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Polymers in a turbulent flow are subject to intense strain, which can cause their scission
and thereby limit the experimental study and application of phenomena such as turbulent
drag reduction and elastic turbulence. In this paper, we study polymer scission in
homogeneous isotropic turbulence, through a combination of stochastic modelling, based
on a Gaussian time-decorrelated random flow, and direct numerical simulations (DNS)
with both one-way (passive) and two-way (active) coupling of the polymers, modelled as
bead-spring chains, and the flow. For the first scission of passive polymers, the stochastic
model yields analytical predictions which are found to be in good agreement with results
from the DNS, for the temporal evolution of the fraction of unbroken polymers and the
statistics of the survival of polymers. The impact of scission on the dynamics of a turbulent
polymer solution is investigated through DNS with two-way coupling (active polymers).
Our results indicate that the reduction of kinetic energy dissipation due to feedback from
stretched polymers is an inherently transient effect, which is lost as the polymers break up.
Thus, the overall dissipation reduction is maximized by an intermediate polymer relaxation
time, for which polymers stretch significantly but without breaking too quickly. We also
study the dynamics of the polymer fragments which form after scission; these daughter
polymers can themselves undergo subsequent, repeated, breakups to produce a hierarchical
population of polymers with a range of relaxation times and scission rates.
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1. Introduction

The viscoelastic properties of dilute polymer solutions are central to several applications
(Larson 1999). When the pure solvent is turbulent the most remarkable effect of the
addition of polymers is a significant reduction of the turbulent drag below that of the
solvent (Procaccia, L’Vov & Benzi 2008; White & Mungal 2008; Benzi 2010; Graham
2014). This phenomenon, also known as the Toms effect (Toms 1949, 1977), is commonly
utilized to reduce the energy losses in pipelines and hence the costs associated with the
transport of crude oil. However, in a turbulent flow, polymers are subject to mechanical
degradation due to the fluctuating strain rate, which stretches polymers and thus causes
their scission. Since turbulent drag reduction decreases with the molecular weight of
the dissolved polymers (Virk 1975), the efficacy of polymers as drag reducing agents
diminishes in time, with a strong impact on both industrial applications and laboratory
experiments (Paterson & Abernathy (1970), Moussa, Tiu & Sridhar (1993), den Toonder
et al. (1995), Choi et al. (2002), Vanapalli, Islam & Solomon (2005), Vanapalli, Ceccio &
Solomon (2006), Elbing et al. (2009), Pereira & Soares (2012), Owolabi, Dennis & Poole
(2017), see also the editorial of Poole (2020) and the review of Soares (2020)).

Analogous mechanical degradation and, by association, practical limitations are
observed in experiments of homogeneous and isotropic turbulence with polymer additives
(Crawford et al. 2008). Indeed, even though in isotropic turbulence the mean strain rate
is zero, on average line elements are stretched exponentially at a rate proportional to the
inverse of the Kolmogorov dissipation time scale (Bec et al. 2006). At large Reynolds
numbers, polymers therefore experience strong straining events that can highly distort
them. This has been confirmed in experiments and numerical simulations, both directly
by examination of the probability distribution of polymer extensions (Vaithianathan &
Collins 2003; Vincenzi et al. 2007, 2015; Jin & Collins 2008; Watanabe & Gotoh 2010)
and indirectly through the observation of a strong polymer feedback on the flow (De
Angelis et al. 2005; Perlekar, Mitra & Pandit 2006, 2010; Crawford et al. 2008; Ouellette,
Xu & Bodenschatz 2009; Xi, Bodenschatz & Xu 2013; Watanabe & Gotoh 2013a,b,
2014; de Chaumont Quitry & Ouellette 2016). Furthermore, experimental measurements
of polymer scission in different channel flows, by Vanapalli et al. (2006), show that the
majority of polymers reside, and therefore break up, in the bulk of the fluid, where the flow
approximates isotropic turbulence, rendering the scission results independent of channel
geometry.

Mechanical degradation has also been reported in the regime of elastic turbulence
(Groisman & Steinberg 2004). Although the Reynolds number of the solution is low in this
case, elastic instabilities generate a chaotic flow with highly fluctuating velocity gradients
that stretch polymers up to their maximum length (Liu & Steinberg 2014).

A detailed knowledge of the statistics of polymer scission in turbulent flows is thus
important for the design of experiments and the performance of realistic simulations
of both turbulent drag reduction and elastic turbulence. In laminar flows, considerable
progress has been made in the modelling and simulation of polymer scission (e.g. Cascales
& de la Torre 1991, 1992; Hsieh, Park & Larson 2005; Sim, Khomami & Sureshkumar
2007; Wu et al. 2018). However, the knowledge gained from the study of laminar flows
cannot be directly applied to turbulent flows because of the different properties of the
strain rate, and consequently of the flow-induced polymer stretching, in the two types
of flows. In an extensional velocity field, for instance, the probability distribution of
polymer extensions is dominated by a peak that shifts towards larger extensions as the
strain rate increases (Perkins, Smith & Chu 1997), and therefore scission is observed
only for a sufficiently large strain rate. In contrast, for turbulent flows, the distribution
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of the extensions has a wide power-law core due to the intensely fluctuating strain
rate (Balkovsky, Fouxon & Lebedev 2000; Watanabe & Gotoh 2010; Liu & Steinberg
2014). Hence the scission rate may be non-negligible even at moderate Reynolds numbers
(proportional to the average magnitude of the fluctuating strain rate).

Unlike the fragmentation of liquid jets, sheets, or drops (Villermaux 2007, 2020), the
modelling of flow-driven scission in turbulent polymer solutions is still in its infancy
(Soares 2020). The reason for this has to be sought in the difficulty of including the
microscopic details of the scission process in constitutive models of polymer solutions.
To our knowledge, the only continuum model that takes scission into account has been
proposed by Pereira, Mompean & Soares (2018) and assumes that the maximum contour
length is a spatiotemporal scalar field that decays due to scission while being transported
by the fluid. Further development of continuum models requires an in depth understanding
of the statistics of scission and the consequent reduction of the relaxation time – in addition
to the decrease in the maximum contour length – of the polymer fragments.

We therefore investigate the dynamics of polymers in a three-dimensional homogeneous
and isotropic turbulent flow focusing on the scission statistics. A polymer is described
as a bead-spring chain in a time-dependent, linear velocity field. This polymer model is
known as the Rouse (1953) model and represents one of the most common descriptions
of a polymer molecule in a flow (in the case in which only two beads are considered, the
Rouse model reduces to the elastic dumbbell model, see Bird et al. (1977)). Even when
the flow is turbulent, the assumption of a linear velocity field is justified, since the size
of polymers is generally smaller than the Kolmogorov dissipation scale ηK , below which
viscosity strongly damps the spatial fluctuations of the velocity. We introduce scission into
the Rouse model by assuming that the bead-spring chain breaks into two shorter chains as
soon as the tension in one of the springs exceeds a critical threshold.

We begin by considering the statistics of the first scission. For passively transported
polymers, for which the motion of the polymers does not modify the carrier velocity
field, we derive qualitative analytical predictions by restricting ourselves to the Hookean
dumbbell model and by using a decorrelated-in-time Gaussian stochastic velocity field
(the approach is adapted from a study of droplet breakup conducted in Ray & Vincenzi
(2018)). The theoretical predictions are compared with Lagrangian direct numerical
simulations (DNS) of the Rouse model in three-dimensional homogeneous isotropic
turbulence. We then show that these results are qualitatively insensitive to the introduction
of hydrodynamic interactions (HI) and excluded volume (EV) interactions among the
beads of the polymer model. For active polymers, the statistics of the first scission is
studied via hybrid Eulerian–Lagrangian simulations (Watanabe & Gotoh 2013a,b, 2014),
in which the feedback of (dumbbell-like) polymers onto the velocity field is taken into
account. These simulations shed light on the transient nature of the dissipation-reduction
effect, which owes its origin to polymer stretching and its demise to polymer scission.
Finally, we analyse multiple scissions of passive polymers, via DNS in which a hierarchy
of daughter polymers arise from successive breakups, each with their own statistics.

2. The Rouse chain

The Rouse model describes a polymer as a chain of N inertialess beads connected to
their nearest neighbours by elastic springs. We consider finitely extensible nonlinear elastic
(FENE) springs with spring constant H and maximum length Qm. The fluid in which the
chain is immersed is Newtonian and its motion is described by an incompressible velocity
field u(x, t). The drag force of the fluid on each bead is given by Stokes law with drag
coefficient ζ ; the collisions of the molecules of the fluid with a bead are described by
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Brownian motion. Finally, in the Rouse model, HI and EV interactions between different
segments of the chain are disregarded. (These interactions do not affect the scission
statistics qualitatively, as shown later in § 3.2.)

The motion of the chain is described in terms of the position of its centre of mass,
X c, and the separation vectors between the beads, Qi (i = 1, . . . ,N − 1). This set of
coordinates evolves according to the equations (Bird et al. 1977; Öttinger 1996)

Ẋ c = u(X c(t), t) + 1
N

√
Q2

eq

6τ

N∑
i=1

ξ i(t), (2.1a)

Q̇i = κ(t) · Qi(t) − 1
4τ

[2 fiQi(t) − fi+1Qi+1(t) − fi−1Qi−1(t)]

+
√

Q2
eq

6τ
[ξ i+1(t) − ξ i(t)], i = 1, . . . ,N − 1, (2.1b)

where καβ(t) = ∇βuα(X c(t), t) is the velocity gradient evaluated at the position of the
centre of mass, τ = ζ/4H is the characteristic time scale of the springs, Qeq = √

3kBT/H
is their equilibrium root mean square (r.m.s.) extension (kB denotes the Boltzmann
constant and T is temperature), and ξ i(t) (i = 1, . . . ,N ) are independent, vectorial, white
noises. The coefficients

fi = 1
1 − |Qi|2/Q2

m
(2.2)

characterize the FENE interactions and ensure that the extension of each spring does
not exceed its maximum length Qm. Obviously, in the equations for Q1 and QN −1 it
is assumed that Q0 = QN = 0.

The end-to-end separation or extension vector of the polymer is defined as R =∑N −1
i=1 Qi. In a still fluid, the equilibrium r.m.s. value of |R| is req = Qeq

√
N − 1 (Bird

et al. 1977).
We modify the Rouse model in order to account for the scission of the polymer when

the tension in any of the springs exceeds a critical value. Since the relation between the
tension and the extension of a spring can be easily inverted (Thiffeault 2003), we can,
equivalently, assume that for each spring of the chain there exists a critical scission length
�sc such that the spring breaks if the length of the corresponding separation vector exceeds
�sc (i.e. the chain breaks if |Qi| � �sc for any 1 � i � N − 1).

The scission process is non-stationary; the dynamics of the chain therefore depends on
its initial configuration and, in particular, on its initial end-to-end separation r0 = |R(0)|.
In the following we shall assume that �sc is much greater than r0/(N − 1) and that r0 is
equal to req or greater than it. (In principle, r0 could also be taken smaller than req, but we
have checked that this case does not differ appreciably from the r0 � req one.)

Finally, the size of the chain always remains smaller than ηK , so that the velocity field
at the scale of the chain can be considered as linear and the dynamics of the polymer is
entirely determined by the velocity gradient at the location of the centre of mass, consistent
with the Rouse model.

To summarize, the spatial scales that characterize the system are arranged as follows:
req � r0 � �sc(N − 1) < Qm(N − 1) < ηK .
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3. First-scission statistics

3.1. Passive polymers

3.1.1. Analytical predictions
Here we make some simplifying assumptions on both the polymer model and the carrier
flow in order to derive analytical predictions for the statistics of polymer scission.

First of all, we only consider the statistics of the first scission. We then restrict ourselves
to the N = 2 case, also known as the dumbbell model (Bird et al. 1977; Öttinger
1996), i.e. we focus on the slowest deformation mode of the polymer. Many results on
single-polymer dynamics in random or turbulent flows have been obtained by using the
dumbbell model (see Vincenzi et al. (2015) and references therein) and the most common
constitutive models of polymer solutions, namely the Oldroyd-B (Oldroyd 1950) and the
FENE-P (Bird, Dotson & Johnson 1980) models, are based on it. The legitimacy of this
approach is supported by the numerical simulations in Jin & Collins (2008) and Watanabe
& Gotoh (2010), where it is shown that, in isotropic turbulence and in the absence of
scission, the statistics of the end-to-end separation of a dumbbell and that of an N = 20
chain coincide (provided, of course, that a proper mapping between the parameters of
the two systems is applied). Finally, we replace the nonlinear spring with a Hookean
one (fi = 1); this is because the nonlinearity of the elastic force enters into play only at
extensions close to the scission length, and we shall see from our simulations in § 3.1.2
that it does not affect the qualitative properties of the scission process. For N = 2, (2.1)
reduce to

Ẋ c = u(X c(t), t) + 1
2

√
r2

eq

3τ
ζ 1(t), (3.1a)

Ṙ = κ(t) · R(t) − R(t)
2τ

+
√

r2
eq

3τ
ζ 2(t), (3.1b)

where ζ 1(t) and ζ 2(t) are (non-independent) vectorial white noises.
We model the flow via the smooth (also known as Batchelor) regime of the Kraichnan

(1968) model. This model has been widely employed in the study of turbulent transport
(Falkovich, Gawȩdzki & Vergassola 2001) and has yielded several theoretical results on
the coil-stretch transition in random or turbulent flows (see Plan, Ali & Vincenzi (2016)
and references therein). The velocity is a divergenceless and spatially smooth Gaussian
vector field. It is statistically stationary in time and homogeneous, isotropic, and parity
invariant in space; it has zero mean and zero correlation time. Under these assumptions,
κ(t) is a tensorial white noise with two-time correlation (Falkovich et al. 2001)

〈κ ij(t)κmn(t′)〉 = K ijmnδ(t − t′), (3.2)

where

K ijmn = λ
3

[4δimδjn − δijδmn − δinδjm] (3.3)

and λ is the maximum Lyapunov exponent of the flow. Obviously, the assumption of
temporal decorrelation is a strong approximation, since an isotropic turbulent flow has
Kubo number Ku = λtcorr ≈ 0.6, where tcorr is the correlation time of the flow (Girimaji
& Pope 1990; Bec et al. 2006; Watanabe & Gotoh 2010). However, it was shown in
Musacchio & Vincenzi (2011) that, for a stochastic flow with comparable Ku, the statistics
of polymer extension is captured qualitatively by a time decorrelated velocity field.
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The Weissenberg number Wi = λτ determines to what extent polymers are stretched by
the flow. In particular, the coil-stretch transition occurs when Wi exceeds the critical value
Wicr = 1/2 ( (Lumley 1972; Balkovsky et al. 2000) – note that our definition of τ and
hence that of Wi differ from that of Balkovsky et al. (2000) by a factor of 2).

As the velocity field is homogeneous and isotropic in space, the statistics of R = |R|
is independent of the position of the centre of mass and of the direction of R. To study
polymer scission, it is therefore sufficient to focus on the probability density function
(p.d.f.) of R, which will be denoted as P(R, t). When κ(t) has the properties described
above, P(R, t) satisfies the Fokker–Planck equation (Chertkov 2000; Celani, Musacchio &
Vincenzi 2005)

∂t′P = LP, LP = −∂R(D1P) + ∂2
R(D2P), (3.4a,b)

with rescaled time t′ = t/2τ and coefficients

D1 =
(

8
3

Wi − 1
)

R + 2r2
eq

3R
, D2 = 2Wi

3
R2 + r2

eq

3
(3.5a,b)

(once again our definition of Wi differs from that used in Chertkov (2000) and Celani et al.
(2005) by a factor of 2). The appropriate boundary conditions are reflecting at R = 0 and
absorbing at R = �sc, i.e.

D1P − ∂R(D2P) = 0 at R = 0 and P(�sc, t) = 0 (3.6)

for all t. The former condition ensures that the extension of the polymer stays positive,
while the latter describes scission at R = �sc. The analysis of (3.4a,b) to (3.6) closely
follows that in Ray & Vincenzi (2018) for the breakup of sub-Kolmogorov droplets in
isotropic turbulence. (The results presented here are deduced directly from those in § 3 of
Ray & Vincenzi (2018) by setting Ca = Wi, μ = 1, r2

eq = Q2
eq/3, and f1(μ) = f2(μ) =

γ (μ) = 1.) We therefore skip the details of the derivations and directly present the
predictions of scission statistics.

The number of unbroken polymers that survive at time t, Np(t), is related to P(R, t) as
follows:

Np(t)/Np(0) =
∫ �sc

0
P(R, t) dR. (3.7)

At times t 
 τ , Np(t) therefore decays exponentially as

Np(t) ∼ Np(0) e−t/Td , (3.8)

where the decay time Td is the reciprocal of the lowest eigenvalue of the operator L with
boundary conditions (3.6). The eigenfunctions of L are hypergeometric functions with
parameters depending on req, r0, Wi and form a discrete set selected by the boundary
condition at R = �sc. A calculation of the lowest eigenvalue shows that Td depends weakly
on Wi for small Wi, decreases rapidly as Wi exceeds Wicr, and saturates at large Wi.

As we shall see below, the p.d.f. of R integrated over time,

P̂(R) =
∫ ∞

0
P(R, t) dt, (3.9)

allows us to estimate the mean lifetime of a polymer before its first scission. If the initial
distribution of polymer sizes is ‘monodisperse’, i.e. P(R, 0) = δ(R − r0), then P̂(R) takes
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the form

P̂(R) ∝
{

e−Φ(R)[φ(�sc) − φ(r0)] if 0 � R � r0,

e−Φ(R)[φ(�sc) − φ(R)] if r0 < R � �sc
(3.10)

with

Φ(R) = ln D2(R) −
∫ R D1(ζ )

D2(ζ )
dζ, φ(R) =

∫ R eΦ(ζ )

D2(ζ )
dζ (3.11a,b)

and hence

P̂(R) ∼

⎧⎪⎪⎨
⎪⎪⎩

r−2
eq r−1

0 R2 if 0 � R � req,

|rα
0 − �α

sc|R−1−α if req � R � r0,

�
β
scR−1−β if r0 � R � �sc,

(3.12)

where α = 3(Wi−1 − 2)/2 and

β =
{

α if Wi < Wicr,

0 if Wi > Wicr.
(3.13)

Therefore, above the coil-stretch transition, the right-hand tail of P̂(R) saturates to the
power-law R−1. An analogous behaviour was found previously for the size distribution of
sub-Kolmogorov droplets in isotropic turbulence (Biferale, Meneveau & Verzicco 2014;
Ray & Vincenzi 2018). Also note that the exponent α coincides with the one obtained by
Balkovsky et al. (2000) for the p.d.f. of intermediate extensions in the absence of scission.

If the initial distribution of polymer sizes is broad but nonetheless admits a maximum
size r0, then the left (R � req) and right (r0 � R � �sc) power-law tails continue to exist,
but P̂(R) no longer behaves as a power-law for extensions req � R � r0.

The mean time 〈Tsc〉 it takes for a polymer to undergo its first scission can be deduced
from the behaviour of P̂(R) via the relation

〈Tsc〉 =
∫ �sc

0
P̂(R) dR. (3.14)

Equation (3.12) then yields two different behaviours below and above the coil-stretch
transition

λ〈Tsc〉 ∼
{

(�sc/r0)
β if Wi < Wicr,

ln(�sc/r0) if Wi > Wicr.
(3.15)

3.1.2. DNS
In this section, we present numerical simulations of the Rouse model (2.1) in homogeneous
and isotropic turbulence and compare them with the analytical predictions of § 3.1.1. The
velocity field u(x, t) is the solution of the incompressible Navier–Stokes equations,

∂tu + u · ∇u = −∇p + νf �u + F , ∇ · u = 0, (3.16a,b)

over the periodic cube [0, 2π]3. Here p is pressure, νf is the kinematic viscosity and
F (x, t) is a body force that maintains a constant kinetic energy input εin. The numerical
integration uses a standard, fully dealiased pseudo-spectral method with 5123 collocation
points and, for the time evolution, a second-order slaved Adams–Bashforth scheme with
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time step dt = 4 × 10−4. The values of νf and εin are such that the Taylor-microscale
Reynolds number is Reλ = 111. The Lyapunov exponent of the flow is λ = 0.15τ−1

η , where
τη denotes the Kolmogorov time scale, consistent with the value found earlier in Bec et al.
(2006) and Watanabe & Gotoh (2010).

The position of the centre of mass of the polymer is obtained by integrating (2.1a)
via a second-order Adam–Bashforth method with the same dt as for the Navier–Stokes
equations. The noise term in (2.1a) is disregarded, because it has a negligible effect when
u(x, t) is turbulent. Moreover, its amplitude is smaller than that of the noise terms in the
equations for the separation vectors by a factor of N . As u(x, t) is only known over a
discrete grid, the integration of (2.1a) requires interpolation to reconstruct the velocity
field at X c(t) – a trilinear scheme is used for this purpose. The same approach allows the
calculation of the velocity gradient along the trajectory of the centre of mass, κ(t), and
hence the integration of (2.1b) by means of the Euler–Maruyama method with time step
dt. Since in this section we focus on the statistics of the first scission, a chain is removed
from the simulation as soon as it breaks according to the criterion discussed above. The
time origin for (2.1b) (t = 0) is taken in the statistically steady state of the carrier turbulent
flow, so that the temporal dynamics of polymers is not influenced by the initial transient
evolution of u(x, t). Note that, in the present context, it is not necessary to use integration
schemes specifically designed to prevent the extension of the links from exceeding Qm,
since the links, by construction, break well before their extension approaches Qm.

In our simulations, we consider Np(0) = 9 × 105 polymers, whose positions at time
t = 0 are uniformly distributed in space. Since the statistics of polymer extension depends
on the initial size of polymers but not on their orientation, for simplicity the initial
condition for the separation vectors is taken to be Qi(0) = Q0(1, 1, 1)/

√
3 with Q0 > 0

for all polymers, i.e. the polymers are in a straight configuration and P(R, 0) = δ(R − r0)
with r0 = (N − 1)Q0.

In order to compare chains with different numbers of beads, an appropriate mapping of
the chain parameters is needed. We use the mapping proposed by Jin & Collins (2008)
and also used by Watanabe & Gotoh (2010). If the parameters of the individual links of an
N -bead chain are τ , Qeq, Qm, �sc, then the statistics of the end-to-end separation of the
chain is equivalent to that of a dumbbell with the following parameters:

τD = N (N + 1)τ

6
, QD

eq = Qeq, QD
m = Qm

√
N − 1, �D

sc = �sc
√

N − 1,

(3.17a–d)

where the last relation is introduced for compatibility with the expression of QD
m. This

mapping allows us to compare chains with different numbers of beads by using the
dumbbell model as a reference.

Following Watanabe & Gotoh (2010), we define the Weissenberg number for a Rouse
chain as Wi = λτD. In our simulations, 0.4 � Wi � 8. (Note that small-Wi simulations
are computationally more demanding, because the calculation of quantities like P̂(R) and
〈Tsc〉 requires that the time evolution is long enough for all polymers to break, and the time
at which the scission process is complete becomes longer and longer as Wi decreases.)

As for the choice of the other parameters, we take req = 1, QD
m = √

3000 (also following
Jin & Collins (2008) and Watanabe & Gotoh (2010)), and, unless otherwise specified,
r0 = req. In addition, it is assumed that a spring breaks as soon as its extension exceeds
�sc = 0.8Qm. The number of beads is set to N = 10. We have also performed simulations
with different sets of parameters, which support the generality of the results presented
below.
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Figure 1. Passive polymers: (a) exponential decay of the fraction of unbroken polymers for different values
of Wi; (b) decay time of the fraction of unbroken polymers rescaled by the Kolmogorov time τη as a function
of Wi/Wicr.

It is worth mentioning that the above parameters are compatible with those of the
experiment of Crawford et al. (2008), which investigates bulk turbulence in a water
solution of polyacrylamide (known as PAM) with molecular weight Mw = 18 × 106,
maximum extension L = 77 μm and relaxation time τp = 43 ms. Mechanical degradation
is observed at Rλ = 485. For this value of Rλ, the Kolmogorov time scale is reported to be
τη = 2.63 ms, and hence the Weissenberg number based on the Lyapunov exponent can
be estimated as Wi ≈ 2.5.

Figure 1(a) shows the temporal evolution of the fraction of unbroken polymers. The
decay is exponential with a time scale Td that decreases rapidly as Wi exceeds its critical
value (figure 1b), in agreement with the predictions of § 3.1.1. We shall see in § 3.3 that,
for a dumbbell, it is possible to write an explicit expression for Td as a function of Wi.

The time-integrated p.d.f. of the end-to-end extension of unbroken polymers is shown
in figure 2(a) for an initial polymer size r0 = req and different values of Wi. The p.d.f.
displays a power-law behaviour for both R � req and r0 = req � R � �sc(N − 1). The
left-hand tail is proportional to R2, because the small separations are dominated by thermal
fluctuations. The right-hand tail rises as a function of Wi, until the power-law saturates to
R−1 for Wi > Wicr. A third power-law emerges for intermediate extensions if r0 > req
(figure 2b). In this case, the exponent −1 − α changes from negative to positive as Wi
increases and saturates to 2 at large Wi. To appreciate the coexistence of these three
power-laws more clearly, in figure 3a we also consider P̂(R) for a much larger value of
QD

m and a larger separation between req, r0 and (N − 1)�sc. All these results confirm the
predictions reported in § 3.1.1.

The p.d.f.s presented so far correspond to a ‘monodisperse’ initial state P(R) = δ(R −
r0) in which all polymers have the same end-to-end distance. However, as mentioned in
§ 3.1.1, the behaviour of P̂(R) for intermediate extensions is expected to change if the
initial distribution of polymer extensions is broad. To confirm this prediction, we have
considered an initial state in which the end-to-end distance of polymers is distributed
uniformly between req and a maximum initial extension r0 > req. The time-integrated
p.d.f.s given in figure 3(b) show that only the left- and right-hand power-law tails persist
in this case, while P̂(R) does not behave as a power-law for intermediate extensions.

We now turn to the statistics of the lifetime Tsc of a polymer. The DNS suggest
that the p.d.f. of Tsc has an exponential tail with a time scale γ −1 that, beyond Wicr,
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Figure 2. Passive polymers: (a) time-integrated p.d.f. of the end-to-end extension of unbroken polymers for
r0 = req and for different values of Wi. The inset shows the value of β, which determines the exponent of the
right-hand tail of the p.d.f. (i.e. P̂(R) ∝ R−1−β for r0 � R � �sc), as a function of Wi/Wicr; (b) time-integrated
p.d.f. of the end-to-end extension of unbroken polymers for r0 = 40req and for different values of Wi. The inset
shows the value of α, which determines the power-law behaviour of the p.d.f. for intermediate extensions
(i.e. P̂(R) ∝ R−1−α for req � R � r0), as a function of Wi/Wicr. In both panels (a) and (b), the p.d.f.s are
normalized to unity for the sake of comparison.
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Figure 3. Passive polymers: (a) time-integrated p.d.f. of the end-to-end extension of unbroken polymers for
QD

m = 104, req = 1, r0 = 102 and different values of Wi; (b) time-integrated p.d.f. of the end-to-end extension
of unbroken polymers for QD

m = 104, req = 1, r0 = 5 × 102, Wi = 1, and an initial size distribution that is
either monodisperse (dotted magenta line) or uniform (between req and r0; solid grey line). In both panels, the
p.d.f.s are normalized to unity for the sake of comparison.

decreases rapidly as a function of Wi (figure 4a). For all values of the Weissenberg number,
γ −1 is approximately the same as the decay time Td of the fraction of unbroken polymers
owing to the exponential decay of the latter at long times (see § 3.1.1). However, γ −1

differs from 〈Tsc〉, because the exponential behaviour of the p.d.f. of Tsc sets in only at
relatively large values of Tsc. For a fixed Wi, the mean lifetime 〈Tsc〉 behaves as a power
of �sc/Q0 below the coil-stretch transition and as the logarithm of �sc/Q0 beyond that
(see figures 4b and 4c) – we remind the reader that Q0 is the initial length of any link of
the chain. Small deviations are only observed for �sc 
 Q0. Moreover, we have checked
that, for Wi < Wicr, the exponent β that gives the dependence of 〈Tsc〉 on �sc/Q0 is the
same as the exponent that describes the right-hand tail of P̂(R), i.e. P̂(R) ∝ R−1−β for
r0 � R � (N − 1)�sc, in agreement with (3.15). Thus, the statistics of Tsc in a turbulent
flow is correctly described by the predictions of § 3.1.1.
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Figure 4. Passive polymers: (a) p.d.f. of the lifetime of a polymer for different values of Wi. The inset compares
the decay time of the fraction of unbroken polymers, the mean lifetime of a polymer and the time scale γ −1 in
the exponential tail of the p.d.f. (P(Tsc) ∼ e−γ Tsc for Tsc/τη 
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Figure 5. Passive polymers: probability of polymer scission occurring at the jsc-th link for different values
of Wi. The insets shows the probability of nL links breaking simultaneously.

We also note that the exponential tail of the distribution of Tsc originates from the fact
that scission is caused by the cumulative action of the fluctuating strain rate. This is in
contrast to the fragmentation of sub-Kolmogorov inextensible fibres, for which the internal
tension depends on the instantaneous velocity gradient projected along the fibre. The p.d.f.
of the scission time for fibres, therefore, reflects the intermittent statistics of the velocity
gradient and is strongly non-exponential (Allende, Henry & Bec 2020).

Figure 5 presents further results on the statistics of the scission process. As previously
observed in experiments (Horn & Merrill 1984), scission preferentially happens at the
midpoint of the polymer. However, the probability of scission happening at the middle link
decreases with Wi. The reason for this is that, for small Wi, the chain is most of the time in
a coiled state and scission occurs because of a sequence of very strong fluctuations of ∇u,
whereas for large Wi all links are consistently stretched near to the scission length. The
insets of figure 5 show that the probability of more than one link breaking simultaneously
is generally very small.
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Figure 6. Passive polymers: (a) time-integrated p.d.f. of the end-to-end extension of unbroken polymers for
Wi = 0.6 and different numbers of beads N ; (b) fraction of unbroken polymers as a function of time for
Wi = 0.6 and different numbers of beads N .

Finally, it was mentioned in § 3.1.1 that, in the absence of scission, the dumbbell model
(N = 2) captures the statistics of the end-to-end extension of a full chain remarkably
well, provided the mapping in (3.17a–d) is applied (see Watanabe & Gotoh 2010). We
have performed an analogous comparison in the presence of scission. The time-integrated
p.d.f.s in figure 6(a) show that, after the parameters of the chain are suitably rescaled,
the time-independent statistics of the end-to-end distance is independent of N , except
for small deviations close to the maximum extension. Indeed, for a dumbbell, scission is
defined in terms of the end-to-end separation, whereas chains with larger N break before
all the links can stretch up to �sc. These small differences, however, have a significant
impact on time-dependent quantities, such as the fraction of unbroken polymers: small-N
chains capture the temporal decay qualitatively, but underestimate the scission rate (see
figure 6b). The results also suggest that the discrepancies between chains with N − 1 and
N beads diminish as N increases (figure 6b) as well as when Wi increases (not shown).
We conclude that it is important to consider the dynamics of a full bead-spring chain
in order to accurately describe the scission process and achieve quantitative agreement
between experiments and models of polymer solutions.

3.2. Effect of hydrodynamic and excluded volume interactions
When modelling the rheological properties of dilute polymer solutions, it is important to
include HI between the beads of the Rouse model in order to capture effects such as the
dependence of solution viscosity on the molecular weight and strain rate, and a non-zero
second normal stress difference (Öttinger 1996). However, HI have no qualitative impact
on the stretching dynamics of individual polymers in laminar flows (Jendrejack, de Pablo
& Graham 2002; Schroeder, Shaqfeh & Chu 2004). Moreover, these forces weaken as
a polymer is stretched so that elongated polymers are nearly unaffected by HI (Stone &
Graham 2003). This is also true for EV interactions (Cifre & de la Torre 1999; Stone &
Graham 2003). Thus, we expect the qualitative nature of scission statistics to be unaffected
by both HI and EV forces. Indeed, this has been demonstrated for polymers with HI in
laminar flows (Cascales & de la Torre 1991; Knudsen, Hernández Cifre & García de la
Torre 1996; Sim et al. 2007), where the only effect of HI is a quantitative decrease in the
scission rate.
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Figure 7. Passive polymers with HI and EV: comparison of the scission statistics for polymers without HI and
EV (h = 0, ν = 0), with only HI (ν = 0), and with HI and EV (legend in panel (c)). In all three cases Wi = 0.9.
Panel (a) presents the decay of the fraction of unbroken polymers, with its inset showing the corresponding
results for a larger value of Wi = 2.0. Panel (b) presents the distribution of lifetimes Tsc, while its inset
compares typical time traces of the end-to-end extension of polymers with and without HI. Panel (c) shows
the time-integrated p.d.f. of the end-to-end extension.

All the studies mentioned above, however, have been conducted in non-turbulent flows.
Therefore, it is important to check whether the effects of HI and EV forces on polymer
scission remain purely quantitative even in turbulent flows. Towards this end, we modify
the model in § 2 to incorporate both HI and EV forces, as described in appendix A. This
introduces two non-dimensional parameters, h (related to the bead radius) and ν, which
determine the magnitude of the HI and EV forces, respectively. Setting these parameters
to zero recovers the Rouse model of § 2.

Our DNS calculations for these HI + EV chains (with N = 10 beads) show that,
while the scission statistics remain qualitatively the same, the scission rate is decreased
by HI while it is increased by EV forces. These effects are clearly demonstrated by
figures 7(a) and 7(b), which depict the evolution of the fraction of surviving polymers
and the distribution of polymer lifetimes, respectively. These figures present results for
Wi = 0.9 for three cases: without HI and EV (red), with only HI (green) and with HI and
EV (blue). The decay of the number of unbroken polymers, as well as the distribution
of lifetimes, remains exponential in nature even after including HI and EV interactions.
However, the scission rate clearly reduces when HI are included and then increases again
once EV are also considered. Thus, HI and EV effects oppose each other, reducing their
overall impact.

The effects of HI and EV forces diminish as Wi is increased, as shown by the inset
of figure 7(a), which presents the evolution of the number of unbroken polymers for a
larger value of the Weissenberg number (Wi = 2) than the main panel. This occurs because
polymers stretch out with increasing ease as Wi increases, while both HI and EV forces
are significant only when polymers are coiled and have small extensions. The impotence of
these forces, especially EV, at large extensions is reinforced by figure 7(c) which presents
the time-integrated p.d.f. of polymer extension for all three cases. The three curves are seen
to nearly overlap at large extensions, with significant differences arising only for R � Req.
Indeed, HI and EV affect the scission rate by modifying the initial stretching dynamics of
small coiled polymers. The HI are known to inhibit and delay the uncoiling of a coiled
polymer in laminar flows (Sim et al. 2007). We find that this is true even in a turbulent
flow, as illustrated by the inset of figure 7(b) which compares two typical time traces of
the end-to-end extension for polymers with and without HI. Thus, HI typically increase
the time it takes for a polymer to reach large extensions and thereby reduce the scission
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rate in an ensemble of polymers. The EV interactions, in contrast, promote the elongation
of a coiled polymer and thus hasten its scission. The dynamics near the scission event,
however, are unaffected by HI and EV forces, and we therefore find that the distribution of
broken link locations (not shown) remains the same as that for Rouse chains (cf. figure 5).

Having seen that HI and EV interactions have no qualitative impact on the scission
statistics, we disregard them in the subsequent sections, wherein the computational burden
increases significantly due to either the inclusion of polymer feedback onto the flow or the
tracking of broken polymer fragments as they undergo repeated scissions.

3.3. Active polymers
We now investigate the implications of the results obtained so far for the two-way-coupling
regime in which polymers perturb the surrounding flow.

When polymers break, their effective relaxation time τD decreases according to
(3.17a–d) and the solution, at any point in time, consists of polymers with different τD. We
can then introduce a mean Weissenberg number 〈Wi〉(t), which is defined as the average
of λτD over all polymers that compose the solution at time t. Studying the evolution of
〈Wi〉(t), in a one-way-coupling simulation, helps us foresee how the effect of polymer
feedback on the flow would decay due to scission.

Let us, for the sake of simplicity, consider the case of dumbbells (N = 2) and take
an initial ensemble of Np(0) dumbbells with Weissenberg number Wi0. When a dumbbell
breaks it forms two beads which formally have zero Weissenberg number. Thus, at time t,
the system consists of Np(t) dumbbells with Wi = Wi0 and 2[Np(0) − Np(t)] single beads
with Wi = 0. Hence, for an ensemble of dumbbells,

〈Wi〉(t) = Np(t)
2Np(0) − Np(t)

Wi0. (3.18)

The temporal evolution of 〈Wi〉 is obtained by calculating Np(t) from the Lagrangian
database used in § 3.1.2 and is shown in figure 8(a) for different values of Wi0 > Wicr.
Dumbbells with larger Wi0 have a larger scission rate, and therefore 〈Wi〉 vanishes rapidly.
In contrast, dumbbells with smaller Wi0 break relatively slowly and the mean Wi of the
solution remains non-zero for a longer time. We note, en passant, that 〈Wi〉 becomes
approximately equal to Wicr at t ≈ 50τη for all Wi0. By substituting (3.8) into (3.18), we
thus deduce the following empirical expression for the scission rate of dumbbells (see
figure 8b):

τη

Td
∝ ln

[
1
2

(
1 + Wi

Wicr

)]
. (3.19)

The behaviour of 〈Wi〉 shown in figure 8(a) suggests that a large value of Wi0 will produce
a polymer feedback that is initially strong but short-lived, decaying rapidly due to scission.
In contrast, a moderate value of Wi0 yields a feedback that, albeit weaker, should last for a
longer time and may therefore be more effective.

To investigate this point in a two-way-coupling simulation, we take the hybrid
Eulerian–Lagrangian approach proposed by Watanabe & Gotoh (2013a,b, 2014), which
consists in seeding the fluid with a large number of FENE dumbbells and calculating the
reaction force exerted by the dumbbells upon the fluid. This amounts to adding the term
∇ · T p to the right-hand side of the Navier–Stokes equations (3.16a,b), where T p is the
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Figure 8. Passive polymers: (a) mean Weissenberg number as a function of time for N = 2 and different
values of Wi0; (b) reciprocal of Td (multiplied by the Kolmogorov time scale) as a function of 1 + Wi/Wicr.
The dashed line is proportional to ln[(1 + Wi/Wicr)/2].

polymeric contribution to the stress tensor,

T p = νf ηL3

Np(0)

Np(0)∑
n=1

1
τ (n)

[
f

(
R(n)

QD
m

)
3R(n) ⊗ R(n)

r2
eq

− I

]
δ
(

x − X (n)
c

)
. (3.20)

In the expression for T p, L is the linear size of the domain and η is the ratio of the polymer
to the solvent contribution to the total viscosity of the solution (η is proportional to the
volume fraction of dumbbells). The vectors X (n)

c and R(n) are the positions of the centre
of mass and the end-to-end separation of the n-th dumbbell, respectively, I is the identity
matrix and

1
τ (n)

=
{

τ−1 for t < t(n)
sc

0 for t � t(n)
sc ,

(3.21)

where t(n)
sc is the smallest time such that R(n) = �sc. Thus, the dumbbells stop affecting the

velocity field after breaking. The evolution of the position and the configuration of each
dumbbell is given by (3.1).

The computational domain is a three-dimensional periodic box with L = 2π. A
pseudo-spectral method with 1283 grid points and the second-order Runge–Kutta
algorithm are used for the integration of the Navier–Stokes equations in space and in
time, respectively. The equation for the dumbbells is solved by using the Euler–Maruyama
scheme. The turbulent flow is maintained by a forcing with Fourier transform F̂ (k, t) =
A(t)û(k, t) for 1 � |k| � 2 and zero otherwise, where A(t) is such that the kinetic energy
input rate εin is constant. We take εin = 0.5 and νf = 0.015, which yields Reλ = 51 in the
absence of polymer feedback (for more details on the simulation, the reader is referred to
Watanabe & Gotoh (2013a)).

We first evolve the velocity field alone with η = 0 and then, once a statistically steady
flow is obtained, we disperse Np(0) = 4 × 108 polymers with η = 4 × 10−2 into the fluid.
The time at which the polymers are added to the flow is marked as t = 0. As in § 3.1,
QD

m/req = √
3000, �sc = 0.8QD

m and r0/req = 1. We shall consider three values of the
Weissenberg number, Wi = λτ = 0.6, 0.8, 1.0, where λ is the Lyapunov exponent of the
Newtonian flow. A set of one-way-coupling simulations (η = 0), at the same values of Wi,
are also performed for comparison.
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Figure 9. Active polymers: (a) fraction of unbroken polymers as a function of time on a semilogarithmic scale.
The thin curves refer to the passive simulations (η = 0), while the thick curves refer to the active ones (η =
4 × 10−2). Panel (b) is a close-up of the initial decay of the fraction of unbroken polymers on a linear scale.
The black lines are 1 − k(t − t�) with t�/τη = 23 and kτη × 103 = 0.315, 1.10, 2.41 for Wi = 0.6, 0.8, 1.0,
respectively.

We begin by examining the time evolution of Np(t)/Np(0), which is depicted in
figure 9(a), for both active (thick lines) and passive (thin lines) polymers. We see that,
with polymer feedback, scission proceeds in two stages: (i) an early-time regime in which
active polymers break up much slower than passive polymers, and the fraction of unbroken
active polymers decays linearly rather than exponentially; and (ii) a long-time regime in
which active polymers show the same exponential decay as passive polymers. The initial
linear-decay regime is more clearly visible in figure 9(b), wherein straight lines (black)
of the form 1 − k(t − t�) provide an excellent fit for the early-time active polymer data.
Increasing Wi is seen to increase the linear decay rate k (cf. caption of figure 9), as well as
hasten the onset of the exponential decay regime.

This behaviour is a consequence of the way the feedback of an ensemble of polymers
evolves as a result of scission. In isotropic turbulence, the dispersion of polymers into a
Newtonian solvent reduces the fluid dissipation rate by a factor proportional to the polymer
concentration (De Angelis et al. 2005; Kalelkar, Govindarajan & Pandit 2005; Perlekar
et al. 2006; Ouellette et al. 2009; Perlekar et al. 2010; Watanabe & Gotoh 2013a). The
time series of the instantaneous fluid dissipation rate

ε(t) = νf

L3

∫
[0,L]3

|∇u(x, t)|2 dx (3.22)

is shown in figure 10, along with the polymer dissipation rate

εp(t) = 1
L3

∫
[0,L]3

T p(x, t) : S(x, t) dx, (3.23)

where S is the strain tensor. (Note that under statistically stationary conditions, we would
have εin = ε(t) + εp(t), where the overbar denotes the time averaged value.) At short
times, the polymer feedback is fairly strong and causes a significant reduction of ε(t) (and
a corresponding increase of εp(t)) compared with the value for the Newtonian flow. The
reduction of ε(t) is associated with a decrease in the amplitude of the velocity gradient
and hence entails weaker polymer stretching and a lower probability of scission. For this
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Figure 10. Active polymers: (a) fluid and (b) polymer dissipation rates as a function of time for different
values of Wi. The horizontal line in panel (a) represents εin, which is the time-averaged value of the fluid
dissipation for the Newtonian fluid. The inset in panel (b) is a close-up of the main plot over the initial stage of
the evolution.

reason, the scission rate is initially small. As time progresses, however, the concentration
of unbroken polymers keeps decreasing, until the effect of polymers on the flow becomes
negligible and ε(t) returns to its Newtonian value (along with εp(t) going to zero). This is
accompanied by a growth of the velocity gradient and thus a faster decay of the fraction of
unbroken polymers. The fact that the exponential decay regime of active polymers matches
that of passive polymers (cf. figure 9) implies that the local feedback of an individual
polymer onto the flow in its immediate vicinity does not affect its scission statistics. It is
only the combined feedback by all polymers (which is concentration dependent) that can
modify scission statistics, by effecting a global change in the dissipation rate of the flow.

Since polymers break more easily for higher values of Wi, the time needed for the
polymer feedback to vanish decreases with increasing Wi. So for Wi = 1, while the
reduction of energy dissipation is initially stronger, the return to the Newtonian regime is
faster; for Wi = 0.6 scission proceeds extremely slowly and the dissipation reduction,
albeit smaller, lasts for a much longer time.

One important consequence of this analysis is that, for a given experiment, an optimal,
not necessarily very large, value of Wi exists that maximizes the energy-dissipation
reduction integrated over the duration of the experiment.

4. Multiple-scission statistics

We now return to passive polymers and examine how a population evolves when polymers
can undergo multiple, repeated scissions. When a polymer chain composed of several
beads undergoes its first scission (whose statistics was analysed in § 3.1), it results in two
daughter polymers, each containing a smaller number of beads. These daughter polymers
can themselves undergo further scissions to produce a tertiary generation, and so on, until,
in case of complete breakage, we are left with only individual beads which represent small,
inextensible polymer fragments. In this section, we study how this hierarchy of daughter
polymers evolves, owing to multiple breakups of the parent polymers. After every scission
event, we discard the broken link, form two new daughter polymers, and then follow their
evolution along the trajectories of their respective centres of mass, which typically separate
exponentially in time due to the positive Lyapunov exponent of the turbulent flow.
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In the simulations for first-scission statistics, described earlier in § 3.1.2, we treated the
centre of mass and the separation vectors of the polymer chains as the dynamical variables.
This formulation becomes inconvenient when dealing with multiple scissions, because
new trajectories would have to be spawned after each scission event. So, instead, we adopt
the following approach. Consider Np(0) parent polymer chains, each of which is composed
of N0 beads. Thus, the total number of beads in the simulation, which remains constant in
time, is Nb = N0Np(0). We assign to the beads distinct labels from 1 to Nb and follow the
time evolution of their positions. In addition, we maintain an array which records the labels
of the first and last beads of every polymer chain in the simulation. So when a polymer
chain undergoes a scission, we simply update this array: the broken chain is assigned all the
beads preceding the broken link (and thereby becomes the first daughter polymer), while
the remaining beads are assigned to a new entry in the array (to form the second daughter
polymer). This procedure allows us to simulate the growing population of polymer chains
without increasing the number of dynamical variables. For a given chain with N beads,
we still use (2.1) to evolve its dynamics, by calculating X c and Qi from the position vectors
of the beads, X 1, . . . , XN as follows:

X c =
N∑
i=1

X i and Qi = X i+1 − X i (1 � i � N − 1). (4.1a,b)

All other aspects of these simulations follow the description given for the first-scission
simulations in § 3.1.2, except that we now simulate the turbulent flow with a more moderate
value of Reλ = 90, by using 2563 collocation points and a time step of dt = 10−3. The
reason for this is that multiple-scission simulations require the polymers to be evolved
simultaneously along with the flow (whereas a precomputed set of Lagrangian trajectories
were used to obtain all first-scission statistics), thus necessitating a new flow computation
for each variation of the polymer parameters.

At time t = 0, the parent polymers are composed of N0 beads. As a result of scissions,
at later times polymers with different numbers of beads will be found in the flow. We thus
denote by NP(t,N ) the number of polymers that, at time t, are composed of N beads.

We begin by examining how NP(t,N ) evolves due to the repeated scission of an initial
population of NP(0,N0) parent polymer chains, each with N0 = 10 beads. Figure 11
presents results for various values of the parent-polymer Weissenberg number, Wi0 = (a)
0.8, (b) 1.0, (c) 2.0 and (d) 4.0. Each N -bead parent/daughter polymer is represented by
a different curve, as indicated in the legend. We observe that for the small values of Wi0
in figure 11(a,b), only 10-bead polymers break. As shown in figure 5, most of the daughter
polymers have five beads (along with a few non-5-bead polymers due to rare off-centre
scissions), because scission typically occurs at the central link for small Wi0. For the
larger values of Wi0 in figure 11(c,d), the daughter polymers also undergo scissions and the
population is eventually dominated by small polymers and individual beads (inextensible
polymer fragments).

Clearly, the extent to which polymers can undergo repeated scissions depends on the
Wi0 of the parent polymers. This is because each subsequent scission produces daughter
polymers with a smaller relaxation time, which can be quantified by using (3.17a) to
calculate the effective Weissenberg number of the N -bead daughter polymer

Wi = N (N + 1)

N0(N0 + 1)
Wi0, (4.2)

where 2 � N < N0, and Wi0 is the Weissenberg number of the parent polymer with
N0 beads. Note that Wi ≡ 0 for individual beads (N = 1). An approximate condition for
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Figure 11. Passive polymers undergoing multiple scissions: evolution of the number of polymers, NP(t,N ),
categorized according to the number of constituent beads N , due to the repeated scission of NP(0, 10) 10-bead
parent polymers with (a) Wi0 = 0.8, (b) Wi0 = 1.0, (c) Wi0 = 2.0 and (d) Wi0 = 4.0.

a significant fraction of any given generation of daughter polymers to breakup is Wi >

Wicr = 1/2. So, if N0 = 10, (4.2) implies that 5-bead daughter chains will not break up,
unless Wi0 > 1.83. The results in figure 11 agree with this estimate: 5-bead daughters
experience a slow rate of scission for Wi0 = 2.0 (figure 11c), but no scission at all for
Wi0 = 0.8 and 1.0 (panels (a) and (b), respectively). Furthermore, for Wi0 = 4.0, (4.2)
leads us to expect scissions of daughter polymers that have N = 4 beads (Wi = 8/11 >

1/2) or more, but certainly not if they are composed of only two beads (Wi = 12/55 <

1/2). This is exactly what we observe in figure 11(d). Thus, the condition Wi > Wicr, in
conjunction with (4.2), provides a simple way of estimating the number of beads of the
smallest polymer that can be formed by repeated scissions, given Wi0.

Panels (c) and (d) of Figure 11 show that the evolution of the number of daughter
polymers typically have two regimes. First, there is an enrichment phase, during which
daughter polymers are formed due to the rapid breakup of the 10-bead parent polymer.
Daughter polymers with various numbers of beads can be formed, especially at large Wi for
which off-centre breakups are quite frequent (figure 5). An exponential decay phase then
appears for the daughter polymers that have enough beads to undergo further scission, e.g.
N = 7, 6, 5, 4 in figure 11(d). These secondary breakups produce a second phase of mild
enrichment for the smallest polymers that do not break up, e.g. N = 2 in figure 11(c,d).

The decay time Td of the number of daughter polymers, in the exponential decay regime,
is larger for smaller N , as evidenced by the shallower slopes of the corresponding curves
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Figure 12. Passive polymers undergoing multiple scissions: (a) probability distributions of the lifetime of a
parent 10-bead polymer, a daughter 5-bead polymer formed because of the scission of a 10-bead polymer
(N0 = 10) and a parent 5-bead polymer (N0 = 5) with same Wi0 = 4; (b) decay of Wi, averaged over the entire
population of polymers, for various values of the initial Wi0 of the 10-bead parent polymers; (c) evolution of
the averaged end-to-end extension 〈R〉 of the polymers for various Wi0 of the parent polymers.

(e.g. N = 7, 6, 5, 4 in panel (d)). This variation follows from figure 1(b), provided that
the decay time of each daughter polymer can be estimated from figure 1(b) by using (4.2)
to calculate Wi. However, the use of figure 1(b) for daughter polymers is permissible only
if the scission kinetics of an N -bead daughter polymer is the same as the first-scission
kinetics of a parent polymer that starts with N beads. To check if this is the case,
we ran a separate simulation to calculate the distribution of survival times of 5-bead
parent polymers (N0 = 5, N = 5). In figure 12(a), this result (blue) is compared with
the survival time distribution of 5-bead daughter polymers (red), which form due to
the breakup of 10-bead parent polymers. The corresponding distribution for the 10-bead
parent polymers (black) is also shown for comparison. Remarkably, we see that daughter
polymers have a much higher probability of breaking at early times than parent polymers
with the same number of beads. This is because daughter polymers are formed from
scission events: they typically start out in a stretched configuration and so have a much
higher probability of breaking quickly than a randomly initialized, coiled parent polymer
with the same number of beads. The effect of this fades quite quickly, though, and for
times larger than the Lagrangian decorrelation time TL ≈ 10τη (for Reλ ∼ 102; see Yeung
(2002)) the survival time p.d.f. of the daughter polymers begins to resemble that of the
parent polymers with the same number of beads. The time scales associated with the
two exponential tails are, therefore, approximately the same, and one can indeed estimate
the long-term decay time scale (or equivalently the decay rate) of an N -bead daughter
polymer, formed due to multiple scissions, by using just the first-scission statistics of a
parent polymer with the same number of beads.

Can the early-time, high scission probability of daughter polymers be ignored? This
depends on the Wi of the daughter polymers. From figure 1(b), we expect Td 
 TL
for small Wi � 1; the number of polymers that would break up during the initial time
TL will then be relatively small, and may be ignored. However, for larger Wi � 4, we
have Td ≈ TL and a significant fraction of daughter polymers would break before they
forget their stretched initial conditions. Therefore, for large Wi0 (which would produce
daughter polymers with large Wi), it becomes important to simulate multiple scissions in
order to faithfully describe the decay of the polymer population. Such simulations would
have to be repeated if the number of beads of the parent polymer changes. The situation
simplifies considerably, however, for small Wi0 as one can then use first-scission statistics,
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calculated for a range of N , to describe the decay of daughter polymers, regardless of the
number of beads of the parent polymer.

The evolution of Wi averaged over all polymers, which represents the mean effective
Wi of the entire population, is shown in figure 12(b), for various values of Wi0 of the
parent polymers. This is the analogue of figure 8(a), but for N0 = 10 rather than 2. We see
that 〈Wi〉 decreases rapidly while the parent polymers are breaking. After this, the slower
scission rates of the daughter polymers lead to a more gradual decrease in 〈Wi〉, which
eventually will saturate to a value less than Wicr, corresponding to daughter polymers that
cannot be broken up further by the flow. This effect cannot be captured by dumbbells,
which directly break into beads (figure 8).

The reduction of 〈Wi〉 with time has a strong influence on the evolution of the mean
end-to-end extension of the polymers 〈R〉, as shown in figure 12(c). After an initial
stretching phase, 〈R〉 begins to decrease, owing to both the scission of highly stretched
polymers and the smaller Wi of the resulting daughter polymers. After all scissions cease,
we are left with relatively inextensible daughter polymers whose extensions fluctuate near
req. Interestingly, the curve for Wi0 = 2.0 shows two regimes in the decay of 〈R〉. The
first fast-decay regime is due to the rapid scission of 10-bead parents (see figure 11c);
the second slow-decay regime results from the much slower breakup of 5-bead daughter
polymers, for which Wi = 0.55 barely satisfies the condition for secondary scission
(Wi > Wicr = 1/2). This second slow regime is not seen for either smaller or larger Wi0:
in the former case, secondary breakups do not occur, whereas in the latter case secondary
breakups occur very quickly (see figure 11).

5. Concluding remarks

Polymers, even in small quantities, have a dramatic impact on a turbulent flow, reducing
drag or dissipation and suppressing small-scale motion. However, because these effects
originate from polymer stretching (and the resultant feedback forces), the polymers which
exert the strongest influence on the flow are also the most susceptible to strain-induced
scission. Therefore, to achieve effective flow modification, one must strike a balance
between these opposing tendencies, which in turn demands a detailed understanding of
the scission process and the factors that influence the rate of scission.

In this work, we have analysed the scission of polymers in homogeneous isotropic
turbulence, with a focus on the temporal decay of unbroken polymers, and the statistics of
their survival times. By using DNS, we have quantified the decay time (or scission rate) as
a function of Wi, which can serve as inputs for coarse-grained models. Importantly, all the
key qualitative features of the numerical results can be predicted analytically by replacing
the fluctuating, turbulent velocity gradient by a time-decorrelated Gaussian random flow.
This is possible because scission is caused by the cumulative action of fluctuating strain,
and not by sudden stretching in high-strain regions of the flow.

The scission statistics have been shown to be qualitatively insensitive to the strength of
HI and EV interactions among the beads of the polymer chain model. Quantitatively, these
two interactions have opposing effects, with hydrodynamic (EV) interactions suppressing
(enhancing) the scission rate by delaying (hastening) the uncoiling of coiled polymer
chains. Another finding, relevant for future computations, is that a multibead polymer
chain cannot be replaced by a dumbbell model without incurring quantitative errors in the
prediction of breakup rates. However, the results appear to converge as Nb increases, so
we expect Nb ∼ O(10) to be sufficient even if a polymer model may strictly demand many
more beads.
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Our study of the scission of active polymers has shown that there is an intermediate
value of Wi for which the overall, time-integrated, reduction of the kinetic energy
dissipation rate is maximum: for small Wi the polymers do not stretch and the feedback
is weak, whereas for large Wi the stretching and feedback is initially strong, but the
resultant dissipation reduction is lost rapidly as the polymers break up very quickly. This
study also demonstrates the usefulness of the hybrid Eulerian–Lagrangian method for
the simulation of scission in turbulent polymer solutions. This approach indeed directly
applies a suitable scission criterion to individual polymer molecules instead of modelling
the effect of scission on the polymer-conformation tensor field. In the hybrid simulations
presented here, the description of the polymer phase was necessarily restricted to the
elastic-dumbbell model, because a very large ensemble of molecules is required to obtain
an appreciable feedback on the flow. However, it is hoped that in future it will possible to
use more refined polymer models.

We have shown that in a sufficiently strong turbulent flow (large Wi) polymers can
break up repeatedly. However, because the fragments in each successive generation have a
smaller relaxation time, the breakup process eventually ceases once the effective Wi of the
surviving polymer fragments becomes less than Wicr. From this condition, we can estimate
the number of beads in the largest surviving chains as N (N + 1) � 6Wicrτη/τ (using
(3.17a)). Now, as N is linearly related to the mass of a polymer, this condition allows
us to estimate how the weight-averaged molar mass (biased towards the largest chains)
of the surviving polymers Mws scales with the Reynolds number Re. For large N , we
have N 2 ∼ τη/τ ∼ Re−3/2νf /D2τ , where D is the large length scale of the flow system.
Therefore, for a specified polymer, solvent and system geometry we obtain M2

ws ∼ Re−3/2.
This scaling is consistent with the experimental data of Vanapalli et al. (2006), who obtain
a power-law exponent close to −3/2 for a variety of polymers and system geometries (these
results are reported in terms of the squared, weight-averaged polymer length which is
linearly related to M2

ws, as described in the data analysis section of Vanapalli et al. (2006)).
The same scaling was extended to higher Reynolds numbers by Elbing et al. (2009).

The flow of a polymer solution in the elastic-turbulence regime shares many similarities
with the viscous range of Newtonian turbulence (Steinberg 2009). However, the above
argument for estimating Mws cannot be easily adapted to elastic turbulence, because the
amplitude of the fluctuating strain rate decays along with the concentration of unbroken
polymers. Thus, Mws depends on the time evolution of the chaotic flow, which is not known
a priori.

The multiple-scission statistics of a polymer also show a non-monotonic dependence
on Wi. Small Wi polymers break only once, if at all, whereas large Wi polymers
undergo a rapid succession of breakups and quickly reach their limiting generation
(fragments which are no longer stretched by the flow). However, for intermediate Wi,
the first-scission occurs quickly, but then the daughter polymers break up much more
slowly. This introduces multiple time scales into the decay of 〈Wi〉, the average effective
Wi of the polymer population. This average quantity and its evolution are relevant to
coarse-grained continuum models of polymer solutions which typically contain a single
mean polymer-relaxation-time parameter. Indeed, the development of continuum models
that incorporate scission is essential for predicting the long-time dynamics of turbulent
polymer solutions in complex applications. The quantitative results as well as physical
insights gained from this study should aid in the development of such models.

Finally, the present study is based on a coarse-grained description of a polymer molecule
and of the scission process. In the context of laminar flows, a fine-grained model of
polymer scission has been proposed by Sim et al. (2007). Here, the polymer is modelled by
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a chain of a large number of beads joined by rigid rods, which more faithfully represents
the entropic coiling process than a bead-spring model. Scission is based on the tension
exerted by the flow on the rods, but is implemented as a stochastic event, respecting the
stochasticity of both covalent bond breakup and the fluctuating rod-tension. We hope
that with future increases in computational power, it will become possible to use such
fine-grained polymer models in Lagrangian simulations of polymers in turbulent flows
and thus reach a deeper understanding of the scission process.
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Appendix A

In this appendix, we present a modified version of the bead-chain model (§ 2) that takes
into account HI, using the Rotne–Prager–Yamakawa mobility tensor, and implements EV
interactions using a repulsive, narrow Gaussian potential. We follow the formulation given
in Schroeder et al. (2004), but rewrite the equations in terms of the notation and parameters
of § 2. The equation for the motion of the centre of mass remains the same as (2.1a). The
evolution of the separation vectors Qi, however, is now governed by

Q̇i = κ(t) · Qi + 1
4τ

N∑
j=1

(
Di+1,j − Di,j

) ·
(

F E
j − F EV

j

)

+
√

Q2
eq

6τ

i+1∑
j=1

(
Bi+1,j − Bi,j

) · ξ j(t), i = 1, . . . ,N − 1. (A1)

Here, F E
i = fiQi − fi−1Qi−1 is the net FENE spring force exerted on bead i, with the

coefficients fi still given by (2.2) (Q0 and QN must be replaced by zero to obtain the
forces on the first and last bead, respectively). The net force due to EV interactions acting
on bead i, F EV

i , is given by

F EV
i = −

N∑
j=1;j /= i

ν
34

25/2π3/2

(
Qm

Qeq

)4

exp

(
−9

2

X2
ij

Q2
eq

)
X ij, (A2)
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where ν is a non-dimensional parameter that sets the magnitude of the EV forces, X i is the
position vector of bead i, X ij = X j − X i is the displacement vector between beads i and j,
and Xij = |X ij|. The Rotne–Prager–Yamakawa mobility tensor Di,j is given by

Di,j = I if i = j, (A3)

Di,j = 6a
8Xij

[(
1 + 2a2

3X2
ij

)
I +

(
1 − 2a2

X2
ij

)
X ijX ij

X2
ij

]
if i /= j and Xij � 2a, (A4)

Di,j =
[(

1 − 9Xij

32a

)
I + 3

32
X ijX ij

aXij

]
if i /= j and Xij < 2a, (A5)

where I is the 3 × 3 identity tensor and a is the radius of the beads, which defines the
non-dimensional HI parameter

h = a
Qeq

(
3
π

)1/2

. (A6)

This definition implies that physically meaningful values of h should be �1/2 (Schroeder
et al. 2004).

Finally, the coefficient matrix Bi,j is related to the positive definite mobility tensor by

Di,j =
N∑
l=1

Bi,l · BT
j,l, (A7)

where the superscript T denotes the transpose. To compute Bi,j, we first combine the N 2

different Di,j matrices into a 3N × 3N block matrix, and then carry out a Cholesky
decomposition to obtain a lower triangular block matrix that yields the Bi,j matrices
(Jendrejack et al. 2002). Note that Bi,j = 0 if j > i.

Equations (A1) to (A7), along with (2.1a), constitute the bead-spring chain model with
HI and EV interactions, the magnitudes of which are set by the two new parameters
h and ν, respectively, such that substituting h = ν = 0 yields the Rouse model of § 2.
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