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Abstract. We consider products of an independent and identically distributed sequence
in a set {f1, . . . , fm} of orientation-preserving diffeomorphisms of the circle. We can
naturally associate a Lyapunov exponent λ. Under few assumptions, it is known that λ ≤ 0
and that the equality holds if and only if f1, . . . , fm are simultaneously conjugated to
rotations. In this paper, we state a quantitative version of this fact in the case where
f1, . . . , fm are Ck perturbations of rotations with rotation numbers ρ(f1), . . . , ρ(fm)
satisfying a simultaneous diophantine condition in the sense of Moser [On commuting
circle mappings and simultaneous diophantine approximations. Math. Z. 205(1) (1990),
105–121]: we give a precise estimate of λ (Taylor expansion) and we prove that there exist
a diffeomorphism g and rotations ri such that dist(gfig−1, ri) � |λ|1/2 for i = 1, . . . , m.
We also state analogous results for random products of 2 × 2 matrices, without any
diophantine condition.

Key words: random dynamics, one dimensional dynamics, KAM theory, Lyapunov
exponents
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1. Statement of results
1.1. Lyapunov exponent of random product of diffeomorphisms of the torus. We con-
sider the random compositions gn = fn−1 ◦ · · · ◦ f0, where (fk)k∈N is a sequence of inde-
pendent and identically distributed (i.i.d.) copies of some random diffeomorphism f of the
one-dimensional torus T = R/Z. The general expected behaviour under few assumptions
is that, almost surely (a.s.), the random orbits (gn(x))n∈N distribute themselves toward
a unique stationary probability measure μ on T and that the derivatives g′

n(x) decrease
toward 0 with a fixed exponential rate given by a Lyapunov exponent λ (we will recall the
precise definitions). The objective is to estimate the measure μ and the number λ when
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Lyapunov exponent of random dynamical systems on the circle 2081

f is the perturbation of a random rotation and to obtain by an explicit estimate that λ
is an obstruction to the existence of a linearization of f , that is to say, a deterministic
diffeomorphism g such that gfg−1 is a rotation.

Let us begin by introducing some notation: the circle is identified with the torus T =
R/Z. For k ∈ N, we identify Ck(T) with the space of 1-periodic Ck maps from R into
R endowed with its standard norm ‖ · ‖k defined by ‖ϕ‖k = supj≤k,x∈R |φ(j)(x)|. In the
same way Diffk+(T) is the space of increasing diffeomorphisms f from R onto R of the
form f = Id + ϕ with ϕ ∈ Ck(T). Noting that the difference of two elements of Diffk+(T)
belongs to Ck(T) allows one to naturally endow Diffk+(T) with the metric dk defined by
dk(f , g) = ‖f − g‖k . With these definitions, a rotation of T of angle α is simply the
translation Id + α, which we denote rα .

A random diffeomorphism of T is a random variable valued in Diff+(T). In the paper all
the random variables are implicitly assumed to be defined on the same probability space
(�, F , P). Let us recall the notions of stationary measure and Lyapunov exponent for a
random diffeomorphism.

Definition 1.1. Let f be a random diffeomorphism of T valued in Diffk+(T) such that
ln+ ‖f ′‖0 ∈ L1(�). A probability measure μ on T is stationary for f if E[f∗μ] = μ

(such a measure always exists by the Kakutani fixed point theorem). The associated (mean)
Lyapunov exponent is

λ(μ) = E

∫
T

ln |f ′(x)| dμ(x).

We recall some known facts about stationary measures and Lyapunov exponents. We
will not use them in this paper but it may enlighten the reader on their meaning and their
interest.

PROPOSITION 1.1. Let f be a random diffeomorphism valued in Diff1+(T) such that
ln+ ‖f ′‖0 ∈ L1(�) and let gn = fn−1 ◦ · · · ◦ f0, where (fk)k∈N is a sequence of i.i.d.
copies of f .
• If f is minimal in the sense that the unique closed sets of T almost surely invariant by

f are ∅ and T, then the stationary measure is unique (see [5, 10]).
• If there is a unique stationary measure μ for f and so a unique Lyapunov exponent

λ = λ(μ), then for every x in T we have
1
n

ln(g′
n(x)) −−−−→

n→+∞ λ a.s.

• λ(μ) is a negative number unless maybe if almost every (a.e.) realization of f
preserves μ (it is an early version due to Crauel [4] of the so-called ‘invariance
principle’ of Ávila and Viana [2], both inspired by the linear version in the seminal
paper [9] of Ledrappier).

If f is minimal, it implies the existence of a homeomorphism h of T such that hf h−1

is almost surely a rotation and so implies in particular that almost all realizations of
f commute.

We are going to give an estimate for λ(μ)when f is a perturbation of a random rotation.
We need an arithmetical condition on the angle of the random rotation. We recall that a
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number α is diophantine if for some A, σ > 0 we have dist(qα, Z) ≥ A/|q|σ for any q in
Z − {0}. By the generalized definition of Moser in [11],m numbers α1, . . . , αm are said to
be simultaneously diophantine if for some A, σ > 0 we have supi dist(qαi , Z) ≥ A/|q|σ
for any q in Z − {0} (in particular, it holds if at least one of the αi is diophantine). Here we
introduce a definition generalizing the classical notion of diophantine number for random
variables.

Definition 1.2. Let α be a random variable in T. For any A > 0 and σ ≥ 0, we say that α
is diophantine of type (A, σ) if for any q in Z − {0},

‖dist(qα, Z)‖L2(�) ≥ A

|q|σ . (1)

We say that α is diophantine if there exist A > 0 and σ ≥ 0 such that α is diophantine of
type (A, σ).

Remark 1.1.
• If α is deterministic (that is, is a constant random variable), then we obtain the classical

definition of diophantine number and, if the set of realizations of α is a finite set
{α1, . . . , αm}, then α is diophantine if and only if α1, . . . , αm are simultaneously
diophantine.

• If α has positive probability to be a diophantine number, then α is a diophantine
random variable.

• Contrary to the deterministic case, it can happen that σ = 0. It is for example the case
if α is uniform on T by a simple computation (or more generally if the law of α is not
Lebesgue singular, by a consequence of the Riemann Lebesgue lemma).

To check the second point, consider the sets EA,σ of x in T such that for every q in
Z

∗, dist(qx, Z) ≥ A/|q|σ . If α has positive probability to be diophantine, then there must
exist A and σ such that α belongs to EA,σ with positive probability p and then for all q ∈
Z

∗, ‖dist(qα, Z)‖L2(�) ≥ (A/|q|σ )√p.
Our first theorem gives a precise estimate for the Lyapunov exponent of a random

diffeomorphism f = rα + ζ when f is a perturbation (in a smooth sense) of order ε of a
random rotation rα with α diophantine. We obtain a quadratic estimate λ = O(ε2) (instead
of the obvious bound λ = O(ε)) and a formula for the quadratic term. In the statement of
the theorem, a term O(M) means a term bounded by CM with C a constant depending
only on A and σ .

THEOREM 1. Let α be a diophantine random variable of type (A, σ). Then there exists an
integer k depending only on σ such that for any random diffeomorphism in Diffk+(T) of the
form f = rα + ζ and for any Lyapunov exponent λ associated to any stationary measure
of f , we have

λ = −1
2
E

∫
T

(ζ′ + η′ − η′ ◦ rα)2 dx +O(ε3)

(and so λ = O(ε2)), where ε = ‖dk(f , rα)‖L3(�) = E[dk(f , rα)3]1/3, and where η is
a deterministic map depending linearly on ζ and satisfying |η′| = O(ε). The non-zero
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Fourier coefficients of η are given by the formula

η̂(p) = E[ζ̂(p)e−2iπpα]
1 − E[e−2iπpα]

. (2)

The formula (2) can also be rewritten by the Parseval identity as

λ = −1
2
E

∑
p∈Z∗

p2
∣∣∣∣ζ̂(p)+ E[ζ̂(p)e−2iπpα]

1 − E[e−2iπpα]
(1 − e2iπα)

∣∣∣∣2 +O(ε3).

Remark 1.2. Our method can actually allow us to obtain the higher terms in the Taylor
expansion of λ, of the form λ = ∑n−1

j=2 qj (ζ)+O(εn), where qj (ζ) is a j -linear form
evaluated at (ζ, . . . , ζ).

In the next theorem we prove that if f is a random diffeomorphism close to rotations
whose rotation number ρ(f ) is diophantine, then λmeasures in an explicit sense how close
to rotations f can be (smoothly) conjugated by a deterministic diffeomorphism. Note that
λ is indeed a natural obstruction to the existence of such a diffeomorphism because λ is
invariant under conjugation.

THEOREM 2. Let (A, σ) be a couple of positive real numbers. There exists an integer r
depending only on σ such that for any integer K larger than r , there exists in DiffK+ (T) a
neighbourhood U of the set of rotations such that for any random diffeomorphism f valued
in U whose rotation number α = ρ(f ) is (A, σ)-diophantine, there exists in DiffK−r+ (T) a
(non-random) diffeomorphism h such that

‖d0(hf h
−1, rα)‖L2(�) ≤ 3|λ|1/2

for any Lyapunov exponent λ associated to a stationary measure of f , with h satisfying
dK−r (h, Id) ≤ C‖dK(f , rα)‖L2(�) for some C depending on A, σ and K .

The constant 3 in the inequality above is not optimal. By analysing carefully our proof
we could actually replace it by any number larger than

√
2. However, the bound |λ|1/2 is

essentially optimal since, by Theorem 1, |λ|1/2 = O(dk(hf h
−1, rα)) for some integer k.

The number r represents the ‘loss of derivative’. As a result of our proof it can be made
explicit as an affine function of σ , though we did not try to obtain an optimal expression.

Remark 1.3. If λ = 0 and f is valued in a finite set {f1, . . . , fm}, the theorem gives
a smooth diffeomorphism h conjugating simultaneously f1, . . . , fm to rotations. This
particular case can actually be obtained by using a succession of already known results:
f is minimal by the Denjoy theorem (the diophantine condition implies that at least one
of the rotation numbers ρ(fi) is irrational), so if λ = 0 the maps fi are simultaneously
C0-conjugated to rotations r1, . . . , rm and so pairwise commute (see Proposition 1.1).
Then one can use a result of Moser [11] which generalizes the classical works of Arnold
[1] and Moser on the linearization of a single map close to rotations in the case of several
commuting maps, and which states that under the diophantine condition given in the
assumption, the conjugacy h can be taken smooth and close to the identity with the estimate
dK−r (h, Id) = O(supj dK(fj , rj )).
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Since the maps close to rotations almost commute, we can deduce from Theorem 2 the
following corollary.

COROLLARY 1. Let (A, σ) be a couple of positive real numbers. Then there exist an
integer k and a neighbourhood U of the set of rotations in Diffk+(T) such that for any
random diffeomorphism f valued in U , if α = ρ(f ) is (A, σ)-diophantine, then, by
denoting by f̃ an independent copy of f , we have

‖d0(f ◦ f̃ , f̃ ◦ f )‖L2(�) ≤ C|λ|1/2

for any Lyapunov exponent λ associated to a stationary measure of f , where C is a
universal constant.

By Theorem 2, there exist an integer k and a neighbourhood U of rotations in Diffk(T)
such that for f valued in U , there exists h in Diff1+(T) with max(h′, (h−1)′) ≤ 2 such
that f1 = hf h−1 satisfies ‖d0(f1, rα)‖L2(�) ≤ 3|λ|1/2. Then, setting f̃1 = hf̃ h−1 and
α̃ = ρ(f̃ ), we deduce that ‖d0(f̃1 ◦ f1, rα+α̃)‖L2(�) ≤ 6|λ|1/2 and so ‖d0(f1 ◦ f̃1, f̃1 ◦
f1)‖L2(�) ≤ 12|λ|1/2 and finally by the mean value inequality ‖d0(f ◦ f̃ , f̃ ◦ f )‖L2(�) ≤
48|λ|1/2.

Remark 1.4. One could expect a converse inequality by using Moser’s ideas [11] to obtain
a diffeomorphism h such that ‖dK−r (hf h−1, rα)‖L2(�) � ‖dK(f ◦ f̃ , f̃ ◦ f )‖L2(�) and
then deduce from Theorem 1 that |λ|1/2 � ‖dK(f ◦ f̃ , f̃ ◦ f )‖L2(�) for some K .

The proof of Theorem 2 follows a ‘KAM scheme’ (from the so-called Kolmogorov–
Arnold–Moser theory): in the same way as the Arnold linearization theorem [1] for a single
diffeomorphism or the Moser linearization theorem [11] for commuting diffeomorphisms,
we linearize the equation hf h−1 = rα at h = Id, f = rα so that a solution of the linear
equation gives an approximate solution of the initial equation and thus define a conjugation
h such that hf h−1 is closer to rotations than f . We prove that this can be achieved if the
obstruction λ is small enough by using the estimate given by Theorem 1. Then we reiterate
the process in order to conjugate f to random diffeomorphisms fn closer and closer to
rotations. Thanks to the diophantine condition, we bound theCk norms of the conjugations
(though there is a loss of derivatives phenomenon as almost always in these kinds of KAM
schemes but that can be handled by standard methods). The assumption ρ(f ) = α ensures
that the diophantine condition is satisfied at each step of the process. Finally, if λ = 0, we
check that the sequence of conjugations converges and gives a conjugation between f and
rα and, if λ �= 0, we stop the process when λ becomes large in front of dist(fn, rα) and it
gives the wanted conjugation.

This scheme of the proof is similar to the one in the paper of Dolgopyat and Krikorian
[6], where they proved an analogous result on the sphere Sd for d ≥ 2 (though only for the
case λ = 0).

1.2. Lyapunov exponent of random product of matrices. Our techniques also apply to
estimate the Lyapunov exponent of the product of i.i.d. random 2 × 2 matrices close to
rotation matrices, by studying the action on the projective line, identified to T. And in this
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case we do not require a diophantine condition on the angle of the rotation but only a weak
non-degeneracy condition.

Let ‖ · ‖ be a norm in M2(R). Let M be a random variable in GL2(R) such that
E[| ln+ ‖M‖] < +∞. It is a well-known result of Furstenberg and Kesten [8] that if
(Mn)n∈N is a sequence of independent copies of M , then the limit

� = lim
n→∞

ln ‖Mn−1 · · ·M0‖
n

exists almost surely, is not random and does not depend on the norm. We call this number
the Lyapunov exponent of M .

For α ∈ T, we denote by Rα the rotation matrix of angle πα, that is to say,

Rα =
(

cos πα − sin πα
sin πα cos πα

)
.

The following theorem is the analogue of Theorem 1 for a random product of matrices.

THEOREM 3. Let α be a random variable in T which does not belong almost surely
to {0, 1

2 }. Let M be a random variable in SL2(R) of the form M = Rα + E. Let ε =
E[‖E‖3]1/3, which we assume to be finite, and let � be the Lyapunov exponent of M .
Then

� = 1
8
E

(∣∣∣∣Zeiπα − E[Zeiπα]
(

1 − e2iπα

1 − E[e2iπα]

)∣∣∣∣2)+O(ε3),

where

Z = (a + d)+ i(b − c) = Tr(E)+ iTr(ER1/2)

(in particular, � = O(ε2)). If α is constant (that is, non-random), the formula simplifies
and becomes

� = 1
8
E[|Z − E[Z]|2] +O(ε3) = Var(Z)

8
+O(ε3).

The term O(ε3) represents here a quantity bounded by Cε3, where C is a constant
depending only on α (and is actually uniformly bounded on the sets {‖d(α, {0, 1

2 }‖L2(�) ≥
const.}).
Remark 1.5.
• In the general case M ∈ GL2(R) (instead of SL2(R)), we can also obtain a Taylor

expansion of its Lyapunov exponent � by applying the theorem to estimate the
Lyapunov exponent �̃ of M̃ = M/

√
det(M), since then � = �̃+ 1

2E[ln(det(M))].
• As in Theorem 1, the method can be generalized to obtain a Taylor expansion of any

order, but it requires more restrictions on α: to obtain an expansion of order q, α must
not belong a.s. to {0, 1/q, . . . , (q − 1)/q}.

• We can obtain from the theorem an estimate of Pastur and Figotin [12] for the
Lyapunov exponent of a Schrodinger matrix with small random potential: if M =
( E−gV −1

1 0 ), with E = 2 cos(θ) ∈ ]−2, 2[ − {0} and V a random real variable having
a third moment, then M is conjugated to Rθ + gV ( 1 cot θ

0 0 ) and then, by Theorem 1,
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when g tends to 0,

� = Var(V )

8 sin2 θ
g2 +O(g3) = Var(V )

2(4 − E2)
g2 +O(g3).

The following theorem is the analogue of Theorem 2 for a random product of matrices.

THEOREM 4. Let R be the set of rotation matrices. For any δ > 0, there exists a
neighbourhood U of R in SL2(R) such that for any random variable M in U satisfying
‖Tr(M)‖L2(�) ≤ 2 − δ, there exists P ∈ SL2(R) such that

‖d(PMP−1, R)‖L2(�) ≤ C�1/2,

where� is the Lyapunov exponent ofM and C is a constant depending only on the chosen
norm on M2(R). Moreover, ‖P − I2‖ ≤ C′‖d(M , R)‖L2(�) for some C′ depending on δ
and the norm.

From the proof it should not be difficult to obtain an explicit constant C for a given
norm. The assumption ‖Tr(M)‖L2(�) ≤ 2 − δ gives a control of the average ellipticity of
M and should be seen as the analogue of the the diophantine condition on ρ(f ) in the
nonlinear case.

We also deduce the same corollary as in the nonlinear case (with the same proof).

COROLLARY 2. For any δ > 0, there exists a neighbourhood U of R in SL2(R) such that
for any random variableM in U satisfying ‖Tr(M)‖L2(�) ≤ 2 − δ, if M̃ is an independent
copy of M , we have

E[‖MM̃ − M̃M‖2] ≤ C�,

where� is the Lyapunov exponent ofM and C is a constant depending only on the chosen
norm on M2(R).

From the proof it should not be difficult to obtain an explicit constant C for a given
norm. Moreover, by using compactness arguments in M2(R), we can deduce global results
in more specific contexts, but then one can no longer hope to obtain explicit constants
without additional work. Here is an example of a global result.

COROLLARY 3. Letm be an integer and let δ and C0 be two positive numbers. Then there
existsC > 0 such that for any matricesA1, . . . , Am in SL2(R) satisfying |Tr(Ai)| ≤ 2 − δ

(control of the ellipticity) and ‖Ai‖ ≤ C0 (control of the norm), we have

sup
i,j

‖AiAj − AjAi‖ ≤ C�1/2,

where � is the Lyapunov exponent of the uniformly distributed random matrix in
{A1, . . . , Am}.
Proof. Let us consider � as a function of A1, . . . , Am on SL2(R)

m. It is known by [3]
that this function is continuous. In particular, it is continuous on the compact subset

K = {(A1, . . . , Am), ‖Ai‖ ≤ C0, |Tr(Ai)| ≤ 2 − δ}

https://doi.org/10.1017/etds.2021.22 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.22


Lyapunov exponent of random dynamical systems on the circle 2087

(the continuity of� is actually a lot easier to prove on this subset K thanks to the ellipticity
condition |Tr(Ai)| ≤ 2 − δ).

Moreover, if the function � vanishes at a point (A1, . . . , Am), then by the classical
Furstenberg theorem [7] (and the ellipticity condition) the matrices Ai commute. Thus,
there exists P in SL2(R) such that PAiP−1 is a rotation for every i and, using that
‖Ai‖ ≤ C0 and |Tr(Ai)| ≤ 2 − δ, one can actually choose P with a bound ‖P ‖ ≤ C1 for
some constant C1 depending only on C0 and δ (we leave this detail to the reader).

Let U be the open set given by Corollary 2 and let

V =
⋃

‖P ‖≤C1

(PUP−1)m ⊂ SL2(R)
m.

Then � is continuous and does not vanish on the compact set K \ V; hence, � ≥ m for
some m > 0. Then:
• if (A1, . . . , Am) ∈ V , there is P in Sl2(R) with ‖P ‖ ≤ C1 such that

Bi = PAiP
−1 ∈ U for every i, by Corollary 2 ‖BiBj − BjBi‖ ≤ C�1/2 for some

constant C, and then ‖AiAj − AjAi‖ ≤ C′�1/2 for some new constant C′ = CC2
1 ;

• if (A1, . . . , Am) /∈ V , then � ≥ m so ‖AiAj − AjAi‖ ≤ 2C2
0 ≤ C�1/2 with C =

2C2
0/m

1/2.

Remark 1.6. In the corollary above, one can actually obtain also a converse inequality
supi,j ‖AiAj − AjAi‖ ≥ c�1/2, by using that we can find P with bounded norm and
rotation matrices Ri so that supi ‖PAiP−1 − Ri‖ � supi,j ‖AiAj − AjAi‖ and then by
using Theorem 3 to get � � (supi ‖PAiP−1 − Ri‖)2.

2. Preliminaries
2.1. Some Ck estimates. We begin by stating various estimates in Diffk+(T). All of them
are classical estimates of KAM theory. Nevertheless, we give proofs in an appendix (§A).

A key tool is the so-called Kolmogorov inequality.

PROPOSITION 2.1. (Kolmogorov inequality) For any integers j ≤ k and for any ϕ in
Ck(T),

‖ϕ‖j ≤ C‖ϕ‖j/kk ‖ϕ‖1−j/k
0 , (3)

where C is a constant depending only on k.

The three following propositions give Ck estimates of gfg−1 when f is a diffeomor-
phism close to a rotation rα and g is a diffeomorphism close to Id. The first estimate allows
us to bound the large Ck norms of such a conjugation.

PROPOSITION 2.2. Let f , g be in Diffk+(T) and let α be in T with d1(f , rα) ≤ 1 and
d1(g, Id) ≤ 1

2 . Then

dk(gfg
−1, rα) ≤ C(dk(f , rα)+ dk(g, Id)),

where C is a constant depending only on k.
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The assumption of the bound 1 for d1(f , Id) is arbitrary and could be replaced by any
other number. In the same way the bound 1

2 for d1(g, Id) could be replaced by any number
less than 1.

The second estimate bounds the distance between two conjugations in a function of the
distance between the conjugacies.

PROPOSITION 2.3. Let f , g and g̃ be in Diff1+(T) and let α be in T, with d1(f , rα) ≤ 1,
d1(g, Id) ≤ 1

2 and d1(g̃, Id) ≤ 1
2 . Then

d0(gfg
−1, g̃f g̃−1) ≤ C0d0(g, g̃),

where C0 is an absolute constant.

Remark 2.1. It is actually more generally possible to bound dk(gfg
−1, g̃f g̃−1) as a

function of dk(g, g̃), but we will not need it.

The third estimate gives a classical linear approximation of gfg−1.

PROPOSITION 2.4. Let k ≥ 2, let f , g be in Diff2+(T) and let α be in T. Writing f =
rα + ζ, g = Id + η and denoting ε = max(‖ζ‖2, ‖η‖2), we have

gfg−1 = rα + (ζ + η ◦ rα − η)+ R,

where R is a quadratic remainder satisfying ‖R‖1 ≤ Cε2 for some absolute constant C.

Remark 2.2. The ε2 upper bound can actually be replaced by the more precise term
max(‖ζ‖2, ‖η‖2) · max(‖ζ‖0, ‖η‖0). There also exists a Ck version of this estimate.

We conclude with a last required estimate.

PROPOSITION 2.5. Let f , g, h be in Diffk+(T) with dk(h, Id) ≤ 1. Then

dk(f ◦ h, g ◦ h) ≤ Cdk(f , g),

where C is a constant depending only on k.

Remark 2.3. The assumption dk(h, Id) ≤ 1 is strong (in the previous propositions we only
assumed bounds on C1 distances). Under the weaker assumption d1(h, Id) ≤ 1 we actually
have dk(f ◦ h, g ◦ h) ≤ C(1 + dk(h, Id))dk(f , g).

2.2. Cohomological equation. We fix a random rotation rα = Id + α and a perturbation
f = rα + ζ of rα . We assume that α is (A, σ)-diophantine. We will assume that σ is an
integer, in order to avoid the use of Ck-norms with k a non-integer. It is obviously not a
restriction since we can replace σ by [σ ] + 1.

We denote respectively by T0 and T the transfer operators of rα and f . That is, for any
map ϕ : T → R,

T0ϕ = E[ϕ ◦ rα], T ϕ = E[ϕ ◦ f ].

Since f is a perturbation of rα , T is a perturbation of T0. Note also that a measure μ is
stationary for f if and only if

∫
ϕ dμ = ∫

T ϕ dμ for any map ϕ ∈ C(T).
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The understanding of stationary measures is naturally related to the understanding of
the cohomological equation ϕ − T ϕ = ψ . Our main ingredient in our proofs is that the
approximated cohomological equation ϕ − T0ϕ = ψ is easily solvable in ϕ by Fourier
methods, in the same way as in the classical deterministic case: the equation can be
rewritten

for all q ∈ Z, ϕ̂(q)(1 − E[e2iπqα]) = ψ̂(q).

For q = 0, we get the obvious restriction ψ̂(0) = ∫
T
ψ(x) dx = 0 and, for q �= 0, if qα is

not almost surely an integer (which is the case for α diophantine), then E[e2iπqα] �= 1 and
we obtain ϕ̂(q) = ψ̂(q)/(1 − E[e2iπqα]). It leads us to define the following operator U :
for ψ : T → R,

Uψ(x) =
∑
q∈Z∗

ψ̂(q)

1 − E[e2iπqα]
e2iπqx ,

a priori well defined at least if ψ is a trigonometric polynomial. If φ = Uψ is well defined,
then it is the unique solution of the equation

ϕ − T0ϕ = ψ −
∫
T

ψ(x) dx

such that
∫
T
ϕ dx = 0.

It is also convenient to define its adjoint U by

Uψ(x) =
∑
q∈Z∗

ψ̂(q)

1 − E[e−2iπqα]
e2iπqx ,

so that for any trigonometric polynomials ψ1 and ψ2 we have∫
T

Uψ1(x)ψ2(x) dx =
∫
T

ψ1(x)Uψ2(x) dx.

The following lemma states that under the diophantine condition, U and U are actually
well defined on sufficiently smooth maps and are bounded up to some loss of derivative.

LEMMA 2.1. Let k0 = 2σ + 2. Then the operators U and U are well defined on
Ck0(T) and, for any integer k, if ψ ∈ Ck+k0(T), then Uψ ∈ Ck(T) and ‖Uψ‖k ≤
(1/A2)‖ψ‖k+k0 . The same estimate holds if we replace U by U .

Proof. It is enough to prove that for any integer k the inequality ‖Uψ‖k ≤ (1/A2)‖ψ‖k+k0

holds for any trigonometric polynomial ψ (the same estimate for U follows by replacing α
with −α). To estimate ‖Uψ‖k , we are going to bound for q �= 0 the Fourier coefficient

|Ûψ(q)| =
∣∣∣∣ ψ̂(q)

1 − E[e2iπqα]

∣∣∣∣.
The numerator can be bounded from above by

|ψ̂(q)| ≤ ‖ψ‖k+k0

(2π |q|)k+k0
. (4)
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To bound the denominator from below, we use that for any real number x, writing x =
k + θ with k ∈ Z and |θ | = d(x, Z) ≤ 1

2 , we have

1 − cos(2πx) = 2(sin(πx))2 = 2(sin(πθ))2 ≥ 2
(

2
π
πθ

)2

= 8d(x, Z)2 ≥ d(x, Z)2

and hence, by using the diophantine condition (1),

|1 − E[e2iπqα]| ≥ 1 − E[cos(2πqα)]

≥ E[d(qα, Z)2]

≥ A2

|q|2σ . (5)

Thus, (4) and (5) give, using that k0 = 2σ + 2,

|Ûψ(q)| ≤ ‖ψ‖k+k0

(2π)k+k0A2|q|k+2 .

Consequently,

‖Uψ‖k ≤
∑
q∈Z∗

|2πq|k|Ûψ(q)| ≤ 1
(2π)k0A2

( ∑
q∈Z∗

1
|q|2

)
‖ψ‖k+k0 ≤ 1

A2 ‖ψ‖k+k0

since 1/(2π)k0
∑
q∈Z∗(1/|q|2) ≤ (1/(2π)2)(π2/3) = 1/12.

3. Proof of Theorem 1
We fix a random rotation rα and a perturbation f = rα + ζ, and we assume that α is
(A, σ)-diophantine. The operators T0, T , U and U are defined as in the previous section.
We are going to obtain a Taylor expansion for the stationary measures of f and the
associated Lyapunov exponents.

3.1. Estimate of the stationary measures.

PROPOSITION 3.1. If μ is a stationary measure for f , then∫
T

ϕ dμ =
∫
T

ϕ dx +O(ε‖ϕ‖k1) =
∫
T

ϕ dx +
∫
T

(U ζ̄)ϕ′ dx +O(ε2‖ϕ‖k2),

where k1 = 2σ + 3, k2 = 4σ + 6, ζ̄ = E[ζ ◦ r−α] and ε = E[‖ζ‖2
k1

]1/2.

(As before, O(M) is a notation for a quantity bounded by CM , where C is a constant
depending only on A and σ .)

Proof. To prove the first equality of the statement, we start from the Taylor formula of
order 0: ϕ ◦ f = ϕ ◦ rα +O(‖ζ‖0‖ϕ‖1) and we take the expectation, so

T ϕ = T0ϕ +O(ε‖ϕ‖1).

Then we use the invariance of μ:∫
T

(ϕ − T0ϕ) dμ = O(ε‖ϕ‖1).
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For ψ in C2σ+3(T), we apply the previous formula to ϕ = Uψ and we get, thanks to
Lemma 2.1 with k = 1, ∫

T

ψ dμ =
∫
T

ψ dx +O(ε‖ψ‖2σ+3). (6)

That gives the first equality.
To prove the second equality of the statement, we use this time a Taylor formula of

order 1:

T ϕ = T0ϕ + E[(ϕ′ ◦ rα)ζ] +O(ε2‖ϕ‖2).
Using the invariance of μ, the first estimate (6) and the inequality ‖uv‖k ≤ 2k‖u‖k‖v‖k (a
consequence of the Leibnitz formula), we get∫

T

(ϕ − T0ϕ) dμ =
∫
T

E[(ϕ′ ◦ rα)ζ] dμ+O(ε2‖ϕ‖2)

=
∫
T

E[(ϕ′ ◦ rα)ζ] dx +O(ε2‖ϕ‖2 + ε‖E[(ϕ′ ◦ rα)ζ]‖2σ+3)

=
∫
T

ϕ′ζ̄ dx +O(ε2‖ϕ‖2σ+4).

As before, for ψ in C4σ+5(T), we take ϕ = Uψ to get, thanks to Lemma 2.1 with k =
2σ + 4, ∫

T

ψ dμ =
∫
T

ψ dx +
∫
T

(Uψ)′ζ̄ dx +O(ε2‖Uψ‖2σ+4)

=
∫
T

ψ dx +
∫
T

ψ ′(U ζ̄) dx +O(ε2‖ψ‖4σ+6).

Remark 3.1. We got that μ can be approximated by the density h0 = 1 with accuracy ε,
and by the density h1 = 1 − U ζ̄′ with accuracy ε2 (omitting the detail of the Ck-norms
involved). We can easily generalize the method to have higher accuracy. Once having
defined an approximation hn−1 with accuracy εn−1, we write T ϕ = T0ϕ + T1ϕ + · · · +
Tn−1ϕ +O(εn‖ϕ‖), where Tkϕ = (1/k!)E[(ϕ(k) ◦ rα)ζk]. By a computation similar to
the one in the proof, we get

∫
(ϕ − T0ϕ) dμ = ∑n−1

k=1
∫
T
ϕTkhn−k dx +O(εn‖ϕ‖), where

Tkϕ = (−1k/k!)E[(ϕ(k)ζk) ◦ r−1
α ]. Then we apply this to ϕ = Uψ and we obtain that the

density hn = 1 +∑n−1
k=1 U Tkhn−k approximates μ with accuracy εn.

3.2. Estimate of the Lyapunov exponents. Thanks to Proposition 3.1, we can estimate
the Lyapunov exponents of f .

PROPOSITION 3.2. Let k0 = 4σ + 7. If μ is a stationary probability for f and λ is the
associated Lyapunov exponent, then

λ = −1
2
E

∫
T

(ζ′ − (U ζ̄)′ ◦ rα + (U ζ̄)′)2 dx +O(ε3),

where ζ̄ = E[ζ ◦ r−α] and ε = E[‖ζ‖3
k0

]1/3.

This will conclude the proof of Theorem 1, setting η = U ζ̄.

https://doi.org/10.1017/etds.2021.22 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.22


2092 D. Malicet

Proof. Let η = U ζ̄, g = Id − η, f̃ = gfg−1 (‖η‖1 = O(ε), so g is invertible if ε is small
enough), ζ̃ = f̃ − rα and μ̃ = g∗μ. If ϕ is in C4σ+5(T), then, thanks to Proposition 3.1,
writing ϕ ◦ g = ϕ − ϕ′η +O(ε2), we have, keeping the notation k1 = 2σ + 3 and k2 =
4σ + 6,∫

T

ϕ dμ̃ =
∫
T

ϕ ◦ g dμ

=
∫
T

ϕ dμ−
∫
T

ϕ′η dμ+O(ε2‖ϕ‖2)

=
( ∫

T

ϕ dx +
∫
T

ϕ′η dx
)

−
∫
T

ϕ′η dx +O(ε2‖ϕ‖k2 + ε‖η‖k1‖ϕ′‖k1)

=
∫
T

ϕ dx +O(ε2‖ϕ‖k2),

where we used Lemma 2.1 to get ‖η‖k1 = O(‖ζ̄‖k1+2σ+2) = O(ε). Thus, μ̃ is ‘ε2-close’
to Lebesgue measure.

The Lyapunov exponent λ of f associated to μ is equal to the Lyapunov exponent of
f̃ associated to μ̃ (this invariance of Lyapunov exponent under conjugation follows by
taking the expectation and integrating with respect to μ the equality ln((gfg−1)′) ◦ g =
ln f ′ + (ln g′ ◦ f − ln g′)). We use this fact and the previous computation to estimate λ.
We also use that by Proposition 2.2, ‖ζ̃‖k = O(‖ζ‖k + ‖η‖k) and that, by Proposition 2.4,
ζ̃′ = (ζ′ − η′ ◦ rα + η′)+ R with E[R2]1/2 = O(ε2). Then

λ = E

∫
T

ln(1 + ζ̃′) dμ̃

= E

∫
T

(ζ̃′ − ζ̃′2/2) dμ̃+O(ε3)

= E

∫
T

(ζ̃′ − ζ̃′2/2) dx +O(ε3)

= −1
2
E

∫
T

ζ̃′2 dx +O(ε3)

= −1
2
E

∫
T

(ζ′ − η′ ◦ rα + η′)2 dx +O(ε3).

Remark 3.2. A quicker way to obtain an estimate of λ is to skip the construction of
the conjugacy g and to directly expand E

∫
ln f ′(x) dμ(x) by using Proposition 3.1.

The method we used has two advantages, though: it makes appear a main term clearly
non-positive in the expansion of λ, and in the context of Theorem 2 the conjugation by
g will be the first step of the KAM scheme in order to conjugate f to a diffeomorphism
closer to rotations.

4. Proof of Theorem 2
4.1. Preliminaries. We begin by introducing some convenient notation: if u is a random
variable valued in Ck(T), we set

|||u|||k = E[‖u‖2
k].
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To avoid the profusion of constants, if k is an integer, we write X �k Y if X ≤ CY

with C a constant depending only on A, σ and k, or simply X � Y if C depends only on
A and σ .

Another important tool is the smoothing operators, allowing us to fix the loss of
derivative phenomenon which will occur in the KAM scheme. Here we are going to simply
use Fourier truncation, which does not give the optimal estimates but is sufficient for our
purpose. So, for ϕ : T → R and T ≥ 0, we denote⎧⎪⎪⎪⎨⎪⎪⎪⎩

ST ϕ(x) =
∑

|p|≤T
ϕ̂(p)e2iπpx ,

RT ϕ(x) =
∑

|p|>T
ϕ̂(p)e2iπpx .

Then we have the standard Fourier estimates.

PROPOSITION 4.1. For any integers j and k with j < k, we have⎧⎪⎨⎪⎩
for all ϕ ∈ Cj(T), ‖ST ϕ‖k �k T

k−j+1‖ϕ‖j ,

for all ϕ ∈ Ck(T), ‖RT ϕ‖j �k

‖ϕ‖k
T k−j−1 .

(7)

4.2. First conjugation. In this section we fix a random diffeomorphism f = rα + ζ with
α = ρ(f ) diophantine of type (A, σ), and λ a Lyapunov exponent of f associated to some
stationary measure μ. We assume that f is valued in the open set

U0 = {
h ∈ Diff1+(T), |h′ − 1| < 1

2

}
.

In other words, U0 is the 1
2 -neighbourhood of the set of rotations in Diff1+(T).

LEMMA 4.1. Let k0 = 4σ + 7 and r = 2σ + 2. There exists C0 > 0 depending only
on A and σ so that f is conjugated by a deterministic diffeomorphism g = Id − η to
f̃ = gfg−1 = rα + ζ̃ such that either

|||ζ̃|||0 ≤ 3|λ|1/2 or |||ζ̃|||0 ≤ C0|||ζ|||3/2k0
,

with η satisfying that for any integer K ≥ r ,

‖η‖K−r �K |||ζ|||K .

Proof. We begin with the same setting as in Proposition 3.2. First we set η = U ζ̄, which
satisfies the inequality ‖η‖K−r �K |||ζ|||K by Lemma 2.1. In particular, ‖η‖1 � |||ζ|||k0 , so
we can assume that |||ζ|||k0 is small enough so that ‖η‖1 < 1/7 (if not, then g = Id satisfies
the conclusion of the statement). Then we set g = Id − η, which is invertible, f̃ = gfg−1,
ζ̃ = f̃ − rα and μ̃ = g∗μ.

Now we follow the computation of the proof of Proposition 3.2 with one slight
difference: we cannot expand ln(1 + ζ̃′) at order 3 because we do not have a good bound
for the third moment of ‖ζ‖1. Instead we use that for every t in ] − 1, 1[, we have
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ln(1 + t) ≤ t − 1
4 t

2. We can apply this inequality to t = ζ̃′ because f ∈ U0, so

f̃ ′ ≤ sup(f ′)(sup(g′)/inf(g′)) < (1 + 1
2 )

1+1/7
1−1/7 = 2

and so −1 < ζ̃′ < 1. We get

λ = E

∫
T

ln(1 + ζ̃′) dμ̃ ≤ E

∫
T

(ζ̃′ − ζ̃′2/4) dμ̃ = −1
4

∫
T

ζ̃′2 dx +O(|||ζ|||2k0
)

and hence there exists C depending only on A and σ such that

E

∫
T

ζ̃′2 dx ≤ 4|λ| + C|||ζ|||3k0
.

Next, we notice that for a fixed event, for every a, b, |ζ̃(a)− ζ̃(b)| ≤ ∫
T

|ζ̃′| dx and,
since ρ(f̃ ) = ρ(f ) = α, we have ζ̃(b) = 0 for some b and so ‖ζ̃‖0 ≤ ∫

T
|ζ̃′| dx. Thus,

by Cauchy–Schwarz, ‖ζ̃‖2
0 ≤ ∫

T
ζ̃′2 dx and taking the expectation we get

|||ζ̃|||0 ≤ (4|λ|+C|||ζ|||3k0
)1/2 ≤(max(8|λ|, 2C|||ζ|||3k0

))1/2 = max(3|λ|1/2, √
2C|||ζ|||3/2k0

),

which concludes the proof with C0 = √
2C.

In view of the dichotomy given by this lemma, we will say that ‘λ is an obstruction for
the linearization of f ’ if |λ|1/2 ≥ C0/3|||ζ|||3/2k0

, where C0 and k0 are defined in the lemma.
Thus, if λ is an obstruction, then one can find a conjugacy as stated in Theorem 2 and, if
it is not an obstruction, then f is conjugated to a new random diffeomorphism f̃ closer to
rα and we can hope to iterate the process. However, we cannot directly use the lemma in
an iterating process because of the loss of regularity in the inequality |||ζ̃|||0 ≤ C0|||ζ|||3/2k0

.
We fix that by replacing the conjugation g by a good C∞ approximation. In that way, there
will be no loss of regularity any more (at the cost of a less sharp bound). Precisely, we have
the following result.

LEMMA 4.2. Let k0 = 4σ + 7 and r = 6σ + 11. If λ is not an obstruction for f , then,
for any T ≥ 1, f is conjugated by a diffeomorphism gT = Id − ηT to f̃T = gT fg

−1
T =

rα + ζ̃T such that

for all K ≥ r ,

⎧⎨⎩|||ζ̃T |||k0 �K T
r |||ζ|||3/2k0

+ 1
T K−r |||ζ|||K ,

|||ζ̃T |||K �K T
r |||ζ|||K .

Moreover,

for all K ≥ r , ‖ηT ‖K−r �K |||ζ|||K .

Proof. Let k0 = 4σ + 7 and s = 2σ + 2. Let g = Id − η be the diffeomorphism given by
Lemma 4.1. We set ηT = ST η and gT = Id − ηT . By Lemma 4.1 and Proposition 4.1, we
have for K ≥ s + 1,

‖ηT ‖K−(s+1) �K ‖η‖K−s �K |||ζ|||K . (8)

Applying with K = s + 2 ≤ k0, we have ‖η‖1 � |||ζ|||k0 , so we can assume that |||ζ|||k0 is
small enough so that ‖η‖1 ≤ 1

2 (if not, we set instead gT = Id). Then gT is invertible and
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we can set fT = gT fg
−1
T = rα + ζT . We also have for any K ≥ s + 1,

‖ηT ‖K �K T
s+1‖η‖K−s �K T

s+1|||ζ|||K ,

so, by Proposition 2.2,

|||ζ̃T |||K �K |||ζ|||K + ‖ηT ‖K �K T
s+1|||ζ|||K . (9)

On the other hand, since λ is assumed not to be an obstruction for f , we have, by
Lemma 4.1,

|||gfg−1 − rα|||0 � |||ζ|||3/2k0

and, by Proposition 2.3,

|||gT fg−1
T −gfg−1|||0 �‖gT − g‖0 =‖RT η‖0 �K

1
T K−s−1 ‖η‖K−s�K

1
T K−s−1 |||ζ|||K .

The combination of the two last inequalities gives

|||ζ̃T |||0 = |||gT fg−1
T − rα|||0 �K |||ζ|||3/2k0

+ 1
T K−s−1 |||ζ|||K . (10)

Finally, we write ζ̃T = ST ζ̃T + (ζ̃T − ST ζ̃T ) to use Proposition 4.1 and then by using (9)
and (10) we get

|||ζ̃T |||k0 �K T
k0+1|||ζ̃T |||0 + 1

T K−k0−1 |||ζ̃T |||K�K T
k0+1|||ζ|||3/2k0

+ 1
T K−k0−s−2 |||ζ|||K .

(11)
Thus, with r = k0 + s + 2 = 6σ + 11, (8), (9) and (11) give all the estimates claimed in
the statement.

4.3. KAM iteration. Now we begin the KAM scheme by iterating the conjugation
process given by Lemma 4.2. We fix the numbers k0 and r given by Lemma 4.2, and
we fix a sequence of numbers (Tn)n∈N. We initialize the construction with f0 = f , ζ0 = ζ.
Then, assuming that fn−1 = rα + ζn−1 is defined, if we have the two conditions:
(1) fn−1 ∈ U0 a.s.;
(2) λ is not an obstruction for fn−1, that is, |λ|1/2 ≤ C0/3|||ζn−1|||3/2k0

,
then Lemma 4.2 applies, so that by choosing T = Tn we get a conjugation gn−1 = Id −
ηn−1 and a random diffeomorphism fn = gn−1fn−1g

−1
n−1 = rα + ζn satisfying for K ≥ r⎧⎪⎪⎨⎪⎪⎩

|||ζn|||K �K T
r
n |||ζn−1|||K ,

|||ζn||n|k0 �K T
r
n |||ζn−1|||

3
2
k0

+ 1

T K−r
n

|||ζn−1|||K
and

‖ηn−1‖K−r �K T
r
n |||ζn−1|||K .

If one of the two conditions is not satisfied, then we stop the process. Thus, we get a
sequence of random diffeomorphisms (fn)n<N , where N ∈ N ∪ {+∞}.

We choose Tn as follows: Tn = 2Q
n
, whereQ is any number in (1, 3

2 ). With this choice,
we prove that the large Ck-norms of ζ do not blow up too fast while the small Ck-norms
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decrease quickly. Note that in the following we consider Q as fixed, for example, Q = 4
3 ,

so we will not explicitly state the dependence of the constants on Q.

LEMMA 4.3. There exist integers p and K0 depending only on σ such that for any K ≥
K0, if ε = |||ζ|||K is small enough, then, for any n < N ,⎧⎪⎨⎪⎩

|||ζn|||K �K T
p
n ε,

|||ζn|||k0 �K

1

T
K−p
n

ε.

Proof. There exists a constant C depending only on A, σ and K such that for any n < N ,⎧⎪⎨⎪⎩
|||ζn|||K ≤ CT rn |||ζn−1|||K ,

|||ζn|||k0 ≤ C

(
T rn |||ζn−1|||3/2k0

+ 1

T K−r
n

|||ζn−1|||K
)

.

By iteration of the first inequality we have for any n ≥ 1,

|||ζn|||K ≤ Cn(Tn · · · T1)
r |||ζ0|||K ≤ Cn2r(Q+Q2+···+Qn)ε ≤ Cn2(rQ/(Q−1))Qnε

and hence |||ζn|||K �K T
s
n ε, where s = (2rQ/(Q− 1)). That proves the first part of the

statement if p ≥ s.
Let εn = |||ζn|||k0 . Using in the second inequality that |||ζn−1|||K �K T

s
n ε, we obtain, up

to modifying the constant C,

εn ≤ C

(
T rn ε

3/2
n−1 + 1

T
K−p
n

ε

)
,

where we have set p = r + s. If K is large enough and ε small enough, we are going to
prove by induction that for every n < N ,

εn ≤ 2Cε

T
K−p
n

. (12)

It holds for n = 0 if C ≥ 2K , which we can assume up to changing C one more time. Now,
for n < N , let us assume that εn−1 ≤ (2Cε/(T K−p

n−1 )). Then if ε is small enough, we have

ε
3/2
n−1 ≤ 1

T
3/2(K−p)
n−1

(2Cε)3/2 ≤ 1

T
3/2Q(K−p)
n

ε

and so

εn ≤ Cε

(
1

T
(3/2Q)(K−p)−r
n

+ 1

T
K−p
n

)
,

which implies that

εn ≤ 2Cε

T
K−p
n

provided that 3/2Q(K − p)− r ≥ K − p or equivalently (since 3/2Q > 1)

K ≥ p + s
1

(3/2Q)− 1
.
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If it is satisfied, then (12) is proved by induction for any n < N . That concludes the proof
of the lemma, choosing K0 = �p + s(1/(3/2Q)− 1)�.

In the following we fix the integer K0 given by Lemma 4.3, and an integer K ≥ K0.

LEMMA 4.4. There exists q depending only on σ such that if ε = |||ζ|||K is small enough,
then, for any n < N , |||ζn|||K−q �K (1/Tn)ε and ‖ηn‖K−q �K (1/Tn)ε.

Proof. Let p be as in the previous lemma and let K ≥ K0. If ε is small enough, we
have |||ζn|||K �K T

p
n ε and |||ζn|||0 �K (1/T

K−p
n )ε, so by the Kolomogorov inequality

(Proposition 2.1), for any k ≤ K , we have

|||ζn|||K−k �K |||ζn|||k/K0 |||ζn||n|K−k/K
K �K

ε

T τn

with

τ = k

K
(K − p)−

(
K − k

K

)
p = k − p.

In particular, |||ζn|||K−q �K (1/Tn)ε if q ≥ p + 1, and ‖ηn‖K−q �K |||ζn|||K−q+r �K

(1/Tn)ε if q − r ≥ p + 1. So, we get the result with q = p + 1 + r .

Now we consider the compositions hn = gn−1 ◦ · · · ◦ g0, so that fn = hnf h
−1
n . The

diffeomorphisms hn satisfy the following estimates.

LEMMA 4.5. Let q be as in the previous lemma. If ε = |||ζ|||K is small enough, then, for
any n < N , dK−q(hn, Id) �k ε and

∑
n<N dK−q(hn, hn−1) �K ε.

Proof. Let δn = dK−q(hn, Id). For a fixed n, let us assume that δj ≤ 1 for j =
0, . . . , n − 1. Then, by Proposition 2.5 and Lemma 4.4,

dK−q(hn, hn−1) �K dK−q(gn, Id) �K

ε

Tn

and so

δn ≤
∑
j<n

dK−q(hj , hj−1) �K ε.

So, if ε is small enough, we get δn ≤ 1. Thus, we get by induction that for all n <
N , δn ≤ 1. In particular, the estimates above hold for every n and the result follows.

We are now ready to finish the proof of Theorem 2.

Proof of Theorem 2. We fix K0 and q as above, an integer K ≥ K0, we assume that
ε = |||ζ|||K is small enough so that the lemmas above apply and we also assume that
|f ′ − 1| ≤ 1

4 . We separate the cases N = +∞ and N < +∞.
• If N = +∞, then

∑
n dK−q(hn, hn−1) �K ε and hence (hn)n∈N converges in

DiffK−q
+ (T) to a limit h satisfying dK−q(h, Id) �K ε. In particular, if ε is small

enough, h is invertible and hf h−1 = limn hnf h
−1
n = limn fn = rα almost surely.
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• If N < +∞, then fN−1 = hN−1f h
−1
N−1 with dK−q(hN−1, Id) �K ε. Moreover, one

of the two conditions stated at the beginning of the section does not hold for fN−1,
that is, either fN−1 /∈ U0 or λ is an obstruction for fN−1. Since |f ′ − 1| ≤ 1

4 and
|h′
N−1 − 1| �K ε, we deduce that the condition fN−1 ∈ U0 is satisfied if ε is small

enough. So, it means that λ is an obstruction for fN−1, that is, |λ|1/2 ≥ (C0/3)ε
3/2
n .

Then Lemma 4.1 gives a diffeomorphism g satisfying dK−q(g, Id) �K ε conjugating
fN−1 to f̃ = rα + ζ̃ such that |||ζ̃|||0 ≤ 3|λ|1/2 and then the conjugation h = g ◦ hN−1
satisfies the conclusion of Theorem 2.

Choosing ε in (0, 1
2 ) so that the lemmas above and the final argument apply for

|||ζ|||K ≤ ε, we get the conclusion of Theorem 2 for any random diffeomorphism f such
that ρ(f ) is (A, σ)-diophantine and valued in the open set

U =
{
h ∈ DiffK+ (T), dK(h, R) < ε

2

}
,

where R is the set of rotations: for such an f , we obviously have |f ′ − 1| ≤ 1
4 ,

and dK(f , rβ) < (ε/2) for some β, so actually |β − α| < (ε/2) with α = ρ(f ), so
dK(f , rα) < ε and in particular |||ζ|||K ≤ ε. Hence, the argument above applies to f and
gives the conjugation stated in Theorem 2.

5. Random products of matrices (Theorems 3 and 4)
5.1. Generalities. We consider M2(R) equipped with any norm ‖ · ‖. By identifying
the complex plane with R

2, any matrix M in M2(R) naturally acts on C.
We denote by T the space of trigonometric polynomials p : T → R, generated by the

maps x �→ cos(2kπx) and x �→ sin(2kπx). We denote by Tn the space of trigonometric
polynomials of T of degree at most n. We fix a norm ‖ · ‖ on T .

To any M in GL2(R) we naturally associate a diffeomorphism fM of T by

eiπfM(x) = M(eiπx)

|M(eiπx)| .

We admit the following elementary lemma.

LEMMA 5.1. There exists a constant A0 > 0 depending only on the norm on M2(R) such
that for any M in SL2(R) and α in T,

1
A0
d0(fM , rα) ≤ ‖M − Rα‖ ≤ A0d0(fM , rα).

In particular, if M is a perturbation of Rα of order ε, then fM is a perturbation of rα of
order ε. The next lemma specifies the form of the perturbation.

LEMMA 5.2. If M = Rα + E, then, writing fM = rα + ζ, we can write ζ = ζ1 + ζ2 + ζ3,
where ζ1 ∈ T1 and ‖ζ1‖ = O(‖E‖), ζ2 ∈ T2 and ‖ζ2‖ = O(‖E‖2), ζ3 ∈ C∞(T) and
‖ζ3‖1 = O(‖N‖3). Moreover,

ζ1(x) = 1
π

Im(E(eiπx)e−iπ(x+α)).
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Proof. From eiπfM(x) = M(eiπx)/|M(eiπx)|, we obtain the formula

ζ(x) = 1
iπ

ln
(

1 + E(eiπx)e−iπ(x+α)

|1 + E(eiπx)e−iπ(x+α)|
)

,

where the (complex) logarithm is well defined for ‖E‖ small. Then the result follows by
doing Taylor expansions.

The following lemma is a counterpart of the previous lemma when α = 0 that we will
use to create a conjugation matrix in the proof of Theorem 4.

LEMMA 5.3. If ζ belongs to T1, then one can find M in SL2(R) such that ‖M − I2‖ =
O(‖ζ‖) and

fM(x) = x + ζ(x)+O(‖ζ‖2).

Proof. By assumption, ζ(x) = A+ B cos(2πx)+ C sin(2πx) for some A, B, C. Let us
set M = I2 + E with E = ( a bc d ), where a, b, c have to be chosen, and d is deter-
mined so that det M = 1. Since det(M) = 1 + Tr(E)+O(‖E‖2), in particular d = −a +
O(‖E‖2). From Lemma 5.2 and a simple computation, we have

fM(x) = x + 1
π

+ Im(E(eiπx)e−i(πx+α))+O(‖E‖2)

= x + c − b

π
+ c + b

π
cos(2πx)+ d − a

π
sin(2πx)+O(‖E‖2)

= x + c − b

π
+ c + b

π
cos(2πx)− 2a

π
sin(2πx)+O(‖E‖2).

By choosing a, b, c so that c − b = πA, c + b = πB and −2a = πC, we obviously have
‖E‖ = O(‖ζ‖) and so fM(x) = x + ζ(x)+O(‖ζ‖2).

LEMMA 5.4. Let M be a random matrix in SL2(R) with E[ln+ ‖M‖] < +∞, and let
� be the Lyapunov exponent of M . Then there exists a stationary measure μ of the
random diffeomorphism fM so that the corresponding Lyapunov exponent λ(μ) satisfies
� = − 1

2λ(μ).

Proof. Since M ∈ SL2(R), we have for every θ and θ ′ in T,

det(M(eiπθ ), M(eiπθ
′
)) = det(eiπθ , eiπθ

′
)

that we can rewrite as

|sin(π(θ − θ ′))| = |M(eiπθ )| |M(eiπθ ′
)| |sin(π(fM(θ)− fM(θ

′)))|,
which leads to

1 = |M(eiπθ )|2 |f ′
M(θ)|.

It is well known that there exists a stationary measure μ such that we have � =
E
∫
T

ln |M(eiπθ )| dμ(θ) (see, for example, [7]), so the result follows.
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5.2. Proof of Theorem 3. We fix a random variable α in T and a random matrix M =
Rα + E of SL2(R). We naturally get a random diffeomorphism fM = rα + ζ of T, and
Lemma 5.2 gives a decomposition ζ = ζ1 + ζ2 + ζ3.

We assume that α does not belong almost surely to {0, 1
2 }. So, ‖d(2α, Z)‖L2(�) ≥ δ

for some δ > 0. In the following, a term O(M) means a term bounded by CM with C
depending only on δ (and the chosen norms on T and M2(R)).

We keep the notation of the previous sections for the operators T , T0, U and U ,
that is to say, T ϕ(x) = E[ϕ ◦ fM(x)], T0ϕ(x) = E[ϕ ◦ rα(x)], Uϕ(x) = ∑

q∈Z∗(ϕ̂(q)/

(1 − E[e2iπqα]))e2iπqx and Uϕ(x) = ∑
q∈Z∗(ϕ̂(q)/(1 − E[e−2iπqα]))e2iπqx .

LEMMA 5.5. The operators U and U are well defined and bounded on T2. Moreover, ‖U‖
and ‖U‖ can be bounded by a constant depending only on δ (and the norm ‖ · ‖ on T2).

Proof. The operators U and U are well defined on T2 since the denominators 1 −
E[e2iπqα] do not vanish for q = −2, −1, 1, 2 thanks to the assumption that α does
not belong almost surely to {0, 1

2 }. These operators are automatically bounded since T2

is finite dimensional. Finally, the uniform bound of ‖U‖ and ‖U‖ follows from the
inequality |1 − E[e2iπqα]| ≥ 8E[d(qα, Z)2] (obtained in the proof of Lemma 2.1) applied
to q = −2, −1, 1, 2.

LEMMA 5.6. We have

� = 1
4
E

∫
T

(ζ′1 + (U ζ̄1)
′ − (U ζ̄1)

′ ◦ rα)2 dx +O(ε3),

where ζ̄1 = E[ζ1 ◦ r−1
α ] with ζ1 given by Lemma 5.2 and ε = E[‖E‖3]1/3.

Proof. By Lemma 5.4, we have � = − 1
2λ(μ) for some stationary probability measure μ

on T. If α is diophantine, the expansion in the statement is a consequence of Proposition
1. We are going to check that the estimate is still valid without the diophantine assumption
by mimicking the proof of Proposition 1, noticing that we only need to estimate μ on
trigonometric polynomials of small degrees, and so we only need the boundedness of U
on T2 given by Lemma 5.5.
• For every ψ in T2 with ϕ = Uψ (∈ T2), we have∫

T

ψ dμ−
∫
T

ψ dx=
∫
T

(ϕ − T0ϕ) dμ=
∫
T

(T ϕ − T0ϕ) dμ=O(ε‖ϕ‖)=O(ε‖ψ‖).

• For every ψ in T1 with ϕ = Uψ (∈ T1), we have∫
T

ψ dμ−
∫
T

ψ dx =
∫
T

(T ϕ − T0ϕ) dμ

=
∫
T

E[(ϕ′ ◦ rα)ζ] dμ+O(ε2‖ϕ‖)

=
∫
T

E[(ϕ′ ◦ rα)ζ1] dx +O(ε2‖ϕ‖)
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=
∫
T

ϕ′ζ̄1 dx +O(ε2‖ϕ‖)

=
∫
T

ψ ′U ζ̄1 dx +O(ε2‖ψ‖)

(for the third equality we used that (ϕ′ ◦ rα)ζ1 belongs to T2).
• Denoting η = U ζ̄1 (∈ T1), g = Id − η and μ̃ = g∗μ, we have for ψ in T2,∫

T

ψ dμ̃ =
∫
T

ψ dμ+O(ε‖ψ‖) =
∫
T

ψ dx +O(ε‖ψ‖)

and, for ψ in T1,∫
T

ψ dμ̃ =
∫
T

ψ dμ−
∫
T

ψ ′U ζ̄1 dμ+O(ε2‖ψ‖) =
∫
T

ψ dx +O(ε2‖ψ‖).

• Denoting f̃ = g ◦ fM ◦ g−1 = rα + ζ̃ (g is invertible if ε is small enough since ‖η‖ =
O(ε)), by using the decomposition ζ = ζ1 + ζ2 + ζ3 and Taylor expansions, we can
write ζ̃ = ζ̃1 + ζ̃2 + ζ̃3 with⎧⎪⎪⎨⎪⎪⎩

ζ̃1 = ζ1 − η ◦ rα + η, ζ̃1 ∈ T1, ‖ζ̃1‖ = O(max(‖E‖, ‖η‖)),
ζ̃2 ∈ T2, ‖ζ̃2‖ = O(max(‖E‖2, ‖η‖2)),

‖ζ̃3‖1 = O(max(‖E‖3, ‖η‖3)).

• We conclude that

λ(μ) = E

∫
T

ln f̃ ′ dμ̃

= E

∫
T

ζ̃′1 dμ̃+ E

∫
T

ζ̃′2 dμ̃− 1
2
E

∫
T

ζ̃′21 dμ̃+O(ε3)

= −1
2

∫
T

ζ̃′21 dx +O(ε3),

from which the result follows since � = − 1
2λ(μ).

We can deduce Theorem 3 by a series of simple computations. Starting from the equality
E(eiπx) = 1

2 (Ze
iπx + Z′e−iπx) with Z = (a + d)+ i(c − b) and Z′ = (a − d)+ i(b +

c), we successively obtain (using Lemma 5.2):
• ζ1(x) = (1/π)Im(E(eiπx)e−iπ(x+α)) = (1/2π)Im(Zeiπ(2x+α))+ constant;
• ζ̄1(x) = (1/2π)Im(E[Ze−iπα]e2iπx)+ constant;
• U ζ̄1(x) = (1/2π)Im((E[Ze−iπα])/(1 − E[e−2iπα])e2iπx);
• (ζ1 + U ζ̄1 − U ζ̄1 ◦ rα)(x) = (1/2π)Im(Xe2iπx)+ constant,

where X=Zeiπα+((E[Ze−iπα])/(1−E[e−2iπα]))−(E[Ze−iπα])/(1 − E[e−2iπα])
e2iπα;

• (ζ′1 + (U ζ̄1)
′ − (U ζ̄1)

′ ◦ rα)(x) = Re(Xe2iπx);

• � = 1
4
E

∫
T

(ζ′1 + (U ζ̄1)
′ − (U ζ̄1)

′ ◦ rα)2 dx +O(ε3) = 1
8
E(|X|2)+O(ε3).

The result follows by simply rewriting E(|X|2) = E(|Xe2iπα|2).
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5.3. Proof of Theorem 4. We are going to prove Theorem 4 by mimicking the proof of
Theorem 2. Let δ > 0 and letM be a random matrix in SL2(R) such that ‖Tr(M)‖L2(�) ≤
2 − δ. Let α in T be so that d(M , R) = ‖M − Rα‖, and let fM = rα + ζ be the associated
random diffeomorphism of T. We assume that M is valued in the open set

U0 = {N ∈ Sl2(R), d(N , R) < β},
where β is a constant depending only on δ and ‖ · ‖ chosen so that for M in U0 we
have |f ′

M − 1| ≤ 1
2 and |Tr(M)− Tr(Rα)| ≤ (δ/2). The second inequality implies that

‖Tr(Rα)|‖L2(�) ≥ 2 − (δ/2) and so ‖d(2α, Z)‖L2(�) ≥ δ′ for some positive δ′ (≈ √
δ)

depending on δ, so the techniques used to prove Theorem 3 still work.
Let us construct the first conjugation.

LEMMA 5.7. There exists P in SL2(R) such that either ‖d(PMP−1, R)‖L2(�) ≤
4A0�

1/2 or ‖d(PMP−1, R)‖L2(�) ≤ C‖d(M , R)‖3/2
L2(�)

, where A0 is the constant
of Lemma 5.1, and C is a constant depending only on δ and the norms. Moreover,
‖P − I2‖ ≤ C‖d(M , R)‖L2(�).

Proof. From the proof of Lemma 5.6, setting η = U ζ̄1, g = Id − η, f̃ = gfMg
−1 = rα +

ζ̃ and ε = ‖d(M , R)‖L2(�), we have

� ≥ 1
8

∫
T

ζ̃′2 dx +O(ε3),

using that if ε is small enough, f̃ ′ < 2, so ln(f̃ ′) ≤ ζ̃′ − 1
4 ζ̃′2. So, there exists a constant C

such that

E

∫
T

ζ̃′2 dx ≤ 8�+ Cε3,

so

‖d0(f̃ , rα̃)‖L2(�) ≤ 3�1/2 + C1/2ε3/2,

where α̃ = α + ∫
T

ζ̃ dx.
By Lemma 5.3, there exists P in SL2(R) such that ‖P − I2‖ = O(ε) and fP (x) = x −

η(x)+O(‖η‖2) = g(x)+O(ε2). Let us set M̃ = PMP−1. Since d0(fP , g) = O(ε2),
we deduce from Proposition 2.3 that d0(fM̃ , f̃ ) = d0(fP fMf

−1
P , gfMg−1) = O(ε2).

Hence,

‖d0(fM̃ , rα̃)‖L2(�) ≤ 3�1/2 + Cε3/2

for some new constant C. So, either ‖d0(fM̃ , rα̃)‖L2(�) ≤ 4�1/2 or ‖d0(fM̃ , rα̃)‖L2(�) ≤
4Cε3/2 and the conclusion follows from the inequality ‖M̃ − Rα̃‖ ≤ A0d0(fM̃ , rα̃).

We can now prove Theorem 4.

Proof of Theorem 4. Let M be a random matrix with Lyapunov exponent �. We are
going to assume that d(M , R) < (β/2) a.s. (in particular, M ∈ U0). We construct a
sequence of random matrices (Mn)n by induction: we set M0 = M; then, for all n in N, if
‖d(Mn, R)‖L2(�) ≤ 4A0�

1/2 or if Mn does not belong almost surely to U0, then we stop
the sequence, and if not then we use Lemma 5.7 and set Mn+1 = PnMnP

−1
n , where Pn is
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given by the lemma. Thus, we get a sequence (Mn)n≤N , where N belongs to N ∪ {+∞}.
Finally, we set Qn = Pn−1 · · · P0, so that Mn = QnMQ

−1
n .

Let εn = ‖d(Mn, R)‖L2(�). Due to invariance under conjugation, the Lyapunov expo-
nent of Mn is �. So, from the construction and Lemma 5.7, we deduce that for every
n < N , εn+1 ≤ Cε

3/2
n and, for every n ≤ N , ‖Pn − I2‖ ≤ Cεn. It is then straightforward

that there are a constant C1 and a positive number ε̄ such that if ε0 ≤ ε̄, then, for every
n ≤ N , εn ≤ C12−(3/2)nε0 and also ‖Qn − I2‖ ≤ C1ε0, and then that d(Mn, R) ≤ β, that
is, Mn ∈ U0 (so the sequence will only stop if ‖d(Mn, R)‖L2(�) ≤ 4A0�

1/2).
Two cases can occur.

• If � > 0, then N < +∞. So, ‖d(MN , R)‖L2(�) ≤ 4A0�
1/2 with MN = QNMQ

−1
N ,

and ‖QN − I2‖ ≤ C1ε0.
• If � = 0, then N = +∞. Since ‖Qn+1 −Qn‖ = O(‖Qn‖ · ‖Pn − I2‖) = O(εn),

(Qn) converge to some matrix Q such that ‖Q− I2‖ = O(ε0) and, since
‖d(QnMQ

−1
n , R)‖L2(�) = εn → 0, we conclude that QMQ−1 ∈ R almost surely.

Theorem 4 follows.

A. Appendix: Ck estimates
In this section we give a quick proof of the propositions stated in §2 and state some other
classical Ck estimates.

In the following propositions we consider maps f : R → R. We denote by ‖ · ‖∞ the
supremum norm, that is, ‖f ‖∞ = supR |f |.
PROPOSITION A.1. (Kolmogorov inequality) For any integers j ≤ k and for any f in
Ck(R),

‖f (j)‖∞ ≤ C‖f (k)‖j/k∞ ‖f ‖1−j/k∞ ,

where C is a constant depending only on k.

Proof. Being given real numbers x and h, the Taylor–Lagrange formula gives the existence
of c in R such that

f (x + h) =
k−1∑
n=0

f (n)(x)
hn

n!
+ f (k)(c)

hk

k!
. (A.1)

We fix real numbers a0, . . . , ak−1 such that
∑k−1
m=0 amn

m = δn,j for n = 1, . . . , k − 1 by
inverting a Vandermonde system. For given t ∈ R, by a linear combinations of the formulas
(A.1) with h = 0, t , 2t , . . . , (k − 1)t , we get

k−1∑
m=0

amf (x +mt) = f (j)(x)
tj

j !
+
( n−1∑
m=0

amf
(k)(cm)

)
tk

k!

for some real numbers c1, . . . , ck−1. In particular,

‖f (j)‖∞ ≤ C(t−j‖f ‖∞ + tk−j‖f (k)‖∞)

for some constant C and the result follows by optimizing in t .
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PROPOSITION A.2. (Product of norms of derivatives) For any f , g in Ck(R) and any
integer j ≤ k,

‖f (j)‖∞‖g(k−j)‖∞ ≤ C(‖f (k)‖∞‖g‖∞ + ‖f ‖∞‖g(k)‖∞),

where C is a constant depending only on k.

Proof. It is a consequence of the Kolmogorov inequality and the convexity inequality
aθb1−θ ≤ θa + (1 − θ)b,

‖f (j)‖∞‖g(k−j)‖∞ ≤ C‖f (k)‖j/k∞ ‖f ‖1−j/k∞ ‖g(k)‖1−j/k∞ ‖g‖j/k∞

≤ C

(
j

k
‖f (k)‖∞‖g‖∞ +

(
1 − j

k

)
‖f ‖∞‖g(k)‖∞

)
.

PROPOSITION A.3. (Derivative of a product) For any integer k and any f , g in Ck(R),

‖(fg)(k)‖∞ ≤ C(‖f (k)‖∞‖g‖∞ + ‖f ‖∞‖g(k)‖∞),

where C is a constant depending only on k.

Proof. By the Leibnitz formula, ‖(fg)(k)‖∞ ≤ ∑k
j=0(

k
j )‖f (j)‖∞‖g(k−j)‖∞ and, by

the proposition above, ‖f (j)‖∞‖g(k−j)‖∞ ≤ C(‖f (k)‖∞‖g‖∞ + ‖f ‖∞‖g(k)‖∞) for
some C.

PROPOSITION A.4. (Derivative of a composition) Let M ≥ 1. For any integer k ≥ 1 and
any f , g in Ck(R) such that |g′| ≤ M on R,

‖(f ◦ g)(k)‖∞ ≤ CMk−1(‖f (k)‖∞‖g′‖∞ + ‖f ′‖∞‖g(k)‖∞),

where C is a constant depending only on k.

Proof. We proceed by induction on k. The statement is obvious for k = 1. Let k ≥ 2. Since
(f ◦ g)(k) = (f ′ ◦ g · g′)(k−1), we obtain by Proposition A.3 for some constant C,

‖(f ◦ g)(k)‖∞ ≤ C
(‖(f ′ ◦ g)(k−1)‖∞‖g′‖∞ + ‖f ′ ◦ g‖∞‖(g′)(k−1)‖∞

)
,

so

‖(f ◦ g)(k)‖∞ ≤ C
(
M‖(f ′ ◦ g)(k−1)‖∞ + ‖f ′‖∞‖g(k)‖∞

)
.

By the induction hypothesis,

‖(f ′ ◦ g)(k−1)‖∞ ≤ CMk−2(‖f (k)‖∞‖g′‖∞ + ‖f ′′‖∞‖g(k−1)‖∞)

for some constant C depending on k. So, for some new constant C,

‖(f ◦ g)(k)‖∞ ≤ CMk−1(‖f (k)‖∞‖g′‖∞ + ‖f ′′‖∞‖g(k−1)‖∞ + ‖f ′‖∞‖g(k)‖∞
)
.

By Proposition A.2,

‖f ′′‖∞‖g(k−1)‖∞ ≤ C(‖f (k)‖∞‖g′‖∞ + ‖f ′‖∞‖g(k)‖∞)
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for some constant C, so, finally, with a new constant C,

‖(f ◦ g)(k)‖∞ ≤ CMk−1(‖f (k)‖∞‖g′‖∞ + ‖f ′‖∞‖g(k)‖∞),

which completes the induction.

From these general estimates, we deduce some more specific ones for our context.
We reintroduce the Ck-norms: for φ in Ck(R), we define its Ck-norm by ‖φ‖k =
max(‖φ‖∞, ‖φ′‖∞, . . . , ‖φ(k)‖∞) (in particular, ‖ · ‖0 is also the supremum norm).
Alternatively, we could define ‖φ‖k = max(‖φ‖∞, ‖φ(k)‖∞), which is an equivalent norm
thanks to the Kolmogorov inequality.

LEMMA A.1. Let k be an integer, letM ≥ 1 and let f , g be in Ck(R) such that |f ′|, |g′| ≤
M on R. Then

‖f ◦ g − Id‖k ≤ CMk(‖f − Id‖k + ‖g − Id‖k),
where C is a constant depending only on k.

Proof. Let ϕ = f − Id and ψ = g − Id. Since f ◦ g − Id = ψ + ϕ ◦ g, we only need to
bound ‖ϕ ◦ g‖k . We have ‖ϕ ◦ g‖0 = ‖ϕ‖0, ‖(ϕ ◦ g)′‖0 ≤ ‖g′‖0‖ϕ′‖0 ≤ M‖ϕ‖1 and, if
k ≥ 2, by Proposition A.4, for some constant C depending on k, we have

‖(ϕ ◦ g)(k)‖0 ≤ CMk−1(‖ϕ(k)‖0‖g′‖0 + ‖ϕ′‖0‖g(k)‖0),

with ‖ϕ′‖0 ≤ 1 +M ≤ 2M , ‖g′‖0 ≤ M and ‖g(k)‖0 = ‖ψ(k)‖0, so

‖ϕ ◦ g‖k ≤ CMk(‖ϕ‖k + ‖ψ‖k) (A.2)

for some new constant C depending on k and the statement follows.

LEMMA A.2. Let k be an integer, let q < 1 and let f be in Ck(R) such that |f ′ − 1| ≤ 1
2

on R. Then

‖f−1 − Id‖k ≤ C‖f − Id‖k ,
where C is a constant depending only on k.

Proof. Let g = f−1, ϕ = f − Id and ψ = g − Id, so that the identity f ◦ g = Id
becomes ψ = −ϕ ◦ g. We want to prove that ‖ψ‖k ≤ C‖ϕ‖k for some constant C. It
is straightforward if k = 0 or 1, so we assume that k ≥ 2 and we make the induction
assumption that for every j < k, ‖ψ‖j ≤ C‖ϕ‖j for some constant C. Then

‖ψ‖k = ‖ϕ ◦ g‖k ≤ ‖ϕ‖0 + ‖ϕ′ ◦ g · g′‖k−1 ≤ ‖ϕ‖0 +
k−1∑
j=0

(
k − 1
j

)
‖ϕ′ ◦ g‖j‖g′‖k−1−j .

For j = 0,

‖ϕ′ ◦ g‖0‖g′‖k−1 ≤ ‖ϕ′‖0(1 + ‖ψ ′‖k−1) ≤ ‖ϕ‖1 + 1
2‖ψ‖k

and, for j �= 0, by using inequality (A.2) (with M = 2) and the induction assumption, we
can bound ‖ϕ′ ◦ g‖j ≤ C‖ϕ‖j for some constant C, and then by using Proposition A.2 we
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get ‖ϕ′ ◦ g‖j‖g′‖k−1−j ≤ C‖ϕ‖k with a new constant C. So, we deduce finally that we
have for some constant C,

‖ψ‖k ≤ 1
2‖ψ‖k + C‖ϕ‖k

and so ‖ψ‖k ≤ 2C‖ϕ‖k , which completes the induction.

LEMMA A.3. (a Ck mean value inequality) Let M ≥ 1, let f , g be in Ck(R) such that
|f ′|, |g′|, |f (k), |g(k)| ≤ M on R and let φ ∈ Ck+1(R). Then

‖φ ◦ f − φ ◦ g‖k ≤ C‖φ‖k+1‖f − g‖k ,
where C depends only on k and M .

Proof. We write

φ ◦ f − φ ◦ g = (f − g)

∫ 1

0
φ′ ◦ htdt ,

where ht = (1 − t)f + tg. Thus,

‖φ ◦ f − φ ◦ g‖k ≤ C‖f − g‖k
∫ 1

0
‖φ′ ◦ ht‖kdt

for some constant C depending only on k. By Proposition A.4 (and the Kolmogorov
inequality), ‖φ′ ◦ ht‖k ≤ C‖φ‖k+1 for some constant C depending on k andM . The result
follows.

Finally, let us prove Propositions 2.2, 2.3, 2.4 and 2.5 of §2. Proposition 2.2 is an
immediate consequence of Lemmas A.1 and A.2 and the fact that dk is invariant under
(left or right) composition by rotations. Proposition 2.5 is a straightforward consequence
of inequality (A.2) since dk(f ◦ h, g ◦ h) = ‖(f − g) ◦ h‖k . To prove Proposition 2.4, we
write f = rα + ζ and g = Id + η and then an algebraic computation gives

g ◦ f ◦ g−1 = rα + (ζ ◦ g−1 + η ◦ (f ◦ g−1)− η ◦ g−1).

The difference between this map and the approximation rα + (ζ + η ◦ rα − η) can be
estimated in C1-norm thanks to Lemma A.3 (with k = 1), which gives the result
(alternatively, one can directly bound this difference and its derivative by elementary
calculus). Finally, Proposition 2.3 is an elementary consequence of the invariance of d0

under right composition and the mean value inequality:

d0(gfg
−1, g̃f g̃−1) ≤ d0(gfg

−1, g̃fg−1)+ d0(g̃f g̃
−1, g̃fg−1)

≤ d0(g, g̃)+ d0(g̃f g̃
−1g, g̃f )

≤ d0(g, g̃)+ d0((g̃f g̃
−1) ◦ g, (g̃f g̃−1) ◦ g̃)

≤ (1 + ‖(g̃f g̃−1)′‖0)d0(g, g̃),

with ‖(g̃f g̃−1)′‖0 easily bounded from above.
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