w is a weak solution of Problem (P).

Proof It follows from Lemma 2.1 that w ∈ L∞(Ω × R+), and from Lemma 2.3 that

w ∈ L2(0, T ;H1(Ω)). Since wt ∈ L2(0, T ; (H1(Ω))′) as well, it follows from a standard

regularity result that w ∈ C([0, T ]);L2(Ω)) (e.g. see [T, lemma 1.2, p. 260]).

We consider (3.4), and observe that

d1 ∇u− d2

α
∇v = d(w)∇w

and that

uf(u)− v

α
g(v) = h(w).

Therefore w satisfies the integral equality∫ T

0

∫
Ω

{
wϕt − d(w)∇w∇ϕ+ h(w)ϕ

}
=

∫
Ω

(
u0 − v0

α

)
ϕ(0) (3.6)

for all functions ϕ ∈ C∞(QT ) such that ϕ(T ) = 0 and for all T > 0. As a consequence,

w satisfies the differential equation in Problem (P) as well as the homogeneous Neumann

boundary condition in the sense of distributions, and the initial condition

w(x, 0) = u0(x)− v0(x)

α
for all x ∈ Ω.

The fact that w is a weak solution of Problem (P) easily follows. q

Lemma 3.5 Problem (P) has exactly one weak solution w, and w ∈ Cα,α/2(Ω × [0,∞)) for

all α ∈ (0, 1).

Proof The proof of uniqueness is similar to that of Aronson, Crandall & Peletier [ACP]

(we remark that a weak solution of Problem (P) is a solution of Problem (P) in the sense

of [ACP] as well). The regularity of w follows from DiBenedetto [Di, theorems 1.1 and

1.3, pp. 41 and 43].

Finally, we rewrite Problem P as an explicit free boundary problem.
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Theorem 3.6 Let w be a weak solution of Problem P such that there exists a family of closed

hypersurfaces Γ : = {∪Γ (t), t ∈ [0, T ]} such that Γ (t) ⊂⊂ Ω for all t ∈ [0, T ], w(t) > 0

inside Γ (t), say in Ωint
t and w(t) < 0 outside Γ (t), say in Ωext

t for each t ∈ [0, T ]. Then, if

Γ is smooth enough, and if the functions

u = w+ and v = αw−

are smooth up to Γ (t), then u and v satisfy

ut = d1∆u+ f(u)u in ∪{Ωint
t , t ∈ (0, T ]}

vt = d2∆v + g(v)v in ∪{Ωext
t , t ∈ (0, T ]}

u = 0, and v = 0 on Γ

d1
∂u

∂ν
= −d2

α

∂v

∂ν
on Γ

∂v

∂ν
= 0 on ∂Ω × (0, T ]

u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ Ω,
where we suppose that u0 > 0, v0 = 0 in Ωint

0 and u0 = 0, v0 > 0 in Ωext
0 .

Proof In the set {w > 0} the solution w satisfies the equation

wt = d1∆w + h(w)

which yields

ut = d1∆u+ uf(u),

whereas in {w < 0} we find that w satisfies

wt = d2∆w + g(−αw)w,

so that v = −αw satisfies

vt = d2∆v + vg(v)

and u = v = w = 0 on Γ .

Taking ϕ ∈ C∞0 (QT ) in Definition 3.3 (ii) and using that the partial differential equation

is satisfied in the sense of distributions, we finally deduce the free boundary condition:

d1
∂u

∂ν
= −d2

α

∂v

∂ν
on Γ .

4 Steady state solutions

In this section we shall give a description of the set of equilibrium solutions of the limit

problem (P), when Ω is a one-dimensional domain. Thus, we consider the problem

(E)

{
(D(w))′′ + h(w) = 0 for 0 < x < L (4.1a)

w′(0) = 0 and w′(L) = 0, (4.1b)

in which

D(s) =

{
d1s if s > 0

d2s if s < 0
and h(s) =

{
s(1− s) if s > 0,

s(1 + αs) if s < 0,
(4.2)

and d1, d2 and α are positive constants.
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We shall prove the following theorem, in which the length

L0
def
= (
√
d1 +

√
d2)

π

2
(4.3)

will play a critical role.

Theorem 4.1 (a) If L 6 L0, then Problem (E) has no nonconstant solutions.

(b) If L ∈ (nL0, (n + 1)L0) for some integer n > 1, then Problem (E) has precisely n

nontrivial solutions (modulo reflection with respect to L/2), {wk: k = 1, . . . , n} where wk has

precisely k zeros.

Before proving this theorem, we introduce the following auxiliary problem:{
y′′ + h(y) = 0 for x > 0, (4.4a)

y(0) = γ > 0 and y′(0) = 0. (4.4b)

For each γ ∈ (0, 1) this problem has a unique solution y(x, γ) in a neighbourhood of the

origin, which, since h(s) > 0 when s ∈ (0, 1), has the properties

y′ < 0, y′′ < 0 as long as y > 0, (4.5)

and can be continued at least until it vanishes. Let

`(γ)
def
= sup{x > 0: y(·, γ) > 0 on [0, x)}.

Then (4.5) guarantees that `(γ) < ∞ if γ ∈ (0, 1).

The following properties of `(γ) are well-known and easily established.

Lemma 4.2 We have ` ∈ C1(0, 1), and

(a) `′(γ) > 0 for 0 < γ < 1,

(b) `(γ)→ π

2
as γ → 0+,

(c) `(γ)→∞ as γ → 1−.

In what follows we shall also need an expression for the slope of y at its first zero, and

so we introduce the function

ϕ(γ)
def
= −y′(`(γ), γ) for 0 < γ < 1. (4.6)

If we multiply (4.4 a) by 2y′ and integrate over (0, `(γ)), we obtain

ϕ2(γ) = 2H(γ)
def
= 2

∫ γ

0

h(s) ds (4.7)

From this expression we can deduce the following properties of ϕ:

Lemma 4.3 We have ϕ ∈ C1(0, 1), and

(a) ϕ′(γ) > 0 for 0 < γ < 1,

(b) ϕ(γ) ∼ γ as γ → 0+,

(c) ϕ(γ)→ 1√
3

as γ → 1−.
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We are now ready to give the proof of Theorem 4.1. Let w be a solution of Problem

(E). Then, by the strong maximum principle −1/α < w(x) < 1 for 0 6 x 6 L, and by

uniquenss, w(0)� 0. Without loss of generality, we may choose

γ
def
= w(0) > 0.

Thus, w is then the solution of the problem{
d1 w

′′ + h(w) = 0 on {w > 0} (4.8a)

w(0) = γ ∈ (0, 1) and w′(0) = 0, (4.8b)

and hence, by an easy transformation, we see that

w(x) = y
( x√

d1

, γ
)

for 0 6 x 6
√
d1 `(γ), (4.9)

and

w′(
√
d1 `(γ)) =

1√
d1

y′(`(γ), γ) = − 1√
d1

ϕ(γ). (4.10)

At the zeros of w, the function (D(w))′ must be continuous. Thus we must have

d1 w
′(x−γ ) = d2 w

′(x+
γ ), xγ =

√
d1 `(γ). (4.11)

Therefore w < 0 and w′ < 0 in a right-neighbourhood of xγ .

Let L > xγ be the first zero of w′. Then w satisfies{
d2 w

′′ + h(w) = 0, w′ < 0 on (xγ, L) (4.12a)

w(xγ) = 0 and w′(L) = 0 (4.12b)

and can be written as

w(x) = −1

α
y
(L− x√

d2

, β
)

for xγ 6 x 6 L, β = −αw(L). (4.13)

So that this solution matches up at the zero xγ of w, we require that

L− xγ√
d2

= `(β), (4.14)

or √
d1 `(γ) +

√
d2 `(β) = L, (4.15)

and, in view of condition (4.11) on the derivatives,√
d1 ϕ(γ) =

1

α

√
d2 ϕ(β). (4.16)

Since by Lemma 4.3, ϕ′ > 0 on (0, 1), we can solve equation (4.16) for β:

β = β(γ)
def
= ϕ−1(k ϕ(γ)), (4.17)

where k = α
√
d1/d2, and the domain D(β) and range R(β) of β are given by

D(β) = (0, 1) and R(β) = (0, βk) if k 6 1 (4.18 a)

D(β) = (0, γk) and R(β) = (0, 1) if k > 1, (4.18 b)
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where

βk = ϕ−1(k ϕ(1)) and γk = ϕ−1(k−1ϕ(1)). (4.18 c)

Finally, we conclude from (4.16) and (4.17) that

β′(γ) > 0 for γ ∈ D(β). (4.18 d)

If we substitute β(γ) in (4.15), we obtain the equation

ψ(γ) = L, (4.19 a)

where

ψ(γ)
def
=
√
d1 `(γ) +

√
d2 `(β(γ)). (4.19 b)

From Lemmas 4.2 and 4.3, and the properties (4.18) of β(γ), we see that ψ ∈ C1(D(β)),

and

ψ′ > 0 on D(β) (4.20 a)

ψ(γ)→ L0 as γ → 0+, (4.20 b)

ψ(γ)→∞ as γ → γ−k if k > 1 and γ → 1− if k 6 1. (4.20 c)

The properties (4.20) of ψ ensure that if L 6 L0, then equation (4.19 a) has no nontrivial

solution, and if L > L0, it has precisely one strictly decreasing solution, with one zero.

If L > 2L0, then L/2 > L0, and we can find a decreasing solution on [0, L/2] and

extend this solution symmetrically into (L/2, L], and thus construct a solution with two

zeros.

Continuing in this manner we find that if L ∈ (nL0, (n + 1)L0], where n is a positive

integer, there exist n solutions {wk: k = 1, . . . , n}, where wk has precisely k zeros.

This completes the proof of Theorem 4.1. q

4.1 Large time behaviour

Let w = w(t, w0) be the solution of the problem

(P1)


wt = (d(w)wx)x + h(w) in Ω × R+

wx(0, t) = wx(L, t) = 0 t > 0

w(x, 0) = w0(x) x ∈ Ω
where Ω: = (0, L) and w0 ∈ L2(Ω) is such that −1/α 6 w0 6 1.

First we remark that since w ∈ L2(0, T ;H1(Ω)) for all T > 0, this implies that

w(t, w0) ∈ H1(Ω) for a.e. t > 0. Regularizing Problem (P1) and then passing to the limit,

one can deduce the following result:

Lemma 4.4 The following inequality holds:∫ t

s

∫
Ω

d(w)w2
t +

∫
Ω

{ 1
2
(d(w)wx)

2 (t)−H(w(t))}

6

∫
Ω

{ 1
2
(d(w)wx)

2 (s)−H(w(s))}
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for all t > s > 0, where

H(r)
def
=

∫ r

0

d(τ)h(τ)dτ.

Let δ > 0 be arbitrary. We deduce from Lemma 4.4 that

wt ∈ L2(δ,∞;L2(Ω)), (4.21 a)

‖wx(t)‖L2(Ω) 6 C1(δ) for all t > δ > 0, (4.21 b)

‖D(w)x(t)‖L2(Ω) 6 C2(δ) for all t > δ > 0, (4.21 c)

where we recall that D(s) =
∫ s

0
d(τ) dτ. Thus, since also −1/α 6 w(t) 6 1 for all t > 0,

{w(t, w0), t > 1} is precompact in L2(Ω). (4.22)

Define ω(w0) = {v ∈ L2(Ω) such that there exists {tn} such that

w(tn, w0)→ v in L2(Ω) as tn →∞.
Then one can easily deduce that

(i) {w(t, w0), t > 1} is a precompact set of L2(Ω);

(ii) ω(w0) is nonempty and connected in L2(Ω);

(iii) w ∈ ω(w0) implies that w(t, w0) ∈ ω(w0) for all t > 0.

Finally, we have the following results:

Theorem 4.5 The function ω(w0) coincides with one of the equilibrium solutions.

Proof Define

V (w) =

∫
Ω

[ 1
2
{(D(w))′}2 −H(w)].

Since the function t → V (w(t)) is decreasing and bounded from below, it has a limit V∞
as t→∞. Let w ∈ ω(u0). Then there exists {tn} such that

lim
tn→∞
‖w(tn, u0)− w‖L2(Ω) = 0. (4.23)

Since D is Lipschitz continuous, (4.23) implies that

lim
tn→∞
‖D(w(tn, u0))−D(w)‖L2(Ω) = 0. (4.24)

Furthermore, we deduce from (4.21) that, as tn →∞,

w(tn, u0) ⇀ w weakly in H1(Ω), (4.25)

and that

D(w(tn, u0)) ⇀ D(w) weakly in H1(Ω). (4.26)

We write

V (w) = V1(w)− V2(w), (4.27 a)

where

V1(w) =
1

2

∫
Ω

[ 1
2
{(D(w))′}2] and V2(w) =

∫
Ω

H(w), (4.27 b)
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and wn = w(tn, u0). By (4.23) the sequence {wn} converges strongly in L2(Ω) to w as

n → ∞, and by Lemma 2.1, it is uniformly bounded in L∞(Ω). Thus, since H is locally

Lipschitz continous, it is clear that

V2(wn)→ V2(w) as n→∞. (4.28)

We now use the observation that the functional

u→
∫
Ω

u2
x

is continuous and convex in H1(Ω), and hence that it is weakly lower semicontinuous in

H1(Ω). Thus, in view of (4.26) we conclude that V2 is weakly lower semicontinuous, and

hence

V1(w) 6 lim inf
n→∞ V1(wn). (4.29)

Putting (4.28) and (4.29) together, we conclude that

V (w) 6 lim inf
n→∞V (w(tn)) = V∞.

It is standard (see, for instance, Dafermos [D, proposition 3.1]) that V is constant on

ω(u0). Therefore,

V (w(t, w)) = V∞ for all t > 0.

Combining this with Lemma 4.4, we deduce that

(D(w, (t, w))t ≡ 0

so that

D(w(t, w)) ≡ D(w),

and thus

w(t, w) ≡ w.
Definition 3.3 then implies that

(D(w))′′ + h(w) = 0 in D′(Ω).

Since w ∈ L∞ and h is Lipschitz continuous, this equation holds classically, i.e. D(w) ∈
C2(Ω) and wx = 0 at the points 0 and L. Hence, w is an equilibrium solution.

Finally, it follows from the connectedness of ω(u0), and the fact that the set of equilibria

is finite, that ω(u0) = {w}. q

We note that most of the results of this section also hold in higher space dimension.

However, since we do not know in that case that the equilibria are isolated, we can only

conclude that ω(u0) is included in the set of equilibrium solutions.

Finally, we comment on the relation between the stability of equilibrium solutions

of the reaction-diffusion Problem (Pk) and of the limiting Problem (P) in higher space

dimension. It follows easily from a slight variant of a result of Dancer & Zongming Guo

[DZ] that a stationary state of (2.1) with u − (1/α)v close to a stationary state w of (P),

with w not identically zero, is unstable if the formal linearization of Problem (P) at w has

a negative eigenvalue, and is stable if all the eigenvalues of the formal linearization are

strictly positive.
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5 Concluding remarks

We have considered competition–diffusion systems for two species in the case that the

interspecific competition rates are sufficiently large. This situation involves the occurrence

of strong segregation between two competing species. To study the dynamics of spatially

segregating patterns, we have taken the spatial segregation limit in the system and derived

the corresponding free boundary problem. This problem is similar to the classical two-

phase Stefan problem. Essential differences are that (i) systems describing the two species

include reaction terms; and (ii) the latent heat is zero. In this paper, we have restricted

our discussion to homogeneous Neumann boundary conditions but the result is also valid

for other boundary conditions as well.

Systems involving three competing species are also interesting. Taking different scaling

limits for the interspecific competition rates among the three species yields different types

of Stefan-like problems. These will be described in forthcoming papers.
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[LSU] Ladyženskaja, O. A., Solonnikov, V. A. & Ural’ceva, N. N. (1968) Linear and Quasilinear

Equations of Parabolic Type. Transl. of Math. Monographs, 23.

[L] Lunardi, A. (1995) Analytic Semigroups and Optimal Regularity in Parabolic Problems.

Birkhäuser.

[MM] Matano, H. & Mimura, M. (1983) Pattern formation in competition-diffusion systems in

nonconvex domains. Publ. RIMS, Kyoto Univ. 19, 1049–1079.

[M] Mimura, M. (1984) Spatial distribution of competing species. Lecture Notes in Biomath. 54,

492–501.

[T] Temam, R. (1979) Navier–Stokes Equation. North Holland.

[To] Tonegawa, Y. (1999) Regularity of a chemical reaction interface. Com. in PDE (to appear).

https://doi.org/10.1017/S0956792598003660 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003660

