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Abstract. Is a logicist bound to the claim that as a matter of analytic truth there is an actual
infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer
appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which
only a potential infinity was posited. However, this project was abandoned due to apparent
failures of cross-world predication. We re-explore this idea and discover that in the setting of
the potential infinite one can interpret first-order Peano arithmetic, but not second-order Peano
arithmetic. We conclude that in order for the logicist to weaken the metaphysically loaded claim
of necessary actual infinities, they must also weaken the mathematics they recover.

§1. Introduction.

1.1. Potentially infinite models. In the nonmodal setting, Frege (1893; Heck, 1993)
essentially proved that second-order Peano arithmetic, PA2, is interpretable in the
theory HP2, which consists of the Second-order Comprehension Schema and Hume’s
Principle:

∀X,Y (#X = #Y ⇔ ∃ bijection f : X → Y ). (HP)

Hume’s Principle characterizes the cardinality operator #, read ‘the number of’ or
‘octothorpe’, as a type-lowering function that takes equinumerous second-order objects
to the same first-order object. This definition can be motivated in the finite case by
examples such as checking one has the same number of knives and forks by setting
them out in pairs. Formally, Frege’s result is:

Theorem 1.1 Frege’s Theorem. There is a translation from the language of PA2 to the
language of HP2 that interprets PA2 in HP2.

The formal definition of the theories mentioned here can be found in Appendix A.
Frege’s Theorem has traditionally been regarded as philosophically important because
it is supposed to show that we can derive all arithmetical theorems from an epistemically
innocent system. This requires that Hume’s Principle is analytic. However, on the usual
semantics, Hume’s Principle is only true on domains with at least a countable infinity of
objects. This commits logicists like Frege to the analytic existence of an actual infinity
of objects (Boolos, 1998, pp. 199, 213, 233; Hale & Wright, 2001, pp. 20, 292, 309;
Cook, 2007, p. 7).

A commitment to a potential infinity, in contrast, isn’t a commitment to how many
things there actually are, just how many are possible. This is a much safer area in which
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to make analytic claims. Here we show that some but not all of the mathematics of the
actual infinite is recoverable in the setting of the potential infinite. And so, to avoid
problematic ontological commitments the logicist must also weaken the mathematics
they recover.

To do this we must decide how to represent Hume’s Principle. Below we will
define ‘the number of’ operator # in a semantic manner. However, we are convinced
that this is simply a convenience and we can think of our models as defining # as
satisfying Hume’s Principle with the additional criteria that this function is rigid across
worlds. An axiomatization would consist of the following modification of Hume’s
Principle:

�∀X,Y (#X = #Y ⇔ ∃ bijection f : X → Y ),

plus a principle to rigidify the # operator. This would require working in a hybrid
modal logic where worlds could be saved and recalled such as Williamson (2013, 370).1

However, we leave the details of this approach for future work. As the modification
is so minimal, the move to the potentially infinite doesn’t undermine the justifications
offered for Hume’s Principle. The syntactic priority thesis can still be argued for as
we can identify the behavior of terms in a modal setting as well as in a nonmodal
setting. Similarly if we think that abstraction principles offer implicit definitions then
this justification works as well in the modal setting.

The rigidity of the octothorpe is important for the success of the project here.
However, by assuming that it is rigid we are presuming that ‘the number of’ operator is
rigid. Whether this is the case in natural language is an empirical question (e.g. Stanley,
1997). We do not address this issue here, but two things are worth noting. First the
question of the rigidity of ‘the number of’ is not the same question as e.g. whether the
number of planets varies between worlds. This is because we do not apply the operator
to predicates but rather to sets which do not vary their membership across worlds. The
second is that this setting does rule out the possibility of multiple different number
structures in the different worlds, e.g. the numbers being von Neumann ordinals in one
world and Zermelo ordinals in another. This means that a certain kind of referential
indeterminacy which has a prominent place in philosophy of mathematics cannot be
addressed in this setting as we have presumed against it (Benacerraf, 1965; Button &
Walsh, 2018, chap. 2).

To set up our result, we define a set of second-order Kripke models, which we will
call potentially infinite models. This idea comes from Hodes (1990, p. 379), although
he does not place exactly these constraints on the accessibility relation. We want the
models to be nearly linear sequences of worlds (if there are two worlds neither of
which accesses the other, there is a third world they both access), where later worlds
are possible from the perspective of earlier worlds but not the other way around. Each
of these worlds should contain only a finite number of objects as we are assuming
actual infinities are impossible, and the number of objects should increase from
one world to the next. Each world will have its own second-order domain, which
as the worlds are finite, will be the full powerset. The octothorpe will implement
Hume’s Principle by taking sets of the same cardinality to a unique object and this

1 For those familiar with hybrid systems the axioms needed is ↑ �∀ X, y ↓ [#X = y → �#
X = y]. However, this will not play a role in what follows.
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object will not change from one world to the next. We define the models formally as
follows:

Definition 1.2. A potentially infinite (PI) model is a quadruple M = 〈W,R,D, I 〉 in the
modal signature with second-order quantification and with # and a as the only nonlogical
symbols, such that the following conditions are met:

1.2.1. W is countably infinite and R is a directed partial order,2

1.2.2. the first-order domain of w, writtenD(w), is nonempty and finite for allw ∈W ,
1.2.3. for each n ≥ 1, the range of the second-order n-ary relational quantifiers at w

is P (D(w)n) consisting of all subsets of the nth Cartesian power (D(w))n of
D(w),

1.2.4. if w, s ∈W such that R(w, s) and w 
= s , then D(w) � D(s),
1.2.5. the function a : � → D (where D is

⋃
w∈W D(w)) assigns to each number n

a distinct element an in one of the first-order domains, and for all w ∈W , the
cardinality of X is n if and only if #X = an at w. More formally, for # and
all w the interpretation function is defined as follows: I (#, w) = {〈X, a|X |〉 |
∃s ∈W X ∈ P (D(s))}.

Remark 1.3. Three brief remarks on this definition:
First, conditions 1.2.1–4 define a PI model as a directed partial order of ever-increasing

finite domains. This means that if we have several objects existing in different possible
worlds we can always move to a world where they all exist.

Second, condition 1.2.5 defines the cardinality operator # using metatheoretic
cardinality |X |. It is sufficient for Hume’s Principle to hold that # picks-out cardinality,
and so condition 1.2.5 ensures that all potentially infinite models are models of Hume’s
Principle. One reason we need P (D(w)2) from 1.2.3 is because the quantifier over graphs
of functions in Hume’s Principle ranges over this set.

Third, condition 1.2.5 also ensures that the interpretation of the octothorpe is rigid.
That is, the octothorpe is interpreted as the same relation at every world. Because of
this nothing will be lost if we write #X = x and don’t specify the world of evaluation. In
fact, while we define #X using the a i ’s, we could have instead simply defined it as rigid
and satisfying Hume’s Principle and this along with directedness would ensure the a i ’s
exist.

This definition can obscure the simplicity of the idea here, as such it helps to
give several examples. The simplest potentially infinite model we can construct is
the following:

Example 1.4. The minimal potentially infinite model is (�,≤, D, I ) where D(n) =
{0, ... , n} and the interpretation function I interprets octothorpe as cardinality in the
metalanguage.3 That is, I (#, w)(X ) = n if and only if |X | = n. The minimal model is
illustrated in Figure 1A. When working with such a model we see that a number can be
missing from a world even if a set of that cardinality is present. So I (#, 1)({0}) = 1 and
1 ∈ D(1), but I (#, 1)({0, 1}) = 2 and 2 /∈ D(1) even though {0, 1} ⊆ D(1).

A less simple but similarly elementary model makes use of the nonempty finite
subsets of the natural numbers. This model helps illustrate a nonlinear R relation:

2 An order R is directed if for allw, s ∈W there exists an t ∈W such thatR(w, t) andR(s, t).
3 I will use bold face numbers for the numbers in the metalanguage.
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Fig. 1. (A) The minimal model and (B) The subset model. Examples of potentially infinite
models.

Example 1.5. Let the subset model be (P (�)<� – {∅},⊆, D, I ) where D(X ) = X
and again the octothorpe is cardinality. The subset model is illustrated in Figure 1B. Note
that if we have worlds X0, ... , Xn we can always find an accessible world whose domain
is

⋃n
i=0Xi . For example, {0, 1}, {3}, {100, ... , 200} are all finite subsets of the natural

numbers, none of which access each other, however, their union {0, 1, 3, 100, ... , 200} is
also a world, which they all access.

It is easy to generate unintended models from these two cases. Using the minimal
model, for example, we can define the 3-0 swap model:

Example 1.6. The 3-0 swap model takes 0 and 3 in the domain of the minimal model
and switches them around. So D(0) = {3}, D(1) = {3, 1}, D(2) = {3, 1, 2}, D(3) =
{3, 1, 2, 0} and then for all n ≥ 3, we have thatD(n) exactly as it is in the minimal model.

These models should help illustrate the intuition behind the potentially infinite
models. They will also be helpful when we need counterexamples to claims later in the
paper.

We can now define satisfaction for potentially infinite models using a standard
semantics for quantified modal logic, such as in Fitting & Mendelsohn (1998). Three
things to note first: (1) Our quantifiers are actualist, but free variables may be assigned
to objects in any world. (2) Set variables are interpreted rigidly across worlds. That is
the membership of a set doesn’t change depending on the world. (3) To simplify the
notation, instead of variable assignments, we work as though we had a rigid name for
every object in the models. Recall that M, w � ϕ means that given any replacement
of free variables with the added constants we evaluate ϕ as true in M at world w.
With this in place, the notion of potentially infinite models induces a natural validity
relation, which we define as follows:

Definition 1.7. We say that ϕ is true in all potentially infinite models, or �PI ϕ, if for all
potentially infinite models M and worlds w ∈W we have M, w � ϕ. We define ϕ �PI �
as for all models M and worlds w ∈W , if M, w � ϕ then M, w � �.

The consequence relation here is defined locally rather than globally (Fitting &
Mendelsohn, 1998, p. 21). This is because the deduction theorem holds for the local
consequence relation but not the global one (Fitting & Mendelsohn, 1998, p. 23).

1.2. Main results. We will now state our two main results which together show
that we can interpret the first-order theories of first-order Peano arithmetic PA1 and
first-order true arithmetic TA1, but not the second-order theories of second-order
Peano arithmetic PA2 and second-order true arithmetic TA2, in theories defined in
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terms of potentially infinite models. A deductive theory for second-order modal logic
with rigid operators would be unwieldy and the complications caused by it would
be likely to obscure the insights provided by the Kripke semantics. Hence, we leave
development of a deductive theory for future work. We can define a theory just in
terms of the potentially infinite models. This theory will be stronger than anything
we could produce deductively because it does not admit nonstandard models of the
natural numbers. Because of this we will call it the external theory of the potentially
infinite or EPI:

EPI = {ϕ | �PI ϕ}. (1)

To capture something closer to what can be deduced from the models we need to use
the model-theoretic validity relation defined above, relativized to a weak metatheory.
The theory ACA0 is a subsystem of PA2 which only has comprehension for first-order
formulas. More information about this theory can be found in Appendix A. Since we
can code finite sets of natural numbers as natural numbers in ACA0, we can define the
property of being a potentially infinite model in this theory, along with the associated
validity notion �PI. This gives us the internal theory of the potentially infinite or IPI:

IPI = {ϕ | ACA0 
 ‘ �PI ϕ’}. (2)

Intuitively, this theory is every formula that can be proven valid on potentially infinite
models given the weakest metatheory that can formalize the models. A full definition
is given in Appendix B.4 The definition of interpretation is traditionally restricted to
theories in the same logic, whereas in this setting EPI and IPI are theories in second-
order modal logic but PA1, PA2, TA1, and TA2 aren’t modal theories. So, to state
and prove our main results we need a more general notion of generalized translation,
and interpretation which captures those interpretations which involve not just different
theories but different logics. This is defined in §5. Our first main result is:

Theorem 1.8.

(i) There is a generalized translation from the language of PA1 to the second-order
modal language with octothorpe that interprets TA1 in EPI.

(ii) There is a generalized translation from the language of PA1 to the second-order
modal language with octothorpe that interprets PA1 in IPI. Further, this is a
PA1-verifiable generalized interpretation.

This result is proven in §5. The translation used is based on one offered by Linnebo
(2013) in the setting of modal set theory. The key difference, compared with the
standard notion of translation, is that “for all” is translated as “necessarily for all”
and, similarly, “there is” is translated as “possibly there is.”

The first theorem shows that the PI models capture a significant amount of
mathematics. However, we cannot strengthen the result to second-order theories of
arithmetic as our second main theorem shows:

4 We picked the weakest theory because we are interested in what is deducible from PI models
and if we strengthen the metatheory IPI will be strengthened in ways that reflect what the
metatheory thinks about finite sets (which can code consistency statements).
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Theorem 1.9.

(i) There is no generalized translation from the language of PA2 to the second-order
modal language with octothorpe that interprets TA2 in EPI.

(ii) There is no generalized translation from the language of PA2 to the second-order
modal language with octothorpe that PA2-verifiably interprets PA2 in IPI.

For both EPI and IPI, the results follow from the fact that PI models are Π1
1 definable.

And this follows because all of the worlds are finite. Because of this, PI models are
representable in reasonably weak theories of second-order arithmetic. But then limitive
results about what theories can represent about themselves will stop theories that can
represent EPI and IPI being interpretable into EPI and IPI.

These results are important because they show that less mathematics is analytic on
the philosophical perspective which motivates the potentially infinite models than on
the traditional perspective. The external theory cannot recover TA2 but only TA1. And
the internal theory cannot recover PA2 but only PA1. Further, PA2 has traditionally
been the target of Fregean interpretation results as it allows for the recovery of analysis
and much of mathematics.5 Analysis can be coded in second-order Peano arithmetic, as
real numbers can be coded as sets of rationals, which in turn can be coded as naturals.
This means that Frege’s theorem already accounts for a larger expanse of mathematics
than it might first appear. If we try to avoid the claim that it is analytic that there are
actually infinitely many objects, however, it then seems we will not have managed to
recover as much mathematics. If we are looking to show that mathematics is analytic,
we have moved further from our goal.

However, we have still captured a substantial chunk of our most frequently used
mathematics. Feferman (2005, p. 613) has argued that all scientifically applicable
analysis can be developed in PA1 or a conservative extension of it.6 If this is correct
then we can still recover the mathematics for which an explication of its truth is most
philosophically fruitful, namely the mathematics which we rely on when we act in
the world. One might wonder why a logicist would care about whether or not the
mathematics recovered is used. But it seems we should keep an open mind to different
parts of mathematics being justified in different ways. Maybe something as fundamental
as first-order arithmetic turns out to be analytic, but it seems unlikely that the same is
true of the higher reaches of set theory. With this in mind, it should not be damaging
that not all mathematics turns out to be analytic.

1.3. A diversity of modal logicisms. The idea of using the potentially infinite as a
foundation of logicism has a pedigree in the work of Putnam and Hodes, and more
recent work on modal foundations of mathematics and on variants of Frege’s theorem
in different logics. Putnam suggested that by accepting a modal picture of mathematics
we could avoid being Platonists about the numbers or committing to how many objects
there actually are. This is stated most clearly when he writes:

5 (Demopoulos (1994), 238 n26) points out that Frege often uses arithmetic when he means
something broader including analysis.

6 For example, “By the fact of the proof-theoretical reduction of W to [PA1], the only ontology
it commits one to is that which justifies acceptance of [PA1].” Feferman (2005, p. 613) works
in a system W which contains types for the naturals, the cross product and partial functions.
The full classical analysis of continuous functions can be carried out in W (Feferman, 2005,
p. 611).
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‘Numbers exist’; but all this comes to, for mathematics anyway, is
that (I) �-sequences are possible (mathematically speaking); and (2)
there are necessary truths of the form ‘ifα is an�-sequence, then...’[.]
(Putnam, 1967, pp. 11–12)

Hodes took on this idea, but he was sceptical of the existence of actual infinities.
He thought that ‘[a]rithmetic should be able to face boldly the dreadful chance that
in the actual world there are only finitely many objects’ (Hodes, 1984, p. 148). His
solution made use of the idea of the potentially infinite rather than the actually infinite.
He appealed to modality and in particular the modality that seems to be implicit in our
concept of number: the idea that it is always possible to add 1 (Hodes, 1990, p. 378).

However, by 1990, Hodes concluded that the reduction of mathematics to higher-
order modal logic had failed. Hodes describes the problem as follows:

The problem is simple: relative to [a model of Hume’s Principle] for
a type-0 variable v, �(∃v)(N (v)& ... ) “moves us” to other worlds u
and then has us seek a witnessing member of [the natural number
in the model] in [the domain of u]; we may find one, but then have
no way “back” to w to see what hold [sic] for it there. (Hodes, 1990,
p. 388)

So we might know that there possibly exists a number with a property, but in Hodes’s
system, we have no way of returning to our original world to use what we have found.
For example, if we find the number of a set in some world, we have no assurance
that this number is available for us to talk about in the world the set came from. It
is only known that it is the number of the set in the world the number exists in. The
difficulty identified here is with cross-world predication, which occurs when we want
to say something about an object in one world and how it relates to objects in another
world (Kocurek, 2016).

In what follows we will show that the problem is not with cross-world predication per
se. Both by working directly with the models, but also by allowing the octothorpe to
be rigid, we can mimic some of the effects of cross-world predication. Yet in this setting
we recover some but not all of the arithmetic recovered by Frege’s theorem. Indeed,
our main results, Theorems 1.8 and 1.9, show that the situation is more complicated
than Hodes suggested, and that a partial realization of his project is possible.

There are two recent trends in the study of logicism which this project is connected
to. First, Studd (2016) has suggested that the modal setting is an attractive one for the
logicist because it would help to solve the bad company objections. Unlike here, Studd’s
is concerned with inconsistent abstraction principles and in particular set abstraction.
This is interestingly connected to the naı̈ve conception of set because one can think of
the unrestricted set Comprehension Schema as similar in spirit to a modal version of
Basic Law V. While work in this area goes back to Parsons (1983), it has been pursued
recently by Linnebo (2013; 2018). Much of Linnebo’s work has been on set theory. The
concerns there are very different from ours, as it make little sense in set theory to worry
about the actual infinite not existing and set theory is generally treated in first-order
logic. The work in this paper takes inspiration from the results presented in Linnebo
(2013) and (2018) and makes use of a similar method of translating between the modal
and nonmodal setting. However, while the dynamic abstraction principles discussed
by (2018) resemble the behavior of the number of operator, his preferred abstraction
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principle for arithmetic is ordinal abstraction (Linnebo, 2018, chap. 10.5), whereas in
this paper we work with a modal version of Hume’s Principle, a cardinality principle.

Second, there has been a lot of recent work on whether Frege’s Theorem still holds
when the logic is modified in certain ways. Bell (1999) and Shapiro and Linnebo (2015)
have shown that Frege’s Theorem is available in the intuitionistic setting. Burgess
(2005) and Walsh (2016) found that a version of Frege’s Theorem is possible in a
certain predicative setting. Kim (2015) proves a version of Frege’s Theorem in a modal
setting. This employs an axiomatized version of the ‘the number of F ’s is n’ as a binary
relation, instead of the traditional type-lowering ‘number of’ operator. Kim recovers
the axioms of PA but finds that a restricted version of HP2 holds. The modality
used is S5 and meant to represent logical possibility, not potentiality. Because of this
Kim’s system does not have the same structure of our models, where the numbers
slowly grow. Closer in spirit to the work here is that on finite models of arithmetic
by Mostowski (2001). There he considers initial sequences of the natural numbers
and what holds over all such models. These have a clear connection to the minimal
model discussed above. Urbaniak (2016) has taken Mostowski’s models and worked
with them in a modal setting. They have shown that Leśniewski’s typed, free logic with
modal quantifiers, which proves a predicative version of HP2, can interpret PA2. Our
setting is quite different from that of Urbaniak’s paper as Leśniewski’s typed, free logic
differs dramatically from the one we work in here. The work in this paper proceeds
by looking at whether a version of Frege’s Theorem is available in a classical second-
order modal setting. Unlike these other results, we find that a modal version of Frege’s
Theorem for PA2 is not possible, as shown by Theorem 1.9.

1.4. Outline of paper. This paper is organized as follows. §2 expands the potentially
infinite models’ language to include the language of arithmetic. In §3 we show that
using the expanded language the potentially infinite models satisfy a weak theory of
arithmetic equivalent to a modal version of Robinson’s Q. In §4 we define the inductive
formulas of the language and show that induction holds for them. This allows us
to show Theorem 1.8, that TA1 is interpretable in our external theory and PA1 is
interpretable in our internal theory, in §5. In §6 we show that no natural interpretation
of PA2 is possible by proving Theorem 1.9.

§2. Definitions for a modal Grundlagen. Just as Frege in the Grundlagen defined
the numbers and the relations on them using only the ‘number of’ operator, here
we show how modified versions of Frege’s definitions can do this in the setting of the
potentially infinite.7 Proving that these definitions satisfy the usual arithmetical axioms
will occupy us in §3–4. In this section we simply set out the definitions themselves and
say a word about their motivation. While entirely rigorous, it is our hope that, as in
the Grundlagen, the definitions will be intuitive and correspond to our understanding
of cardinal numbers.

7 This has some precedent in Hodes (1990, p. 383). However, whereas we (and Frege) first
define successor and then use this to build the other definitions, Hodes takes ‘less than or
equal to’ as his primitive. In his system a number N (understood as a higher-order object)
is less than or equal to another number N ′ just in case it is possible that there are two
other second-order objects A and A′ each with the same number of objects as N and N ′

respectively and A is a subset of A′. That this has parallels with the definition of successor
offered here will be clear on inspection.
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(A) Diagram of when
a is succeeded by b.

(B) Diagram of when a is succeeded
by b for alternative definition of S.

(C) Diagram of when c is
the addition of b and c.
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Fig. 2.

The first definition is easy and does not require any of the modal apparatus. We
simply let 0 = #∅. This follows Frege (1884, sec. 74; p. 87) explicitly, who said that
zero is “the Number which belongs to the concept ‘not identical with itself ’.”

Next we must define the successor, as the other definitions rely on it. The definition
here is like the one offered by Frege, but it differs by allowing the sets which witness
that one object is the successor of another to be merely possible. This is to ensure that
if an object is ever the successor of another, then it is the successor of that object in
every world where they both exist. This property will be important in the proof of
induction. The definition of successor, in plain terms, is: one object is the successor of
another just in case it is possible that there are two sets, which differ by one object and
the successor is the number of the larger set, and the predecessor is the number of the
smaller set. Figure 2A and 2B illustrate the two ways this can be done, resulting in two
definitions of the successor:

Definition 2.1.

Sxy ≡ �∃G, u[Gu ∧ (y = #G) ∧ (x = #(G – {u}))] (3)

S ′xy ≡ �∃F, u[¬Fu ∧ (x = #F ) ∧ (y = #(F ∪ {u}))] (4)

The first of these definitions simply adds the possibility operator to the definition of
successor suggested by Frege (1884, sec. 76; p. 89). These definitions are equivalent:
to see this, simply consider F = G – {u} and G = F ∪ {u}.8 In what follows we will
simply use the definition that is most convenient and will write S for both.

The definition of addition is similarly intuitive. The relation + holds between three
objects a, b, and c such that it is possible that there are disjoint sets X and Y of
cardinality a and b respectively, and c is the cardinality of X ∪ Y , the union of the two
disjoint sets. This is illustrated by Figure 2c and can be written formally as:

Definition 2.2.

+(a, b, c) ≡ �∃X,Y (a = #X ∧ b = #Y ∧ c = #X ∪ Y ∧ (X ∩ Y ) = ∅) (5)

For c to be the result of multiplying a and b we need a set B of cardinality b and for
each element x of B a setAx of cardinality a. TheAx ’s must all be disjoint. And c must

8 For easy of readability, we will use set theoretic notation as a convenient short hand for
concepts formed using the language of the model. So F ∪ {u} is used for the concept given
by Xx ↔ (Fx ∨ x = u).
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be the cardinality of the union of all the Ax ’s. To define the Ax ’s we define a binary
relation P that holds between x in B and all y in Ax . So Ax is {y | Pxy}.

Definition 2.3.

×(a, b, c) ≡ �∃X,P[#X = b ∧ ∀x ∈ X (#{y | Pxy} = a) (6)

∧∀x, y ∈ X (x 
= y → {z | Pxz} ∩ {z | Pyz} = ∅) ∧ #
⋃
x∈X

{y | Pxy} = c]

The definition of the natural numbers is more complicated and require us to define
the notion that one number follows another in the ordering of the natural numbers.
We will make use of Frege’s definition from the 1879 Begriffsschrift (1967, sec. III; pp.
55 ff; 1884, sec. 79; p. 92 ff). Russell and Whitehead (1910, p. 316) called this relation
the ancestral relation because a good example of what it does is define the relation
‘ancestor of’ from the relation ‘parent of’. The strong ancestral of ϕ holds between two
objects a and b just in case b is contained in every set such that the set is closed under
ϕ and the set contains everything a bears ϕ to. So, we can define someone’s ancestors
as everyone who is in every set that contains their parents and the parents of everyone
in the set. It is not guaranteed that a bears this relation to itself, and so we also define
the reflexive weak ancestral.

Definition 2.4 The strong ancestral.

ϕ+(a, b) ≡ ∀X [(∀x, y(Xx ∧ ϕ(x, y) → Xy) ∧ ∀x(ϕ(a, x) → Xx)) → Xb].

Definition 2.5 The weak ancestral.

ϕ+=(a, b) ≡ ϕ+(a, b) ∨ a = b.

Using this definition, we define a natural number as an object that is some finite number
of successor steps from 0, assuming 0 exists.

Definition 2.6 Natural Number.

Nx ≡ S+=0x ∧ ∃y(y = 0).

This definition closely parallels Frege’s, though the definition of S is different. The
existence claim is added because in the modal setting 0’s existence cannot be assumed.
For example, 0 does not exist at worlds 0, 1, and 2 in the 0-3 swap model, and, as 0
is not a member of infinitely many finite subsets of the natural numbers, 0 does not
exist at infinitely many worlds in the subset model. In these worlds nothing is a natural
number.

2.1. Some useful results. The following six lemmas will help explain the behavior
of N in the models. We omit the proofs as they do not pose any particular difficulty.
For the following Lemmas, recall Definition 1.7 where �PI ϕ was defined as ϕ is true
in all worlds in all potentially infinite models. First, note that the set defined by N at a
world satisfies the antecedent of S+0x. Intuitively, the idea here is that if x is in every
set containing 0 and closed under S, and Sxy, or S0y, then y must also be in every set
with these properties.

Lemma 2.7. �PI ∃x(x = 0) → ∀y(S0y → Ny))

Lemma 2.8. �PI ∀x, y(Nx ∧ Sxy → Ny)
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It follows immediately from this that if x exists at a world and at that world Ny and
Syx then Nx. However, that doesn’t mean N is the set of all numbers across all worlds
as N only holds of objects which exist at the world of evaluation. This contrasts with
our other definitions where the objects need not exist at the world.

Lemma 2.9. |=PI Nx → ∃y y = x

This is because the quantifiers in N are plain rather than having modals in front of
them. This is important because if we put the modals in front everything is a number!

We informally extend our definition of the interpretation function I to I (N, s) =
{x ∈ D(s) | M, s � Nx}. Note that by Lemma 2.9 we have {x ∈ D(s) | M, s � Nx} =
{x ∈ D | M, s � Nx}, where D is the domain of the model not the world.

Recall that a i is the unique element in D such that if |X | = i then I (#, w)(X ) = a i
as defined in 1.2.5. We can now explicitly describe the interpretation of N at a world w
in terms of the a i ’s, that is, the set I (N, w):

Lemma 2.10. Let w be a world and let n be the first number such that an /∈ D(w). Then
if n > 0, it follows that {0, a1, ... , an–1} = I (N, w), and further, n = 0 iff I (N, w) = ∅.

This result shows us how the differences between our modal setting and the traditional
nonmodal setting of the Grundlagen become most stark in the case of the interpretation
of the natural numbers at a world. Two things are worth highlighting. The first
is that N is finite at every world, since it is a subset of the domain of the world,
and the domain of every world is finite. The second is that objects that are not in
N at one world can ‘become’ numbers at later worlds. This doesn’t happen in the
minimal model, where I (N, n) = D(n) at every world. But it does in the subset model.
For example, I (N, {2, 100}) = ∅, I (N, {0, 1, 3}) = {0, 1} and I (N, {0, 1, 2, 3, 100}) =
{0, 1, 2, 3}. This distinguishes ¬N(x) from the other relations which have a certain
stability; if objects stand in these relations at one world, then they do so in all worlds
in which they all exist. The formal definition of stability is given as Definition 8. This
difference is caused by there being no possibility operator at the beginning of the
definition of N. Despite this, once something is a number it remains one:

Lemma 2.11. �PI S(x, y) → �S(x, y) holds, as does �PI S
+(x, y) → �S+(x, y), �PI

S+=(x, y) → �S+=(x, y) and �PI Nx → �Nx.

It is also worth noting that even though some cardinalities may not be numbers at ever
world, the cardinality of every set eventually becomes a natural number.

Lemma 2.12. For all w ∈W and X ⊆ D(w), there is a world s such that R(w, s) and
#X ∈ I (N, s).

This is because # is a function, first-order converse Barcan holds, and the accessibility
relation is directed. With these preliminary results we can now show our definitions
satisfy a simple theory of arithmetic.

§3. Proving modalized Robinson’s Q. In what follows we will prove that the
modalized axioms of Robinson’s Q are true on all PI models (cf. Definition 1.7).
Robinson’s Q is a weak theory of arithmetic that defines successor as an injective
function that never returns 0 and gives a recursive definition of addition and
multiplication. By “modalized” we mean that we write “necessarily for all” for “for all”
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Fig. 3. (A) Finding the successor of x (B) Proof of the recursion clause for addition.

and “possibly there is” for “there is”. In other words, it is what results when we apply
the Linnebo translation (mentioned in the introduction) to the axioms of Robinson’s
Q. The theory PA1 is obtained by adding the mathematical induction schema to Q. We
deal with PA1 and the proof of the induction schema in §4.9

First we will show that our relations define the graphs of functions. The easiest case
is successor.

Lemma 3.1 (S1). �PI �∀x, y, z ∈ N((Sxy ∧ Sxz) → y = z).

Proof. Let s ∈W andx, y, z ∈ I (N, s) satisfy the antecedent. As x is the predecessor
in both relations it follows by directedness that there is a w ∈W , such that R(s, w)
where there areX,X ′ ⊆ D(w) and #X = x = #X ′. As such there is a bijectiong : X →
X ′. There will also be a, b ∈ D(w) such that a /∈ X , b /∈ X ′, and y = #X ∪ {a} and
z = #X ′ ∪ {b}. As a /∈ X and b /∈ X ′ we can construct h such that for all u ∈ X ,
h(u) = g(u) and h(a) = b. Clearly h is a bijection, so y = #X ∪ {a} = #X ′ ∪ {b} =
z. �

Lemma 3.2 (S2). �PI �∀x ∈ N�∃y ∈ N Sxy.

Proof. As illustrated in Figure 3A, let s ∈W and x ∈ I (N, s), it follows that x = an
for some n and, by Lemma 2.10, {0, ... an–1} � D(s). Further, an = #{0, ... an–1} and
an /∈ {0, ... an–1}. Thus, there must be a further world w accessible from w1 and a
y ∈ D(w) such that y = #{0, ... an–1} ∪ {an}. It follows that Sxy at w. By Lemma 2.11
x ∈ I (N, w). As N is closed under successor by Lemma 2.8, we have that y ∈ I (N, w).
And since R is transitive, w is accessible from s. �

These two proofs offer a general outline of the reasoning for addition and
multiplication. For A1 and M1 this strategy is to show that whatever x is the sets
assigned to y and z will have the same cardinality. Where as for A2 and M2 one simply
needs to construct a set of the correct cardinality. For this reason we do not give the
proofs for the next four lemmas.

Lemma 3.3 (A1). �PI �∀x, y, z, z ′ ∈ N(+(x, y, z) ∧ +(x, y, z ′) → z = z ′).

Lemma 3.4 (A2). �PI �∀x, y ∈ N�∃z ∈ N + (x, y, z).

Lemma 3.5 (M1). �PI �∀x, y, z, z ′ ∈ N(×(x, y, z) ∧ ×(x, y, z ′) → z = z ′).

Lemma 3.6 (M2). �PI �∀x, y ∈ N�∃z ∈ N × (x, y, z).

9 A list of the nonmodalized axioms can be found in Appendix A. While what we show here
is that these axioms are in the theory EPI, each of the proofs that follow can be formalized
in ACA0 (cf. Appendix B). That this is possible will ensures that all axioms proven here are
also in the theory IPI (from §1.2). This is a key point in the proof of Theorem 1.8.ii which we
complete in §5.
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We also need to show that 0 meets the right conditions to be a constant.

Lemma 3.7 (Z1). �PI �∃x ∈ N(x = 0 ∧ �∀y(y = 0 → y = x)).

Proof. By the definition of N, it follows that 0 ∈ I (N, s) for any world s with 0 in
the domain. And as 0 = #∅ there is some s with 0 in the domain. The second conjunct
follows by the transitivity of identity. �

We can now move on to the recursion equations in Q. We separate these into the
base steps concerning 0 and the recursive step. For the base steps, because 0 = #∅ the
proofs of the lemmas are relatively straight forward. As such we list them here without
proof.

Lemma 3.8 (Q1). �PI ¬�∃x ∈ N(Sx0).

Lemma 3.9 (Q3). �PI �∀x ∈ N + (x, 0, x).

Lemma 3.10 (Q5). �PI �∀x ∈ N × (x, 0, 0).

What is left now is to show the recursion steps. He we only prove the case for + as
one can use the same stratagy for × and the proof is simple for S.

Lemma 3.11 (Q2). �PI �∀x, y, z ∈ N((Sxz ∧ Syz) → x = y).

The proof simply follows from the fact that if there is a bijection between two sets X
and Y then there will be a bijection between X ∪ {a} and Y ∪ {b} if a and b aren’t in
X or Y respectively.

Lemma 3.12 (Q4).

�PI �∀n, x0, x1, y0, y1, z ∈ N(S(x0, x1) ∧ S(y0, y1) ∧ +(n, x0, y0) ∧ +(n, x1, z) → y1 = z).

Proof. As illustrated in Figure 3B, let s ∈W and n, x0, x1, y0, y1, z ∈ I (N, s) satisfy
the antecedent. We want to show that y1 = z. By directedness, we know there is a
world w containing all the objects and sets which the antecedent states possibly exist.
As y1 succeeds y0 there is a set Y0 and an object a /∈ Y0 at w such that y1 = #Y0 ∪ {a}
and y0 = #Y0. We know y0 to be the addition of n and x0 so there are disjoint
sets N and X0 such that n = #N , x0 = #X0, and y0 = #N ∪ X0. Further there is a
bijection g0 : Y0 → N ∪ X0. Now let b be an element not in N or X0 (we can always
pick w so that such an element exists). Clearly we can define a bijection o between
the singletons of a and b. Now, using g0 and o, define the bijection g : Y0 ∪ {a} →
N ∪ X0 ∪ {b}, as the union of g0 and o. Now as x1 is the successor of x0, it follows
that x1 = #X0 ∪ {b}. As z is the addition of n and x1 there are disjoint sets N ′ and X1

such that n = #N = #N ′, x1 = #X0 ∪ {b} = #X1 and z = #N ∪ X1. As such there
are bijections f0 : X0 ∪ {b} → X1 and f1 : N → N ′. So, we can define the bijection
f : N ∪ X0 ∪ {b} → N ′ ∪ X1 as f0 on X0 ∪ {b} and f1 on N. Then as z = #N ∪ X1

the composition f ◦ g is a bijection proving y1 = z. �
Lemma 3.13 (Q6). �PI �∀n, x0, x1, y0, y1, z ∈ N(S(x0, x1) ∧ +(n, y0, y1) ∧ ×(n, x0,

y0) ∧ ×(n, x1, z) → y1 = z).

This proof is similar to the above except we end up showing that y1 = #
⋃
x∈A0∪{u}{y |

Pxy ∨ (x = u ∧ y ∈ N )} = #
⋃
x∈A1

{y | Txy} = z where A0, A1, and N are of
cardinality x0, x1, and n respectively and P is the relation given by ×(n, x0, y0) and T
by ×(n, x1, z).

https://doi.org/10.1017/S1755020320000349 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000349


566 WILL STAFFORD

These results show that we have successfully defined a modalized version of
Robinson’s Q in our system. The next section will recover a modalized induction
schema.

§4. Proving the modalized induction schema. We have succeeded in giving a weak
theory of arithmetic in a potentially infinite setting. However, we can recover more
arithmetic by proving that when restricted to appropriate formulas a modalized version
of the induction schema is true on all PI models. The modalized induction schema is:

[ϕ(0) ∧ �∀x, y ∈ N(ϕ(x) ∧ S(x, y) → ϕ(y))] → �∀x ∈ N ϕ(x) (7)

Modalized induction does not hold for all formulas in our models, as will be shown
in Lemma 4.4. So, we need to define a subclass of the formulas in the language of
potentially infinite models for which it does hold. These we will call the inductive
formulas, and in Lemma 4.3 it will be proven that induction does hold for inductive
formulas.10

Definition 4.1. The inductive terms and formulas are defined recursively as follows:

1. An inductive term is either 0 or a first-order variable.
2. If t0, t1, t2 are inductive terms then t0 = t1, S(t0, t1), +(t0, t1, t2) and ×(t0, t1, t2)

are inductive formulas.
3. Applications of the propositional connectives to inductive formulas are inductive

formulas.
4. If ϕ is an inductive formula then �∀x ∈ N ϕ and �∃x ∈ N ϕ are inductive

formulas.

The inductive terms and formulas are a subset of the terms and formulas respectively.
Any term of the form #X is not an inductive term, and indeed no term or formula
with a free second-order variable is inductive. Likewise N0, ∀z(x = z) and ∃y(S0y)
are not inductive formulas, while �∀z ∈ N(x = z) and �∃y ∈ N(S0y) are.

A formula ϕ is stable when:

�PI ϕ → �ϕ. (8)

Stability is taken from Linnebo’s (2013, p. 211) work on set theory in a modal setting.
It means once a formula has been made true it stays true. As we saw in Lemma 2.11, S,
S+, S+=, andN are all stable and an example of an unstable formula is¬N. Fortunately,
the inductive formulas all have the property of being stable, as we will now prove. This
will allow us to prove induction for these formulas.

Lemma 4.2. If ϕ is an inductive formula then �PI ϕ → �ϕ.

Proof. In what follows we prove by induction on the complexity of the inductive
formulas that both ϕ → �ϕ and �ϕ → ϕ. The second condition is included to deal
with the case of negation.

Base case: x = y and x = 0: The result follows from the evaluation of #∅ being
rigid and the identity relation being interpreted as the identity from the metalanguage.
Note that for S,+, and × that �� → � follows simply because R is transitive and they

10 This terminology is used to distinguish between these formulas and other for which induction
does not hold. Hopefully no confusion will be caused by the distinct uses of the term inductive
formulas elsewhere in the literature.
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start with a �. S(x, y): See Lemma 2.11. +(x, y, z): Assume that M, w � +(a, b, c).
It follows that there exists a world w′ accessible from w and nonintersecting sets
A,B ⊆ D(w′) satisfying +. Let s be a world such that R(w, s). Then by directedness,
there is a world s ′ such that R(s, s ′) and R(w′, s ′), and A,B ⊆ D(s ′). So +(a, b, c)
holds at s. ×(x, y, z): The reasoning is essentially the same as that used for +.

Now we proceed to the induction step. We will only show the case of the quantifier
as ¬ and ∧ proceed as one would expect. �∃x ∈ N �: Assume M, s � ��∃x ∈ N �.
It follows by transitivity that M, s � �∃x ∈ N �. Now we show that (�∃x ∈ N �) →
(��∃x ∈ N �). First take a world w such that �∃x ∈ N � holds at w. Then take
worlds s, w′ such that R(w, s), R(w,w′), ∃x ∈ N � holds at w′ and we want to
show �∃x ∈ N � holds at s. At w′ there is an a ∈ D(w′) such that a ∈ I (N, w′) and
�(a) holds at w′. So, by Lemma 2.11, Na → �Na holds at w′ and by the induction
hypothesis, �(a) → ��(a). Let s ′ be such that R(s, s ′) and R(w′, s ′), such a world
exists by directedness. It follows that Na and �(a) hold at s ′ and as s ′ is accessible
from s we have proven �∃x ∈ N � holds at s. �

We can now prove that the modalized induction schema holds for all inductive
formulas. We do this by showing the more general result that induction holds for all
stable formulas.

Lemma 4.3. If ϕ is stable, then

�PI [ϕ(0) ∧ �∀x, y ∈ N(ϕ(x) ∧ S(x, y) → ϕ(y))] → �∀x ∈ N ϕ(x).

Proof. Let w be a world. Further, we assume the antecedent of the induction schema
holds so let ϕ(0) and �∀x, y ∈ N(ϕ(x) ∧ S(x, y) → ϕ(y)) hold at w. Let s be a world
accessible from w and let a ∈ I (N, s). We will show that ϕ(a) at s. If a = 0 then, as ϕ
is stable, we are done so assume not.

As a ∈ I (N, s), if we prove ∀x, y(ϕ(x) ∧ Nx ∧ S(x, y) → ϕ(y) ∧ Ny) and
∀x(S(0, x) → ϕ(x) ∧ Nx) hold at s then we have satisfied the antecedent of S+0a and
so it follows that ϕ(a) ∧ Na at s.

At s we have ∀x, y ∈ N(ϕ(x) ∧ S(x, y) → ϕ(y)). We also have that if x ∈ I (N, s),
and S(x, y) hold at s then by Lemma 2.8 that y ∈ I (N, s). This proves ∀x, y(ϕ(x) ∧
Nx ∧ S(x, y) → ϕ(y) ∧ Ny) at s.

From a ∈ I (N, s) it follows that 0 ∈ D(s). Assume x ∈ D(s) and S0x, as 0 ∈ D(s)
it follows by Lemma 2.7 that x ∈ I (N, s). It then follows by the stability of ϕ that ϕ(0)
at s. As such we have the antecedent of ∀x, y ∈ N(ϕ(x) ∧ S(x, y) → ϕ(y)) so we get
ϕ(x). And from this it follows that ∀x(S(0, x) → ϕ(x) ∧ Nx) holds at s. �

We have proven the modalized induction axiom restricted to inductive formulas. But
we cannot prove modalized induction for all formulas in the language of potentially
infinite models, as the following counterexample shows.

Lemma 4.4. If ϕ(x) is ∀z(z = x), then

�PI [ϕ(0) ∧ �∀x, y ∈ N(ϕ(x) ∧ S(x, y) → ϕ(y))] → �∀x ∈ N ϕ(x).

Proof. It is sufficient to show there is a model and a world in the model where
this statement is false. Take the minimal model from Example 1.4 and world 0, where
D(0) = {0}. Clearly M, 0 � ∀z(z = 0). Let w ∈W be such that R(0, w) and assume
that for all x, y ∈ I (N, w), that ∀z(z = x) and S(x, y) hold at w. As everything in the
domain is equal to x it follows that y = x and so ∀z(z = y) at w. So M, 0 � �∀x, y ∈
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N(∀z(z = x) ∧ S(x, y) → ∀z(z = y)). But it does not follow that �∀x ∈ N ∀z(z = x),
because 1 ∈W is a counter example as D(1) = {0, 1}. �

§5. Proof of Theorem 1.8. We now have almost all the pieces needed to prove
Theorem 1.8. However, before we do that we need to discuss what a translation and
interpretation are in our setting because we are moving between logics.

Intuitively, a translation between two languages starts with instructions on how to
rewrite atomic formulas in one language into the other language. It does not make
any changes to the propositional connectives but can restrict the quantifiers to objects
meeting some conditions. In the current setting, however, we need a formal definition of
what is to count as a translation when the underlying logics are different. This notion
should, at the very least, capture the Linnebo translation. We offer the following
definition as a minimal condition on any translation, though more will need to be
done to ensure a widely applicable definition of translation and interpretation between
logics.

Definition 5.1. Let LA and LB be two logics extending first-order predicate logic,
defined by the languages LA and LB and derivability relations 
LA and 
LB respectively.
A generalized translation is given by a recursive map (·)G : LA → LB which preserves free
variables and a domain formula �(x) ∈ LB , such that the map is compositional on the
propositional connectives and where for all unnested formulas11 ϕ1, ... , ϕn, � containing
free variables x1, ... , xm one has the following:

ϕ1, ... , ϕn 
LA � ⇒ �(x1), ... , �(xm), ϕG
1 , ... , ϕ

G
n 
LB �

G (9)

What we have done so far is an informal translation from the first-order language of
arithmetic into the signature of the potentially infinite models. In §2 we showed how the
atomic formulas could be translated. Further, the modalized versions of the axioms of
PA1 proven in §3 and §4 are the translations of PA1’s axioms via the translation found
in §2 and the Linnebo translation for the quantifiers.

While it has been set out in previous sections, for the sake of definiteness we here
record the translation explicitly. We will call this translation (·)F , as it is a Fregean
translation. Three things are worth noting before we lay out the translation. The first is
that the domain formula associated to this interpretation is N from Definition 2.6. The
second is that the range of this translation is the inductive formulas from Definition
4.1. The third is that 11–13 are the same definitions given in 3, 2.2, and 2.3. We have
not changed the definitions we are working with. Rather, we merely show how these
definitions can be used to define the interpretation function (·)F .

0F ≡#∅, (10)

SabF ≡�∃G∃u[Gu ∧ (b = #G) ∧ (a = #G ∪ {u})], (11)

+(a, b, c)F ≡�∃X,Y (a=#X ∧ b=#Y ∧ c=#X ∪ Y ∧ X ∩ Y = ∅), (12)(12)

11 An unnested formula is one where the atomic subformulas of a formula contain at most one
constant, function or relation (Hodges, 1993, p. 58). We only give conditions for unnested
formulas. So, for example,Sxy and +(x, y, z) are unnested butS0x and +(0, 0, z) are nested.
Every formula is equivalent to an unnested one (Hodges, 1993, p. 59, Cor 2.6.2). As such
the translation can be expanded to unnested formulas using this equivalence.
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×(a, b, c)F ≡�∃X,P[#X = b ∧ ∀x ∈ X (#{y | Pxy} = a)∧
∀x, y ∈ X (x 
= y → {z |Pxz} ∩ {z |Pyz} = ∅) ∧ #

⋃
x∈X

{y |Pxy} = c],

(13)

(� ∧ �)F ≡�F ∧ �F , (14)

(¬�)F ≡¬�F , (15)

(∀x�)F ≡�∀x(N(x) → �F ), (16)

(∀Xn�)F ≡�∀Xn(∀x1, ... , xn(Xnx1 ... xn → N(x1) ∧ ··· ∧ N(xn)) → �F ). (17)

To see that this is a generalized translation all that remains to be shown is that deduction
is preserved by our translation. We need this result for both EPI and IPI.12

Lemma 5.2. Let ϕ0, ... , ϕn, � be unnested formulas in the language of PA1 with free
variables v0, ... , vm, it follows that if ϕ0, ... , ϕn 
 �, then N(v0), ... ,N(vm), ϕF

0 , ... , ϕ
F
n

�PI �
F . Further, it isPA1-provable that ifϕ0, ... , ϕn 
 � thenACA0 
 “N(v0), ... ,N(vm),

ϕF
0 , ... , ϕ

F
n �PI �

F”.

The first part of this Lemma is similar to (Linnebo, 2013, Thm. 5.4.). But he proves a
version of this which does not restrict the quantifiers to a domain. The modification
to our case is simple and so we omit the proof.

On its own a translation is not very interesting. However, a translation is an
interpretation if the translations of the axioms of the interpreted theory can be proven
in the interpreting theory.

Definition 5.3. Let TA and TB be LA and LB theories respectively, where a theory
is a set of sentences not necessarily closed under deduction. A generalized translation
(·)G : LA → LB interprets TA in TB , if for all LA unnested sentences �:

TA 
LA � ⇒ TB 
LB �
G (18)

It is a recursive interpretation if the collection of LA and LB formulas are recursive, TA
and TB are also recursive, as is (·)G , and there are recursive maps from proofs to proofs
which witness the truth of Equations (9) and (18). Given a theory, if T extends PA1, then
say that the interpretation is T-verifiable if the recursive functions are provably total in T
and if the universal closures of the arithmetized versions of 9 and 18 are provable in T.

So, the proofs of §3 and §4 show our translation is an interpretation of PA1 in EPI.
However, to show it is an interpretation in IPI a certain level of caution is needed
because IPI does not have a background derivability relation. To resolve this, we take
ϕ0, ... , ϕn 
LPI ϕ to beACA0 
 “ϕ0, ... , ϕn �PI ϕ”, where this is as defined in Appendix
B. And, of course IPI is just as defined in (2) of §1, namely the set of sentences ϕ such
that ACA0 
 “ �PI ϕ”. We then need to show the following:

Lemma 5.4. For all sentences ϕ in the language of PA1, if PA1 
 ϕ then ACA0 
 “ �PI

ϕF”. Further, it is PA1-provable that if PA1 
 ϕ then ACA0 
 “ �PI ϕ
F”.

12 Recall that we formalized IPI in ACA0, and those interested in the nuts and bolts are directed
to Appendix B.
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Proof. By Lemmas 3.2–3.6 and 4.2 and 4.3 we know that ifϕ is an axiom ofPA1 then
ACA0 
 “ �PI ϕ

F”. Assume PA1 
 ϕ not an axiom, then there are n axioms of PA1,
ϕ0, ... , ϕn, such thatϕ0, ... , ϕn 
 ϕ. Then as we can always take the universal closure of
axioms andϕ is a sentence it follows by Lemma 5.2 that ACA0 
 “ϕF

0 , ... , ϕ
F
n �PI ϕ

F”.
Given that the axioms are PI valid, it follows that ACA0 
 “ �PI ϕ

F”. �
This final piece gives us the proof of:

Theorem 1.8. ii. There is a generalized translation from the language of PA1 to the
second-order modal language with octothorpe that interprets PA1 in IPI. Further, this is a
PA1-verifiable generalized interpretation.

To prove the first half of Theorem 1.8 we need to define formulas that pick
out the numbers in PA1 and EPI. In PA1 let �0(x) ≡ (x = 0) and �n+1(x) ≡
∃y(�n(y) ∧ Syx). In EPI let 	0(x) ≡ (x = 0) and 	n+1(x) ≡ �∃y ∈ N(	n(y) ∧ Syx).
Note that (�0(x))F ≡ (x = 0)F ≡ 	0(x) and (�n+1(x))F ≡ (∃y(�n(y) ∧ Syx))F ≡
�∃y ∈ N((�n(y))F ∧ Syx) ≡ 	n+1(x). With this we can state the following preliminary
Lemma; we omit the proof which is long but not illuminating:

Lemma 5.5. For every k ≥ 0 and every unnested formula 
(x1, ... , xk) in the signature
of PA1 and every k-tuple of natural numbers n1, ... , nk one has that :

N |= 
(n1, ... , nk) =⇒ �PI ∀x1, ... , xk ∈ N

(
k∧
i=1

	ni (xi) → 
F (x1, ... , xk)

)
(19)

In the case of k = 0, this is to say: for every unnested sentence 
 in the signature of
PA1 one has that

N |= 
 =⇒ �PI 

F (20)

Theorem 1.8.i follows from (20) of Lemma 5.5. This give us our proof of:

Theorem 1.8. (i). There is a generalized translation from the language of PA1 to the
second-order modal language with octothorpe that interprets TA1 in EPI.

§6. Proof of Theorem 1.9. It has been shown by Linnebo & Shapiro (2019, §7)
that the Linnebo translation cannot interpret comprehension because modalized
comprehension requires the existences of a set of all possibly existing things. However,
this leaves open the question of whether there is a different translation which can
interpret PA2. Here we will demonstrate that there is no translation from TA2 to EPI

nor from PA2 to IPI by proving Theorem 1.9, our second main theorem. The first part
of Theorem 1.9 follows from relatively simple Tarskian considerations:

Theorem 1.9.i. There is no generalized translation from the language of PA2 to the
second-order modal language with octothorpe that interprets TA2 in EPI.

Proof. Assume for a contradiction that there is an interpretation (·)G that interprets
TA2 in EPI. Note that as TA2 is complete it follows that this is a faithful interpretation;
i.e. if �PI ϕ

G then N � ϕ. As EPI is Π1
1-definable it follows that there is a predicate P

such that for all ϕ in the second-order modal language with octothorpe we have �PI ϕ
if and only if N � P(“ϕ”). (Here we use quotation marks for Gödel numbering for
both the language of PA2 and the second-order modal language with octothorpe.) But
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then as generalized translations are recursive we can represent (·)G in N as g. It follows
that P(g(“�”)), where � is in the language of PA2, is a truth predicate for TA2. But
this contradicts Tarski’s theorem. �

The proof of the second part of the theorem is trickier and requires Gödelian
considerations. Recall the definition of T-verifiable generalized translation and
interpretation from Definitions 5.1 and 5.3 in Section 5. There we proved that we have a
PA1-verifiable interpretation of PA1 in IPI by Lemma 5.4. Given that we defined IPI 
 ϕ
as ACA0 
 “ �PI ϕ”, that is PA1 
 ∀ϕ[“PA1 
 ϕ” → “ACA0 
 “ �PI ϕ

F””]. Here we
show that there is no PA2-verifiable interpretation of PA2 in IPI. We can write this
as: there is no generalized translation (·)G from the language of PA2 to the second-
order modal language with octothorpe such that PA2 
 ∀ϕ[“PA2 
 ϕ” → “ACA0 

“ �PI ϕ

G””].

Theorem 1.9.ii. There is no generalized translation from the language of PA2 to the
second-order modal language with octothorpe that PA2-verifiably interprets PA2 in IPI.

Proof. The systems Π1
k-CA0 are subsystems of PA2 that have comprehension for

Π1
k formulas. As proofs are finite and so can only use finitely many instances of the

comprehension schema any interpretation which is PA2-verifiable will also be Π1
k-CA0-

verifiable for some k ≥ 1. Let ϕ1, ... , ϕn be a finite axiomatization of Π1
k-CA0 for some

k ≥ 1 (Simpson, 2009, pp. 303, 311-2). We will show, from the assumption that there
is a Π1

k-CA0-verifiable translation (·)G from the languge of PA2 to the second-order
modal language with octothorpe that interprets PA2 in IPI, that Π1

k-CA0 proves its own
consistency. This contradicts Gödel’s second incompleteness theorem and so shows
that no such (·)G can exist.

Note thatPA2 
 ϕ1, ... , ϕn as all Π1
k-CA0 are subsystems ofPA2. We are assuming that

(·)G interprets PA2 in IPI, so it follows that ACA0 
 “ �PI ϕ
G
1 , ... , ϕ

G
n ”. Let A be a model

of Π1
k-CA0 for some k. So, we have A � “ �PI ϕ

G
1 , ... , ϕ

G
n ”. If M is the minimal model

from Example 1.4 relative to A then we have then we have A � “M � ϕG
1 , ... , ϕ

G
n .”

Now we show that A � ¬Prvϕ1,...,ϕn (� ∧ ¬�), that is the consistency of Π1
k-CA0.

Assume for a contradiction that A � ∃�Prfϕ1,...,ϕn (�,� ∧ ¬�). Then as (·)G is
a Π1

k-CA0-verifiable interpretation it follows A � PrfACA0(�G , “ϕG
1 , ... , ϕ

G
n �PI �

G ∧
¬�G′′).

Recall that Π1
1-CA0 proves Σ1

1-reflection for ACA0 (cf. Simpson (2009) Theo-
rem VII.6.9.(4) p. 298 and Theorem VII.7.6.(1) p. 305). As Π1

1-CA0 ⊆ Π1
k-CA0, this

means that for any Π1
1 statement � we know Π1

k-CA0 proves PrvACA0(�) → �. For
all �, we know that “ �PI �” is Π1

1 and similarly for the local derivability relation
(see Appendix B). It follows that A � “ϕG

1 , ... , ϕ
G
n �PI �

G ∧ ¬�G” and as A � “M �
ϕG

1 , ... , ϕ
G
n ”. It follows that A � “M � �G ∧ ¬�G”. And so A � “M |= �G” and

A � “M |= ¬(�G)”. �
We have now shown the two main results set out in the introduction.

§7. Conclusion. We started with the worry that Hume’s Principle had only infinite
models and so any claim that it was analytic would mean that the claim that there are
infinitely many objects is analytic. This worry has been noted before in the literature
on neo-logicism, but little has been done to address it. Hale and Wright (2001) state
that without this the neo-logicist project cannot even get off the ground:
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To require of an acceptable abstraction that it should not be (even)
weakly inflationary [that is require a countable infinity] would stop
the neo-Fregean project dead in its tracks, before it even got moving
(as it were). It will be clear that I think there is no good ground to
impose such a requirement, and I shall not discuss it further. (Hale
and Wright, 2001, pp. 417–8)

In this paper we have explored the potentially infinite as one way to address this
worry. The move to the potentially infinite does not rid us of posited infinities. We
still require there to be an infinity of worlds and an infinity of objects across the
worlds. But these infinities are less metaphysically questionable. So, for example, while
Putnam and Hodes objected to the positing of actual infinities they allowed for possible
infinities. And one could always try to further avoid the commitment by adopting an
instrumentalist attitude towards the metatheory.

We have shown that the theory of potentially infinite models interprets first-order
Peano arithmetic or first-order true arithmetic, depending on the strength of our meta-
language. But we cannot interpret the equivalent second-order arithmetic theory. The
difficulty seems to be the nonexistence of a set of all the numbers across all the worlds.
As our models are supposed to capture the idea of the potential infinite, we do not
want the set of all the numbers across all the worlds to exist. It makes sense that the
potential infinite does not capture the infinite progression of the natural numbers as
well as actual infinity and this might go some way to explaining why we get the weaker
first-order theory.

This allows a fuller understanding of the role of the potentially infinite in the
foundation of mathematics. Unlike Hodes, we see that a certain amount of mathematics
can be recovered, though some other story would need to be told about more advanced
mathematics. It also offers evidence that the ontological commitments that come with
Hume’s Principle, and which make some reject the claim that its truth is analytic,
cannot be avoided by moving to the modal setting if one wants full second-order
Peano arithmetic. For in weakening our ontological commitments, we also weakened
the mathematical theory which we can recover.

§Appendix A. Formal theories. Here we will spell out the theories other than EPI

and IPI which are used in the proofs above. Unlike EPI and IPI none of these are modal
theories, however, most are second-order theories.

The weakest theory we consider is first-order Robinson’s Q. For a more complete
reference see, for example, (Hájek & Pudlák, 1998, p. 28).

Definition A.1. Q is the usual formalization of Robinson’s arithmetic. It consists of the
universal closure of the following axioms:

s(x) 
= 0; (Q1) s(y) = s(z) → y = z; (Q2)

x + 0 = x; (Q3) x + s(y) = s(x + y); (Q4)

x × 0 = 0; (Q5) x × s(y) = (x × y) + y. (Q6)

Note that in the body of the text we do not use this formulation but rather one with
relations instead than functions.13 We have offered this formulation for readability. The

13 We use a capital S for the relational successor and lower case s for the functional.
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relation formulation gives you the obvious translation of the above, plus an additional
6 axioms ensuring that the relations S,+,× are the graphs of functions.

We also consider the extensions of Q to PA1 by the addition of the first-order
induction schema, and PA2 by the addition of the second-order induction axiom and
Comprehension Schema. PA1 is a first-order theory, but PA2 is a second-order theory.

Definition A.2. PA1 is Q plus the induction schema, where ϕ is a first-order formula:

(ϕ(0) ∧ ∀x[ϕx → ϕ(s(x))]) → ∀xϕ(x) (Induction Schema (IS))

PA2 is Q plus the induction axiom and Comprehension Schema:

∀P[(P0 ∧ ∀x[Px → P(s(x))]) → ∀xPx] (Induction Axiom (IS))

∀ȳ, Ȳ∃X∀x(X (x) ↔ ϕ(x, ȳ, Ȳ )) (Comprehension Schema (CS))

In the Comprehension Schema ϕ can be any formula of the language of PA2 in which X
does not occur free.

Again in the body of the text we use the natural adaptation to the setting of relations
rather than functions. There are also two theories we use that are second-order and
between PA2 and PA1 in strength. They both restrict comprehension. So, we first need
to define the formulas we restrict to:

Definition A.3. (Simpson, 2009, I.3.1, p. 6) An Arithmetical formula is a formula in
the language of PA2 which does not contain any set quantifiers, though it may contain
free set variables.

With this we can state ACA0:

Definition A.4. (Simpson, 2009, I.3.2, p. 7) ACA0 is Q plus the Induction Axiom and
Arithmetical Comprehension:

∀ȳ, Ȳ∃X∀x(X (x) ↔ ϕ(x, ȳ, Ȳ )) (Arithmetical Comprehension Schema (ACS))

Where ϕ has to be an arithmetical formula and X may not occur free.

Note that as every formula of PA1 is arithmetical, and ACA0 contains the second-
order induction axiom, every instance of the first-order induction schema is provable
in ACA0.

The next theories of arithmetic to be considered here are the Π1
k-CA0 which are used

in the proof of Theorem 1.9. To define this theory, we first need to define Π1
k (and Σ1

k)
formulas:

Definition A.5. (Simpson, 2009, I.5.1, p. 16) A Π1
1 formula is a formula in the

language of PA2 of the form ∀X1, ... , Xnϕ where X1, ... , Xn are set variables and ϕ
is an arithmetical formula.

A Σ1
1 formula is a formula in the language of PA2 of the form ∃X1, ... , Xnϕ where

X1, ... , Xn are set variables and ϕ is an arithmetical formula.
A Π1

k formula is a formula in the language of PA2 of the form ∀X1, ... , Xnϕ where
X1, ... , Xn are set variables and ϕ is a Σ1

k–1 formula.
A Σ1

k formula is a formula in the language of PA2 of the form ∃X1, ... , Xnϕ where
X1, ... , Xn are set variables and ϕ is Π1

k–1 formula.

The definition of Π1
k-CA0 is much like the definition of ACA0, except that the restriction

on the comprehension axiom is broadened to include all Π1
k formulas:
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Definition A.6. (Simpson, 2009, I.5.2, p. 17) Π1
k-CA0 is Q plus the Induction Axiom

and Π1
k Comprehension:

∀ȳ, Ȳ∃X∀x(X (x) ↔ ϕ(x, ȳ, Ȳ )) (Π1
k Comprehension Schema (Π1

k CS))

Where ϕ has to be a Π1
k formula and X may not occur free.

We can define the intended model of these theories. Let N1 be {�, 0, s,+,×} where
each term is interpreted as it is in the metatheory and N2 be N1 with P (�n) as the
domain of the second-order quantifiers. N1 is the intended model of Q and PA1, while
N2 is the intended model of PA2, ACA0, and Π1

k-CA0 for all k. As is well known, by
Gödel’s incompleteness theorems none of the theories we have seen so far are complete.
We can define the complete theories of these models:

Definition A.7. Let TA1 be {ϕ | N1 � ϕ} and TA2 be {ϕ | N2 � ϕ}.

For the sake of completeness, we here define Hume’s Principle (HP2). This system
is second-order also and consists of the cardinality principle displayed in Equation
HP on page 4, the full Comprehension Schema, as in PA2, and full comprehension for
binary relations:

∀ȳ, Ȳ∃X∀x, z(X (x, z) ↔ ϕ(x, z, ȳ, Ȳ )) (Binary Comprehension Schema (BCS))

Comprehension for binary relations is required because the definition ofHP2 quantifies
over bijections and when spelt out fully this turns out to be the claim that there is a
second-order binary relation which is the graph of a bijection between the two sets.

§Appendix B. Formal definition of IPI. In the introduction we gave IPI as the set
{ϕ | ACA0 
 “ �PI ϕ”}. Here we will layout explicitly what we mean by defining the
arithmetization of �PI in ACA0.

It is importaint to note that the second-order variables in IPI are taken to first-order
variables in ACA0. If all the first-order variables of IPI are of the form xi and all the
second-order variables of IPI are of the form Yj then let all the first-order variables
of ACA0 be of the form xi and Yj , and the second-order variables of ACA0 be of the
form Zv . In practice we will not stick to this strict distinction, but it can always be
implemented by renaming the variables.

We do not restrict the domain of the first-order variables of IPI; there is no need
to pick out a subset of the domain of a model of ACA0. However, the second-order
variables of IPI need to be restricted to codes for finite sets of numbers ordered by strict
less than. This isn’t difficult, we can simply borrow the coding found in the proof of
incompleteness. A more complete explication can be found in (Simpson, 2009, Ch. 2.2).
The second-order variables are required to be to some sequence �(0)n0 + ··· + �(m)nm

where �(i) gives the ith prime and n0 < n1 < ··· < nm. Let Seq(Y ) be the name of the
relation that ensures Y has the above properties. Further, let nSeq(Y ) mean that Y
codes n-tuples of numbers. We will use this to code relations and relational variables. If
x is the number of a sequence then let [x]i be the ith element and ln(x) is the length of x.

We want to code PI models as sets of natural numbers. We know that we can always
combine countably many countably infinite sets (just code n a member of the ith set
as 2i + 3n). As such we will just show how to code W,R,D,#, a as separate sets of
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natural numbers. Further, with R,D,#, a we will talk about pairs (x, y), this should
be understood as standing for the code 2x + 3y .

(B.1) Let W be infinite (∀x ∈W ∃y ∈W (y > x)),14

(B.2) let R be such that

(a) for all (i, j) ∈ R we have that i, j ∈W ,
(b) ∀x ∈W R(x, x) (reflexive),
(c) ∀x, y, z ∈W (R(x, y) ∧R(y, z) → R(x, z)) (transitive),
(d) ∀x, y ∈W (R(x, y) ∧R(y, x) → x = y) (anti-symmetric),
(e) ∀x, y ∈W ∃z ∈W (R(x, z) ∧R(y, z)) (directed),

(B.3) let D be such that

(a) D(w,Y ) implies that w ∈W and Seq(Y ),
(b) ∀w ∈W ∃Y ∈ Seq(D(w,Y ) ∧ ln(Y ) > 0) (every world has at least one

element),
(c) D is the graph of a function from W to Seq,
(d) if R(i, j) and i 
= j and D(i, X ) and D(j, Y ) then ∃u∀v([X ]v 
= [Y ]u)

(there is something in Y not in X) and ∀v < ln(X )∃u([X ]v = [Y ]u)
(everything in X is in Y),

(B.4) let a be such that for each n there is exactly one x such that a(n, x) and
if a(n, x) and a(m,x) then n = m, we then define #(Y, x) as Seq(Y ) ∧
a(ln(Y ), x).

Given a set of numbers M we will write M ∈ PIM to signify the set meets (B.1)–
(B.4). We define sb (subset) as follows Y ∈ sb(X ) iff Seq(Y ) ∧ ∀i < ln(Y )∃j([X ]j =
[Y ]i). In defining the arithmetization note that we add free-variables for the model
and the world, we will useWM,RM,DM,#M , but these can be defined in terms of the
model. So, if ϕ is a formula in the modal second-order language with octothorpe we
translate it to some �(w,WM,RM,DM,#M ) in the language of arithmetic. We define
the arithmetization as follows:

(xi = xj)∗ ≡xi = xj (21)

(xi = #Yj)∗ ≡#M (Yj, xi) (22)

(Yjxi)∗ ≡∃u(xi = [Yj ]u) (23)

(∀xϕ)∗ ≡∀x(∃Y ∈ Seq(DM (w,Y ) ∧ ∃u(x = [Y ]u)) → (ϕ)∗) (24)

(∀Yϕ)∗ ≡∀Y ∈ Seq(∃X ∈ Seq(DM (w,X ) ∧ Y ∈ sb(X )) → (ϕ)∗) (25)

(∀Pnϕ)∗ ≡∀Pn ∈ nSeq (26)

(∃X ∈ Seq(DM (w,X ) ∧ ∀(x1, ... , xn) ∈ Pn(
∧

1≤i≤n
∃j[X ]j = xi)) → (ϕ)∗)

(�ϕ)∗ ≡∀s ∈WM (RM (w, s) → (ϕ)∗[w/s]) (27)

14 Recall that our definition demanded that our set of worlds be countable. We cannot capture
this in ACA0 in the sense that ACA0 has none standard models but we will have that we do
not have more worlds than ACA0 thinks there are natural numbers, which is sufficent for the
role this plays in the proofs.
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where we commute over the logical connectives. This means that every formula
arithmetized is arithmetical as defined in Appendix A. For example, �∀v�∃Z(v =
#Z) becomes

∀s ∈WM (RM (w, s) → ∀v(∃Y (DM (s, Y ) ∧ ∃u(v = [Y ]u) →
(28)

∃s ′ ∈WM (RM (s, s ′) ∧ ∃Z ∈ Seq(∃X (DM (w,X ) ∧ Z ∈ sb(X ) ∧ #M (Z, v))))).

Note “ �PI ϕ” means ∀M ∈ PIM∀w ∈WM (ϕ)∗. It follows that this is then a Π1
1

formula. Hence, if one were proceeding very formally, we would define IPI as the set of
all the ϕ such that ACA0 
 ∀M ∈ PIM∀w ∈WM (ϕ)∗.
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