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Abstract. The main purpose of this paper is to study the implications that the homology
index of critical sets of smooth flows on closed manifoldsM have on both the homology
of level sets ofM and the homology ofM itself. The bookkeeping of the data containing
the critical set information of the flow and topological information ofM is done through
the use of Lyapunov graphs. Our main result characterizes the necessary conditions that
a Lyapunov graph must possess in order to be associated to a Morse–Smale flow. With
additional restrictions on an abstract Lyapunov graphL we determine sufficient conditions
for L to be associated to a flow onM.

1. Introduction
In this paper we propose to study gradient-like flows onn-dimensional manifoldsM where
n ≥ 4. However, our results hold forn = 2, 3 but would yield weaker results than those
in [dRF93] and [dR93]. Throughout this paperM will denote a smooth connected closed
orientablen-manifold. We take a Morse theoretical approach by working with a Lyapunov
function associated to a flow onM and by considering the level sets associated to regular
values off . We propose to study the changes in topology that are forced on the level sets
as we pass through critical sets. Bycritical setwe mean an invariant chain transitive piece
(see [Fra82]) of the chain recurrent setR. Note thatR need not be hyperbolic. From
this point on, we refer to chain transitive piece aschain recurrent component. The changes
in topology depend not only on the critical set but also on the connections of stable and
unstable manifolds. These connections, as we shall see later, are in part detected by the
homology boundary map.
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We will isolate a critical setS of a flow φt defined onM in a basic block. A basic
blockN for S can be defined using a Lyapunov functionf : M → R associated toφt . Let
f (S) = c and chooseε > 0 small enough so thatc is the only critical value in(c−ε, c+ε)

andS is the only critical set at levelc. Define the basic block as the componentN of the
pre-imagef−1(c − ε, c + ε) which containsS. For a hyperbolic flow we can assume
that there is only one chain recurrent component per critical level. We now analyze the
changes in topology of the entering (∂+N = f−1(c + ε) ∩ N) and exiting components
(∂−N = f−1(c− ε)∩N) of the flow restricted toN . In order to do this we use the Conley
homology index of the critical set and we set up a natural long exact homology sequence
which involves this index. Our results in §3 will therefore, detect homology changes, more
specifically changes in the Betti numbers of∂+N and∂−N . Hence, given a flow onM we
study the changes in∂+N and∂−N for each critical set and record all this information in
a Lyapunov graph. In this process we determine necessary conditions imposed by the flow
on this graph.

In §4 our aim is to determine if the necessary conditions on a Lyapunov graphL found
in the previous section are sufficient to determine the manifold and a flow with a Lyapunov
graph equivalent toL. That is, if we impose these conditions on an abstract Lyapunov
graph do they determine the ambient manifold and a flow with a Lyapunov graph equivalent
to L? It turns out that this is not the case in general and we must impose additional
restrictions on abstract Lyapunov graphs. We then realize a class of abstract Lyapunov
graphs as flows on manifolds which are connected sums of generalized toriSp × Sq with
critical sets which are hyperbolic singularities. We later consider flows with hyperbolic
periodic orbits as well.

2. Background material

2.1. Gradient-like flows. Given a smooth flowφt :M → M, there is a smooth function
f : M → R associated to this flow with the properties that it strictly decreases along the
orbits outside of the chain recurrent setR; that is, if x /∈ R thenf (φt (x)) < f (φs(x))

whenevert > s and is constant on the chain recurrent components (chain transitive pieces)
of R (see [Con78, Fra82]). This functionf is called aLyapunov function. Sincef

decreases along orbits ofφt not inR, we say thatφt is a gradient-like flowwith respect
to f .

A Morse function is an example of a Lyapunov function. Recall that aC∞ function
f : M → R is aMorse functionprovided that each of its critical points is non-degenerate.
Associated to eachf , the flowφt is a gradient flow, a particular case of a gradient-like
flow, defined by(∂/∂t)φt = −∇f ◦ φt . We refer to this flow, for short, as aMorse flow.
Note thatf decreases along orbits ofφt for all x not in the critical set off . The unstable
set ofp is defined asWu(p) = {y ∈ M : limt→−∞ φt (y) = p} and is a submanifold ofM.
TheMorse indexof a critical pointp is the number of negative eigenvalues of∇2f (p) or,
equivalently, the dimension of the unstable set of the flow atp, λ = ind(p) = dimWu(p).

However, we will be working with an even more general notion of index due to Conley
which generalizes the classical Morse index and which is not concerned with the non-
degeneracy or hyperbolicity of the critical set.
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2.2. Lyapunov graphs. The notion of Lyapunov graphs was introduced by Franks
[Fra85]. A Lyapunov graphis a finite, connected, oriented graph with no oriented cycles
and with the vertices labelled by chain recurrent flows.

A Lyapunov functionf : M → R associated to a flow determines a Lyapunov graph
by defining the following equivalence relation onM: x ∼f y if and only if x andy belong
to the same connected component of a level set off . HenceM/∼f is a Lyapunov graph.
If the flow is hyperbolic, it is possible to choosef so that it contains one chain recurrent
component per critical level. A point onM/∼f is avertex pointif under the equivalence
relation it is a component of a level set containing a chain recurrent component. All other
points areedge points. Each edge represents a codimension one submanifold ofM, Q× I .
Hence, in order for an edge to retain some of the topological information ofQ × I , we
label it with the Betti numbers ofQ. M/ ∼f is oriented by the flow.

In this paper, homology is always taken usingZ2 coefficients. In order to have a
finite graph, we must place the restriction that the chain recurrent set has finitely many
components, which we refer to as afinite component chain recurrent set.

An abstract Lyapunov graphis a finite connected oriented graph with no oriented cycles,
with each vertex labelled with index information on a chain recurrent flow on a compact set
and each edge labelled with the Betti numbers of a closed(n − 1)-dimensional manifold.
Of course, there is the question of which abstract Lyapunov graphs can be realized as a
flow on a manifold. We will answer this in a later section. We note that abstract Lyapunov
graphs are neither more nor less general than Lyapunov graphs. As defined, the vertices
of a Lyapunov graph are labelled with chain recurrent flows whereas the vertices of an
abstract Lyapunov graph are labelled with index information of the chain recurrent flows;
a weaker notion in regard to this feature. On the other hand, Lyapunov graphs do not have
labelled edges whereas abstract Lyapunov graphs do; a stronger notion in regard to this
feature.

2.3. Conley index theory. Let φ : M × R → M be a smooth flow onM which we
denote byφt . A setS ⊂ M is invariant if φt(S) = S for all t ∈ R. The closure of a
bounded open setN ⊂ M is anisolating neighborhoodfor φt if for everyx ∈ ∂N there is
a t ∈ R such thatφt (x) /∈ N . An invariant set is called anisolated invariant setif it is the
maximal invariant set in some isolating neighborhood.

A chain recurrent componentR for the flowφt is an example of an isolated invariant set.
If f is a Lyapunov function associated to a flow andc = f (R), then for a small enough
ε > 0, the component off−1[c− ε, c+ ε] which containsR is an isolating neighborhood
for R which we refer to as abasic blockfor R.

An index pairfor an isolated invariant setS is a pair of compact spaces(N1, N0) such
that:

(1) cl(N1− N0) is an isolating neighborhood forS;
(2) N0 is positively invariant inN1, i.e. if x ∈ N0 andφ[0,T ](x) ⊂ N1 thenφ[0,T ](x) ⊂

N0;
(3) N0 is the exit set for the flow, i.e. ifx ∈ N1 andφ[0,∞)(x) 6⊂ N1 then there exists a

T > 0 such thatφ[0,T ](x) ⊂ N1 andφT (x) ∈ N0.
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For a chain recurrent component withf (R) = c andε > 0 such that there are no other
critical values in[c − ε, c + ε], defineN1 as the component off−1[c − ε, c + ε] which
containsR andN0 = f−1(c−ε)∩N1. (N1, N0) is an index pair forR which we will refer
to as ablock defined index pair.

Given any index pair(N1, N0) consider the quotient spaceN1/N0 as a pointed space
with the equivalence class ofN0 as the distinguished point. In [Con78], it is shown that
given two index pairs(N1, N0) and(N ′1, N ′0) for the same isolated invariant setS, there is
a flow defined homotopy equivalence betweenN1/N0 andN ′1/N

′
0. Hence, we define the

Conley indexof S, h(S), as the homotopy type ofN1/N0 for any index pair forS. The
homology indexof S, CH(S), is the homology of the Conley index.

Block defined index pairs will be used throughout this paper and the main advantage of
their usage is that sincef−1(c − ε) is a deformation retract of a neighborhood of itself in
f−1[c − ε, c + ε], it follows thatN0 is a deformation retract of a neighborhood of itself
in N1 and by standard results in algebraic topology,H∗(N1/N0) ∼= H∗(N1, N0) which in
turn is isomorphic toCH∗(R).

The following proposition is a particular case of a result of Conley’s which generalizes
the classical Morse inequalities. We refer the reader to [dR93] for a proof of
Proposition 2.1.

PROPOSITION2.1. LetM be a closed orientablen-manifold,φt : M → M a smooth flow
with a finite component chain recurrent setR = ∪i∈IRim, whereI is a finite indexing set
for the chain recurrent components. Lethi

j be the dimensions of the homology indices of
Ri , for j = 0, . . . , n. Then ∑

i,j

(−1)jhi
j = χ(M),

whereχ(M) is the Euler characteristic ofM. Moreover, the result also holds if∂M 6= ∅.
In this case, let∂M− be the part of the boundary ofM through which the flow exits, then
the above equality holds provided we considerχ(M, ∂M−).

For more background material on the Conley index theory see [Con78] and for material
on gradient-like flows in low dimensions see [Fra85, Fra82, dR87, dRF93, dR93].

2.4. Handle theory. Here we will give definitions pertinent to handle theory since
in §4 we will be working with the attachment of handles in order to construct Morse
flows on manifolds. We will also mention the notion of round handles which will be
used in constructing Morse–Smale flows on manifolds. However, we refer the reader to
[RS82, Mil65] and [Asi75] for a detailed exposition of this material.

We denote byDj , the closed unitj -disk, i.e. thej -ball. Also, the boundary ofDj , ∂Dj

is the(j − 1)-sphereSj−1.
Let N be ann-manifold andH = D` × Dn−`. Let θ : ∂D` × Dn−` → ∂N be

an embedding which defines the new manifoldN ′ = N ∪θ H , which is the result of
attaching aǹ -handle toN . The following loose notations are also used:N ′ = N ∪ H(`)

or N ′ = N ∪H . The mapθ is an embedding which we will simply refer to as an attaching
map. Thè -handle is the pair(H, θ) which we denote more loosely asH(`). Thecoreof
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the handle isD` × 0 and thecocoreis 0× Dn−`. Also, ∂D` × 0 is theattaching sphere
(a-sphere) and 0× ∂Dn−` is thebelt sphere(b-sphere). Theattaching region(a-region)
is ∂−H(`) = (∂D`) × Dn−` and thebelt is ∂+H(`) = D` × ∂Dn−`. The index of a
singularity is the index of the handle which contains it and hence the dimension of the
unstable manifold of the singularity must equal the dimension of the core of the handle.

If N is a smooth compactn-manifold and∂N is the disjoint union of two open and
closed codimension one submanifoldsN0 andN1, (N,N1, N0) is asmooth manifold triad.
In this caseN is said to be acobordismfrom N0 to N1 andN0 andN1 are said to be
cobordant. Note that the manifolds in a cobordism are not assumed connected. We can
create a further cobordism by attaching a handleH to N1.

According to the above definitionN1 can be thought of as the boundary components
of N which the flow enters through, i.e.N1 = ∂+N , and N0 as the boundary
components which the flow exits through, i.e.N0 = ∂−N . Consider a Morse function
f : (N, ∂+N, ∂−N) → ([0, 1], 1, 0), where∂+N = f−1(1) and ∂−N = f−1(0)

since the function decreases along orbits of the flow. Given the above function and
0 < c < 1 which is not a critical value then bothW1 = f−1[c, 1] andW2 = f−1[0, c]
are smooth manifolds with boundary. Hence the cobordism from(N, ∂+N, ∂−N) is
the compositionof the cobordism(W1, ∂+N, f −1(c)) and (W2, f

−1(c), ∂−N). More
generally, if(N, ∂+N, ∂−N) and(N ′, ∂+N ′, ∂−N ′) are two smooth manifold triads and
h : ∂−N → ∂+N ′ is a diffeomorphism then a third triad is formed:(N∪hN ′, ∂+N, ∂−N ′),
whereN ∪h N ′ is the space formed fromN andN ′ by identifying points of∂−N and∂+N ′
underh. See [Mil65 ] for more details.

An elementary cobordismis a triad (N,N1, N0) possessing a Morse function with
exactly one critical point. A triad(N,N1, N0) is aproduct cobordismif it is diffeomorphic
to the triad (N0 × [0, 1], N0 × 1, N0 × 0). Any cobordism can be expressed as
a composition of elementary cobordisms. In other words, an elementary cobordism
(N,N1, N0) containing an index̀ critical point is the result of attaching an index` handle
H(`) to the product cobordism(N0× [0, 1], N0× 1, N0× 0) alongN0× 1. Alternatively,
since a product cobordism is a closed collarC(N0), if (N,N1, N0) is an elementary
cobordism containing an index̀critical point, thenN = C(N0) ∪ H(`), whereH(`) is
attached toC(N0) along∂C(N0)−N0.

We can easily make a parallel between cobordisms and Lyapunov graphs. A Lyapunov
graph can be viewed as a composition of cobordisms (possibly elementary cobordisms if
the graph is associated to a Morse flow) each of which contains exactly one chain recurrent
component. Hence a vertex of a Lyapunov graph together with its labelled incident edges
represents such a cobordismN . The incoming edges represent∂+N × J and the outgoing
edges represent∂−N × J , whereJ is an open interval.

We will also work with flows which possess hyperbolic periodic orbits and hence
introduce the notion of round handles [Asi75]. Let N be ann-manifold andR =
S1 ×Dj × Dn−j−1. Let θ : ∂(S1 × Dj ) × Dn−j−1 → ∂N be a diffeomorphism which
defines the new manifoldN ′ = N ∪θ R, which is the result of attaching aj -round handle
to N . We refer toθ as the attaching map. Thej -round handle is the pair(R, θ). Thecoreis
1×Dj×0, thecocoreis 1×0×Dn−j−1. Theattachingandbelt spheresare the boundaries
of the core and cocore respectively. Theattaching regionis ∂−R = S1 × Sj−1 ×Dn−j−1
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and∂+R = S1 ×Dj × Sn−j−2. The index of an untwisted periodic orbit is the index of
the round handle which contains it and hence the dimension of the unstable manifold of
the periodic orbit must equal the dimension of the core of the round handle.

The attaching of aj -round handleR to a manifoldW to form N = W ∪θ R where
θ : ∂−R → ∂+W also creates a cobordism(N, ∂+N, ∂−N) where∂+N = ∂+(W ∪θ R)

and∂−N = ∂−W . An elementary round cobordismis a triad(N,N1, N0) such that a flow
φt is defined onN entering throughN1, exiting throughN0 and containing an untwisted
periodic orbit as the only critical set inN . It can be shown thatN is a closed collar ofN0,
C(N0) together with a round handleR attached along∂C(N0)− N0.

3. Lyapunov graphs for gradient-like flows
In this section we will determine properties that a Lyapunov graph associated to a gradient-
like flow possesses.

The next result, which we refer to as the Poincar´e–Hopf equality is a direct consequence
of Proposition 2.1 and characterizes the relation between the Euler characteristic of the
incoming and the outgoing boundary components of a basic block containing a chain
recurrent componentR and the homology indiceshj , j = 0, . . . , n.

COROLLARY 3.1. (Poincar´e-Hopf equality)Let (N1, N0) be an index pair for a chain
recurrent componentR of a smooth flow onMn, n odd, and lethj , j = 0, . . . , n, be the
dimensions of the homology indices ofR. Then∑

j

(−1)jhj (R) = 1
2(χ(∂N+1 )− χ(∂N−1 )).

Proof.

n∑
j=0

(−1)jhj = χ(N1, N0)

= χ(N1)− χ(N0)

= 1
2χ(∂N1)− χ(N0)

= 1
2(χ(∂N+1 )+ χ(∂N−1 ))− χ(N0)

= 1
2(χ(∂N+1 )− χ(∂N−1 )).

The second equality follows from the exact sequence of the pair, whereas the third
follows from considering the Euler characteristic of the double ofN1, DN1. That is,
0= χ(DN1) = 2χ(N1)− χ(∂N1). The fourth equality follows since∂N−1 = N0. 2

We can interpret Corollary 3.1 as an equality which relates the Betti numbers with which
the edges of a Lyapunov graph are labelled with the degree (indegree and outdegree) and
the homology index labelling ofv. This is the content of the following corollary.

COROLLARY 3.2. For a smooth flow onMn, n odd, with Lyapunov functionf : M → R
let hj , j = 0, . . . , n, be the dimensions of the homology indices of a chain recurrent
componentR of the flow. Letv be the vertex on the associated Lyapunov graphL

which corresponds toR and which is labelled with{hj }. Denote the indegree ofv by
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e+(v) and the outdegree bye−(v). Then the Betti numbers{(β+(n−1)/2, . . . , β
+
1 , β+0 )}k and

{(β−(n−1)/2, . . . , β
−
1 , β−0 )}k on the incident edges tov must satisfy:

B− − B+ = e−(v)− e+(v)+
n∑

j=0

(−1)jhj ,

where

B− =
e−(vi)∑
k=1

((β−(n−1)/2)k ± · · · − (β−1 )k)

and

B+ =
e+(vi)∑
k=1

((β+(n−1)/2)k ± · · · − (β+1 )k).

Proof. Note that the Poincar´e–Hopf equality in Corollary 3.1 relates the Euler
characteristic of the incoming and outgoing boundary components of a block defined
index pair(N1, N0) of a chain recurrent componentR to the dimensions of the homology
indices ofR. Note thatR corresponds to a vertexv on the Lyapunov graph and that each
connected component of∂N+1 (∂N−1 ) corresponds to an incoming (outgoing) edge incident
to v. Hence the zeroth Betti number of∂+N (∂−N) is being represented on the graph by
the number of incoming (outgoing) edges ofv. Also, χ(∂N+1 ) (χ(∂N−1 )) which is the
alternating sum of the Betti numbers corresponds toB+ (B−) excluding the zeroth Betti
numbers which have already been taken into account. 2

The next result will determine upper bounds on the indegree ofv, e+(v) and the
outdegree ofv, e−(v).

THEOREM 3.1. Consider a smooth flowφt : M → M, with Lyapunov functionf : M →
R and Lyapunov graphL. Lethj , j = 0, . . . , n, be the dimensions of the homology indices
of a chain recurrent componentR of φt and letv be the vertex corresponding toR. Then
v must satisfy:
(1) e+(v) ≤ (h1)

∗ + 1 (∗ indicates the index of the time-reversed flow);
(2) e−(v) ≤ h1 + 1.

Proof. Let (N1, N0) be an index pair forR. Consider the long exact sequence whereZ2

coefficients are used for the homology groups:

· · · → H1(N0)→ H1(N1)→ CH1(R)
∂1−→ H̃0(N0)

i0−→ 0.

Since dimH̃0(N0) = e−(v) − 1 and by exactness dim keri0 = dim Im∂1 we have that
∂1 is surjective hence dimCH1(R) = hi

1 ≥ e−(v) − 1. By reversing the flow we obtain
thate+(v) ≤ (h1)

∗ + 1. 2

By taking less general flows we will obtain sharper results and for the most part this is
the content of the following sections.
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3.1. Lyapunov graphs for Morse–Smale flows.In this section we will characterize a
Lyapunov graph associated to a Morse-Smale flow, i.e. we will determine necessary
properties the graph must possess in order to be associated to a Morse–Smale flow. We
will work with the Conley homology index of hyperbolic singularities and periodic orbits.
The following proposition computes this index and is due to Conley. We provide a simple
proof based on the fact that for these cases the Conley index is a Thom space.

PROPOSITION3.1. Let (N,N0) be an index pair withN containing a unique critical set.
If N contains a hyperbolic singularity of index̀thenHi(N,N0) ∼= Z2 for i = ` and 0
otherwise. IfN contains a hyperbolic periodic orbit of index̀thenHi(N,N0) ∼= Z2 for
i = `, `+ 1 and0 otherwise.

Proof. Let S be the singularity or the periodic orbit. Denote byξ and ζ the unstable
and stable bundles ofS respectively. Denote byD(·) and S(·) the total spaces of the
associated disk and sphere bundles respectively. Without loss of generality, we may assume
N = D(ξ ⊕ ζ ). By sliding along the fibers ofζ it follows that

(N/N0, N0/N0) ∼ (D(ξ)/S(ξ), S(ξ)/S(ξ)) = (0(ξ), t0),

a pointed Thom space. By Thom’s isomorphism theorem,

Hi(N,N0) ∼= Hi(0(ξ), t0) ∼= Hi−`(D(ξ)) ∼= Hi−`(S),

from which the proposition follows. We are following the convention that for a spaceX,
Hi(X) ∼= 0 for i < 0. 2

One can think of a hyperbolic periodic orbit of index` as the joining of two hyperbolic
singularitiesp andq of adjacent indices̀and`+1 respectively. The following proposition
is due to Franks [Fra82].

PROPOSITION3.2. Supposeφt is a Morse–Smale flow on an orientable manifold with a
periodic orbitγ of index`. Then given a neighborhoodU of γ there exists a new Morse–
Smale flowψt whose vector field agrees with that ofφt outsideU and which has two
singularities of index̀ and`+ 1 in U but no other chain recurrent points inU .

The singularityq having one more unstable direction thanp enables us to use an
appropriate 1-submanifold ofWu(q) to join with an appropriate 1-submanifold ofWs(p),
obtaining an index̀ periodic orbit. Topologically this means that it should be possible to
break a round handle of index` into two handles of indices̀and`+ 1.

A handle and its corresponding singularity is called`-disconnecting, `-connectingor
β-invariant, in short,`-d, `-c, β-i, if and only if this handle has the algebraic effect of
increasing or decreasing the`th Betti number of∂+N in relation to∂−N in the first two
cases respectively and keeping constant all Betti numbers in the latter case. See Figure 1.

The attachment of a single round handle to form(N, ∂+N, ∂−N) has the algebraic effect
of altering the Betti numbers of∂+N in relation to∂−N . This effect is specified by the two
singularities given by Proposition 3.2. Thus, if the first singularity is`-d and the second
(`+1)-d we refer to the round handle and the corresponding periodic orbit as`-d, (`+1)-d
and so on. However, if the first singularity is`-d and the second̀-c then the round handle
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FIGURE 1. The three possible algebraic effects.

FIGURE 2. w andu are derived vertices fromv.

and the corresponding periodic orbit are said to beβ-i. For an example of aβ-i handle
see §4.1. Also, we refer to these singularities as the singularitiesderivedfrom the periodic
orbit.

Given a Morse–Smale flowφt on a boundaryless oriented smooth manifoldM, let
f : M → R be a Lyapunov function and form the associated Lyapunov graphL. By
repeated use of Proposition 3.2 it is possible to changeφt to a Morse flowφ′t with Lyapunov
functionf ′ : M → R. The associated Lyapunov graph is called thederived graphL′. If a
Lyapunov graphL is the graph of a Morse flow its derived graphL′ = L.

In order to obtainL′ fromL, a vertexv labelled with an index̀ periodic orbit is removed
from L and replaced by an oriented subgraphI which respects orientations. The subgraph
I contains two vertices:w labelled with an index̀ + 1 singularity andu labelled with an
index` singularity. These vertices are connected by a directed edgee from w to u. Note
that in L′ all incoming edges ofw are the incoming edges ofv in L. Similarly, all the
outgoing edges ofu in L′ are the outgoing edges ofv in L. See Figure 2.

This description permits us to define the derived graphL′ for an abstract Lyapunov
graphL.

3.2. Main result. Theorem 3.2 is the main result in this section and for expository
reasons it is a compendium of several propositions which will appear subsequently in §3.3.
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We hope with this to give the reader a clearer picture of the global result.
Theorem 3.1 asserts that the number of boundary components of an isolating

neighborhood in a smooth gradient-like flow is controlled by the one-dimensional
homology index. Our main result, Theorem 3.2, shows how the higher-dimensional
homology of the boundary components of an isolating neighborhood of a critical set in
a Morse–Smale flow is controlled by the higher-dimensional homology indices.

THEOREM 3.2. Let φt : M → M be a Morse–Smale flow with Lyapunov function
f : M → R. Letv be a vertex of the associated Lyapunov graphL. LetN be a basic block
containing only one singularity or one periodic orbit that corresponds tov. Let∂−N , ∂+N

be the exiting and entering components ofN contained in∂N . If v is labelled as an:
(1) index` singularity, then:

(a) v is `-d, (`− 1)-c or β-i;
(b) the sum of the labels on the incoming edges incident tov (i.e. the total Betti

number of∂+N) changes with respect to the sum of the labels on the outgoing
edges incident tov (i.e. the total Betti number of∂−N) by±2 or 0;

(c) v cannot beβ-i if n 6= 2`;
(2) index` periodic orbit, then:

(a) if v hasu andw as its derived vertices thenv is one of the combinations in the
table below:

w/u `-d (`− 1)-c β-i

(`+ 1)-d (`+ 1)-d; `-d (`+ 1)-d; (`− 1)-c (`+ 1)-d; β-i
`-c `-c; `-d `-c; (`− 1)-c `-c; β-i
β-i β-i; `-d β-i; (`− 1)-c

(b) the sum of the labels on the incoming edges incident tov (i.e. the total Betti
number of∂+N) changes with respect to the sum of the labels on the outgoing
edges incident tov (i.e. the total Betti number of∂−N) by adding the changes
of the derived vertices;

(c) v cannot be in the last column of the table ifn 6= 2` and cannot be in the last
row of the table ifn 6= 2(`+ 1).

This theorem is a consequence of the results obtained in §3.3 and will be proved within
that section.

Theorem 3.2 describes the variation of the Betti numbers of the level sets as we pass
through the critical set. In particular, it gives us the variation of the zeroth Betti number in
terms ofe+ ande−.

COROLLARY 3.3. Consider a Morse–Smale flowφt , an associated Lyapunov graphL and
a vertexv onL.
(1) If v is labelled as a sink(h0 = 1) or an attracting periodic orbit(h1 = h0 = 1) then

e+ = 1 ande− = 0.
(2) If v is labelled as a source(hn = 1) or a repelling periodic orbit(hn = hn−1 = 1)

thene− = 1 ande+ = 0.

https://doi.org/10.1017/S0143385799120893 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385799120893


Gradient-like flows on high-dimensional manifolds 349

(3) If v is labelled as a saddle of Morse index1 (h1 = 1) or a saddle type periodic orbit
of index1 (h2 = h1 = 1) thene+ = 1. Moreover, ifv is labelled as0-c singularity
or as a0-c, 2-d periodic orbit thene− = 2. Otherwise,e− = 1.

(4) If v is labelled as a saddle of Morse indexn−1 (hn−1 = 1) or a saddle type periodic
orbit of indexn − 2 (hn−1 = hn−2 = 1) thene− = 1. Moreover, ifv is labelled as
(n − 1)-d singularity or as a(n − 3)-c, (n − 1)-d periodic orbit or as a(n − 2)-d,
(n− 1)-d periodic orbit thene+ = 2. Otherwise,e+ = 1.

(5) If v is labelled as any other saddle or periodic orbit thene+ = e− = 1.

Proof. Theorem 3.2 specifies the effect singularities and periodic orbits have on the Betti
numbers of the level hypersurfaces of a basic blockN . Recall thate− ande+ correspond
to the number of exiting and entering boundary components ofN , i.e. to the number
of components of∂−N and ∂+N . Hence, this number is determined by the zeroth-
dimensional Betti numbers of∂−N and∂+N . The proof follows directly from an analysis
of the zeroth-dimensional Betti numbers in Theorem 3.2. 2

So far, our theorems have determined locally necessary conditions on a Lyapunov graph
so that it is associated to a flow. The following theorem of Franks determines a necessary
global condition on a Lyapunov graph so that it is associated to a smooth flow. We refer
the reader to [Fra85] for a proof of this theorem.

THEOREM 3.3. Let M be a compact oriented manifold. Suppose thatφt : M → M is a
smooth flow andf : M → R is a Lyapunov function with a finite associated Lyapunov
graphL. If H1(M;Q) = 0 then the graphL is a tree.

3.3. Basic blocks for singularities. This and the next section involve the analysis of
exact sequences and hence give a more precise result than the table in Theorem 3.2. The
results below will specify the role of the homology boundary maps in the change of Betti
numbers of the level surfaces.

Throughout this section all propositions will have as underlying hypotheses:
(1) M is ann-dimensional manifold,n ≥ 2;
(2) p is a singularity of index̀ (i.e. dimWu(p) = ` and dimWs(p) = n− `);
(3) (N, ∂−N) is an index pair forp where∂N = ∂−N ∪ ∂+N and∂−N ∩ ∂+N = ∅;
(4) ∂+N and ∂−N are denoted by entering and exiting boundary components for the

flow respectively;
(5) ∂i : Hi(N, ∂−N)→ Hi−1(∂−N) denotes the homology boundary map.

The following propositions will determine the relationship between the Betti numbers
of ∂+N and ∂−N . The way in which they are related will depend on the index of the
singularity as well as the homology boundary map. It is also interesting to observe
that whenever the index of the singularity coincides with half the dimension of an even-
dimensional manifold or with either of the two middle dimensions of an odd-dimensional
manifold the analysis is slightly more elaborate. We refer to these as the middle-
dimensional cases and they are dealt with in §3.3.1.

In the following proofs we will make systematic use of the long exact sequences for the
pairs(N, ∂−N) and(N, ∂+N).
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Consider the long exact sequence for the pair(N, ∂−N), which we will label by LES−:

0→ H`(∂−N)
i`−→ H`(N)

p`−→ H`(N, ∂−N)
∂−`−→ H`−1(∂−N)

i`−1−−→ H`−1(N)→ 0.

Also consider the long exact sequence for the pair(N, ∂+N) which we will label by LES+:

0→ Hn−`(∂+N)
in−`−−→ Hn−`(N)

pn−`−−→ Hn−`(N, ∂+N)

∂+n−`−−→ Hn−`−1(∂+N)
in−`−1−−−→ Hn−`−1(N)→ 0.

PROPOSITION3.3. Under the hypotheses stated at the beginning of this section, letn = 2i

and` 6= i or n = 2i + 1 and` 6= i, i + 1. Then either:
(1) ∂−` = 0 and∂+n−` 6= 0 in which case (`-d)

βk(∂−N) =
{

βk(∂+N), for all k 6= `, n− `− 1

βk(∂+N)− 1, for k = `, n− `− 1

or else,
(2) ∂−` 6= 0 and∂+n−` = 0 in which case ((`− 1)-c)

βk(∂−N) =
{

βk(∂+N), for all k 6= `− 1, n− `

βk(∂+N)+ 1, for k = `− 1, n− `.

Proof. Sincep is a singularity of index̀ with basic blockN with entering and exiting
boundary components∂+N and∂−N respectively,Hk(N, ∂−N) = 0 for all k 6= `. If we
reverse the flow onN , p will now have indexn− ` and the roles of∂+N and∂−N will be
interchanged, i.e. the exiting boundary component for the time reversed flow will now be
∂+N and the entering boundary component will be∂−N . Once again,Hk(N, ∂+N) = 0
for all k 6= n− `.

Combining both long exact sequences LES− and LES+ we obtain thatHk(∂−N) ∼=
Hk(N) for k 6= ` andHk(∂+N) ∼= Hk(N) for k 6= n − `. This implies thatHk(∂−N) ∼=
Hk(∂+N) for k 6= `, n− `.

For the cases whenk = `, n − `, we must consider whether the homology boundary
maps∂−` and∂+n−` are zero or non-zero.

If both boundary maps are zero or both are non-zero, it is an easy computation
to see that we contradict the Poincar´e duality. Take, for instance, the case where
both boundary maps are zero. Since∂−` = 0, LES− implies thatH`−1(∂−N) ∼=
H`−1(N). We have shown above thatHk(∂+N) ∼= Hk(N) for k 6= n − `, hence
we obtain thatH`−1(∂+N) ∼= H`−1(N) ∼= H`−1(∂−N). In other words, this implies
that β`−1(∂−N) = β`−1(∂+N). On the other hand, since∂+n−` = 0, LES+ implies
that Hn−`(N) ∼= Hn−`(N, ∂+N)⊕Hn−`(∂+N) and using the fact observed above that
Hk(∂−N) ∼= Hk(N) for k 6= `, we obtainHn−`(∂−N) ∼= Hn−`(N), henceHn−`(∂−N) ∼=
Hn−`(N, ∂+N)⊕Hn−`(∂+N). Thus,βn−`(∂−N) = βn−`(∂+N)+1. Since∂+N and∂−N

are closed(n− 1)-dimensional manifolds, the indicesn− ` and`− 1 are complementary
in this dimension. Hence the homology groups with these indices of∂+N and also of∂−N

are Poincar´e duals. However, this contradicts the Poincar´e duality sinceβ`−1(∂−N) =
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β`−1(∂+N) andβn−`(∂−N) = βn−`(∂+N) + 1. The case where both boundary maps are
non-zero is treated similarly.

Hence we are left with the cases where one of the boundary maps is non-zero and
the other is zero. Let us consider one of these cases where∂−` = 0 and∂+n−` 6= 0.
If ∂−` = 0, then exactness of LES− implies thatH`(N) ∼= H`(∂−N)⊕H`(N, ∂−N)

andH`−1(∂−N) ∼= H`−1(N). Now if ∂+n−` 6= 0, then exactness of LES+ implies that
Hn−`(N) ∼= Hn−`(∂+N) andHn−`−1(∂+N) ∼= Hn−`(N, ∂+N)⊕Hn−`−1(N). Since the
Betti numbers ofH`(N, ∂−N) andHn−`(N, ∂+N) are equal to 1 we have thatβ`(N) =
β`(∂−N)+1 andβk(N) = βk(∂−N) for all k 6= `. Also,βn−`−1(N) = βn−`−1(∂+N)−1
andβk(N) = βk(∂+N) for k 6= n − ` − 1. Combining these results we prove (1). Also,
(2) is proved by a similar analysis. 2

This analysis of the long exact sequences LES− and LES+ can be summarized in the
following tables:

(N, ∂−N) ∂−` = 0 ∂−` 6= 0

β`(N) = β`(∂−N)+ 1 β`(∂−N)

β`−1(N) = β`−1(∂−N) β`−1(∂−N)− 1

TABLE 1.In addition to this

βk(N) = βk(∂−N), ∀k 6= `, `− 1.

(N, ∂+N) ∂+n−` = 0 ∂+n−` 6= 0

βn−`(N) = βn−`(∂+N)+ 1 βn−`(∂+N)

βn−`−1(N) = βn−`−1(∂+N) βn−`−1(∂+N)− 1

TABLE 2.
In addition to this

βk(N) = βk(∂+N), ∀k 6= n− `, n− `− 1.

3.3.1. Middle-dimensional cases.

PROPOSITION3.4. Under the hypotheses stated at the beginning of this section, letn = 2i

and` = i. Then either:
(1) ∂−i = 0, ∂+i = 0 or ∂−i 6= 0, ∂+i 6= 0 in which case (β-i)

βk(∂−N) = βk(∂+N) for all k

or else,
(2) ∂−i = 0, ∂+i 6= 0 in which case (`-d)

βk(∂−N) =
{

βk(∂+N), for all k 6= i, i − 1

βk(∂+N)− 1, for k = i, i − 1.

or else,
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(3) ∂−i 6= 0, ∂+i = 0 in which case ((`− 1)-c)

βk(∂−N) =
{

βk(∂+N), for all k 6= i, i − 1

βk(∂+N)+ 1, for k = i, i − 1.

Proof. Sincen = 2i and` = i, we substitute these values for the indices in LES− and
LES+ The analysis is similar to Proposition 3.3, i.e. we analyse the four possible cases
arising from the choices of the homology boundary maps,∂−i and∂+i being zero or non-
zero. It is interesting to note that in this case if both boundary maps are zero or both are
non-zero, we do not contradict the Poincar´e duality. In what follows we detail this analysis.

We first observe that sincep is a singularity of indexi with basic blockN , with entering
and exiting boundary components,∂+N and∂−N respectively,Hk(N, ∂−N) = 0 for all
k 6= i. If we reverse the flow onN , p will now continue to be an indexi singularity with
the roles of∂+N and∂−N interchanged, i.e. the exiting boundary component will now be
∂+N and the entering boundary component will be∂−N . Once again,Hk(N, ∂+N) = 0
for all k 6= i.

There are four cases to consider, however, we take two for illustrative purposes, the
others being entirely similar in nature. The proofs always reduce to an analysis of LES−
and LES+ with ` substituted fori in those sequences. So it suffices to consider the four
combinations of choices for∂−` and∂+n−` in the tables above with̀= i. 2

In the next proposition we will treat the case whereM is odd-dimensional and the index
of p is in the middle-dimensional range, i.e.` = i and` = i + 1.

PROPOSITION3.5. Under the hypotheses stated at the beginning of this section, let
n = 2i + 1. Then either:
(1) ` = i and

(a) ∂−i = 0, ∂+i+1 6= 0 in which case, (`-d)

βk(∂−N) =
{

βk(∂+N), for all k 6= i

βk(∂+N)− 2, for k = i;
or else,

(b) ∂−i 6= 0, ∂+i+1 = 0 in which case, ((`− 1)-c)

βk(∂−N) =
{

βk(∂+N), for all k 6= i + 1, i − 1

βk(∂+N)+ 1, for k = i + 1, i − 1;
(2) or ` = i + 1 and

(a) ∂−i+1 6= 0, ∂+i = 0 in which case, ((`− 1)-c)

βk(∂−N) =
{

βk(∂+N), for all k 6= i

βk(∂+N)+ 2, for k = i;
or else,
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(b) ∂−i+1 = 0, ∂+i 6= 0 in which case, (`-d)

βk(∂−N) =
{

βk(∂+N), for all k 6= i + 1, i − 1

βk(∂+N)− 1, for k = i + 1, i − 1.

Proof. Sincen = 2i + 1 and` = i, we substitute these values for the indices in LES−
and LES+. The analysis is similar to Proposition 3.3, i.e. we analyse the four possible
cases arising from the choices of the homology boundary maps,∂−i and∂+i+1 being zero or
non-zero. Here again if both boundary maps are zero or both are non-zero, we contradict
the Poincar´e duality and we illustrate one of these cases below. If this is not the case we
are led to the results in this proposition.

We first observe that sincep is a singularity of indexi with basic blockN with entering
and exiting boundary components,∂+N and∂−N respectively,Hk(N, ∂−N) = 0 for all
k 6= i. If we reverse the flow onN , p will now be an indexi + 1 singularity with the roles
of ∂+N and∂−N interchanged, i.e. the exiting boundary component will now be∂+N and
the entering boundary component will be∂−N . Once again,Hk(N, ∂+N) = 0 for all
k 6= i + 1.

The analysis of LES− and LES+, with ` = i and consequentlyn−` = 2i+1−i = i+1,
can be done by substituting these values into the tables above.

In the case when∂−i = 0 and∂+i+1 = 0 we obtain from column one of Tables 1
and 2 thatβi−1(∂−N) = βi−1(∂+N) and thatβi+1(∂−N) = 1+ βi+1(∂+N). However,
we have contradicted Poincar´e duality which asserts thatβi+1(∂−N) = βi−1(∂−N) and
βi+1(∂+N) = βi−1(∂+N). The case when∂−i 6= 0 and∂+i+1 6= 0 is treated similarly.

In the case when∂−i = 0 and∂+i+1 6= 0 we combine the results in column one of Table 1
with those in column two of Table 2. We obtain thatβk(∂−N) = βk(N) for all k 6= i and
βi(∂+N) − 1 = βi(∂−N) + 1. Henceβi(∂−N) = βi(∂+N) − 2. The case where∂−i 6= 0
and∂+i+1 = 0 is an entirely similar analysis.

The results in (2) can be obtained from (1) by considering the time reversed flow where
the roles of∂+N and∂−N are interchanged. 2

The next propositions narrow down the possibilities of manifolds where cases (1) and
(2) of Proposition 3.4 may occur.

For a (2k + 1)-dimensional closed manifoldX, the mod 2semi-characteristicwith
coefficients in the fieldF is defined to be:

χ1/2(X;F) =
k∑

i=0

βi(X;F) mod 2.

PROPOSITION3.6. Under the hypotheses of Proposition 3.4 withn = 2` andN a basic
block, if cases (1) or (2) occur (i.e.∂−` = ∂+` = 0 or both are not equal to zero) then at least
a mod 2homology class inH`(M) has self-intersection number non-zero. In particular,
M cannot beSn or the connected sum of generalized toriSi × Sj , i + j = n.

Proof. If every mod 2 homology classξ ∈ H`(N) has self-intersectionξ · ξ = 0 then
arguing as in Lemma 5.10 in [KM63 ] it follows that χ1/2(∂+N,Z2) 6= χ1/2(∂−N,Z2).
However, since we assume that cases (1) and (2) occur, this implies that all Betti numbers
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of ∂+N and∂−N are the same thus the semi-characteristics must be equal. Hence, there
must be a mod 2 classξ ∈ H`(N) such thatξ · ξ 6= 0. SinceN ⊂ M is a codimension 0
embedding, ifη is the image ofξ under the map induced by inclusionH`(N) → H`(M)

it follows thatξ · ξ = η · η. Thus,η · η 6= 0. 2

PROPOSITION3.7. Under the hypotheses of Proposition 3.4 withn = 2 mod 4,N a basic
block andM orientable, then cases (1) and (2) do not occur.

Proof. It follows from Lemma 5.8 in [KM63 ] thatχ1/2(∂+N,Q) 6= χ1/2(∂−N,Q). In the
casen = 2` ≥ 4, 1 < ` < n − 1, by Corollary 3.3,∂+N and∂−N are level surfaces at
regular values of a Morse function. Thus,∂+N and∂−N are null-cobordant. By a theorem
in [LMP69] since dim∂+N = dim∂−N = 1 mod 4,χ1/2(N

±,Q) = χ1/2(N
±,Z2). Thus,

χ1/2(∂+N,Z2) 6= χ1/2(∂−N,Z2). Now, if cases (1) or (2) of Proposition 3.4 occur, then
all Betti numbers of∂+N and∂−N are the same. Hence the semi-characteristics must be
equal, a contradiction. In the casen = 2, ∂+N and∂−N are disjoint unions of circles and
hence null-cobordant. 2

The following two-dimensional example illustrates the necessity of the hypothesis of
the ambient manifold being orientable in Proposition 3.7. LetN be a Mobius band with a
disk removed from its interior.N is a basic block for a saddle with∂+N and∂−N being
homeomorphic toS1.

3.3.2. Proof of Theorem 3.2. We now prove Theorem 3.2 of §3.2.

Proof. The proof of (1) of Theorem 3.2 follows directly from Propositions 3.3–3.5.
The proof of (2) follows from Proposition 3.2 where we can ‘substitute’ a hyperbolic

periodic orbit of index̀ for two singularities of index̀ and`+ 1. Hence, ifv represents a
vertex on a Lyapunov graph labelled with a hyperbolic periodic orbit of index`, letw andu

be the derived vertices labelled as hyperbolic singularities of index`+1 and` respectively.
Thus, if` is not the mid-dimension of the ambient manifold we combine the two cases of
Propositions 3.3 forw ((`+1)-d and`-c) with the two cases of Propositions 3.3 foru (`-d
and(`− 1)-c) to obtain the four possibilities for the vertexv.

w/u `-d (`− 1)-c

(`+ 1)-d (`+ 1)-d; `-d (`+ 1)-d; (`− 1)-c
`-c `-c; `-d `-c; (`− 1)-c

If ` is the mid-dimension of the ambientn-manifoldM then we must consider the cases
whenn = 2`+ 1 andn = 2`. In the first case,n = 2`+ 1, we combine the two cases in
(1) of Proposition 3.5 foru (`-d and(`− 1)-c) with the two cases in (2) of Proposition 3.5
for w ((`+ 1)-d and`-c) generating the four possibilities forv listed in the table above.

If the ambientn-manifold M has dimensionn = 2` we combine the three cases of
Proposition 3.4 foru (`-d and(`− 1)-c andβ-i) with the two cases in Proposition 3.3 for
w ((`+ 1)-d and`-c) generating the six possibilities forv listed in the table below.
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w/u `-d (`− 1)-c β-i

(`+ 1)-d (`+ 1)-d; `-d (`+ 1)-d; (`− 1)-c (`+ 1)-d; β-i
`-c `-c; `-d `-c; (`− 1)-c `-c; β-i

Finally, if n = 2(`+ 1) we generate the last row of the table in Theorem 3.2. 2

4. Realizing Lyapunov graphs
In the previous section we obtained results which determine necessary conditions on a
Lyapunov graph in order for it to be associated to a smooth flow. In this section, we
propose to establish sufficient conditions on an abstract Lyapunov graphL so that it can be
realized as a smooth flow on some differentiable manifold.

Ideally, it would be desirable that the necessary conditions coincide with the sufficient
conditions. However, the necessary conditions obtained within this paper are too weak for
this purpose and hence we must impose additional restrictions onL in order to construct a
flow with an equivalent Lyapunov graph.

The first natural consideration is to restrict the class of abstract Lyapunov graphs to
those which satisfy the necessary conditions determined in §3. An abstract Lyapunov graph
L whose vertices are labelled with singularities or periodic orbits, is calledadmissibleif
and only ifL satisfies the conclusions of Theorem 3.2.

Two Lyapaunov graphsL1 andL2 are said to beequivalentif and only if there is a
vertex and edge preserving bijectionϕ : L1→ L2 such that:
(1) v andϕ(v) are labelled with topologically equivalent chain recurrent flows;
(2) e andϕ(e) are labelled with the same Betti numbers.

Also, at times, we will deal with Lyapunov graphs as topological one complexes.

4.1. Flows on basic blocks and some handle decompositions.We will first describe two
different ways to build a basic block for aǹ-handle. We wish to construct a basic block
N = C(∂−N) ∪ H(`), whereC(∂−N) is a closed collar on∂−N andH(`) is an index̀
handle attached toC(∂−N) along∂C(∂−N) − ∂−N by the attaching mapθ . We can take
∂−N to be eitherSn−1 or S`−1 × Sn−`. In both cases the attaching mapθ is given by the
inclusion: in the prior case by

θ : S`−1 ×Dn−` → S`−1×Dn−` ∪id D` × Sn−`−1 = Sn−1

and in the latter case by

θ : S`−1×Dn−` → S`−1 ×Dn−` ∪id S`−1×Dn−` = S`−1× Sn−`.

Also, ∂+N = ∂N − ∂−N : in the first case,

∂+N = D` × Sn−`−1 ∪φ D` × Sn−`−1 = S` × Sn−`−1

and in the second by

∂+N = D` × Sn−`−1 ∪φ S`−1 ×Dn−` = Sn−1,
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whereφ is induced by the diffeomorphism onD` ×Dn−` which exchanges factors. In the
first case the handle is̀-d and in the second case it is(`− 1)-c.

One can easily construct a Morse function onN with a unique non-degenerate critical
point of index` in H ⊂ N . Associated to this Morse function there is a Morse flow which
we can assume is transverse not only to∂H but also to∂N [Mil65 ].

This construction is completely general, in the sense that if we have a connected sum
of generalized tori as∂−N we can attach aǹ-d handle to anSn−1 factor which is always
present in the connected sum and an(`− 1)-c handle to anS`−1× Sn−` factor if it is part
of the connected sum.

We now will describe a well known example illustrating case (1a) of Proposition 3.4
which corresponds to the attachment ofβ-i k-handles within a 4-manifold. We remark that
if N ′ = N ∪θ (D` × Dn−`), whereθ : S`−1 × D` → ∂−N is an embedding, then by
definitionχ(∂−N, θ) = ∂N ′ − (∂N − ∂−N) is the result of performing surgery on∂−N

by means of the embeddingθ . Note that surgeries and the attachment of handles are in
one-to-one correspondence since they both use the same embedding (see [Mil65 ]). It is
well known [Rol76] that if L is a three-dimensional Lens space, thenL = χ(S3, θ) where
θ : S1 ×D2 → S3 is a suitable embedding. TakeL such thatπ1(L) has odd order. Then
L andS3 have the same mod 2 homology. This surgery corresponds to the attachment of a
2-handleH(2) on a collar ofS3, C(S3). SetN = C(S3) ∪H(2), and hence∂−N = S3 and
∂+N = L. The flow defined onN is obtained as above and becauseH1(L) ∼= H1(S

3) ∼= 0
it follows thatH(2) is aβ-i 2-handle.

In Propositions 4.1 and 4.2, we describe some very specific handle decompositions for
compactn-manifolds which are eitherSn or generalized toriSp × Sq and their connected
sums.

PROPOSITION4.1. Let Mn = Sp × Sq . This manifold possesses the handle
decomposition:

Mn = H(0) ∪H(p) ∪H(q) ∪H(n),

where the a-tubes ofH(p), H(q) are disjoint and contained in∂H (0) ≈ Sn−1.
Furthermore, the attaching spheres ofH(p), H(q) are unknotted in∂H (0) and boundp-
andq-dimensional disksBp andBq in H(0) that meet in a single point.

Before we prove this proposition we remark that sinceSp × Sq ≈ Sq × Sp, the handles
H(p) andH(q) can be attached in reverse order. Also, ifc(H (p)) andc(H (q)) are the cores
of H(p) andH(q) respectively, then thep- andq-dimensional subspheresBp ∪ c(H (p))

andBq ∪ c(H (q)) meet transversally in the single pointBp ∩ Bq . Thus, the intersection
form evaluated at those subspheres (more precisely on the homology class represented by
a triangulation of these subspheres) is one. Because of this we refer to the attachment of
H(q) as dual toH(p) and we refer to these handles as adual pair.

Proof. Write Sp = D
p
− ∪ D

p
+, whereD

p
± = {(x1, . . . , xp+1) ∈ Sp | ±xp+1 ≥ 0}.

Similarly, writeSq = D
q
− ∪D

q
+. Then

Sp × Sq = (D
p
− ∪D

p
+)× (D

q
− ∪D

q
+)

= D
p
− ×D

q
− ∪D

p
+ ×D

q
− ∪D

p
− ×D

q
+ ∪D

p
+ ×D

q
+.
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We would like to see this union as a 0-handle with ap-handle and aq-handle attached
so that the resulting boundary bounds ann-handle inSp × Sq . For this purpose, set
H(0) = D

p
− ×D

q
−. Now,

H(0) ∩D
p
+ ×D

q
− = D

p
− ×D

q
− ∩D

p
+ ×D

q
−

= (∂D
p
−)×D

q
− ∩ (∂D

p
+)×D

q
− ⊂ (∂H (0)) ∩ (∂D

p
+)×D

q
−.

This means thatDp
+ ×D

q
− is ap-handleH(p) attached to∂H (0). The attaching sphere is

(∂D
p
+) × 0 ⊂ ∂H (0). It can be isotoped in∂H (0) to (∂D

p
+) × 1 which boundsDp

− × 1.
Thus, the attaching sphere is unknotted in∂H (0) = Sn−1.

Now, since

H(0) ∪H(p) = D
p
− ×D

q
− ∪D

p
+ ×D

q
− = (D

p
− ∪D

p
+)×D

q
− = Sp ×D

q
−.

It follows that

(H (0) ∪H(p)) ∩D
p
− ×D

q
+ = Sp ×D

q
− ∩D

p
− ×D

q
+ = Sp × ∂D

q
− ∩D

p
− × ∂D

q
+

= ∂(H (0) ∪H(p)) ∩D
p
− × ∂D

q
+.

We conclude thatDp
− ×D

q
+ is aq-handleH(q) attached to∂(H (0) ∪ H(p)). It is actually

attached to∂H (0) since

Sp × ∂D
q
− ∩D

p
− × ∂D

q
+ = D

p
− × ∂D

q
− ∩D

p
− × ∂D

q
+ ⊂ ∂H (0) ∩D

p
− × ∂D

q
+.

Note that∂(H (0) ∪ H(p) ∪ H(q)) = ∂(D
p
+ × D

q
+) = Sn−1. Hence,Dp

+ × D
q
+ is a

n-handleH(n) attached to∂(H (0) ∪H(p) ∪H(q)).
ConsiderH(p)∩H(q) = D

p
+×D

q
−∩D

p
−×D

q
+ = ∂D

p
+×∂D

q
+. This intersection equals

the intersection of the boundaries of the attaching regions(∂D
p
+)×D

q
− andD

p
− × (∂D

q
+)

of H(p) andH(q), respectively. That is,

H(p) ∩H(q) = (∂D
p
+)×D

q
− ∩ (∂D

p
−)×D

q
+.

As H(p) is a closed tubular neighborhood of its core, the tubular neighborhood theorem
provides an ambient isotopy leavingH(0) ∪ c(H (p))∪ c(H (q)) fixed and that shrinksH(p)

eliminating the intersection. The ambient isotopy will of course changeH(n) as well.
Next, setBp = D

p
− × 0 ⊂ H(p) andBq = 0× D

q
− ⊂ H(q). ThenBp andBq meet

transversally in a single point. The attaching spheres ofH(p) andH(q) are∂Bp and∂Bq

respectively. Also,Bp ∪ c(H (p)) andBq ∪ c(H (q)) arep- andq-dimensional spheres
intersecting transversally inBp ∩ Bq . Finally, it is necessary to round corners. 2

LEMMA 4.1. Consider the linkL = Sp−1×0∪0×Sq−1 onSn−1, wheren = p+q. Then
Sp−1×0 and0×Sq−1 are unknotted and their linking number is one. Also,L is equivalent
to Kp−1 ∪ Kq−1, whereKp−1 ⊂ Sn−1 is an unknotted sphere,Kq−1 = ϕ(pt× Sq−1),
pt ∈ Kp−1, andϕ : Kp−1×Dq → T is a diffeomorphism andT a tubular neighborhood
of Kp−1.

Proof. Note thatSp−1× 0= ∂Dp × 0 and 0× Sq−1 = 0× ∂Dq . It follows thatSp−1× 0
and 0× Sq−1 are unknotted.L is equivalent toSp−1× 1∪ 0× Sq−1. The linking number
of Sp−1×1 and 0×Sq−1 equals the intersection number ofDp−1×1 and 0×Sq−1 which
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intersect transversally in 0× 1, hence having intersection number one. Without loss of
generality we can assume orientations were chosen to yield 1 and not−1.

The second assertion of the proposition follows from the tubular neighborhood theorem
together with the fact thatL can be isotoped toSp−1 × 0∪ pt× Sq−1, where pt∈ Sp−1

andSp−1 ×Dq is a closed tubular neighborhood ofSp−1 × 0. 2

The following proposition asserts that to formMn, a connected sum of generalized tori,
all handles other thanH(0) andH(n) can be attached in any order since they are pairwise
disjoint with attaching spheres unknotted.

PROPOSITION4.2. LetMn = #iM
n
i where for eachi, Mn

i is a generalized torusSp × Sq

wherep andq depend oni. ThenMn possesses the following handle decomposition: one
0-handleH(0), onen-handleH(n), and for eachMn

i = Sp × Sq a pair of handlesH(p)

andH(q) with attaching spheres unknotted in∂H (0) and attached dually. Furthermore, all
handles, with the exception ofH(0) andH(n), are pairwise disjoint.

Proof. For simplicity, we shall consider the caseMn = (Sp × Sq)#(Sr × Ss). The general
case is entirely similar. Write

Sp × Sq = H(0) ∪H(p) ∪H(q) ∪H ′(n)

and

Sr × Ss = H ′(0) ∪H(r) ∪H(s) ∪H(n).

To form the connected sum, remove the handlesH ′(n) andH ′(0), obtaining

Mn = H(0) ∪H(p) ∪H(q) ∪H(r) ∪H(s) ∪H(n).

We can assume without loss of generality thatp ≤ q and r ≤ s and r ≤ p. By the
reordering lemma [RS82], an ambient isotopy will slideH(r) and attach it in∂H (0) away
from the a-regions of bothH(p) andH(q). Next, by using Lemma 4.1 together with the
tubular neighborhood theorem, we may assume that the a-regions ofH(p), H(q), H(r) and
H(s) are all disjoint and contained in∂H (0). 2

4.2. Canonical Lyapunov graphs.In this section we will define attaching labels for the
edges of an admissible Lyapunov graphL. This is analogous to the gluing map labels in
[dR93].

Let Sn be the class of closedn-dimensional manifolds obtained from all connected sums
of generalized toriSp × Sq , wherep + q = n and their disjoint unions. We will specify
certain handle decompositionsH of Mn ∈ Sn, whereMn is connected. For such aH, a
given handleH will be attached by one of the following processes.
(1) Process(t): if the index ofH is non-zero then the a-sphere ofH is contained in the

boundary of an index 0 handle,H(0), and is unknotted. Furthermore, the a-region of
H which is a closed tubular neighborhood of the a-sphere in∂H (0) does not intersect
the a-regions of previously attached handles. We will also assume thatH does not
form a null or dual pair (see §4.1) with a previously attached handle. By null pairH ,
H ′ we mean thatH ∪ H ′ is a cancelling pair of handles. We refer to these handles
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astrivial . By definition, 0-handles are always attached by process(t). We will say
that theH `-handle is attached by process(t) to H(0) by labelling the corresponding
edge witht (H (0)).

(2) Process(n): assuming the index ofH is non-zero it forms acancellingor null pair
with a handleH ′ previously attached by process(t). Furthermore, ifH(0) is such
that∂H (0) contains the a-region ofH ′ then the a-region ofH in ∂(H (0) ∪ H ′) does
not intersect the a-regions of handles other thanH ′. Note that the index ofH equals
the index ofH ′ plus one. We will also say that thè-handleH is attached by process
n(H ′).

(3) Process(d): if the index of H is not n, it forms a dual pair with a handleH ′
previously attached by process(t). Furthermore, ifH(0) is such that∂H (0) contains
the a-region ofH ′ andH , then the a-region ofH does not intersect the a-regions
of other handles. Note that the indices ofH ′ andH add up ton. We will denote
an`-handle attached by process(d) by d(H (`)). If the index ofH is n, H forms a
dual pair with a 0-handleH ′ if and only if by the removal of all the null pairs ofH
one obtains a handle decomposition whose only index 0 andn handles areH ′ andH

respectively.
Given a vertexv of the derived Lyapunov graphL′ labelled with a singularity of index

`, we will associate to it an index̀ handleH(v). Let e be an outgoing edge ofv. The
attaching label ofe specifies howH(v) is attached.

Let w be an index 0 vertex connected tov by an oriented pathγ : [0, 1] → L, such
thatγ (0) = w, γ (1) = v. If v is `-d, the labelt (w) for e means thatH(v) is attached
by processt (H(w)). If v is `-c, ` 6= 0, letu ∈ γ (0, 1) be an`-d vertex such that its only
outgoing edge is attached by processt (w). If the index ofv is ` + 1 the labeln(u) for e

means thatH(v) is attached by processn(H(u)), where the index ofu is `. If the index of
v is n − ` the labeld(u) for e means thatH(v) is attached by processd(H(u)) where the
index ofu is `.

If v is 0-c, asMn is connected, the index ofv must be one. In this case,v has two
outgoing edges. Letu be an index 0 vertex which is notw. Let e1 be the outgoing edge of
v contained inγ (0, 1). Let e2 be the other outgoing edge ofv. We labele1 by t (w) ande2

by n(u). These attachments mean thatH(v) is attached so that the a-sphere meets∂H(w)

and also thatH(v) andH(u) form a null pair.
We will assume that ifu is an`-d vertex, 0≤ ` ≤ n, then exactly onè-c vertexv will

possess an outgoing edgee, w labelled asn(u) or d(u).
A canonical Lyapunov graphL is an admissible Lyapunov graph which is a tree, with

the property thatL and its derived graphL′ contain noβ-i vertices and all edges are
endowed with attaching labels. See §2.4 for the definition of derived graphs.

The manifoldsM ∈ Sn have the property that all possess minimal Morse flows, i.e. a
flow with ci = βi(M). For this class it is also easy to see which handles contribute to the
homology ofM.

Given a Lyapunov graphL, consider its derived graphL′ and for L′, let ti be the
number of indexi vertices with attaching labelt , ni the number of indexi vertices with
attaching labeln, di the number of indexi vertices with attaching labeld. Altogether, the
number of indexi vertices isci = ti + ni + di. The number of trivial handles is equal to
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ti = ni+1+ dn−i which reflects the fact that these handles cancel with the(i + 1)-handles
of typen and pair up dually with the(n− i)-handles of typed.

Let M ∈ Sn be the manifold constructed via the attaching instructions ofL′, then
βi(M) = ti − ni+1+ di .

We can go from a minimal flow onM to any other Morse flow by adding appropriate
null handles. Algebraically this means that we can go from the listβ0(M), . . . , βn(M)

to any other listc0(M), . . . , cn(M) by adding toβi(M), ni+1 + ni i-handles whereni

i-handles are of null type andni+1 i-handles are of trivial type to obtainci .
What we are doing in the process above is adding to a minimal Morse flow cancelling

pairs of singularities of indexi and (i + 1). That is, ni+1 trivial i-handles andni+1

null (i + 1)-handles. It is easy to see that these additions do not affect the Morse
inequalities sinceci+1 andci always appear with opposite signs except for the inequality
ci − ci−1 + · · · ± c0 ≥ βi − βi−1 + · · · ± β0 which is also not affected since we would
only increaseci .

4.3. Realizing canonical Lyapunov graphs.It is easy to see that canonical Lyapunov
graphs specify handle decompositionsH. Such a handle decompositionH is admittedby
M ∈ Sn if the number of duali-handles,di, and the number of dual(n− i)-handles,dn−i ,
in H is equal toβi(M).

THEOREM 4.1. Let L be a canonical Lyapunov graph such that its vertices are labelled
with hyperbolic singularities and letM ∈ Sn be a simply connected manifold. Then there
is a gradient flow and a Morse functionf : M → R such thatL is equivalent to the
associated Lyapunov graph off if the handle decomposition specified byL is a handle
decomposition admitted byM.

Proof. Given that there is a handle decompositionH of M specified byL which is admitted
by M, thenL is realizable onM. Also, from the previous section, each handleH ∈ H
has a Morse function defined on it and the definition of a global Morse function onM and
the associated gradient flow is a standard procedure. All that remains for us to show is
how these handles are added so as to define a flow onM with equivalent Lyapunov graph.
For this purpose, we use the attaching labels onL. Note that the flow is transverse on the
attaching regions of each handle. 2

We can also view the flow onM by gluing basic blocks as in [dR87]. If we attach
handles following the order specified by the orientation ofL, starting by the index
zero singularities we construct a submanifoldXk of M for each handleHk added. Let
N = C(∂X) ∪ H and∂−N = ∂X, then(N, ∂−N) is an index pair for the singularityxk.
The basic block is the component ofN − ∂−N which containsxk.

The following construction is a restatement of Asimov’s fundamental lemma of round
handles. Let∂−N be an(n − 1)-dimensional closed manifold. Attach to a collar of
∂−N , C(∂−N) two handlesH(`) andH(`+1). If the attaching regions are disjoint, then
by Asimov’s lemma [Asi75]

N = C(∂−N) ∪H(`) ∪H(`+1) = C(∂−N) ∪ R(`),
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whereR(`) is an index` round handle. Lemma 5 of [Asi75] implies, in particular, that
there is a gradient-like flow on the basic blockN whose chain recurrent set is a periodic
orbit of index`.

THEOREM 4.2. Let L be a canonical Lyapunov graph such that its vertices are labelled
with hyperbolic singularities or periodic orbits. LetMn ∈ Sn be a simply connected
manifold. Then there is a gradient flow and a Morse functionf : M → R such thatL is
equivalent to the associated Lyapunov graph off if the handle decomposition specified by
L′ is a handle decomposition admitted byM.

Proof. By Theorem 4.1 it is possible to realizeL′ by a Morse functiong : M → R together
with a flowψt : M → M. Let v ∈ L be a vertex labelled with a hyperbolic periodic orbit
of index not equal to 0 orn − 1. Letu,w ∈ L′ be the derived vertices and letH(u) and
H(w) be the corresponding handles. These handles cannot be of null type, otherwisev

would beβ-i. The technique used to prove Theorem 4.1 ensure thatH(u) andH(w) are
disjoint. By the fundamental lemma of round handlesH(u) andH(w) can be replaced by
a round handleR(v).

If the index of v is 0, the derived singularitiesu and w will have indices 0 and 1
respectively, and the corresponding pair of handlesH(u) andH(w) will be of null type.
The a-sphere ofH(w) is a pair of pointsx, y. One of them, sayx, belongs to∂H(u). The
other point,y, does not. However, after an ambient isotopyh we can assume thaty does.
The effect is to replaceH(u) andH(w) by a new pair of handlesH(u) andH ′(w) such
that this pair can be replaced by a round handleR(v).

It is necessary to conjugate the flowψt by this ambient isotopy and composeg with
it. L′ is equivalent to the graph ofh−1ψth with Lyapunov functiongh. Indeed, the only
change is that the 0-handle that containsy has changed. If the index ofv is n− 1, one can
work with the reverse flow to achieve the same result.

After this is done to all the vertices labelled with periodic orbits, we obtain a
decomposition ofM in handles and round handles. The flowφt : M → M that
corresponds to this decomposition is obtained by using Lemma 5 of [Asi75] repeatedly.2
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