Ergod. Th. & Dynam. Sy$1999),19, 339-362
Printed in the United Kingdom © 1999 Cambridge University Press

Gradient-like flows on high-dimensional
manifolds

R. N. CRUZYT and K. A. DE REZENDE*

Departamento de Mateftica, Universidade Estadual de Campinas,
13083-970 Campinasa® Paulo, Brazil
(e-mail: cruz@turing.unicamp.br, ketty@ime.unicamp.br)

(Received .6 October1996and accepted in revised formJanuary1998)

Abstract The main purpose of this paper is to study the implications that the homology
index of critical sets of smooth flows on closed manifaldshave on both the homology

of level sets ofM and the homology oM itself. The bookkeeping of the data containing

the critical set information of the flow and topological informationMfis done through

the use of Lyapunov graphs. Our main result characterizes the necessary conditions that
a Lyapunov graph must possess in order to be associated to a Morse—Smale flow. With
additional restrictions on an abstract Lyapunov graphe determine sufficient conditions

for L to be associated to a flow a.

1. Introduction

In this paper we propose to study gradient-like flows atimensional manifolds/ where

n > 4. However, our results hold far = 2, 3 but would yield weaker results than those

in [dRF93 and [dR93]. Throughout this pape¥ will denote a smooth connected closed
orientablez-manifold. We take a Morse theoretical approach by working with a Lyapunov
function associated to a flow avf and by considering the level sets associated to regular
values off. We propose to study the changes in topology that are forced on the level sets
as we pass through critical sets. Biytical setwe mean an invariant chain transitive piece
(see Fra82)) of the chain recurrent séR. Note thatR need not be hyperbolic. From

this point on, we refer to chain transitive piecechsin recurrent componenthe changes

in topology depend not only on the critical set but also on the connections of stable and
unstable manifolds. These connections, as we shall see later, are in part detected by the
homology boundary map.
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We will isolate a critical sets of a flow ¢; defined onM in a basic block A basic
block N for S can be defined using a Lyapunov functifn M — R associated te,. Let
f(S) = cand choose > 0 small enough so thatis the only critical value ific — ¢, c+¢€)
ands is the only critical set at level. Define the basic block as the componanof the
pre-imagef —1(c — €, ¢ + €) which containsS. For a hyperbolic flow we can assume
that there is only one chain recurrent component per critical level. We now analyze the
changes in topology of the entering,(N = f~1(c + €) N N) and exiting components
(0_N = f~1(c —€)N N) of the flow restricted taV. In order to do this we use the Conley
homology index of the critical set and we set up a natural long exact homology sequence
which involves this index. Our results in 83 will therefore, detect homology changes, more
specifically changes in the Betti numberssefv andd_N. Hence, given a flow oM we
study the changes it N anda_ N for each critical set and record all this information in
a Lyapunov graph. In this process we determine necessary conditions imposed by the flow
on this graph.

In 84 our aim is to determine if the necessary conditions on a Lyapunov grémmnd
in the previous section are sufficient to determine the manifold and a flow with a Lyapunov
graph equivalent td.. That is, if we impose these conditions on an abstract Lyapunov
graph do they determine the ambient manifold and a flow with a Lyapunov graph equivalent
to L? It turns out that this is not the case in general and we must impose additional
restrictions on abstract Lyapunov graphs. We then realize a class of abstract Lyapunov
graphs as flows on manifolds which are connected sums of generalizéd teris? with
critical sets which are hyperbolic singularities. We later consider flows with hyperbolic
periodic orbits as well.

2. Background material
2.1. Gradient-like flows. Given a smooth flowy, : M — M, there is a smooth function
f : M — R associated to this flow with the properties that it strictly decreases along the
orbits outside of the chain recurrent §et that is, if x ¢ R then f(¢;(x)) < f(¢s(x))
whenever > s and is constant on the chain recurrent components (chain transitive pieces)
of R (see Con78, Fra83). This function f is called aLyapunov function Since f
decreases along orbits ¢f not in R, we say thatp, is agradient-like flowwith respect
to f.
A Morse function is an example of a Lyapunov function. Recall that®a function
f : M — Ris aMorse functiorprovided that each of its critical points is non-degenerate.
Associated to eaclf, the flow ¢, is a gradient flow, a particular case of a gradient-like
flow, defined by(d/9t)¢;, = —V f o ¢,. We refer to this flow, for short, asMorse flow
Note thatf decreases along orbits ¢f for all x not in the critical set off. The unstable
setofp is defined asv“(p) = {y € M : lim,_, _« ¢:(y) = p} and is a submanifold o¥/.
TheMorse indexof a critical pointp is the number of negative eigenvaluestf (p) or,
equivalently, the dimension of the unstable set of the flog, at= ind(p) = dim W (p).
However, we will be working with an even more general notion of index due to Conley
which generalizes the classical Morse index and which is not concerned with the non-
degeneracy or hyperbolicity of the critical set.
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2.2. Lyapunov graphs. The notion of Lyapunov graphs was introduced by Franks
[Fra85]. A Lyapunov grapthis a finite, connected, oriented graph with no oriented cycles
and with the vertices labelled by chain recurrent flows.

A Lyapunov functionf : M — R associated to a flow determines a Lyapunov graph
by defining the following equivalence relation aft x ~ ¢ y if and only if x andy belong
to the same connected component of a level sgt.dienceM / ~ ¢ is a Lyapunov graph.

If the flow is hyperbolic, it is possible to choogeso that it contains one chain recurrent
component per critical level. A point alf/ ~ ¢ is avertex poinif under the equivalence
relation it is a component of a level set containing a chain recurrent component. All other
points areedge pointsEach edge represents a codimension one submanifoid ¢f x 1.
Hence, in order for an edge to retain some of the topological informatiah &f I, we

label it with the Betti numbers of). M/ ~ ¢ is oriented by the flow.

In this paper, homology is always taken usifig coefficients. In order to have a
finite graph, we must place the restriction that the chain recurrent set has finitely many
components, which we refer to adimite component chain recurrent set

An abstract Lyapunov grapis a finite connected oriented graph with no oriented cycles,
with each vertex labelled with index information on a chain recurrent flow on a compact set
and each edge labelled with the Betti numbers of a clgsed 1)-dimensional manifold.

Of course, there is the question of which abstract Lyapunov graphs can be realized as a
flow on a manifold. We will answer this in a later section. We note that abstract Lyapunov
graphs are neither more nor less general than Lyapunov graphs. As defined, the vertices
of a Lyapunov graph are labelled with chain recurrent flows whereas the vertices of an
abstract Lyapunov graph are labelled with index information of the chain recurrent flows;

a weaker notion in regard to this feature. On the other hand, Lyapunov graphs do not have
labelled edges whereas abstract Lyapunov graphs do; a stronger notion in regard to this
feature.

2.3. Conley index theory. Let¢ : M x R — M be a smooth flow oM which we
denote byp,. A setS C M isinvariantif ¢,(S) = S forall + € R. The closure of a
bounded open s&{ C M is anisolating neighborhoofbr ¢;, if for everyx € aN there is
at € R such that;(x) ¢ N. An invariant set is called aisolated invariant seff it is the
maximal invariant set in some isolating neighborhood.
A chain recurrent componegtfor the flowg, is an example of an isolated invariant set.
If fis a Lyapunov function associated to a flow ang= f(R), then for a small enough
¢ > 0, the component of ~1[c — ¢, ¢ 4+ ] which containsR is an isolating neighborhood
for R which we refer to as hasic blockfor R.
An index pairfor an isolated invariant set is a pair of compact spacéa’;, Ng) such
that:
(1) cl(N1— Np) is an isolating neighborhood fcr,
(2) Nois positively invariant inNy, i.e. if x € No andgo,71(x) C N1 thengo,r1(x) C
No;
(3) Nois the exit set for the flow, i.e. if € N1 and¢jo 0)(x) ¢ N1 then there exists a
T > 0 such thato,71(x) C N1 and¢r(x) € No.
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For a chain recurrent component wiftiR) = ¢ ande > 0 such that there are no other
critical values in[c — ¢, ¢ + ¢], defineN; as the component of “1[c — &, ¢ 4+ ] which
containsk andNg = f~1(c —&) N N1. (N1, No) is an index pair folR which we will refer
to as ablock defined index pair

Given any index paifN1, No) consider the quotient spadé /No as a pointed space
with the equivalence class @fp as the distinguished point. l€pn7§, it is shown that
given two index pair§N1, No) and(Ny, Ny) for the same isolated invariant sgtthere is
a flow defined homotopy equivalence betweeérn No andN;/N;. Hence, we define the
Conley indexof S, h(S), as the homotopy type a¥1/Np for any index pair forS. The
homology indexf S, C H(S), is the homology of the Conley index.

Block defined index pairs will be used throughout this paper and the main advantage of
their usage is that since~1(c — ¢) is a deformation retract of a neighborhood of itself in
f*l[c — &, ¢+ €], it follows that Ny is a deformation retract of a neighborhood of itself
in N1 and by standard results in algebraic topology(N1/No) = H.(N1, No) which in
turn is isomorphic taC H.(R).

The following proposition is a particular case of a result of Conley’s which generalizes
the classical Morse inequalities. We refer the reader dR9[] for a proof of
Proposition 2.1.

PrOPOSITION2.1. Let M be a closed orientable-manifold,¢, : M — M a smooth flow
with a finite component chain recurrent Set= U;<; R;m, wherel is a finite indexing set
for the chain recurrent components. Lh%t be the dimensions of the homology indices of
R;,for j=0,...,n. Then

D DR = x (),

iJ
wherey (M) is the Euler characteristic o#4. Moreover, the result also holdsdf\f # .
In this case, leb M~ be the part of the boundary a@f through which the flow exits, then
the above equality holds provided we consigémM, oM ™).

For more background material on the Conley index theoryGeaT8d and for material
on gradient-like flows in low dimensions sderf85, Fra82, dR87, dRF93, dR9B

2.4. Handle theory. Here we will give definitions pertinent to handle theory since
in 84 we will be working with the attachment of handles in order to construct Morse
flows on manifolds. We will also mention the notion of round handles which will be
used in constructing Morse—Smale flows on manifolds. However, we refer the reader to
[RS82, Mil65] and [Asi75] for a detailed exposition of this material.

We denote byD/, the closed unij-disk, i.e. thej-ball. Also, the boundary ab/, 3 D’
is the(j — 1)-spheres/—1,

Let N be ann-manifold andH = D' x D" ‘. Let6 : aD* x D"* — 9N be
an embedding which defines the new manifold = N Ug H, which is the result of
attaching art-handle toN. The following loose notations are also us@d:= N U H®
or N' = N U H. The map is an embedding which we will simply refer to as an attaching
map. Thet-handle is the pai¢H, 6) which we denote more loosely &). Thecore of
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the handle isD* x 0 and thecocoreis 0 x D", Also, D¢ x 0 is theattaching sphere
(a-spher@ and 0x 3 D"~¢ is thebelt sphere(b-spherg. Theattaching region(a-region
isa_H® = (3D% x D" * and thebeltis . H® = D! x 9D"*. The index of a
singularity is the index of the handle which contains it and hence the dimension of the
unstable manifold of the singularity must equal the dimension of the core of the handle.

If N is a smooth compaat-manifold andoN is the disjoint union of two open and
closed codimension one submanifoldgandNy, (N, N1, Nog) is asmooth manifold triad
In this caseN is said to be aobordismfrom Ng to N1 and Ng and N1 are said to be
cobordant Note that the manifolds in a cobordism are not assumed connected. We can
create a further cobordism by attaching a harfdl® N;.

According to the above definitioN; can be thought of as the boundary components
of N which the flow enters through, i.ev1 = 0.N, and Ng as the boundary
components which the flow exits through, iy = 0_N. Consider a Morse function
f : (N,3;4N,0_N) — ([0,1],1,0), whered.N = f~ 11 ando_N = f~10)
since the function decreases along orbits of the flow. Given the above function and
0 < ¢ < 1 which is not a critical value then botiiy, = f~1[c, 1] andW> = f~1[0, ¢]
are smooth manifolds with boundary. Hence the cobordism ftdmo, N, d_N) is
the compositionof the cobordism(Wy, 3, N, f~1(c)) and (W2, f~1(c), 3_N). More
generally, if(N, 3+ N,d_N) and(N’, 3. N’, 3_N') are two smooth manifold triads and
h:0_N — 94 N'isadiffeomorphismthen a third triad is formed& U, N’, 9. N, d_N"),
whereN Uy, N’ is the space formed frolW andN’ by identifying points o6_ N andd.. N’
underi. See Mil65] for more details.

An elementary cobordisns a triad (N, N1, Ng) possessing a Morse function with
exactly one critical point. A triadN, N1, No) is aproduct cobordisnif it is diffeomorphic
to the triad (Ng x [0, 1], No x 1, Ng x 0). Any cobordism can be expressed as
a composition of elementary cobordisms. In other words, an elementary cobordism
(N, N1, Np) containing an index critical point is the result of attaching an indéxandle
H® to the product cobordistitiVg x [0, 1], Ng x 1, Ng x 0) alongNg x 1. Alternatively,
since a product cobordism is a closed col@tNo), if (N, N1, Ng) is an elementary
cobordism containing an indexcritical point, thenN = C(Ng) U H©, whereH® is
attached taC (Ng) alongdC(No) — No.

We can easily make a parallel between cobordisms and Lyapunov graphs. A Lyapunov
graph can be viewed as a composition of cobordisms (possibly elementary cobordisms if
the graph is associated to a Morse flow) each of which contains exactly one chain recurrent
component. Hence a vertex of a Lyapunov graph together with its labelled incident edges
represents such a cobordigyn The incoming edges represeéntN x J and the outgoing
edges represedt N x J, whereJ is an open interval.

We will also work with flows which possess hyperbolic periodic orbits and hence
introduce the notion of round handleAdi75. Let N be ann-manifold andR =
S1x D/ x D"71 Letd : 9(S* x D/) x D"/~1 — N be a diffeomorphism which
defines the new manifold’ = N Ug R, which is the result of attaching jaround handle
to N. We refer to as the attaching map. Theround handle is the paiR, 6). Thecoreis
1x D/ x 0, thecocoreis 1x 0x D"~/~1, Theattachingandbelt spheresre the boundaries
of the core and cocore respectively. Tateaching regioris 3_ R = S x §/~1 x pr—i—1
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andd; R = S x D/ x §"7/=2. The index of an untwisted periodic orbit is the index of
the round handle which contains it and hence the dimension of the unstable manifold of
the periodic orbit must equal the dimension of the core of the round handle.

The attaching of g-round handleR to a manifoldW to form N = W Uy R where
6 : _R — 9, W also creates a cobordisW, 3. N, 0_N) whered, N = 3. (W Ug R)
andd_N = 0_W. An elementary round cobordisi®m a triad(~N, N1, No) such that a flow
¢, is defined onV entering throughVi, exiting throughNg and containing an untwisted
periodic orbit as the only critical set iN. It can be shown thaV is a closed collar oivg,
C(Np) together with a round handi attached alongC (Ng) — Nop.

3. Lyapunov graphs for gradient-like flows
In this section we will determine properties that a Lyapunov graph associated to a gradient-
like flow possesses.

The next result, which we refer to as the Poireafopf equality is a direct consequence
of Proposition 2.1 and characterizes the relation between the Euler characteristic of the
incoming and the outgoing boundary components of a basic block containing a chain
recurrent componerR and the homology indices;, j =0, ..., n.

COROLLARY 3.1. (Poincae-Hopf equality)Let (N1, No) be an index pair for a chain
recurrent componenk of a smooth flow od”, n odd, and let:;, j =0, ..., n, be the
dimensions of the homology indiceskfThen

D =17k (R) = F(x (ONT) — x ONT)).

J

Proof.

Y (=D7hj = x(N1, No)
j=0

= x(N1) — x(No)
= 3x(3N1) — x(No)
= 3(X(ON;) + x(ON;)) — x(No)
= 3(X@N;) — x(ON;)).
The second equality follows from the exact sequence of the pair, whereas the third

follows from considering the Euler characteristic of the doubleVef DN1. That is,
0= x(DN1) = 2x(N1) — x(3N1). The fourth equality follows sinc&N; = No. O

We can interpret Corollary 3.1 as an equality which relates the Betti numbers with which
the edges of a Lyapunov graph are labelled with the degree (indegree and outdegree) and
the homology index labelling of. This is the content of the following corollary.

COROLLARY 3.2. For a smooth flow o4", n odd, with Lyapunov functiofi : M — R
leth;, j = 0,...,n, be the dimensions of the homology indices of a chain recurrent
componentrR of the flow. Letv be the vertex on the associated Lyapunov grdph
which corresponds t&k and which is labelled witH%;}. Denote the indegree af by
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et (v) and the outdegree by (v). Then the Betti numbetsﬂ(fhl)/z, B Bl and
{(,8(;_1)/2, ..., B1» By )}k on the incident edges tomust satisfy:

B~ =Bt =e () —et )+ ) (-D/h;.
j=0

where

e (vi)

B =) (By_ydk £ — (BDK)
k=1

and

et (v)

B =" ((Bh_y k£ — B
k=1

Proof. Note that the PoincarHopf equality in Corollary 3.1 relates the Euler
characteristic of the incoming and outgoing boundary components of a block defined
index pair(N1, No) of a chain recurrent componeRtto the dimensions of the homology
indices ofR. Note thatR corresponds to a vertaxon the Lyapunov graph and that each
connected component 6N1+ (dN; ) corresponds to an incoming (outgoing) edge incident
to v. Hence the zeroth Betti number @ N (9_N) is being represented on the graph by
the number of incoming (outgoing) edgesof Also, X(aNf) (x(@N;)) which is the
alternating sum of the Betti numbers correspond8to(3~) excluding the zeroth Betti
numbers which have already been taken into account. ]

The next result will determine upper bounds on the indegree, aft(v) and the
outdegree of, e~ (v).

THEOREM3.1. Consider a smooth flog, : M — M, with Lyapunov functiorf : M —

R and Lyapunov grapli. Leth;, j =0, ..., n, be the dimensions of the homology indices
of a chain recurrent componei® of ¢, and letv be the vertex corresponding ®. Then

v must satisfy:

(1) et (v) < (h)* + 1 (x indicates the index of the time-reversed flow);

(2) e (W) <h1+1

Proof. Let (N1, Ng) be an index pair foR. Consider the long exact sequence whgése
coefficients are used for the homology groups:

- = Hi(No) — Hy(N1) — CHy(R) 5 Ho(No) -3 0.

Since dimFIV()(NO) = ¢~ (v) — 1 and by exactness dim kigr= dim Im 91 we have that
01 is surjective hence difi H1(R) = h’l > ¢~ (v) — 1. By reversing the flow we obtain
thatet (v) < (h1)* + 1. O

By taking less general flows we will obtain sharper results and for the most part this is
the content of the following sections.
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3.1. Lyapunov graphs for Morse—Smale flowsn this section we will characterize a
Lyapunov graph associated to a Morse-Smale flow, i.e. we will determine necessary
properties the graph must possess in order to be associated to a Morse—Smale flow. We
will work with the Conley homology index of hyperbolic singularities and periodic orbits.
The following proposition computes this index and is due to Conley. We provide a simple
proof based on the fact that for these cases the Conley index is a Thom space.

ProOPOSITION3.1. Let (N, Ng) be an index pair withV containing a unique critical set.
If N contains a hyperbolic singularity of indexthen H; (N, No) = Z, fori = ¢ and0
otherwise. IfN contains a hyperbolic periodic orbit of indéxthen H; (N, No) = Z for

i = ¢, ¢+ 1andO0 otherwise.

Proof. Let S be the singularity or the periodic orbit. Denote byand ¢ the unstable

and stable bundles of respectively. Denote by (-) and S(-) the total spaces of the
associated disk and sphere bundles respectively. Without loss of generality, we may assume
N = D(¢ & ¢). By sliding along the fibers of it follows that

(N/No, No/No) ~ (D(§)/S(§), S(§)/5(§)) = (I'(§), 10),
a pointed Thom space. By Thom’s isomorphism theorem,
H;(N, No) = Hi(I'(§),t0) = Hi—¢(D(§)) = Hi—¢(9),

from which the proposition follows. We are following the convention that for a space
H;(X)=0fori <0. O

One can think of a hyperbolic periodic orbit of indésas the joining of two hyperbolic
singularitiesp andg of adjacent indiceé and¢+1 respectively. The following proposition
is due to FranksHra82).

PROPOSITION3.2. Suppose, is a Morse—Smale flow on an orientable manifold with a
periodic orbity of index¢. Then given a neighborhodd of y there exists a new Morse—
Smale flowy;, whose vector field agrees with that ¢f outsideU and which has two
singularities of index and¢ + 1 in U but no other chain recurrent points .

The singularityg having one more unstable direction thanenables us to use an
appropriate 1-submanifold a¥“ (¢) to join with an appropriate 1-submanifold 8f (p),
obtaining an index periodic orbit. Topologically this means that it should be possible to
break a round handle of indéxnto two handles of indicegand¢ + 1.

A handle and its corresponding singularity is calledisconnecting¢-connectingor
B-invariant, in short, ¢-d, £-c, g-i, if and only if this handle has the algebraic effect of
increasing or decreasing tligh Betti number ofo N in relation tod_ N in the first two
cases respectively and keeping constant all Betti numbers in the latter case. See Figure 1.

The attachment of a single round handle to fgi 0, N, 9_ N) has the algebraic effect
of altering the Betti numbers éf. N in relation tod_ N. This effect is specified by the two
singularities given by Proposition 3.2. Thus, if the first singularity- and the second
(£+ 1)-d we refer to the round handle and the corresponding periodic orbita@ + 1)-d
and so on. However, if the first singularitydsd and the seconé-c then the round handle
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Be(0+N) =B +1 Be-1(0+N) =B -1

¢ he=1 ¢ he=1 o he=1
Be(0_N)=p Be-1(0-N) =
{—d (£-1)—-c B—1i

FIGURE 1. The three possible algebraic effects.

w e h[+1 =1

v e h[:hg+1=1

FIGURE 2. w andu are derived vertices from.

and the corresponding periodic orbit are said to8bie For an example of #-i handle
see 84.1. Also, we refer to these singularities as the singuleditiégedfrom the periodic
orbit.

Given a Morse—Smale flow, on a boundaryless oriented smooth maniféfd let
f : M — R be a Lyapunov function and form the associated Lyapunov gfapBy
repeated use of Proposition 3.2 it is possible to changea Morse flowp, with Lyapunov
function /' : M — R. The associated Lyapunov graph is calleddbéved graphl’. If a
Lyapunov graplL is the graph of a Morse flow its derived graph= L.

In order to obtairl.’ from L, a vertexv labelled with an index periodic orbitis removed
from L and replaced by an oriented subgrdphihich respects orientations. The subgraph
I contains two verticesw labelled with an indexX + 1 singularity and: labelled with an
index ¢ singularity. These vertices are connected by a directed efigen w to u. Note
that in L’ all incoming edges ofv are the incoming edges ofin L. Similarly, all the
outgoing edges af in L’ are the outgoing edges ofin L. See Figure 2.

This description permits us to define the derived gréplior an abstract Lyapunov
graphL.

3.2. Main result. Theorem 3.2 is the main result in this section and for expository
reasons it is a compendium of several propositions which will appear subsequently in 83.3.
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We hope with this to give the reader a clearer picture of the global result.

Theorem 3.1 asserts that the number of boundary components of an isolating
neighborhood in a smooth gradient-like flow is controlled by the one-dimensional
homology index. Our main result, Theorem 3.2, shows how the higher-dimensional
homology of the boundary components of an isolating neighborhood of a critical set in
a Morse—Smale flow is controlled by the higher-dimensional homology indices.

THEOREM3.2. Let ¢, : M — M be a Morse—Smale flow with Lyapunov function
f : M — R. Letv be a vertex of the associated Lyapunov graph.et N be a basic block
containing only one singularity or one periodic orbit that corresponds.tbetd_N, 9, N
be the exiting and entering componento€ontained inON. If v is labelled as an:
(1) index¢ singularity, then:
(@) wis¢-d, (¢ — 1)-corB-i;
(b) the sum of the labels on the incoming edges incident (ice. the total Betti
number ofd. N) changes with respect to the sum of the labels on the outgoing
edges incident to (i.e. the total Betti number ¢f_ N) by +2 or 0;
(c) v cannotbes-iif n # 2¢;
(2) index¢ periodic orbit, then:
(@) if v hasu andw as its derived vertices thanis one of the combinations in the

table below:
w/u ¢-d € —1-c B-i
¢+1)-d (¢£+D-d¢d (£+D-d,¢—1-c £+ 1)-d;B-i
{-Cc ¢-c; ¢-d £-c; (£ — D-c £-C; B-i
B-i B-i; ¢-d B-i; (¢ — 1)-c

(b) the sum of the labels on the incoming edges incident (ice. the total Betti
number ofd. N) changes with respect to the sum of the labels on the outgoing
edges incident to (i.e. the total Betti number @f_ N) by adding the changes
of the derived vertices;

(c) v cannotbe in the last column of the table:if£ 2¢ and cannot be in the last
row of the table ifn # 2(¢ + 1).

This theorem is a consequence of the results obtained in §3.3 and will be proved within
that section.

Theorem 3.2 describes the variation of the Betti numbers of the level sets as we pass
through the critical set. In particular, it gives us the variation of the zeroth Betti number in
terms ofet ande~.

COROLLARY 3.3. Consider a Morse—Smale flapy, an associated Lyapunov graphand

avertexv onL.

(1) Ifvislabelled as a sinkig = 1) or an attracting periodic orbi{z; = ho = 1) then
et =1lande” =0.

(2) [If vislabelled as a sourcér,, = 1) or a repelling periodic orbit(h, = h,—1 = 1)
thene™ = 1andet = 0.
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(3) Ifvislabelled as a saddle of Morse ind&xh1 = 1) or a saddle type periodic orbit
of index1 (k2 = h1 = 1) thene™ = 1. Moreover, ifv is labelled asD-c singularity
or as a0-c, 2-d periodic orbit there™ = 2. Otherwiseeg™ = 1.

(4) Ifvislabelled as a saddle of Morse index 1 (h,—1 = 1) or a saddle type periodic
orbit of indexn — 2 (h,_1 = h,_2 = 1) thene™ = 1. Moreover, ifv is labelled as
(n — 1)-d singularity or as ain — 3)-c, (n — 1)-d periodic orbit or as an — 2)-d,
(n — 1)-d periodic orbit thene™ = 2. Otherwisee™ = 1.

(5) If vis labelled as any other saddle or periodic orbit theh = ¢~ = 1.

Proof. Theorem 3.2 specifies the effect singularities and periodic orbits have on the Betti
numbers of the level hypersurfaces of a basic biickRecall thate~ ande™ correspond

to the number of exiting and entering boundary component¥ of.e. to the number

of components ofdo_N and 3. N. Hence, this number is determined by the zeroth-
dimensional Betti numbers 6f. N andd;. N. The proof follows directly from an analysis

of the zeroth-dimensional Betti numbers in Theorem 3.2. ]

So far, our theorems have determined locally necessary conditions on a Lyapunov graph
so that it is associated to a flow. The following theorem of Franks determines a necessary
global condition on a Lyapunov graph so that it is associated to a smooth flow. We refer
the reader tofra85] for a proof of this theorem.

THEOREM3.3. Let M be a compact oriented manifold. Suppose that M — M is a
smooth flow andf : M — R is a Lyapunov function with a finite associated Lyapunov
graph L. If Hi(M; Q) = Othen the graplL is a tree.

3.3. Basic blocks for singularities. This and the next section involve the analysis of
exact sequences and hence give a more precise result than the table in Theorem 3.2. The
results below will specify the role of the homology boundary maps in the change of Betti
numbers of the level surfaces.

Throughout this section all propositions will have as underlying hypotheses:

(1) M is ann-dimensional manifoldy > 2;

(2) pisasingularity of index (i.e. dimW(p) = ¢ and dimW*(p) = n — £);

(3) (N, 0_N)is anindex pair fopp wheredN = d_N U d4N anda_N NN = @;

(4) 04N andd_N are denoted by entering and exiting boundary components for the
flow respectively;

(5) 9;: Hi(N,d_N) - H;_1(0_N) denotes the homology boundary map.

The following propositions will determine the relationship between the Betti numbers
of 3. N andd_N. The way in which they are related will depend on the index of the
singularity as well as the homology boundary map. It is also interesting to observe
that whenever the index of the singularity coincides with half the dimension of an even-
dimensional manifold or with either of the two middle dimensions of an odd-dimensional
manifold the analysis is slightly more elaborate. We refer to these as the middle-
dimensional cases and they are dealt with in §3.3.1.

In the following proofs we will make systematic use of the long exact sequences for the
pairs(N, 0_N) and(N, 9+ N).
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Consider the long exact sequence for the p&iro_ N), which we will label by LES-:

. o -
0— Hy(3_N) -5 Hy(N) 25 Hy(N, 9_N) =5 Hy_1(_N) =5 Hy,_1(N) — 0.
Also consider the long exact sequence for the @diro. N) which we will label by LESt:
0— Hyot(3:N) 2= Hy o(N) 25 Ho (N, 9,.N)
ot .
n—() Hn—@—l(8+N) ’n—(—l) Hn—@—l(N) — 0.
PropPosITION3.3. Under the hypotheses stated at the beginning of this section=e2i
and¢ #iorn=2i+1and¢ #i,i + 1. Then either:
(1) 9, =0andd' , #0inwhichcase  (¢-d)

Br(0+N), forall k #¢,n—¢—1

Jd_N) =
Ao {ﬁk(3+N)—l, fork=¢,n—-¢-1

or else,
(2) 9, #0anddt , =0inwhichcase  ((¢ —1)-c)

Br(3.N), forallk #¢—1,n—¢

0_N) =
Pi ) :,Bk(8+N)+l, fork=¢—-1,n—¢.

Proof. Since p is a singularity of index with basic blockN with entering and exiting
boundary components. N anda_ N respectivelyH;(N,d_N) = 0 for allk £ ¢. If we
reverse the flow oV, p will now have index: — ¢ and the roles o, N andd_ N will be
interchanged, i.e. the exiting boundary component for the time reversed flow will now be
04+ N and the entering boundary component willbheV. Once againH;(N, 3. N) =0
forallk #£n —¢.

Combining both long exact sequences -E&nd LESt+ we obtain thatH (0_N)
Hy(N) fork # ¢ and Hy(0+N) = Hy(N) for k # n — £. This implies thatH(0_N)
Hy(04:N) fork #4¢,n — ¢.

For the cases wheh = ¢, n — ¢, we must consider whether the homology boundary
mapsd, andd.” , are zero or non-zero.

If both boundary maps are zero or both are non-zero, it is an easy computation
to see that we contradict the Poineaduality. Take, for instance, the case where
both boundary maps are zero. Singg = 0, LES- implies thatH, 1(d_-N) =
Hy—1(N). We have shown above thdf; (0. N) = Hi(N) for k # n — ¢, hence
we obtain thatH;_1(0.N) = Hy_1(N) = Hy_1(0_N). In other words, this implies
that Be—1(0_N) = B¢—1(34N). On the other hand, sinc&" , = 0, LES+ implies
that H,_(N) = H,_¢(N,3+N)®H,_¢(3+N) and using the fact observed above that
H(0_N) = Hi(N) for k # ¢, we obtainH,,_¢(0_N) = H,_¢(N), henceH,,_;(0_N) =
H,_¢(N,3+N)®H,_¢(0+N). Thus,B,—¢(0_N) = B,—¢(3+N) + 1. Sinced, N ando_ N
are closedn — 1)-dimensional manifolds, the indicas- ¢ and¢ — 1 are complementary
in this dimension. Hence the homology groups with these indicés dfand also ob_ N
are Poincag’duals. However, this contradicts the Poimcdrtiality sinceB,_1(0_N) =

~
~
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Be—1(0+N) andB,_¢(0_N) = B,—¢(0+N) + 1. The case where both boundary maps are
non-zero is treated similarly.

Hence we are left with the cases where one of the boundary maps is non-zero and
the other is zero. Let us consider one of these cases wihere- 0 and 8;“_[ #+ 0.
If 9, = 0, then exactness of LESimplies thatH,(N) = H¢(0_N)®H¢(N, d_N)
andHy_1(0_N) = Hy_1(N). Now if 8:4 #+ 0, then exactness of LESimplies that
Hy—¢(N) = Hy—¢(d+N) andH,—¢—1(34+N) = Hy—¢(N, 94+ N)®H,—¢-1(N). Since the
Betti numbers ofH, (N, 0_N) and H,,_¢(N, . N) are equal to 1 we have thAt(N) =
Be(O—N)+1andBy(N) = Br(0_N) forall k # ¢. Also, B,—¢—1(N) = Br—e—1(0+N) — 1
andBi(N) = By (0+N) for k # n — £ — 1. Combining these results we prove (1). Also,
(2) is proved by a similar analysis. ]

This analysis of the long exact sequences LE8d LESt+ can be summarized in the
following tables:

(N, 9_N) 9, =0 39, #0

Be(N) = Be(0_N) +1 Be(0_N)
Be—1(N) = Be-1(0-N) Be-1(0_-N) -1

In addition to this TABLE 1.

Pr(N) = Bk(0-N), Vk#{£,£—1

(N, 94N) 3 ,=0 O, #0

Brn—e(N) = Bn—e(04+N) +1 Bn—e(0+N)
Br—t-1(N) = Bu—¢-1(0+N)  Bu—¢-1(04+N) =1

T 2.
In addition to this ABLE

Bik(N) = Bx(0+N), YVYk#n—4,n—1€—1

3.3.1. Middle-dimensional cases.

PropPoOsSITION3.4. Under the hypotheses stated at the beginning of this section=e2i
and¢ = i. Then either:
(1) 87 =0,9"=00ra” #0,3" #0inwhichcase  (B-i)

Br(0_N) = Br(0,.N) forall k

or else,
(2) 97 =0,9F #0inwhichcase  (¢-d)

Br(0+N), forallk #£i,i — 1

J_N) =
IBk( ) :,Bk(aJrN)—l, fOfk:i,i—l.

or else,
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(3) 97 #0,3F =0inwhichcase  ((¢ —1)-c)

Bi (04 N), forall k £i,i — 1

_N) =
Ao {,Bk(3+N)+1, fork=1i,i — 1.

Proof. Sincen = 2i and¢ = i, we substitute these values for the indices in EE&hd

LES+ The analysis is similar to Proposition 3.3, i.e. we analyse the four possible cases
arising from the choices of the homology boundary mapsand 8l.+ being zero or non-

zero. It is interesting to note that in this case if both boundary maps are zero or both are
non-zero, we do not contradict the Poinedriality. In what follows we detail this analysis.

We first observe that singeis a singularity of index with basic blockV, with entering
and exiting boundary components, N anda_ N respectively,Hy (N, d_N) = 0 for all
k # i. If we reverse the flow oV, p will now continue to be an indeksingularity with
the roles ofd; N andd_ N interchanged, i.e. the exiting boundary component will now be
04+ N and the entering boundary component willbheN. Once againHi(N, 3. N) =0
forall k #i.

There are four cases to consider, however, we take two for illustrative purposes, the
others being entirely similar in nature. The proofs always reduce to an analysis ef LES
and LESt+ with ¢ substituted fot in those sequences. So it suffices to consider the four
combinations of choices f@; and 8:4 in the tables above with = i. O

In the next proposition we will treat the case whéfds odd-dimensional and the index
of p isin the middle-dimensional range, ife= i and¢ =i + 1.

PropPOSITION3.5. Under the hypotheses stated at the beginning of this section, let
n = 2i + 1. Then either:

(1) ¢=iand
(@) 9, =087, #0inwhichcase,  (¢-d)
(0LN), forall k £ i
BN = Br (04 -75
Bk (04N) — 2, fork =1i;
or else,

(b) 97 #0,9%, =0inwhichcase, ((¢—1)-)

Bk (04 N), forallk £i+1,i—1

d_N) =
A=) :,Bk(3+N)+l, fork=i+41,i—1;

(2) or¢=i+1and
(@) 0;,,# 0,9} =0inwhichcase, ((¢—1)-)

Br(0+N), forall k # i

O_N) =
Pe(3-N) {ﬂk(8+N)+2, for k = i:

or else,
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(b) 97,=0,9" #0inwhichcase, (¢-d)

Bi (04 N), forallk £i+1,i—1

I_N) =
Pie(@-N) {,Bk(8+N)—l, fork=i+1,i—1.

Proof. Sincen = 2i + 1 and¢ = i, we substitute these values for the indices in EES
and LESt. The analysis is similar to Proposition 3.3, i.e. we analyse the four possible
cases arising from the choices of the homology boundary rﬂgpsmdalil being zero or
non-zero. Here again if both boundary maps are zero or both are non-zero, we contradict
the Poincag’duality and we illustrate one of these cases below. If this is not the case we
are led to the results in this proposition.

We first observe that singeis a singularity of index with basic blockV with entering
and exiting boundary components,N andd_ N respectively,Hy (N, d_N) = 0 for all
k # i. If we reverse the flow oV, p will now be an index + 1 singularity with the roles
of 0. N andd_ N interchanged, i.e. the exiting boundary component will now.b¥ and
the entering boundary component will Be N. Once againH; (N, 0+ N) = 0 for all

k#i+1.

The analysis of LES and LESt, with ¢ = i and consequently—¢ = 2i+1—i = i+1,
can be done by substituting these values into the tables above.

In the case whend,” = 0 and 8;“1 = 0 we obtain from column one of Tables 1

and 2 thatg;_1(0_N) = B;—_1(3+N) gnd thatg;+1(0_N) = 1+ B;+1(3+N). However,
we have contradicted Poineaduality which asserts th#,1(0_N) = B;—1(0_N) and
Bi+1(d4+N) = Bi—1(94 N). The case whef,” # 0 andalf;l # 0 is treated similarly.

Inthe case whef,” =0 andalf;l # 0 we combine the results in column one of Table 1
with those in column two of Table 2. We obtain th@at(o_N) = B¢ (N) for all k # i and
Bi(3+N) —1 = B;(0_N) + 1. Hencep; (0_N) = B;(3+N) — 2. The case wheré™ # 0
andd;" , = 0is an entirely similar analysis.

i+1 —
The results in (2) can be obtained from (1) by considering the time reversed flow where
the roles ofd; N anda_ N are interchanged. m]

The next propositions narrow down the possibilities of manifolds where cases (1) and
(2) of Proposition 3.4 may occur.

For a (2k + 1)-dimensional closed manifol®, the mod 2semi-characteristiavith
coefficients in the field is defined to be:

k
x12(X:;F) =) Bi(X;F) mod 2
i=0

PropPOSITION3.6. Under the hypotheses of Proposition 3.4 witk= 2¢ and N a basic
block, if cases (1) or (2) occur (i.8, = 8[ = 0orboth are not equal to zero) then at least
a mod 2homology class irH;(M) has self-intersection number non-zero. In particular,
M cannot bes” or the connected sum of generalized t§frix S/,i + j = n.

Proof. If every mod 2 homology class € Hy(N) has self-intersectiog - & = 0 then
arguing as in Lemma 5.10 irKM63] it follows that x1/2(0; N, Z2) # x1/2(0—N, Z3).
However, since we assume that cases (1) and (2) occur, this implies that all Betti numbers
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of 34 N andd_N are the same thus the semi-characteristics must be equal. Hence, there
must be a mod 2 clagse Hy(N) such that - & # 0. SinceN C M is a codimension 0
embedding, ify is the image ot under the map induced by inclusiéfy(N) — Hy(M)

it follows thaté - & = n - n. Thus,n - n # 0. ]

ProPOSITION3.7. Under the hypotheses of Proposition 3.4 wite- 2 mod 4,N a basic
block andM orientable, then cases (1) and (2) do not occur.

Proof. It follows from Lemma 5.8 inKM63] that x1/2(3+ N, Q) # x1/2(0—N, Q). Inthe
casen = 2¢ > 4,1 < ¢ <n—1, by Corollary 3.3+ N anda_N are level surfaces at
regular values of a Morse function. Thds,N andd_ N are null-cobordant. By a theorem

in [LMP69] since dimd; N = dimd_N = 1 mod 4,x1/2(N*, Q) = x1/2(N*, Zp). Thus,
x1/2(04+ N, Zp) # x1/2(0—N, Z3). Now, if cases (1) or (2) of Proposition 3.4 occur, then
all Betti numbers 0B, N andd_N are the same. Hence the semi-characteristics must be
equal, a contradiction. In the case= 2,9, N andd_N are disjoint unions of circles and
hence null-cobordant. ad

The following two-dimensional example illustrates the necessity of the hypothesis of
the ambient manifold being orientable in Proposition 3.7. Ndie a Mobius band with a
disk removed from its interiorN is a basic block for a saddle with. N andd_N being
homeomorphic te?.

3.3.2. Proof of Theorem 3.2. We now prove Theorem 3.2 of §3.2.

Proof. The proof of (1) of Theorem 3.2 follows directly from Propositions 3.3-3.5.

The proof of (2) follows from Proposition 3.2 where we can ‘substitute’ a hyperbolic
periodic orbit of index for two singularities of index and¢ + 1. Hence, ifv represents a
vertex on a Lyapunov graph labelled with a hyperbolic periodic orbit of iridést w andu
be the derived vertices labelled as hyperbolic singularities of iddekand¢ respectively.
Thus, if ¢ is not the mid-dimension of the ambient manifold we combine the two cases of
Propositions 3.3 fow ((¢ + 1)-d and¢-c) with the two cases of Propositions 3.3 fof¢-d
and(¢ — 1)-c) to obtain the four possibilities for the vertex

w/u ¢-d € —1)-c

¢+1-d (+D-d;e-d £+ 21D-d;¢—1-c
{-Cc £-c; ¢-d ¢-c; (£ — 1)-c

If ¢ is the mid-dimension of the ambiemmanifold M then we must consider the cases
whenn = 2¢ + 1 andn = 2¢. In the first casey = 2¢ 4 1, we combine the two cases in
(1) of Proposition 3.5 for (¢-d and(¢ — 1)-c) with the two cases in (2) of Proposition 3.5
for w ((¢ + 1)-d and¢-c) generating the four possibilities forlisted in the table above.

If the ambientn-manifold M has dimensiom = 2¢ we combine the three cases of
Proposition 3.4 for (¢-d and(¢ — 1)-c andg-i) with the two cases in Proposition 3.3 for
w ((¢£ + 1)-d and¢-c) generating the six possibilities forlisted in the table below.
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w/u ¢-d € —1-c B-i

¢+1-d (£+D-ded (+1D-d;€—1)-c £+ 1)-d;g-i
{-C £-c; ¢-d {-c; (£ —1)-c £-C; B-i

Finally, if » = 2(¢ 4+ 1) we generate the last row of the table in Theorem 3.2. O

4. Realizing Lyapunov graphs

In the previous section we obtained results which determine necessary conditions on a
Lyapunov graph in order for it to be associated to a smooth flow. In this section, we
propose to establish sufficient conditions on an abstract Lyapunov graplthat it can be
realized as a smooth flow on some differentiable manifold.

Ideally, it would be desirable that the necessary conditions coincide with the sufficient
conditions. However, the necessary conditions obtained within this paper are too weak for
this purpose and hence we must impose additional restrictiofisiorder to construct a
flow with an equivalent Lyapunov graph.

The first natural consideration is to restrict the class of abstract Lyapunov graphs to
those which satisfy the necessary conditions determined in 83. An abstract Lyapunov graph
L whose vertices are labelled with singularities or periodic orbits, is cakkdissibleif
and only if L satisfies the conclusions of Theorem 3.2.

Two Lyapaunov graphé; and L, are said to bexquivalentif and only if there is a
vertex and edge preserving bijectipn L1 — Ly such that:

(1) wvandg(v) are labelled with topologically equivalent chain recurrent flows;
(2) eandg(e) are labelled with the same Betti numbers.
Also, at times, we will deal with Lyapunov graphs as topological one complexes.

4.1. Flows on basic blocks and some handle decompositionge will first describe two
different ways to build a basic block for @rhandle. We wish to construct a basic block
N = C(O_N) U H®, whereC(3_N) is a closed collar od_N and H® is an index?
handle attached t6(0_N) alongdC(d—N) — 9_ N by the attaching map. We can take
d_N to be eithers” 1 or §¢~1 x §”~¢. In both cases the attaching m@jis given by the
inclusion: in the prior case by

0:81x prt 5 st pitug DY x sl = gl
and in the latter case by
6:851x D"t - s D" U 56 x D = §EL e
Also, 94N = 0N — 9_N: in the first case,
3N = D' x "Ly, DY x sPEL = g8 gt
and in the second by

8+N — DZ % Sn—@—l U¢ S@—l % Dn—i — Sn—1’
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whereg is induced by the diffeomorphism dd‘ x D"~ which exchanges factors. In the
first case the handle sd and in the second case it(i6— 1)-c.

One can easily construct a Morse function@rwith a unique non-degenerate critical
point of index¢ in H C N. Associated to this Morse function there is a Morse flow which
we can assume is transverse not only i but also tod N [Mil65].

This construction is completely general, in the sense that if we have a connected sum
of generalized tori a8_ N we can attach af-d handle to ars” ! factor which is always
present in the connected sum and&n- 1)-c handle to ars‘~1 x §"~¢ factor if it is part
of the connected sum.

We now will describe a well known example illustrating case (1a) of Proposition 3.4
which corresponds to the attachmenpeif k-handles within a 4-manifold. We remark that
if N = N Uy (DY x D"%), whered : §¢~1 x D! — 3_N is an embedding, then by
definition x (0_N,0) = N’ — (3N — 3_N) is the result of performing surgery égn N
by means of the embeddiy Note that surgeries and the attachment of handles are in
one-to-one correspondence since they both use the same embeddindil@ey.[ It is
well known [Rol76] that if L is a three-dimensional Lens space, thes: x (S2, §) where
6 : 81 x D? — $3is a suitable embedding. Takesuch thatr1(L) has odd order. Then
L ands? have the same mod 2 homology. This surgery corresponds to the attachment of a
2-handleH @ on a collar ofS3, C(83). SetN = C(5%) U H®, and hencé_N = 3 and
a4 N = L. The flow defined oV is obtained as above and becai&gélL) = H1(S%) = 0
it follows that H@ is ag-i 2-handle.

In Propositions 4.1 and 4.2, we describe some very specific handle decompositions for
compact:-manifolds which are eithe§” or generalized tor§? x §¢ and their connected
sums.

PrROPOSITION4.1. Let M" = SP x S4. This manifold possesses the handle
decomposition:

M'=HOUHg®D® gDy H™,

where the a-tubes off?), H@ are disjoint and contained iMH©® ~ s 1,
Furthermore, the attaching spheres Bf?), H@ are unknotted ir§ H@ and boundp-
andg-dimensional disk®” and B¢ in H© that meet in a single point.

Before we prove this proposition we remark that sif€ex §¢ ~ §¢ x S”, the handles
HP andH @ can be attached in reverse order. Alse;(iff (?) andc(H @) are the cores
of HP) and H@ respectively, then the- andg-dimensional subsphere®’ U c(H P)
andB? U c(H'?) meet transversally in the single poiB? N BZ. Thus, the intersection
form evaluated at those subspheres (more precisely on the homology class represented by
a triangulation of these subspheres) is one. Because of this we refer to the attachment of
H9 as dual toH (?) and we refer to these handles adual pair.

Proof. Write S7 = D” U DY, whereD{ = {(x1,...,xp41) € SP | £xp41 > O}
Similarly, write S = D? U D%. Then

SP x 87 = (D" u DY) x (DL UDY)
=D? x DL UD! x DT UD? x D1 U D} x DI.
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We would like to see this union as a 0-handle with-Aandle and g-handle attached
so that the resulting boundary bounds ashandle inS? x S9. For this purpose, set
H© = D’ x D?. Now,

HOND? x D! = D? x DL N DY x DL
= @D") x DL n@DY) x D! c @HP)n (BDY) x DI.

This means thab’ x D is a p-handleH ?) attached td H©. The attaching sphere is
@D%) x 0 c 3H©. It can be isotoped i H© to (3DY) x 1 which boundsD? x 1.
Thus, the attaching sphere is unknotted (@ = §7—1,

Now, since

HOQUHP =D” x DL UD? x D! = (D? UDY) x DL =57 x DL.
It follows that
HOQUHPYND? x DL =57 x DL N D? x DL = §P x D! N D? x 9D
=dHQUHP)ND? x DI

We conclude thaD” x D% is ag-handleH @ attached t&)(H@ U H®). Itis actually
attached té& H© since

S? x 3D N D? x 3D} = DP x aD! N D’ x aD% c aH® N D’ x 9D

Note thatd(H©® u H» U H@) = 3(D} x D1) = s"~1. Hence, D} x D% is a
n-handleH ™ attached t&(H© U H®» U H®).

ConsiderH P NHY = DY x D2 ND? x D1 = DY x 3DI. This intersection equals
the intersection of the boundaries of the attaching regﬂ&mé’r) x DI andD? x (an{)
of H?) andH @, respectively. That is,

HP N HYD = @DY) x D! N (@3D?) x DI.

As HP is a closed tubular neighborhood of its core, the tubular neighborhood theorem
provides an ambient isotopy leavittf® U c(H () U ¢(H ) fixed and that shrinkl ()
eliminating the intersection. The ambient isotopy will of course chaitfe as well.

Next, setB? = D’ x 0 c H? andB? = 0 x D! c H@. ThenB? and B¢ meet
transversally in a single point. The attaching sphered @ and H?) ared B? andd BY
respectively. Also,B? U c¢(H?) and B¢ U ¢(H?) are p- and g-dimensional spheres
intersecting transversally iB” N B4. Finally, it is necessary to round corners. ]

LEMMA 4.1. Consider the link. = S7~1x0U0x S9~1ons"~1, wheren = p+4. Then
§P=1x 0and0x $7-1 are unknotted and their linking number is one. Algds equivalent
to KP~1U K71 wherek?~1 ¢ §"~1is an unknotted spher&?—1 = ¢(pt x $9°1),
pte KP~1 andg : KP~1 x D1 — T is a diffeomorphism and@ a tubular neighborhood
of KP~1,

Proof. Note thats?~1 x 0= 9 D” x 0 and Ox §79~1 = 0 x 9 D?. It follows thatS?~1 x 0
and Ox $9~1 are unknottedL is equivalent tas? ! x 1U 0 x §9~1. The linking number
of $7~1 x 1 and Ox $7~1 equals the intersection number®f—1 x 1 and 0x $7~1 which
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intersect transversally in 8 1, hence having intersection number one. Without loss of
generality we can assume orientations were chosen to yield 1 andlnot

The second assertion of the proposition follows from the tubular neighborhood theorem
together with the fact that can be isotoped t§7~1 x OU pt x $7~-1, where pte §P—1
ands?~1 x D7 is a closed tubular neighborhood 1 x 0. O

The following proposition asserts that to fo’, a connected sum of generalized tori,
all handles other tha# (@ and H™ can be attached in any order since they are pairwise
disjoint with attaching spheres unknotted.

PROPOSITION4.2. LetM" = #; M" where for eachi, M is a generalized torus” x §4
wherep andq depend ori. ThenM" possesses the following handle decomposition: one
0-handleH @, onen-handleH ™, and for eachM!" = S? x S¢ a pair of handlesH (P’
and H @ with attaching spheres unknottedd/ (9 and attached dually. Furthermore, all
handles, with the exception &f©® and H™, are pairwise disjoint.

Proof. For simplicity, we shall consider the ca&g = (S” x S7)#(S" x §°). The general
case is entirely similar. Write

SP x §9 = H(O) UH(P) U H(q) U H/(n)
and
xS =HQUHDUHOUH®,
To form the connected sum, remove the handté®’ and 7', obtaining
M =HOUHFP® UHDOUHD Ug® Yy g™,

We can assume without loss of generality thatc ¢ andr < s andr < p. By the
reordering lemmaRS82, an ambient isotopy will slideéZ ") and attach it irp #© away
from the a-regions of botl (? and H?), Next, by using Lemma 4.1 together with the
tubular neighborhood theorem, we may assume that the a-regigh®hfH @, H) and
H® are all disjoint and contained thH# ©. O

4.2. Canonical Lyapunov graphs.In this section we will define attaching labels for the
edges of an admissible Lyapunov graphThis is analogous to the gluing map labels in
[dR93].

LetS, be the class of closeddimensional manifolds obtained from all connected sums
of generalized tor§? x S$7, wherep 4+ g = n and their disjoint unions. We will specify
certain handle decompositiohkof M" € S,, whereM" is connected. For suchhd, a
given handlefd will be attached by one of the following processes.

(1) Processy): if the index of H is non-zero then the a-spheremfis contained in the
boundary of an index 0 hand#, %, and is unknotted. Furthermore, the a-region of
H which is a closed tubular neighborhood of the a-sphebegdif) does not intersect
the a-regions of previously attached handles. We will also assuméitidaes not
form a null or dual pair (see §4.1) with a previously attached handle. By nulEpair
H’ we mean tha#H{ U H' is a cancelling pair of handles. We refer to these handles
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astrivial. By definition, 0-handles are always attached by pro¢@ssiVe will say
that theH ¢-handle is attached by processto H© by labelling the corresponding
edge withr (H@).

(2) Processn): assuming the index off is non-zero it forms &ancellingor null pair
with a handleH’ previously attached by procegs. Furthermore, ifH© is such
thatd H© contains the a-region di’ then the a-region off in 3(H©@ U H’) does
not intersect the a-regions of handles other tHanNote that the index off equals
the index ofH’ plus one. We will also say that tHehandleH is attached by process
n(H’).

(3) Procesqd): if the index of H is notn, it forms adual pair with a handleH’
previously attached by procegs. Furthermore, ifd © is such that H© contains
the a-region of’ and H, then the a-region off does not intersect the a-regions
of other handles. Note that the indicesf and H add up ton. We will denote
an¢-handle attached by proceg®) by d(H®). If the index of H is n, H forms a
dual pair with a 0-handlé!’ if and only if by the removal of all the null pairs &f
one obtains a handle decomposition whose only index Gdrahdles aré?’ and H
respectively.

Given a vertex of the derived Lyapunov graph’ labelled with a singularity of index
£, we will associate to it an indek handle H (v). Lete be an outgoing edge af The
attaching label oé specifies howH (v) is attached.

Let w be an index 0 vertex connectedidiy an oriented path : [0, 1] — L, such
thaty (0) = w, y(1) = v. If v is ¢-d, the label (w) for e means thatd (v) is attached
by process (H (w)). If vis¢-c, £ # 0, letu € y(0, 1) be an¢-d vertex such that its only
outgoing edge is attached by proceés). If the index ofv is £ + 1 the label () for e
means tha# (v) is attached by processH («)), where the index of is £. If the index of
visn — £ the labeld (1) for e means thatd (v) is attached by proces& H (1)) where the
index ofu is £.

If vis 0-c, asM" is connected, the index af must be one. In this case,has two
outgoing edges. Let be an index O vertex which is nat. Lete; be the outgoing edge of
v contained iny (0, 1). Letez be the other outgoing edge of We labele; by ¢ (w) andez
by n(u). These attachments mean tit&tv) is attached so that the a-sphere medigw)
and also thaH (v) and H (u) form a null pair.

We will assume that if is an¢-d vertex, 0< ¢ < n, then exactly oné-c vertexv will
possess an outgoing edgew labelled as:(u) ord(u).

A canonical Lyapunov graph is an admissible Lyapunov graph which is a tree, with
the property that. and its derived grapli’ contain nog-i vertices and all edges are
endowed with attaching labels. See §2.4 for the definition of derived graphs.

The manifoldsM € S, have the property that all possess minimal Morse flows, i.e. a
flow with ¢; = 8;(M). For this class it is also easy to see which handles contribute to the
homology ofM.

Given a Lyapunov graplL, consider its derived graph’ and for L', let ¢; be the
number of index vertices with attaching label n; the number of index vertices with
attaching labet, d; the number of index vertices with attaching label. Altogether, the
number of index vertices isc; = t; + n; + d;. The number of trivial handles is equal to

https://doi.org/10.1017/50143385799120893 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385799120893

360 R. N. Cruz and K. A. de Rezende

t; = n;+1 + d,—; which reflects the fact that these handles cancel withiithel)-handles
of typen and pair up dually with thén — i)-handles of typel.

Let M <€ S, be the manifold constructed via the attaching instructiong./ofthen
Bi(M) =t —n;11+d,.

We can go from a minimal flow oM to any other Morse flow by adding appropriate
null handles. Algebraically this means that we can go from theglisdl), ..., B8, (M)
to any other listcg(M), ..., ¢, (M) by adding tog; (M), n;+1 + n; i-handles where;
i-handles are of null type and. 1 i-handles are of trivial type to obtain.

What we are doing in the process above is adding to a minimal Morse flow cancelling
pairs of singularities of index and (i + 1). That is, n;41 trivial i-handles andi; 1
null (i + 1)-handles. It is easy to see that these additions do not affect the Morse
inequalities since; 1 andc; always appear with opposite signs except for the inequality
¢i—c¢ci—1+---Fxco>Bi — Bi—1+ --- £ Bo which is also not affected since we would
only increase;.

4.3. Realizing canonical Lyapunov graphslt is easy to see that canonical Lyapunov
graphs specify handle decompositidths Such a handle decompositibhis admittedby

M € S, if the number of dual-handlesd;, and the number of duat — i)-handlesd,,_;,

in H is equal tog; (M).

THEOREMA4.1. Let L be a canonical Lyapunov graph such that its vertices are labelled
with hyperbolic singularities and le¥ € S, be a simply connected manifold. Then there
is a gradient flow and a Morse functiofi : M — R such thatL is equivalent to the
associated Lyapunov graph ¢fif the handle decomposition specified byis a handle
decomposition admitted by .

Proof. Given that there is a handle decompositibof M specified byl. which is admitted

by M, thenL is realizable onM. Also, from the previous section, each handlec H

has a Morse function defined on it and the definition of a global Morse functidd and

the associated gradient flow is a standard procedure. All that remains for us to show is
how these handles are added so as to define a floW @rith equivalent Lyapunov graph.

For this purpose, we use the attaching labeld.omNote that the flow is transverse on the
attaching regions of each handle. ]

We can also view the flow oM by gluing basic blocks as indR87]. If we attach
handles following the order specified by the orientationIgf starting by the index
zero singularities we construct a submanifadgl of M for each handleH; added. Let
N =C@OX)UH andd_N = 93X, then(N, 9_N) is an index pair for the singularity.

The basic block is the component®f— d_ N which containsc.

The following construction is a restatement of Asimov’s fundamental lemma of round
handles. Leth_N be an(n — 1)-dimensional closed manifold. Attach to a collar of
d_N, C(d_N) two handlesH ® and H“+D . If the attaching regions are disjoint, then
by Asimov’s lemma Asi75]

N=CO_-N)UHOUHD = CcB_N)UR®,
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whereR® is an index¢ round handle. Lemma 5 ofi75] implies, in particular, that
there is a gradient-like flow on the basic bloskwhose chain recurrent set is a periodic
orbit of index¢.

THEOREMA4.2. Let L be a canonical Lyapunov graph such that its vertices are labelled
with hyperbolic singularities or periodic orbits. Leé#f” € S, be a simply connected
manifold. Then there is a gradient flow and a Morse functfonM — R such thatL is
equivalent to the associated Lyapunov graplf afthe handle decomposition specified by
L’ is a handle decomposition admitted kb

Proof. By Theorem 4.1 it is possible to realizé by a Morse functiog : M — R together

with a flowy, : M — M. Letv € L be a vertex labelled with a hyperbolic periodic orbit
of index not equalto 0 or — 1. Letu, w € L’ be the derived vertices and |8t(x) and

H (w) be the corresponding handles. These handles cannot be of null type, otherwise
would beg-i. The technique used to prove Theorem 4.1 ensurefta) and H (w) are
disjoint. By the fundamental lemma of round handteg:) and H (w) can be replaced by

a round handl& (v).

If the index ofv is 0, the derived singularities and w will have indices 0 and 1
respectively, and the corresponding pair of handfgs) and H (w) will be of null type.
The a-sphere off (w) is a pair of pointsc, y. One of them, say, belongs t® H (u). The
other point,y, does not. However, after an ambient isotépwe can assume thatdoes.
The effect is to replacél (u) and H (w) by a new pair of handle# («) and H'(w) such
that this pair can be replaced by a round harrlle).

It is necessary to conjugate the flayy by this ambient isotopy and compogewith
it. L’ is equivalent to the graph &f 1y, with Lyapunov functiong/. Indeed, the only
change is that the 0-handle that contairtgeas changed. If the index ofisn — 1, one can
work with the reverse flow to achieve the same result.

After this is done to all the vertices labelled with periodic orbits, we obtain a
decomposition ofM in handles and round handles. The flgy : M — M that
corresponds to this decomposition is obtained by using LemmaAsit§] repeatedly™
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