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The stability of forced planar liquid jets in a still gaseous environment is explored
using nonlinear simulation and spatial linear stability analysis. Harmonic modulation
of the transverse component of the inlet velocity leads to an excitation of sinuous
modes in the jet. Two forcing amplitudes, 1% and 5 %, are investigated. While for
1 % forcing, the interfacial disturbance retains a sinuous shape throughout the domain,
for 5% forcing, an increasing downstream deviation from the sinuous wave shape is
found. Both forcings lead to sufficient mean flow correction to render linear stability
analysis on a base flow unfeasible. Hence, an analysis on the time-averaged mean flow
is performed. A correction scheme is introduced, to account for the spreading of the
interface position in the mean flow. Comparison of eigenfunctions and growth rates
with their counterparts from the nonlinear simulation shows an excellent agreement for
1 % forcing. For 5 % forcing, agreement of the eigenfunctions deteriorates significantly
and growth rates are falsely predicted, resulting in a breakdown of the stability model.
Subsequent analysis reveals a strong interaction of the fundamental wave with the
second higher harmonic wave for 5% forcing and a reversed energy flow from the
coherent motion to the mean flow. These findings provide an explanation for the
failure of the linear stability model for large forcing amplitudes. The study extends
the applicability of mean flow stability analysis to convectively unstable planar
liquid/gas jets and supports previous findings on the limits of mean flow stability,
involving pronounced influence of higher harmonic modes.
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1. Introduction

The breakup of liquid jets is relevant to a broad range of industrial applications,
including ink-jet printers or fuel injection in e.g. diesel engines or gas turbines. In
such cases a high-velocity liquid stream is injected into a still gaseous environment
through a high pressure nozzle. The resulting two-fluid system is subjected to extrinsic
and intrinsic mechanisms of destabilisation. Extrinsic factors, for instance, are given
by pressure fluctuations in the supplied liquid stream or forced oscillatory movement
of the jet within the nozzle. Forced destabilisation can be achieved with the use of
a fluidic oscillator, to create a spatially or temporarily oscillating jet (Bobusch er al.
2013; Kriiger et al. 2013; Schmidt et al. 2018). These effects possibly promote the
development of intrinsic destabilisation mechanisms that arise through the shear of the
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adjacent parallel fluid layers, the presence of surface tension at the liquid/gas interface
or unstable stratification of denser and lighter fluid.

Besides experiments or direct numerical simulation (DNS) to capture the full
nonlinear dynamics of the flow, assessment of the various occurring flow instability
can be made by means of linear stability analysis (LSA). The early studies of
Rayleigh (1878) consider the inviscid analysis of a low-velocity cylindrical liquid jet.
In this configuration disturbances in the jet radius, and thus in the capillary pressure
gradient, with wavelengths exceeding the jet perimeter may grow in time and break
up the jet under the influence of surface tension.

Investigations by Squire (1953), however, showed that surface tension acts
stabilising if the jet is planar since there is no circumferential connection of the upper
and lower interface. Instability has therefore to be rooted in the shear layer of the
fluids, caused by either the momentum, density or viscosity defect (Yih 1967; Drazin
& Reid 2004). With increasing jet velocity aerodynamic effects become relevant. Thus
the incorporation of the surrounding fluid is necessary as investigated by Hagerty &
Shea (1955) for an inviscid ambient gas and later in the studies of Lin, Lian &
Creighton (1990), Li & Tankin (1991) and Li (1993) for a viscous gas. However,
none of these considered a gas boundary layer, which was studied by e.g. Tammisola
et al. (2011). For a fully viscous shear layer, approximated by a tanh-profile, Boeck
& Zaleski (2005) found three competing unstable modes, attributed to the viscosity
ratio (H mode), the inviscid Kelvin—Helmholtz and the viscous Tollmien—Schlichting
mechanism. In the context of plane liquid jets Soderberg (2003) found up to five
unstable modes, three asymmetric and two symmetric modes, using both spatial and
temporal LSA. The jet velocity profile was obtained by numerical analysis and the
gas velocity profile was approximated by a spatial transformation of Stokes first
problem (Schlichting & Gersten 2006). Downstream amplitude growth was evaluated
and compared to experimental results with good agreement. Similarly, a cylindrical jet
in the first wind-induced break-up regime was analysed by Gordillo & Pérez-Saborid
(2005) using a constant jet velocity. In the above works either the gas-phase or
liquid-phase base flow profiles were modelled using analytical approximations of the
actual velocity profile. A fully numerical base flow computation by means of DNS
was used by Tammisola, Lundell & Soderberg (2012) for global stability analysis of
confined planar liquid jets and wakes.

The classical approach to LSA by linearising the Navier—Stokes operator around
a theoretical, steady base flow, however, neglects possible nonlinear dynamics of the
underlying flow as well as any incoherent, turbulent fluctuations. A way to account
for these aspects is to linearise around the time-averaged mean flow. The approach
has been successfully used for e.g. the prediction of finite vortex shedding behind a
cylinder at post-critical Reynolds numbers (Pier 2002; Barkley 2006) or the spatial
development of a forced single-phase jet (Oberleithner, Rukes & Soria 2014b). Limits
of the mean flow model have been revealed by Sipp & Lebedev (2007) for an
open cavity flow due to significant resonance of the fundamental wave with its first
harmonic. To the best of the authors knowledge the concept of mean flow stability
has not been applied to the scenario of forced liquid jets so far.

In the present work a jet is forced sinusoidally at the domain inlet, resulting in
the development of finite amplitude waves that grow and decay in the downstream
direction, resulting in a convectively unstable flow. The aim of the investigation
is twofold. First, we explore the potential of the mean field model for LSA to
predict the spatial development of the excited instability waves in a forced liquid
jet. Modelling using mean flow analysis has the potential of providing a simplified
model to capture coherent structures of an unsteady flow without the necessity of
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computing the full nonlinear representation of the flow. Second, the subsequent
downstream nonlinear evolution of fundamental wave and interaction with developing
higher harmonic waves are studied using direct numerical simulation of the jet. The
fully nonlinear, unsteady flow representation also allows for a thorough study of the
phenomenological manifestation of the nonlinear wave interaction in the flow.

The paper is structured as follows: In §2 we briefly summarise the numerical
methods and present the general results of the nonlinear simulation to establish a
phenomenological overview of the studied cases. In §3 the mean flow perturbation
equations are derived and the methodology for two-phase flows is explained. We
present the parameterisation of the mean flow and analyse general stability properties
of an unforced and forced jet. A detailed comparison of the nonlinear results and
the LSA is conducted in §4 where growth rates and mode shapes, derived for both
methods, are presented. To conclude, in §5 shortcomings of the stability model are
investigated by help of the nonlinear simulations. The developing nonlinearities in the
downstream development of the excited waves are analysed and linked to the vortex
dynamics of the unsteady flow.

2. Nonlinear simulation of a liquid jet

Physically, the conservation laws for flows involving two immiscible and incom-
pressible fluids are derived with two additional assumptions over the single-phase
formulation, regarding the interface, separating the two phases. First, the interface is
assumed to have negligible thickness, resulting in a discontinuity of the density and
viscosity field. Second, the imbalance of molecular forces along the fluid interface
results in a surface tension force located at the interface. Consequently, velocity and
tangential stress are continuous across the interface, while the normal stress encounters
a jump, balanced by the surface tension. Numerically, the system is modelled in a
unified formulation over both phases, known as the one-fluid formulation (Tryggvason,
Scardovelli & Zaleski 2011), where continuity equation and momentum balance are
given by

ap  dpu;
- =0, 2.1
ot + ax,» ( a)
814,- au,- ap 0 Bui 81/!/'
; =—— 4+ — — iSs, 2.1b
p(a: +”’axj> o o [“(aijrax,-)] Hokemos (2.16)

with u; = (u, v)T representing the components of the velocity vector (i = 1, 2),
x; = (x, y)T the spatial coordinates, p the density, u the dynamic viscosity and p the
pressure. The density and viscosity field are given as

p = pg+ (01— pg)C, (2.2a)
vV =y, + (v, —v,)C, (2.2b)

where the indices g and [ refer to the gaseous and liquid phase, respectively. Thus,
density and viscosity vary between the phases but are constant within each phase. The
volume fraction C(x;, t) is a Heaviside function, defined as the ratio of liquid volume
to total volume.

The term oxn;ds in (2.1b) accounts for surface tension forces along the interface
where o denotes the surface tension coefficient, « is the mean interface curvature and
n; is the outward pointing normal vector. It is formulated according to the continuum
surface force method (CSF) (Brackbill, Kothe & Zemach 1992). The equations
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are solved using the finite volume method in the open-source toolbox BASILISK,
developed by Stéphane Popinet (http://basilisk.fr). For a detailed description of the
implemented numerical schemes, see Popinet (2003, 2009).

The interface is tracked with the volume-of-fluid (VoF) method (Hirt & Nichols
1981) using the advection of C(x;, f) as

aC n dCu;
ot 8xi

=0. (2.3)

Computational cells where C = 1 are located in the liquid phase and cells
with C = 0 are situated in the gaseous phase. Consequently, in interfacial cells
0 < C < 1. Given the velocity field, the volume fraction field is successively advected
along each dimension with a one-dimensional scheme. The local volume fraction
fluxes are calculated from the local velocities and geometric reconstruction of the
interface. In two dimensions the interface segment, dividing a computational cell, is
reconstructed by knowledge of the value of C in the cell. Therefore, the orientation of
the segment is evaluated by computing the normal vector to the segment n; = 9C/dx;.
The segment then is described by n;x; = ¢, where ¢ is the shortest distance from the
segment to the current coordinate below the segment. In practice, ¢ can be determined
by an analytic formula (Scardovelli & Zaleski 1999).

The surface tension term in (2.15) is implemented using a balanced CSF formulation
(Francois et al. 2006) to avoid the problem of parasitic currents (Harvie, Davidson
& Rudman 2006). The method relies on an accurate computation of the interface
curvature which is obtained with a height-function method, that gives second-order
accurate curvature estimates (Torrey et al. 1985; Cummins, Francois & Kothe 2005).

For large density ratios in e.g. water/air flow, a momentum conserving scheme is
used for the advection term in (2.10) in order to avoid numerical instabilities.

The spatial discretisation is based on a uniform or non-uniform structured grid. In
the latter case, a hierarchical quad-/octree structure is used to dynamically refine the
grid at each time step according to a specified adaptation criterion. The dynamic grid
helps to retain a high resolution in regions of large gradients while simultaneously
allowing for coarse resolution away from the region of interest and therefore greatly
decreases computational costs.

2.1. Problem formulation

The BASILISK solver is used to simulate the temporal and spatial evolution of a
transversely forced planar liquid jet in a still ambient gas. The computational domain
is square with an edge length L =200D, the inlet has a width D=2 x 10~ m and is
located in the centre of the left boundary. The computational domain is significantly
larger than the relevant area for this study. For the remaining sections of this work,
only the area —5 < y/D <5, 0 < x/D < 40 will be considered and referred to as
domain. The domain is initialised with #; = 0, C = 0. We use Dirichlet boundary
conditions at the inlet and impose a sinusoidal oscillation in the transverse velocity
component. The inlet conditions at §2; in the centre of the left domain edge reads

ulo, =U, (2.4a)
Vg, = U x Asin(2nf™1), (2.4b)

0

LA a— (2.4¢)

0x | g,

Clo, =1, (2.4d)
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FIGURE 1. Schematic illustration of the computational domain and the adaptive grid (a)
and grid sensitivity assessment using the streamwise development of the time-averaged
shear layer momentum thickness § for A =0.05 (b).

where U=4 m s~ ! is the plug flow velocity at the inlet. The forcing frequency is f* =
200 Hz and A =0.01, 0.05. Additionally, a simulation of the unforced jet is conducted.
On the remainder of the left edge (£2;) a no-slip boundary is imposed. The top and
lower edges £2; are equipped with symmetry boundaries. Along the right edge $24 a
standard outflow condition

Bui

o |2, =0, (2.5a)
Pla, =0, (2.5D)
aC
—le, =0, (2.5¢)
ox

is imposed. Further, a sponge region is employed, by enforcing a coarse mesh for
x> L/4. Thereby, vorticity is efficiently dissipated in order to avoid backflow issues
at the domain outlet. A schematic description of the computational domain is given
in figure 1(a).

The fluid properties of the respective phases, corresponding to water and air, and
the corresponding dimensionless quantities based on U, D and the forcing frequency
f* are given in tables 1, 2. The flow parameters and the domain extend are chosen
such that the complete destabilisation cycle of the velocity field, including growth,
saturation and onset of decay of the forced instability wave is captured within the
area of interest. Further, the choice of flow parameters ensures that the jet remains
intact throughout the domain such that no breakup of liquid structures occurs.

A dynamic quadtree-structured grid is chosen as spatial domain discretisation. To
check whether a cell needs refinement, its level is reduced by one and increased again.
This corresponds to down- and up-sampling of the stored scalar fields. The original
field i is compared to the up-sampled field {* to estimate the error € = || — ¥*|.
The cell is refined if € > 6 and coarsened if € <?2/30 where 6 is the error threshold
of the specific scalar field. A more detailed description is given by van Hooft et al.
(2018).
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Name Variable Value Unit
Liquid density 01 997 kg m~>
Gas density Pq 1.177 kg m~3
Liquid viscosity i 8.90 x 10™* kg m~' s7!
Gas viscosity Ug 1.84 x 1075 kg m~! s7!
Surface tension o 72.5x 1073 N m™!

TABLE 1. Fluid properties of the liquid and gas phase.

Name Relation Value

Liquid Reynolds number Re; = p,UD/u, 8962
Gas Reynolds number Rey, = p,UD/ 1, 512
Weber number We = p,U*D/o 440
Strouhal number St=f*D/U 0.1

TABLE 2. Dimensionless numbers, based on U, D and the forcing frequency f*.

For the present work, we set & =5 x 107° for both velocity components and
the volume fraction. The maximum resolution is limited to 15 levels of refinement,
corresponding to a minimum non-dimensional cell edge length of Ax/D ~ 0.0157.
To evaluate the adequacy of the chosen adaptation criteria and mesh resolution, the
time-averaged shear layer momentum thickness, defined as

5(x)=/oo”(1—”> dy, (2.6)
, U U

where u denotes the time-averaged streamwise velocity, is shown for 13 to 15 levels
of refinement in figure 1(b). No visible improvement is seen between the latter two
levels, hence the chosen parameters should be sufficient.

Simulations are run for T7U/D =409.6 non-dimensional time units, corresponding to
40.96 oscillation cycles. Time stepping is adaptive based, on a Courant condition

2.7)

Ax P AX3
u o |-

At < 0.5 min {,

2.2. General jet evolution

The liquid jet, injected on the left side of the domain, evolves in the streamwise
direction and remains intact throughout the area of interest. The harmonic transverse
forcing at the inlet introduces an initially monochromatic wave that grows in space
while being convected downstream. The disturbance amplitude is clearly visible in the
fluid interface, shown in figure 2, for A =0.01 and A = 0.05. For further illustration,
the envelope of the interfacial instability wave is shown for both forcing amplitudes
by plotting an iso-line of the time-averaged volume fraction field C.

For both amplitudes, the interface disturbance grows in the streamwise direction
over the whole domain. For x > 15D the interfacial disturbance wave starts saturating
and approaches its maximum amplitude. The point where the interfacial disturbance is
saturated completely is outside the investigated domain (x/D = 45). For A =0.05, the
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FIGURE 2. Instantaneous view of the interface via the volume fraction field C for
(a) A=0.01, (b)) A=0.05. The blue area corresponds to C > 0.5, denoting the liquid phase
while the white area, C < 0.5, denotes the gas phase. In (c¢) the envelope of the interfacial
instability wave is shown as an iso-line of C =0.01.

influence of the harmonic forcing on the interface is much more prominent, resulting
in significantly larger amplitude growth. Further, for A =0.05 an increasing deviation
from the initial wave pattern is evident from figure 2 for x/D > 20. This results in a
characteristic agglomeration of liquid around the wave crests as well as a shift from
a sinuous wave shape to a triangular shape.

The spatio-temporal evolution of the interfacial wave and secondary structures
is illustrated by the diagram of C(x, y =0, ) and the instantaneous vorticity field
£2 = dv/dx — du/dy in figure 3. The contour lines of C illustrate the amplitude
growth and saturation of the interfacial wave, while 2 visualises the interaction of
the interface with the instability growth in the respective fluid phases. Initially, the
interfacial amplitude is small and the vorticity of the liquid phase is virtually zero,
which is marked as the white area in the diagram. Downstream of approximately
x/D = 10, the amplitude growth leads to sufficient deflection of the interface to
intermittently expose the growing non-zero gas-phase vorticity. In the subsequent
development, the saturation of the interfacial wave is seen in the diagram as the
gaps approach a constant thickness. The development of secondary structures is
indicated by increasingly complex vortical patterns which manifest in the appearance
of clockwise and anti-clockwise rotating vortical patterns in each gap during their
downstream evolution.

For further clarification of the evolving vortical structures, the instantaneous vorticity
field for both forcing amplitudes is shown in figure 4. For A =0.01, a single vorticity
sheet evolves along each side of the interface and remains intact throughout its
downstream development, indicating linear disturbance growth. Contrastingly, for
A = 0.05, the vorticity sheet in the initial shear layer is disturbed by the growing
oscillation of the interface, which promotes agglomeration into discrete vortical
structures from around x/D & 15. These structures develop along the interfacial wave
crests when the curvature of the deflected interface becomes sufficiently large such
that the vorticity sheet detaches from the interfacial curve. The formed structures
travel in the wave troughs of the excited jet. While initially a single vortical structure
is present, additional, secondary structures form during the downstream evolution of
the jet.

Similar flow features are observable in the flow visualisation conducted by
Tammisola et al. (2011). In their experimental work a planar liquid sheet is
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FIGURE 3. Spatio-temporal diagram of the non-dimensional centreline vorticity
2/(U/D)(x,y=0, 1) (filled contour) and the centreline volume fraction C(x,y=0, ) =0.5
(black contour line) for A =0.05.
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FIGURE 4. Instantaneous view of the non-dimensional vorticity field £2/(U/D) for
(@) A=0.01, (b) A=0.05. The interface C =0.5 is shown as the black contour line.

sinusoidally forced with loudspeakers. Although their focus lies on frequency
variation and the influence of gas co-flow, the sheet’s response to the forcing produces
comparable results to this study. In particular, for higher amplitudes, the shift from
a sinusoidal to a triangular wave pattern is clearly seen. The increased interface
corrugations further suggest a pronounced influence of gas-phase vorticity on the jet.

A somewhat extreme illustration of the effects of large forcing amplitudes on
a liquid jet is given in Schmidt ef al. (2018) where a liquid jet, emitted by an
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industrial-type fluidic oscillator, is studied numerically and experimentally. The
primary instability mechanism studied in the present case is likely to play no role at
that scale, as turbulence and early onset of breakup are too pronounced for instability
growth to manifest. However, it is observable that the oscillation at large amplitudes,
induces significant instabilities along the liquid jet surface. These in turn, have been
found to drastically facilitate jet destabilisation, leading to reduced breakup length
and smaller diameters in the produced droplet spectrum.

3. Linear stability model

In this section, we establish a local linear stability model for a forced liquid jet
and apply it to the configurations described in the previous section. The aim is to
quantify the observed instability wave growth and decay using a simplified linear
model. Therefore, we derive the linearised perturbation equations for infinitesimal
disturbances of an interfacial flow. We briefly describe the implementation and
validation and give notes about the parameterisation of the mean flow on which the
stability analysis is conducted. Thereafter, stability properties are analysed. Special
attention is given to the spatial development of the eigenfunction shapes and the
corresponding growth rates.

3.1. Perturbation and mean flow equations

The derivation of the perturbation equations is based on the Navier—Stokes equations
for an incompressible Newtonian fluid. In contrast to §2, they are formulated
separately for each phase as

du,
il _ ), (3.1a)
8x,~
8I/tilg au,-,g 8p,g 1 82u[,g
by + . sby [ i by , 3'1b
ar e dx; dx;  Re,, 0x; ©3-15)

where (3.1b) has been non-dimensionalised with the Reynolds number. The subscripts
[, g denote the liquid and gaseous phase respectively. For improved readability, the
phase-denoting subscripts will be dropped unless explicit distinction is necessary. For
analysing the growth of intrinsic disturbances, the velocity and pressure field are
decomposed into a basic state and disturbed state

wi(x;, ) =up;(y) + GM;(xi, 1 and px, 1) =p,(y) +€p'(x, 1), (3.2a,b)

where € < 1 is a small amplitude. The time-independent base flow is denoted by
the subscript b. Since a local analysis is performed, the base flow is assumed to
be parallel and of the form u;,;(y) = (u,(y), 0)". The parameter ¢ will be dropped
for the remainder of this work. The decomposition, equation (3.2), is substituted
in (3.1). Since the base flow satisfies (3.1), all base flow terms vanish. By ignoring
the nonlinear term u;(du;/dx;) the linearised form of the perturbation equations yields

o =0, (3.3a)
8X,‘
ouj Qs 0p 1 0] (3.35)
e P T P O |
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The equations describe the response of the underlying steady base flow to
infinitesimal disturbances. However, basing the analysis on the base flow ignores
any influence of dynamic fluctuations on the time-averaged mean flow such as the
nonlinear saturation of the oscillatory flow (Noack et al. 2003). Additionally, in
case of an externally forced flow, a steady solution might not even exist. Therefore,
since we are interested in the stability of the time-averaged flow, obtained from the
oscillatory flow, once it has reached its limit cycle, it is appropriate to choose the
triple decomposition of the flow field (Reynolds & Hussain 1972),

ui(x;, 1) =w;(y) + w;(x;, ) +u (x;, 1) and  p(x;, ) =p() +px;, 1) +p"(x;, 1), (3.4a,b)
where #; and p are the time-averaged velocity and pressure field respectively, i;, p
the periodic parts and u;, p” the fluctuating parts. Upon substitution of the ansatz
into (3.1), phase averaging and time averaging, the time-averaged Navier—Stokes

equations are given as

ou;

=0, 3.5
ox, (3.5a)
om; op 1 3%
U—=——4+— Fi 3.5b
K ax; dx;  Re 0x; * (3-55)
where
Fi i (i;11;) i (uu) (3.6)
= —— i) — — (W] .
an / an /

is interpreted as nonlinear modification of the mean field by Reynolds stresses of the
periodic and fluctuating field. This also implies that the mean flow is not a solution
of the steady Navier—Stokes equation, as noted by Barkley (2006).

The ansatz (3.4) is inserted in (3.1), phase averaging is performed and (3.5) is
subtracted, to yield the dynamic equation of the fundamental wave

gz —o. (3.7a)
dw; _om _om  op 1 0%
i ”fa;- K azj :_aTl:,- Re axt; T G0
where
Fr= —;xj(ﬁiaj) - 8‘1}@77, : (3.8)

For the mean flow analysis, we assume that the influence of the quadratic harmonic
interactions is small, although the harmonic waves themselves might not necessarily
be small. Further, we assume the fluctuating velocity is small compared to the
harmonic velocity (which is demonstrated in §5). We therefore ignore F; and

conduct an a posteriori analysis of the nonlinear terms in §5 to check the validity
of this assumption.
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3.2. Solution method and validation
The coherent perturbations are decomposed into Fourier modes

i(x;, 1) = ;(y)e" " and  p(x;, 1) = p(y)e @, (3.9a,b)

where ¢ denotes the imaginary unit, o the streamwise wavenumber of the perturbation
and w the streamwise frequency, both of which are generally complex; i; and p are
the complex eigenfunctions of respective perturbations in velocity and pressure. We
are interested in the spatial growth and decay of disturbances. Hence, a spatial stability
analysis is pursued where w is a known, real valued frequency and o is complex
valued and unknown. The ansatz (3.9) is introduced in (3.7) to obtain the Fourier-
transformed perturbation equations.

Note, that the assumption of a parallel mean flow in the present case is worth
questioning. In case of a laminar unforced jet, the liquid phase might retain an
approximately constant diameter and an unaltered velocity profile between two
respective downstream positions. This is the case if the jet exhibits a block-like
velocity profile, as in e.g. Tammisola ef al. (2011). However, for a parabolic inflow
profile (Soderberg 2003), the liquid interfaces notably contracts until it reaches
a relaxed state. Additionally, the shear layer spreading within the gaseous phase
invalidates the strict assumption of a parallel flow.

In case of a forced jet as in the present case, the downstream spreading of the mean
flow certainly violates the parallel flow assumption for both phases. Nevertheless,
local analysis has shown remarkable robustness in predicting stability properties
for a variety of non-parallel flows (see e.g. Cohen & Wygnanski 1987; Pier 2002;
Oberleithner, Paschereit & Wygnanski 2014a; Terhaar, Oberleithner & Paschereit 2015;
Emerson, Lieuwen & Juniper 2016). Alternatively, axial spreading can be accounted
for by using a correction scheme for weakly non-parallel flows by introducing a
slowly varying axial scale (Crighton & Gaster 1976; Oberleithner et al. 2014b) or
within the framework of parabolised stability equations (Herbert 1997; Cheung &
Zaki 2010). Yet, another approach is to compute the optimal response to a forcing
from the resolvent norm around the mean flow, taking into account the non-normality
of the linearised operator (Beneddine et al. 2016). However, for the present work,
the focus lies on the applicability of a simple linear model to capture the overall
phenomena of the underlying nonlinear flow. A detailed representation is already
available through the nonlinear simulation results. Therefore, we stick to the parallel
flow assumption.

As noted above, for the analysis of immiscible interfacial flows, the perturbation
equations are formulated separately for each phase (see e.g. Soderberg 2003; Gordillo
& Pérez-Saborid 2005). By imposing symmetry conditions along the jet centreline, it
is sufficient to only consider the top half of the jet. At the interface position, coupling
conditions are formulated to satisfy (3.7) across the interface. Formally the interface
position is of the form y = h(x, f) and is assumed to be decomposed and perturbed
similarly to (3.4) (where the fluctuations are neglected) and (3.9) so that

h(x,t) =h(x)+ h(x, 1) and h(x, ) = h(x)e" @, (3.10a,b)

For an unforced jet, the mean interface position is assumed to be approximately
equal to the unperturbed interface position of the steady base flow, which is taken
to be constant in x. Hence, i is constant. In the time-averaged flow of the forced

state it is not. Following the triple decomposition, 4 should be obtained by time
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averaging the instantaneous interface positions at each x. However, this approach
yields unsatisfactory results as seen in §4. Therefore, an alternative modelling
approach is given in § 3.3 which does not follow the triple decomposition.

For the derivation of the coupling conditions, a constant 4 is assumed. Formally,
these conditions are valid at the perturbed interface h(x, ). However, by means of
a Taylor expansion of A(x, t) around y =h and by neglecting terms of second order
or higher, a linear approximation at the unperturbed interface is obtained. In the
following, the approximated conditions at the unperturbed interface are presented. For
satisfying the continuity of the velocity across the interface, it holds that

=h,g

[[ﬁ]]y=ﬁ,g - Hﬂ]y:ﬁ,l =0, (311b)

. _ ~dum . _ ~dm
u+u+h— —|\u+u+h— =0, 3.11a)
dy y=h,1 d y=

where quantities inside [-],_7,, belong to the liquid or gas phase respectively. Further,
the continuity of shear stress requires

Haﬁ N it +}~ld2uﬂ |[85 N it +}~ld2uﬂ 0 3.12)
—+ — — —-m||—+ — — =0, .
ox 0y dy? =il ox  dy dy? g

and the continuity of normal stress yields

_ 209 . 2mdd L] 3*h 0 3.13)
- — |- =—= —— =0, .
P Re; 9y ||, 7, P Re 0y |, 5, Weox?

where m = 1,/ is the ratio of the dynamic viscosities of the two fluids and r =
Pe/pi is the density ratio. A detailed derivation of the stress conditions is given in
appendix A. The kinematic condition for the interface is

oh _oh

— 4 a—=1 : 3.14

|lat+u8x v]] ( )
Y

=h,l,g

Note that it is possible to formulate the kinematic condition for the gas-phase
velocity at the interface as well as for the liquid-phase velocity. The coupling
conditions are complemented by boundary conditions to close the system.

Only asymmetric waves are considered in the stability analysis, since in the
nonlinear simulation, the jet is forced sinusoidally in the v-component of the velocity
to excite asymmetric modes. From the analysis of the simulation it is evident that
the dominant mode at the forcing frequency remains asymmetric throughout the
downstream development of the jet and the aim of the work is to investigate the
potential of the mean flow stability model to predict the growth and saturation of this
forced wave. Therefore, a symmetry condition

9%
Hﬁ =0, v 0,p= OH for asymmetric modes (3.15)
y y=0,1

is imposed, as well as a no-slip condition

3 95
H”:o,a:o,pzoﬂ . (3.16)
y—>00,8
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Interface mode Shear mode

Present 1.003907431 +0.001791888361:  0.2578942009 + 0.0008778900946¢
Dongarra et al. (1996) 1.003907431 + 0.001791888368:  0.2578942002 +- 0.0008778915187:

TABLE 3. Validation of two-layer Poiseuille flow using temporal analysis (o =1). The
corresponding unstable eigenvalues ¢ =w/o are displayed.

The closed system (equations (3.7), (3.11)—(3.16)) with the ansatz (3.9), (3.10) is
solved using a Chebyshev spectral collocation method. The grid of the liquid phase
extends over 0 <y < h(x) where h(x=0)=0.5. The grid of the gas phase extends from
h(x) <y<4D. Each grid is discretised using N =110 collocation points, resulting in
2 x N x 3 =1980 degrees of freedom. Convergence is demonstrated in appendix B.
The resulting quadratic eigenvalue problem is of the form

(0’A, +aA, + B)g=0. (3.17)

The matrices A,, A; and B contain the mean flow profiles u;,, and g =
(i, Oy, D1, Ug, Vg, Pg, h)T. Using the companion linearisation, equation (3.17) is reduced

to a linear problem
B 0 Al A2 q _
G 9wt B)] (&)= 019

where I is the identity matrix. The linear system, equation (3.18), is consecutively
solved at each streamwise position using the QZ algorithm in MATLAB’s eig function,
which simultaneously delivers all eigenvalues, to obtain the spatial evolution of «
and the corresponding eigenfunctions. The additional eigenvalues and eigenvectors,
introduced by the companion linearisation, are discarded. To validate the code, the
temporal stability results of the two-layer Poiseuille flow by Dongarra, Straughan
& Walker (1996) are reproduced. The resulting unstable eigenvalues are listed in
table 3 and the flow conditions are restated in appendix C. As their results exclude
the influence of surface tension, the results of Tammisola et al. (2011) (figure 16a)
in their work) are qualitatively reproduced as well.

3.3. Mean flow configuration and parameterisation

The u-component of the mean flow velocity field is obtained by averaging 2'!
consecutive snapshots of the fully developed flow of the nonlinear simulation in §2
at time increments AtU/D = 0.15 and within an area —5 <y/D <5, 0 < x/D < 40.
These are mapped on an equidistant Cartesian grid with a resolution of 800 x 200 px
where 1 px=1 x 107 m. The mean flow field should be symmetric with respect to
the jet centreline. Therefore, remaining minor asymmetries in the time-averaged flow
are eliminated by taking the symmetric part

Ugym = 3 (@(Y) +1(—)). (3.19)

The symmetric, time-averaged mean flow is shown in figure 6.
In Gordillo & Pérez-Saborid (2005) and Tammisola et al. (2011) analytic base flows
were used and a constant velocity profile of the liquid phase was assumed. The gas
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FIGURE 5. Comparison of the mean flow profiles and an error-function profile (as in
Tammisola et al. (2011)) for the unforced flow (a), and forced flow with (b) A = 0.01,
(c) A = 0.05. Plot positions are x/D = 0.01, 1, 2, 5, 10, 20. For A = 0.05, positions
x/D =10, 20 are omitted due to very large deviations from the error-function profile.

boundary layer was approximated using an error-function profile. A comparison of the
mean flow profiles with these analytic profiles is given in figure 5. It is seen that
for the unforced flow, the error-function profile slightly over-estimates the developing
shear layer, although differences are minor. More prominent deviations are observed
along the interface, since the assumption of a constant liquid velocity does not hold
for the nonlinear simulation. Further, the zero Dirichlet condition for the gas velocity
causes a reversed flow in the gas phase close to the inlet, which possibly influences
the development of the initial boundary layer and could have an effect on the growth
rate of the instability wave. For the forced flow, the mean flow profile quickly deviates
from the error-function profile, as the oscillation significantly thickens the mean flow
shear layer, especially for A = 0.05. In conclusion, the analytic profile might be a
sufficient approximation for an unforced jet but not for a forced jet.

The necessity of modelling the position of the mean interface in the mean flow,
noted in the previous section, is addressed here. Within the parallel flow framework,
the interface between the liquid and gaseous phase is located at a fixed position y = A,
which is determined by the solution of the underlying steady base flow. For instance,
in Tammisola et al. (2011) and Gordillo & Pérez-Saborid (2005) the interface position
remained constant in downstream direction. In Séderberg (2003) a numerical base flow
for the liquid phase was computed with varying interface positions in downstream
direction.

For this study a simple model is constructed, that requires the mass of the liquid
phase at x/D =0 to be conserved for all streamwise positions in the mean flow. The
initial mass is determined by the initial interface position i(x = 0) = 0.5. Then, the
time-averaged density field p is integrated at each x, from 0 <y < h(x). The upper
integration bound /(x), defining the interface within the mean flow, is chosen such

that _
0.5 — — 0’ h(x) — ,
/ p(x y) dy— / p(x,y) dy. (3.20)
0 oD 0 oD

An illustration of this procedure is shown in figure 7 along with the resulting
interface curve within the mean flow. As is seen, the model moves the interface
reasonably into the mean flow shear layer.

When using a true stationary solution, the interface position can simply be defined
by the volume fraction C = 0.5, as in the VoF method. However, this assumption
does not hold in the time-averaged flow (for the time-averaged volume fraction
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FIGURE 6. Mean flow profiles of the jet forced at A=0.01 (blue); A=0.05 (black). The
spreading of the mean interface position, derived from figure 7, is shown as a dashed line.
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FIGURE 7. Illustration of the mean interface spreading. The top row shows a contour plot
of the mean volume fraction field p/p, of the nonlinear simulation and the interpolated
interface position for the linear stability model as black line, for (a) A=0.01; (b) A=0.05.
The black dotted line represents the presumed, fixed interface position of the unforced flow.
Red areas correspond to regions of small interface amplitudes while lighter shades indicate
areas of increased amplitudes. The second row shows the cumulative integral of p/p,D
along y for several streamwise positions, for (¢) A =0.01; (d) A=0.05. The interface at
x =0 (vertical line) determines the initial mass of the liquid. The interface is constructed
such that the liquid mass is conserved (horizontal line).

C~p/p;) which is seen in figure 7: Using C =0.5 the interface would move towards
the centreline of the jet. A consistent approach to obtaining the interface position
according to the triple decomposition would be to take the time-averaged position.
However, for a transverse sinusoidal forcing, the growing interface disturbance should
approximate a growing sine wave on each side of the plane jet/sheet. As the jet
oscillates symmetrically around its (theoretical) centreline, the time-averaged position
of the interface would be h(x) ==£0.5 for all streamwise positions, which corresponds
to the position of the unperturbed flow. Another approach to obtain the interface


https://doi.org/10.1017/jfm.2019.855

https://doi.org/10.1017/jfm.2019.855 Published online by Cambridge University Press

883 A7-16 S. Schmidt and K. Oberleithner

position in the mean flow that might seem plausible at first sight, is to derive
the location with the highest probability of interface residence at each streamwise
position, i.e. a probability density. However, for a sine wave this would yield an
interface position at either of the extrema of the sine wave. This does not seem
plausible, since it traverses the interface almost out of the mean flow shear layer. The
effect of the interface correction is further assessed in the following sections.

3.4. General stability properties of the jet

For the stability analysis, three different cases will be of interest. The first case
is based on the mean flow of the unforced jet. As within the current numerical
framework, natural disturbances of the unforced jet remain very small (at least in the
considered domain), it closely corresponds to an equilibrium or base flow solution,
i.e. the interface remains at the initial, unperturbed position within the sampling
accuracy (h(x) = 0.5), as has been carefully checked. We denote this case as the
base flow model. The second case is based on the mean flow of the forced jet but
ignores the interface displacement in the mean flow, such that 4(x) = 0.5 (equivalent
to a triple decomposition of the interface). This case is denoted as the fixed interface
model. The third case is similar to the second one but includes the proposed interface
correction model to account for the interface displacement. This case is denoted as
the varying interface model.

To obtain a general overview on the stability properties of the present jet
configuration, in figures 8(a) and 8(b) the streamwise distribution of spatial growth
rates is derived for the base flow model for a broad range of frequencies. There are
two unstable modes found which together render the jet convectively unstable for all
applied frequencies within the displayed domain.

In detail, mode I is unstable for all shown frequencies and shows an increasing
maximum growth rate as the frequency increases up to fD/U = 0.27. Characteristic
for this mode are the almost vertical contour lines within the initial region of the jet,
that make the upstream stability behaviour of the jet virtually similar for a range of
applied frequencies of approximately 0.1 < fD/U < 0.3. The upstream appearance of
the mode is qualitatively reminiscent of the sinuous mode of type I found in Soderberg
(2003).

For frequencies fD/U < 0.27 mode II is unstable as well in the upstream region of
the jet. However, prolonged downstream influence of this mode is only observed for
fD/U < 0.1, where the point of neutral stability moves beyond x/D = 10. Contrasting
with mode I, the contour lines follow a more horizontal trend, especially in the lower
frequencies. Additionally, the mode shows significantly smaller growth rates within
the initial jet region, compared to mode I. The low-frequency region of this mode
partially resembles the sinuous mode of type II found in Soderberg (2003). For better
comparison the stability maps are re-plotted in appendix D, using similar scaling as
in Soderberg (2003). However, in contrast to his findings, no third unstable physical
eigenvalue is found for the present configuration.

There is however one additional marginally stable eigenvalue found which might
correspond to the third mode found in Soderberg (2003), but since it is not unstable
we shall not investigate it further in this work. Also mode II is either stable or
exhibits weaker growth for the forcing frequencies applied in this work and thus will
be excluded from further investigations as well.

The stability map of mode I is also derived for the fixed and varying interface
model with A =0.01 at St=0.1 in figure 8(d). As can be seen, the mean flow for the
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FIGURE 8. Stability map for the base flow model: mode I (a), mode II (b), fixed interface
model (mode I) at A=0.01 (c), varying interface model (d). Shown is the spatial growth
rate —o,D and the curve indicating neutral stability, i.e. ¢, D=0, in red.

fixed interface model significantly alters the stability map. Using the forced flow, the
threshold for neutral stability moves into the domain for all frequencies and is located
between x/D =20 and x/D = 30 for fD/U > 0.05. For lower frequencies the neutral
point reaches approximately x/D = 10. When the displacement of the mean interface
position is taken into account (varying interface model), the neutral stability curve
shifts even further upstream for most frequencies and renders all positions downstream
x/D = 20 stable. This indicates that the spreading of the mean interface has indeed
an impact on the stability properties of the jet even at small forcing amplitudes and
as shown below is even necessary to correctly recover the point of neutral stability
of the excited instability wave. The maps derived for the fixed and varying interface
model are obtained using the time-averaged flow at St = 0.1. Therefore, the growth
rates shown in figures 8(c¢) and 8(d) correspond to modes existing on this specific
mean flow. For deriving maps where the displayed growth rates correspond to the most
unstable eigenmode at the forcing frequency, a separate mean flow with a forcing at
the respective frequency would have to be used for each eigenmode.

The origin of the unstable mode can be inspected by analysing its energy budget,
as carried out by Boomkamp & Miesen (1996) and Otto (2012). Therefore, an energy
balance over both fluid phases is derived as

MFL, + MFL, = REY, + REY, + TAN + NOR + DIS, + DIS,, (3.21)

where MFL corresponds to the streamwise mean energy flux. The flux is balanced
by a production term accounting for energy transfer from the mean flow to the
perturbation through Reynolds stresses REY. The energy transfer to the velocity
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Case St A REY, REY, TAN NOR DIS, DIS,

Fixed interface model 0.1 0.01 0.0012 0.0180 0.9903 0.0074 —1.4354 x 10~* —0.0168
Varying interface model 0.1 0.01 0.0014 0.0580 0.9424 0.0107 —1.3422 x 10~* —0.0124
Fixed interface model 0.1 0.05 0.0005 0.1066 0.8844 0.0262 —2.9122 x 10~* —0.0175
Varying interface model 0.1 0.05 0.0013 0.5085 0.4395 0.0557 —2.6337 x 107+ —0.0047

TABLE 4. Energy budget of mode I of the linear stability model at x/D = 10.

perturbations along the interface is accounted for by TAN and NOR, representing the
work of tangential and normal stress. The perturbation energy dissipation is given
by DIS. It is always negative by definition while the sign of the other quantities
might change depending of the flow configuration. Every quantity is normalised by
the sum of all quantities. The complete expressions for the respective terms are given
in appendix E. The contributions of the respective terms, calculated exemplarily at
x/D =10, are given table 4.

For A = 0.01 the energy budget is dominated by the contribution of tangential
stresses, caused by the viscosity jump across the interface. Additionally, the energy
transfer from the mean flow to the perturbed flow through Reynolds stresses within
the liquid phase as well as the contribution of normal stresses from the pressure
jump have some influence, although they are significantly weaker than the tangential
stresses. Energy dissipation almost exclusively takes place in the liquid phase. Overall
the gaseous phase has negligible contribution to the perturbation energy budget. For
increased forcing the influence of TAN and REY, decreases while for REY; and
NOR it increases.

The interface correction is seen to increase the influence of the REY, and lower
the influence of TAN which is to be expected since the correction shifts the interface
position outwards into the mean flow shear layer where the mean flow gradient is
larger than in proximity to the jet centreline and so are the Reynolds stresses.

When comparing the contributions at the respective amplitudes it is seen that
the contribution of REY, decreases for increasing forcing amplitude which seems
counter-intuitive. However, due to the increased mean flow spreading for larger forcing
amplitudes, the transverse gradient of the mean flow velocity in the gas phase, as seen
in figure 6, reduces which provides an explanation for the lower values of REY,. In
contrast, the gradient within the liquid part of the mean flow shows a slight increase
which is in line with the increase of REY; for larger forcing amplitudes.

4. Comparison of nonlinear simulation and linear stability model

The findings of the previous section have shown plausible results for A = 0.01
when the streamwise spreading of the mean interface position is accounted for. In the
following, the eigenfunctions and corresponding growth rates of the stability analysis
are compared to their equivalents from the nonlinear simulation (DNS). Therefore, a
decomposition of the coherent flow field of the DNS into a Fourier series yields the
complex Fourier coefficients

~ 1 ~ —27nft
u,-,,,(x,») = m ; u;e R (41)

To obtain the coherent velocity u;, formally, u; is subtracted from the phase-averaged
velocity field to exclude any incoherent fluctuations. However, as demonstrated in § 5,
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the incoherent motion is negligibly small compared to the coherent motion. Therefore,
u; ~ u; — u; has proven to be an adequate choice.

We investigate the potential of the linear model for both forcings A=0.01 and A =
0.05. For the sake of completeness and to underline the benefits of the mean flow
model, the main results of this section are reproduced for the base flow model in
appendix F.

4.1. Streamwise and cross-wise eigenfunctions

The eigenfunctions & and © of the linear stability analysis and the fundamental wave
packet (n=1) of the DNS, derived from (4.1), are shown in figure 9. The region of
linear growth is followed by the nonlinear saturation and decay of the amplitude.

For A = 0.01 and the fixed interface model, an overall very good agreement is
found for 0. Particularly in the gaseous part of the shear layer, there is an excellent
correspondence of the eigenfunctions throughout the domain. Along the liquid jet
centreline, amplitude prediction is very good as well up to approximately x/D = 20.
However, beyond that point there are some visible discrepancies around the interface
where the steep gradient of the amplitude is not followed as rigorously by the linear
model. For x/D > 30 the agreement between simulation and linear stability model
deteriorates further within the liquid part of the shear layer. The under-prediction
for x/D < 5 within the liquid phase is possibly attributed to the influence of the
inlet wall in the simulation, which should approximately resemble the nozzle in the
experiments of Orszag & Crow (1970) and Oberleithner et al. (2014b). They argue
that discrepancies in this area are likely caused by an interaction of the instability
wave with the nozzle that is not covered by the linear model. For & similar agreement
is found. The discrepancies along the interface are seen here as well and visualised
as a slight lateral shift of the amplitude maximum.

For the varying interface model the eigenfunctions of linear stability analysis
and their equivalents of the DNS become virtually indistinguishable throughout the
domain (apart from the near-nozzle region that remains unaffected by the correction).
This shows that accounting for the displacement interface in the spreading mean
flow is indeed necessary to obtain a correct representation of the eigenfunctions. In
conjunction with the findings in table 4, neglecting the interface spreading leads to
a under-representation of Reynolds stresses in the mean flow stability model and an
insufficient representation of the perturbation shear layer.

For #t a similar trend is found. With the fixed interface model, increasing
discrepancies along the interface are seen here as well for x/D > 15 and manifest
in the absence of a lateral shift of the amplitude maximum as well as the formation
of an erroneous double spike in the amplitude. For the varying interface model, the
outward spreading of the amplitude is followed by the linear model.

For A = 0.05, the overall agreement is significantly less accurate. Nevertheless
for x/D < 20, the D-component shows very good agreement despite the significant
transverse spreading of the shear layer (varying interface model). With the fixed
interface model this trend is not followed, resulting in visible deviations already at
x/D =17.5. However, beyond x/D = 20 both methods fail to correctly represent the
wave packet amplitude of the nonlinear flow. The portray of & shows the same trend,
though the qualitative differences are somewhat more pronounced.

4.2. Growth rates and phase velocity

In the linear model, growth rates of the instability wave are readily given through
the imaginary part of the eigenvalue «,, introduced in (3.9). Deriving a correspondent
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FIGURE 9. Illustration of the fundamental wave packet (n = 1), obtained from the DNS
and comparison of the computed amplitude functions from the linear stability model and
the DNS for (a) A=0.01, u; (b) A=0.01, v; (c) A=0.05, &; (d) A=0.05, 0. Panels show,
from top to bottom, the real part, imaginary part, the absolute value and corresponding
amplitudes (for the fixed and varying interface model) normalised by their maximum value.
Blue lines show the DNS while black lines show the LSA.

measure for the amplitude growth from the DNS introduces an ambiguity to the
analysis. For the present work, the most suitable measure was found to be based on
the energy norm of the two-phase velocity field. The amplitude is computed as

_ 5 oS 12
An(x;ﬁn;itn;ﬁn)=ljg—/2</o Iﬁnl[lﬁnlz+|ﬁn|2]dy> , 4.2)
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FIGURE 10. Comparison of the computed growth rates —a,D from the linear stability
model and —&,D from the DNS for (a) A=0.01, (b) A=0.05. DNS denotes the nonlinear
simulation, LSAv and LSAf the varying and fixed interface model.

where p,, it,, U, are obtained from (4.1). This corresponds to the amplitude of the
velocity fluctuation of the respective harmonics, integrated across the shear layer of
the jet (Delbende, Chomaz & Huerre 1998; Oberleithner et al. 2014b). Other plausible
energy norms include a separate formulation for the velocity of the respective fluid
phases or a formulation for the density field only. A separate measure of the velocity
of each fluid phase did not reveal any significant differences in the evolution of the
growth rates as compared to the chosen method. However, when using a formulation
over the density field, a slower decay of the instability wave is observed (not shown).
The streamwise growth rate then is defined as

_ d(nA))
U dx

i 4.3)

The predicted growth rates of both models are given in figure 10. For A = 0.01,
very good agreement is reached between the DNS and the linear stability model. For
the fixed interface model, the growth rates in the initial region up to x/D =5 are
very well recovered. Thereafter, the predicted growth rate decreases slower than in
the DNS leading to a slightly delayed saturation and zero crossing of the growth rate
of the linear model. Further downstream, the stable wave decays slightly slower than
predicted by the DNS. Using the varying interface model, the initial growth rate is
slightly over-predicted. However, for 10 < x/D < 30 an excellent agreement is found
and the neutral point is (if slightly under-predicted) recovered better than for the fixed
interface model. In comparison, the growth rates obtained from the base flow model
(appendix F) do not predict the neutral point to be within the considered domain at
all. Therefore, the mean flow model generally seems to yield more accurate results
than the base flow model.

For A =0.05 in figure 10(b), the agreement of the predicted growth rates is poor
throughout the domain, which is to be expected from the substantial deviations of the
eigenfunctions shown above. The fixed interface model predicts the instability wave to
decay much faster than in the DNS, leading to a significant under-prediction of the
neutral point. For the varying interface model, the growth rate prediction of the linear
model is even worse and predicts an increasing destabilisation of the instability wave
such that no saturation is predicted at all.
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FIGURE 11. Comparison of the computed phase velocities c¢,;,/U from the linear stability
model and ¢,;,/U from the DNS for (a) A=0.01, (b)) A=0.05. DNS denotes the nonlinear
simulation, LSAv and LSAf the varying and fixed interface model.

To compare the real part of the eigenvalue, «,, to the wavelength of the forced
instability, observed in the DNS, the phase velocity is derived as c¢,, = w/«,. The
corresponding phase velocity c,,(x) from the DNS is obtained by the relation o, =
(0¢/0x), where we define an integral measure for the phase angle of the fundamental
wave as @(x) = [, arg(d;(x, y)) dy.

The comparison of the LSA and the DNS is shown in figure 11. For A=0.01 very
good agreement away from the near-nozzle region x/D > 10 is found for the varying
interface model. For the fixed interface model, slightly increasing deviation is observed
downstream around x/D = 15. For A = 0.05, agreement deteriorates, which is to be
expected in light of the poor reproduction of the growth rates at this forcing amplitude.
However, by taking the interface displacement into account the trend seen in the DNS
is partially recovered and the overall quantitative discrepancies are reduced.

4.3. Relation to previous studies on the stability of forced liquid jets

From the body of literature available on the linear stability of liquid jets, the works of
Soderberg (2003) and Tammisola et al. (2011) were found to bear closest resemblance
to the present study and a brief comparison shall be conducted here.

Although the forcing frequencies in Tammisola ef al. (2011) are lower than in
the present case (the Strouhal number is approximately 1/10th that of the present
case), as are Re and We and no specific information on the forcing amplitude can
be deduced, some basic comparisons of the present scenario with figure 14, showing
photographs of the jet oscillation, in their work is possible. As has been discussed,
the eigenfunctions of the linear model show reasonable agreement with the DNS
for x/D < 20 for A = 0.05. The visual amplitude of the DNS at x/D = 20, derived
from figure 2, reaches 1.2 y/D. This amplitude is comparable to that observed
in the region around xz,, = 1500 in figure 14 (left) of Tammisola et al. (2011).
Similarly, the amplitude for A =0.01, at x/D = 20, where excellent agreement with
the DNS is found, reaches 0.6 y/D, corresponding to the same region in figure 14
(right). As noted by Tammisola ef al. (2011), the linear analysis around the base
flow was obtained far upstream of this region where linear growth could be assumed
(X7wm = 600). Therefore, the mean flow model of the present work could possibly
extend the applicability of linear stability analysis in a similar framework to positions
further downstream. However, for larger amplitudes as seen in the lower part of
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figure 14 (left), the mean flow model is likely to fail as well. It is worth noting
that the growth rates obtained from the DNS and from the mean flow analysis are
substantially larger in the near nozzle region than they are in Tammisola et al. (2011)
(max(o, zm) = 0.0054). However, as stated, the growth rates in their analysis were
obtained from a position sufficiently far away from the nozzle were growth rates are
expectedly smaller than close to the nozzle. In Soderberg (2003) the measured growth
rates close to the nozzle are larger than in Tammisola er al. (2011) and comparable
to the presently obtained growth rates (max(e, ss;s) = 0.4), though the corresponding
Strouhal number is approximately 10 times larger than in the present case and Re and
We are significantly lower. So, again, no direct comparison is possible. Further, we
have checked the influence of using an analytic flow profile as in Tammisola et al.
(2011) which results in growth rates near the nozzle that are up to 6 times smaller
than for the mean flow profile. As discussed in § 3.3, the differences in the growth
rates might be attributed to the form of mean flow profiles near the nozzle.

5. Interaction of the fundamental wave with higher harmonics

In the previous section we revealed the potential and limits of the linear stability
model in predicting the growth and decay of instability waves. While for A = 0.01
very good agreement is found for both, eigenfunctions and growth rates, strong
discrepancies are found for A = 0.05, which raises the question as to why the linear
model fails to predict the stability behaviour of a jet forced with this amplitude. This
is in contrast to the single-phase experiments of Oberleithner er al. (2014b) where
excellent agreement at similar and higher forcing amplitudes was found.

Introducing the Fourier decomposition (4.1) in (3.7), we obtain

U’la)l//\l,‘,n + Ei,n = ./_"*

in’

(5.1)

where L;, contains the linear terms. Similarly, we have an infinite expansion,
governing the harmonics of the flow

ad 0 —
.F;' = — g 7(1}'\ti,mi’\t',—m) - 7(”;,14/', ’ (52(1)
s axj J an J
R 0 (B ) d 777) (5.2b)
P = g ~ \UimUjn—m) — upu;), :
in o 9 ; s>y, 8Xj J

where #; _, = it},, with the asterisk denoting the complex conjugate. The fluctuating
Reynolds stresses remain small in the present scenario, as is seen by evaluating the
turbulent kinetic energy normalised by either the inflow kinetic energy or the coherent
kinetic energy (figure 12). In both cases, the fluctuations remain below 1% for most
of the domain.

The forcing in (5.2a) is expanded for the respective harmonics as follows:

J . . A A A
Fi= i (i1, —1 Ui U1+ Uiollj o + U _olljp) + - -, (5.3a)
j
. a . . A A A
Fi= ™ (Uil —1 + Ui _1Uj 2 + Ui 3Uj —p + U _ollj3) + - - -, (5.3b)
j
. a . . A n A A I
Fi= ™ (i Uy 1+ i 305y + Uy 13+ Uity o + Ui _oUjg) + - - -, (5.3¢)

7
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FIGURE 12. Variation of the cross-wise maximum of the total turbulent kinetic energy.

(5.3d)

d

" n A A A A

Fis= T ox (Wi Uj o Ui gy g + Ui Ui 4) + - - - .
j

The terms for n = O represent the interaction of the fundamental and higher
harmonic waves with their respective conjugates, forming a steady flow field which
modifies the base flow (which is a solution of the stationary Navier—Stokes equation)
towards the mean flow. For the generation of higher harmonics, the following process
emerges: the second harmonic is generated by interaction of the fundamental wave
with itself and feeds back on the fundamental wave (through interaction with the
fundamental wave and higher harmonics), itself and subsequent higher harmonic
waves. The third harmonic and subsequent harmonics are generated similarly through
interaction of the fundamental wave or higher harmonics with other harmonics. The
harmonics themselves are expanded as

Wi =+ Uy + g+ i3+ (5.4)

As noted by Turton, Tuckerman & Barkley (2015), the harmonics then often
decay as u;, x O(¢") where € is the amplitude of the fundamental mode. Given the
assumption holds for the present case, when investigating equation (5.1), it should
hold that F O(e) while L(u;;) o< O(¢). Further it is then required that the
amplitude of second harmonic is (at least) approximately an order of magnitude
weaker than that of the fundamental mode.

In the body of literature regarding mean flow stability analysis, a number examples
are found where the mean flow model fails to accurately predict the evolution of the
fundamental mode of the flow. For instance, Sipp & Lebedev (2007) performed a
weakly nonlinear analysis of a cylinder wake and an open cavity flow and determined
which contributions to the nonlinear terms had to be retained in order to fulfil the
marginal stability criterion of the mean flow. While they found excellent agreement
for the cylinder wake, a similar analysis of the cavity flow revealed the mean flow
to remain strongly unstable. Similarly, Turton et al. (2015) found a disagreement for
the case of a standing wave in thermosolutal convection. In these cases, failure of
the mean flow model is due to a strong nonlinear interaction of the first and second
harmonic such that F;, is not small. In Boujo, Bauerheim & Noiray (2018) the
study of linear response to harmonic forcing of a shear layer over a cavity revealed
good agreement with a corresponding large eddy simulation, despite a non-negligible
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FIGURE 13. Ratio of the energy of the harmonics to the energy of the fundamental
wave (a) and the ratio of nonlinear to linear terms in (5.3) (b).

influence of the second harmonic, i.e. ||&; | » |lit2]|. This is attributed to small
interaction of the second harmonic with the fundamental wave. The nonlinear
modification of the mean flow is also the basis for a self-consistent model, proposed
by Manti¢-Lugo, Arratia & Gallaire (2014), which retains the nonlinear forcing of
the fundamental wave on the mean flow, in order to iteratively (without a priori
knowledge of the mean flow) obtain stability properties of a cylinder wake, by
requiring the resulting mean flow to be marginally stable. In the light of these
findings, we investigate the development of higher harmonic waves in the present
flow for A=0.01 and A =0.05, based on the results of the DNS to pinpoint possible
reasons for the failure of the linear model for stronger forcings.

We inspect the energy ratio of the fundamental wave and higher harmonics by their
respective matrix norms, induced by the Euclidean norm, in figure 13(a). A clear
separation between the fundamental wave and the second harmonic is seen for A =
0.01 (the ratio of the respective norms is of almost 16). For A =0.05 this separation is
lost, with the second harmonic being even more energetic than the fundamental wave
(the ratio of the norms is 0.9).

To get a more direct view on the growth of the harmonic waves, we compute
their amplitudes from (4.2). They are shown in figure 14. All amplitudes are
normalised with respect to the initial value of the fundamental wave at x = O.
For A = 0.01 the fundamental wave saturates around x/D = 20 and starts decaying
shortly thereafter, reaching a maximum gain of approximately 25. The second and
third harmonics saturate further downstream around x/D =25 and reach a maximum
gain of approximately 0.5 and 0.25, respectively. Again a clear separation is evident,
as the gain of the fundamental mode is higher by a factor of 50, respectively 100. At
a forcing amplitude A =0.05, the maximum gain of the fundamental wave is slightly
reduced to around 24 and the point of saturation is shifted upstream to around
x/D =19. In contrast to A =0.01 the saturation level is sustained much longer and
the wave starts decaying only after x/D = 30. As expected, the growth of the second
and third harmonics is dramatically increased, reaching gains of approximately 43
and 16 respectively. Both waves saturate at around x/D = 28. Hence, the gain of the
fundamental wave exceeds that of the second and third harmonic by a factor of 0.56
and 1.5 respectively.

The influence of the quadratic nonlinearities ', is shown in figure 13(b). They
are evaluated using the terms displayed in (5.3). For A =0.01, they are dominated by
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FIGURE 14. Amplitudes A, of the fundamental wave and its higher harmonics for
(a) A=0.01, (b) A=0.05.
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TABLE 5. Influence of the quadratic harmonic interactions in the mean flow equation and
mean flow correction. The quasi-stationary solution of the unforced flow is taken as the
base flow u;,.

the first and second term for n =0, 1 and the first term for n =2, 3. For A = 0.05
all displayed terms have non- negligible contributions. For A = 0.01, the influence
of F/ is negligible (F} o O(e?)), leaving the dynamics of the fundamental wave
unaffected by higher harmonic interaction. In contrast, for A = 0.05, the influence is
profound and the nonlinear modification to the fundamental wave even exceeds that
of the mean flow (F > O(€?)). Interestingly, for A = 0.01, J, is non-negligible
and exceeds the zero-order terms, which is in contrast to the findings of Turton
et al. (2015), who argued that 9/9x;(i; 1) (which generates u;,) should be small
compared to 9/0x;(it; ut; — + ; _1ut;1). However, since from (5.4) it should hold that
Fiy O(€*) and L(u;») o< O(e?), this does not violate our assumption. In summary,
two main effects are observed that likely lead to failure of the mean flow stability
model for A =0.05: the missing spectral energy separation of the second (and third)
harmonic compared to the fundamental wave and the nonlinear modification of the
fundamental wave through harmonic—fundamental/harmonic—harmonic interaction,
which is explicitly violating the assumption we have made for the mean flow analysis
in §3.1.

The influence of the harmonic interactions on the mean flow is assessed in table 5.
The mean flow correction for A = 0.01 is generally small and solely dominated by
the fundamental wave, whereas for A = 0.05, significant influence of the second and
also third harmonic is observed. To get a clearer picture of the spatial development
of the mean flow forcing, the energy transfer between the mean field and the
harmonic—harmonic interactions is investigated. Following Reynolds & Hussain (1972)
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and Oberleithner et al. (2014b), by neglecting any viscous involvement, the energy
equation for the mean flow across both fluid phases can be stated as

1d [ = > ou < ___du
—— W dy~ — Z / —it,,ﬁ:f—u dy | — / w2 dy, (5.5)
2dx Jo "0 0 dy 0 dy
| —
PII

where only terms dominating the balance have been retained and the coherent term
is expanded as in (5.3a). The first term on the right-hand side refers to the energy
production by action of the mean field on the coherent Reynolds stresses, while the
second term accounts similarly for the energy production by action of the mean field
on the fluctuating Reynolds stresses.

The streamwise contributions of the coherent production terms P, are given in
figure 15. Since the fluctuations are very small, they are, again, neglected. Further,
the production for A = 0.01 is essentially limited to the fundamental wave and
therefore is not further discussed. The balance is dominated by the energy production
of the fundamental wave, which draws energy from the mean field (since it is
positive) throughout the domain and reaches its maximum at x/D = 22 shortly
downstream of the saturation point of the fundamental wave P;. The energy that is
fed to the now saturated fundamental wave is distributed on the higher harmonics
that are still growing as seen in figure 14. The value of P, is always negative,
and thus continuously transferring energy back to the mean flow; P; is positive for
15 < x/D < 25 and peaks around the same position as the fundamental wave. For
x/D > 22 the contributions P; and P; diminish and P; becomes negative as well.

It might seem counter-intuitive that the production of the fundamental wave is
significantly larger than that of the second harmonic, whereas, for the harmonics
themselves and their self-interaction on the mean flow, the second harmonic dominates.
Indeed, for the normal Reynolds stresses the dominating influence is that of the second
harmonic. However, for the tangential stresses, the contribution of the fundamental
mode is largest. Since, 0u/dy > Jdu/dx ~ 0v/dy =~ dv/dx, the tangential stresses
dominate P.

The negative production in P,, P; corresponds to a reversed energy cascade
from small scale oscillations to the large scale mean flow. It was hypothesised by
Oberleithner et al. (2014b) that, while such a reversed energy cascade is acting, there
is no linear dependency between the mean field and the coherent motion which could
lead to a breakdown of the linear stability model. In the present case, although P,
remains positive, P, is increasingly feeding energy back to the mean flow during the
growth phase of the forced instability wave, while having a profound influence on the
systems stability behaviour, as is evident from its gain. It therefore seems possible
that the reversed energy cascade, caused by modification of the mean flow through
the second harmonic, is another cause for the breakdown of the stability model for
A =0.05.

The present work solely focuses on modal growth to explain the developing
instabilities. It is possible that non-modal growth, caused by non-orthogonality of the
eigenvectors, has an influence on the short-time behaviour of the forced jet and, if
significant, possibly could explain some of the shortcomings of the linear stability
analysis. There have been some studies on transient growth on two-phase mixing
layers and jets by e.g. Yecko & Zaleski (2005) and De Luca (2001). In both studies
a possibility of transient growth in the respective flows was found, however, no
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FIGURE 15. Energy production P, of the fundamental wave and its higher harmonics for
(a) A=0.01, (b) A=0.05.

validation using experimental or numerical data has been conducted and it remains
unknown whether these effects actually have significant influence on the flow.

From a phenomenological viewpoint, the strong involvement of the higher
harmonics can be attributed to the formation of vortical structures, observed in the
gas phase around the oscillating jet. Further, while due to the transverse forcing at
the inlet, the fundamental mode is sinuous, the second harmonic wave is dilatational
as can be deduced from the display of the higher harmonic waves in appendix G.
Similar findings of a strong interaction between the sinuous fundamental wave and
a dilatational second harmonic are given by Mehring & Sirignano (1999) and Clark
& Dombrowski (1972). The superposition of both modes leads to characteristic
agglomeration of liquid along the wave crests and thinning along the jet axis as seen
in figure 2(b).

5.1. Vorticity dynamics

The evolution of vortical structures shown in figure 4 shows increasingly complex
patterns, starting with an initial vorticity sheet close to the inlet that develops into
discrete vortical structures with subsequent interaction and roll-up in the enlarging
wave troughs of the unstable liquid jet. Detailed numerical studies of liquid jets
by Jarrahbashi & Sirignano (2014) and Zandian, Sirignano & Hussain (2018) show
significant interaction between vortex and interface dynamics in the process of
interface deformation and breakup. To investigate the vorticity generation we evaluate
the terms in the vorticity equation of an incompressible fluid

89,‘ 89, 8”,‘ 1 8,0 8p 8291'
o TS =gt e otV
ot 0x; dx;  p* 7 0x; Oxy ox;

: (5.6)

where the terms on the right-hand side correspond to vortex stretching or tilting by
velocity gradients, the baroclinic torque and vorticity diffusion. In two-dimensional
flows the vorticity reduces to a scalar quantity and vortex stretching or tilting is absent
so that the vorticity equation reduces to

iTo 2 Yo B 1) 1(8,08p 8p8p> (829 32.(2)
= v .

— === +—
dx dy dy ox 9x? 9y?

9% 92 9% 5.7
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FIGURE 16. Instantaneous, cross-wise integrated baroclinic vorticity B and snapshot of
the corresponding field normalised by its maximum for (a) A =0.01, (b) A=0.05.

As shown by Jarrahbashi & Sirignano (2014), the baroclinic term dominates for
large density ratios. Their results are in line with observations from experimental
investigations of liquid jets in high-velocity gas co-flow by Marmottant & Villermaux
(2004). They found that while primary destabilisation of the interface is due
to Kelvin—-Helmholtz-type shear instabilities, at later stages when the interface
is significantly corrugated, secondary instabilities evolve which they attribute to
Rayleigh-Taylor type baroclinic instabilities. In the present work the transverse
oscillation of the jet induces an acceleration of the interface perpendicular to the jet
axis. Together with the curved interface this leads to a misalignment of pressure and
density gradients. As a result the baroclinicity along the interface is expected to grow
in downstream direction.

The normalised, instantaneous streamwise development of the baroclinicity,

integrated across the jet
D oo
Bx, ) = —
(x, 1) T /0

is given in figure 16. As can be seen, the term varies periodically with half the
wavelength of the forced oscillation at a relatively steady amplitude throughout the
domain for A =0.01. For A =0.05 the term shows a significant downstream growth
and becomes highly irregular for x/D > 20 with peaks which are approximately a
factor 5 larger than the initial amplitude.

From the viewpoint of instability waves, the increase in baroclinicity coincides
with the growth of the higher harmonic waves analysed in §5. In fact, the Fourier
transformation of B shown in figure 18 expectedly shows the fundamental frequency at
twice the frequency of the forced oscillation. However, from the streamwise evolution
of the harmonics it is evident that the energy content of the second harmonic exceeds
that of the fundamental frequency for 22 < x < 30 of the nonlinear region which
concurs with the qualitative development of the harmonics in § 5. This suggests that
the steep increase in baroclinicity is linked to the growth of higher harmonic waves
in the unstable jet.

(5.8)

(Vp x Vp)‘ d
I e—
Jo
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FIGURE 17. Instantaneous, cross-wise integrated vorticity dissipation D and snapshot of
the corresponding field normalised by its maximum for (a) A=0.01, (b) A=0.05.
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FIGURE 18. Streamwise evolution of the Fourier decomposition of the cross-wise-averaged
baroclinic vorticity for A =0.05. The spectrum along the streamwise coordinate is shown
(a) as well as the streamwise development of the energy of the first three harmonics (b).

For completeness the viscous dissipation of vorticity
D(x, 1) D/°°|A.Q|d (5.9)
X, 1) =— v .
v, Y

is shown in figure 17. Its qualitative streamwise development is comparable to that
of the baroclinicity, although its influence is considerably weaker, given that values
of the baroclinicity are around an order of magnitude larger. Additionally, its growth
within the nonlinear region is not as pronounced as for the baroclinicity.

6. Summary and conclusions

The linear and nonlinear stability of a transversely forced planar liquid jet in a still
ambient gas is studied using nonlinear numerical simulation and local linear stability
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analysis, based on a time-averaged mean flow representation of the unsteady nonlinear
flow.

The simulated jet, with a Re; = 8962 and We = 440, is forced at two forcing
amplitudes A =0.01, 0.05. The forcing produces an initially monochromatic instability
wave that grows in space until it saturates and decays.

For the linear stability model, the time-averaged mean flow is obtained from the
nonlinear simulation. Due to the non-parallelism of the forced flow, a mass-conserving
model is proposed to account for the spreading of the interface position in the mean
flow.

General stability properties are derived, based on the unforced flow, for a wide range
of frequencies. Two unstable modes are found of which mode I is relevant for the
present forcing cases. The modes vaguely correspond to the modes I and II found
by Soderberg (2003). By analysing the energy budget of mode I it is found that the
instability is mainly driven by the viscosity defect of the adjacent fluid streams in the
shear layer.

Detailed comparison of the stability model using the forced mean flow with the
DNS shows excellent agreement for A = 0.01 and the proposed interface correction
results in an improved replication of the transverse shear layer spreading in the
eigenfunctions. Also, without correction the position of the neutral point is somewhat
over-predicted. For A =0.05, significant deviations in the eigenfunctions for x/D > 20
are observed. The linear model completely fails to predict correct growth rates for
this forcing amplitude.

Reasons for the failure of the linear model at A = 0.05 are found by analysis of
higher harmonic wave growth in the flow. While for A =0.01 the fundamental wave
dominates the stability behaviour, for A = 0.05 significant influence of the second
and third harmonics is observed. The second harmonic thereby reaches gain levels
exceeding that of the fundamental wave. As a result, the fundamental wave exhibit
strong nonlinear modification through higher harmonics which explains the failing of
the linear model. Similar limitations to mean flow stability have been revealed by Sipp
& Lebedev (2007) and Turton et al. (2015).

In conclusion, the linear stability model performs well for low forcing amplitudes
over the whole spatial extent, even in the presence of moderate nonlinear effects. The
inclusion of a mean interface correction scheme has proven to increase reliability
of the mean flow based linear stability model. These results are in line with the
conclusions drawn by Oberleithner er al. (2014b). However, strong discrepancies
arise for stronger forcings when nonlinear interactions between the fundamental mode
and higher-order modes significantly alter the flow. From the viewpoint of vorticity
dynamics, the higher harmonic waves correspond to a substantial growth of baroclinic
vorticity along the liquid/gas interface.

Appendix A. Derivation of the conditions for stress continuity

For an incompressible Newtonian fluid, the stress tensor of each fluid phase is
written as

Sh 1 =Pigdi+ 1t <3“?”'8 + 8u;1’g) (A
ijl.g — Fl1.g% Le :
vhs & ox; ox;

The stars indicate dimensioned quantities. To obtain the normal and tangential
components of (A1), we need the unit normal vector of the interface which is given

as . .
VH*  —(9h*/ox", DTt

n’ = = = ,
IVHT . J@he foxy> + 1

(A2)
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FIGURE 19. Convergence of the real part of the traced eigenvalue, «,, at the neutral point
and position of the neutral point, x/D, for various numbers, N, of collocation points.

where H*(x, y, 1) =y — h*(x, t) = 0 is the curve defining the interface. For small
surface displacements, we neglect quadratic terms of disturbed quantities and arrive
at nf = (—ah*/ox*, 1)T. The tangent vector is readily given as rr=(1, 0h*Jox*)T.

The continuity of shear stress is given as ;S nf = 1S} n} = Inserting the decom-
posmon (3.4) (neglecting the fluctuations), using Taylor expansion of A*(x*, ") around

y* =h" and neglecting quadratic terms of disturbed quantities, we obtain

[{86 L +ild2uﬂ* |[85 L +l~1d2uﬂ* 0 A3
|| o=+ - +h— —Hg |-+ - th =0.
dx  dy dy? sy flox = dy dy? =g
Dividing by w,U/D we arrive at the dimensionless form
v o -du 30 o -du
DS —m |22 =, (Ad)
ox dy dy* || 5 ox  dy || 7,

where m = p,/ ;.

Similarly, the continuity of normal stress is given as n*Slj o —n*Sl’J" U —oon;/ox*.

Using Taylor expansion again and dividing by p,U?/D we get

2 9D 2m 9P 1 9%h
Hﬁ—”ﬂ - Hr[)—mvﬂ +— =0 (AS)
Re; 0y .y Re; 0y vy We dx

Appendix B. Convergence analysis of the linear stability model

A convergence analysis, to estimate the necessary number of collocation points, is
performed at the point of neutral stability for the varying interface model with A =
0.01. The number of collocation points is successively increased from N =20 to N =
200 points in each phase. The convergence of the streamwise position of the neutral
point and the corresponding real part of the eigenvalue, «,, is shown in figure 19. As
is seen, the choice of N =110 is adequate.

Appendix C. Flow conditions of the two-layer Poiseuille flow by Dongarra et al.
(1996)

Dongarra et al. (1996) computed unstable eigenvalues for a two-layer plane
Poiseuille flow that is used for validating the present two-phase linear stability
solver. The flow conditions are restated here for convenience. The basic flow is

w)=Ay +ay+1, —-1<y<0, (C1
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FIGURE 20. Stability map for the base flow model: mode I (a), mode II (b), fixed
interface model (mode I) at A=0.01 (c), varying interface model (d). Shown is the spatial
growth rate —«,D/2 and the curve indicating neutral stability, i.e. @, D/2=0, in red. The
axes scaling is as in Soderberg (2003), where w = fD/U.

() =4’ +ay+1, O<y<n, (C2)
where
2
— — A
1:7(m+n), a1=7n m’ Ay=—, az=ﬂ- (C3a—d)
nn+1) nn+1) m m

The viscosity ratio is m = @,/ = 2, the depth ratio is n = d/d, = 1.2, where
d denotes the extend of the respective domains. The density ratio is r =1 and the
surface tension is 0 =0. The obtained eigenvalues using temporal analysis with o =1
are stated in table 3.

Appendix D. Stability maps with the scaling of Soderberg (2003)

The stability maps, derived in § 3.4, are reprinted here using the axes scaling of
Soderberg (2003) for direct comparison (figure 20).

Appendix E. The energy budget for spatial modes in two-phase flows

Closely following Boomkamp & Miesen (1996) and Otto (2012), a balance for the
coherent kinetic energy u;u; in each fluid phase is obtained by taking the inner product
of (3.7) with u;. Upon averaging over one period, y =27 /w, integrating along y and
by adding the results over both fluid phases, equation (3.21) is obtained.
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FIGURE 21. Comparison of the computed amplitude functions, normalised by their
maximum value, from the base flow model and the DNS for A =0.01, (a) #; (b) 0. Blue
lines show the DNS while black lines show the LSA.

The respective terms on the right-hand side of the equation are given as

MFL, = / / [ (it + V) + wyp,
y 8x

- — (2ulaul+l’}laul+ﬁlaw>:| dydt, (E la)
Re, dx ay ay
19 < [ ru,
MFL, = > T /D {(ug + Uy) 4 rityp,
- Rﬁ <2ﬁgzbjf+ﬁgz"yg+ﬁg%’;g” dydr, (E 1b)

2 ~ ~ 2
81/[[ Bvl av[
DIS; = —+— +2| = dyd:, (E2a)
y e; ay ox ay
din dit, v, \° v, \°
msg—f / / o (B 0N (9 gy, @ 2m)
¥ Re; ay ax ay
P
REY, = — / / [(—a,a)ﬂ dydr, (E 3a)
REY, = r/ / [( ugvg) ] dy dr, (E3b)
11 Y Buz ovy\ . 8ug v, \ -
TAN = —— +— = —+— | dr, (E4a)
¥y Re; Jo ay  Ox ay ax y=h

NOR = /y [( 5,4 o0 85’) i ( 42 a@,) } dt.  (E4b)
=— p U= (Pet+——2) 0 :
vy Jo ""Re, 9 ! f " Re dy # y=h

Appendix F. Comparison of DNS and the base flow model

For completeness, we briefly present the results of §4 for the base flow model
and the DNS (A = 0.01) here. In figure 21, the streamwise comparison of the
eigenfunctions is shown. The growth rates and phase velocities are compared in
figure 22. The results corroborate the advantage of the mean flow model. During the
downstream development of the jet increasing discrepancies between the DNS and
the LSA are evident from the eigenfunction profiles, as the mean flow spreading,
induced by the oscillation is not taken into account in the base flow. As a result, no
point of neutral stability is predicted (as already evident from figure 8a), and growth
rates are generally overpredicted. Similar results are seen for the phase velocity.
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FIGURE 22. Comparison of the computed growth rates —a,D from the linear stability
model and —&,D the DNS (a) and phase velocities c¢,,/U, ¢,,/U (b) for A=0.01.
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FIGURE 23. Real part of the fundamental, second and third harmonic _waves (top to
bottom in each panel) for (a) A=0.01, &; (b) A=0.01, 0; (c) A=0.05, &; (d) A=0.05,
v. Note that each mode and component is normalised 1nd1V1dually by 1ts maximum for
improved readability.

Appendix G. Illustration of the Fourier modes

The higher harmonic waves, derived from the Fourier decomposition (4.1) of the
velocity field, are displayed here for further clarification (figure 23).
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