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Abstract

Knowledge representation (KR) is an important area in artificial intelligence (AI) and is often related to specific domains. The
representation of knowledge in domain-specific contexts makes it desirable to capture semantics as domain experts would. This
motivates the development of semantics-preserving standards for KR within the given domain. In addition to the storage and
analysis of information using such standards, the effect of globalization today necessitates the publishing of information on the
Web. Thus, it is advisable to use formats that make the information easily publishable and accessible while developing KR stan-
dards. In this article, we propose such a standard called Quenching Markup Language (QuenchML). This follows the syntax of
the eXtensible Markup Language and captures the semantics of the quenching domain within the heat treating of materials. We
describe the development of QuenchML, a multidisciplinary effort spanning the realms of AI, database management, and ma-
terials science, considering various aspects such as ontology, data modeling, and domain-specific constraints. We also explain
the usefulness of QuenchML in semantics-preserving information retrieval and in text mining guided by domain knowledge.
Furthermore, we outline the significance of this work in software tools within the field of AI.
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1. INTRODUCTION

Knowledge representation (KR) in scientific domains often re-
quires capturing domain expertise. Increasing globalization in
recent years makes it imperative to provide up-to-date informa-
tion retrieval (IR) on the Web. These factors lead to the popu-
larity of the eXtensible Markup Language (XML; World Wide
Web Consortium, 2004c), a Web publishing standard with se-
mantic tags helping to capture domain knowledge. In our
work, the domain of focus is quenching in the realm of materi-
als science. Quenching involves rapid cooling operations dur-
ing heat treating of materials to achieve desired mechanical and
thermal properties (Totten et al., 1993). We propose the
Quenching Markup Language (QuenchML) as a KR standard
for semantics-preserving storage of quenching information.

In this article, we provide the motivation for proposing
QuenchML, giving an overview of the more general Materials
Markup Language (MatML; Begley, 2003). We describe the
development of QuenchML, encompassing data modeling

with entities and relationships (Chen, 1976), ontology defini-
tion (Russell & Norvig, 2009), and schema design (World
Wide Web Consortium, 2004c). We explain the use of Seman-
tic Web standards such as the Web Ontology Language (OWL;
World Wide Web Consortium, 2004a) in QuenchML develop-
ment and the deployment of XML schema constraints (World
Wide Web Consortium, 2004c). We also explain the function-
ality of QuenchML in semantics-preserving data storage and
IR, considering declarative forms of access such as XQuery
(Boag et al., 2003). We emphasize the use of QuenchML in
data mining and machine learning, especially in mining over
plain text sources where it simulates the role of a domain expert
to discover meaningful knowledge and does so efficiently, sav-
ing human time and effort. We exemplify this through a system
called RuleExtractor (Varde, Aker, et al., 2009) that uses
QuenchML for text mining, along with machine learning tools
such as the Waikato Environment for Knowledge Analysis
(WEKA; Witten & Frank, 2005) and natural language process-
ing (NLP) tools such as the Stanford Parser (Klein & Manning,
2003). We further discuss artificial intelligence (AI) software
development that would benefit from this work (e.g., building
and enhancing expert systems; Varde et al., 2003).
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In short, we make the following main contributions in this
article:

† propose a KR standard in quenching called QuenchML;
† illustrate the use of XML features and Semantic Web

standards in QuenchML;
† describe the use of QuenchML in IR, along with MatML;
† emphasize the significance of QuenchML in text mining;

and
† discuss the development of AI software that can benefit

from QuenchML.

This article will be of interest to the KR and Semantic Web
communities, data mining/machine learning professionals,
and materials science users.

The rest of this article is organized as follows. Section 2 gives
the background and motivation. Section 3 describes QuenchML
development, and Section 4 addresses the issue of constraints.
Section 5 explains QuenchML use in KR. Section 6 outlines
the role of QuenchML in data mining, and Section 7 provides
a discussion on using QuenchML in AI software tools. Finally,
Section 8 gives the summary and conclusions.

2. BACKGROUND AND MOTIVATION

2.1. KR in AI

KR is an area of AI that creates formalisms to depict concepts
ranging from general to specific (Russell & Norvig, 2009). It
could be pragmatic, which involves general world knowl-
edge, or semantic, which involves meaning with reference
to context often in one or more domains.

A classical KR formalism is first-order logic. This allows
us to state facts about categories, using certain symbols. For
example, [ means element of, . means superset,) means
implies, and ^ means and, as shown in the following sample
representation (Russell & Norvig, 2009):

1. One category is a superclass of another (e.g., Animal is
a superclass of Zebra):

Animal . Zebra

2. A given object is an element of a category (e.g., object Z
is a Zebra):

Z [ Zebra

3. An object has certain properties if it belongs to a cate-
gory (if Z is a Zebra, it implies that Z has black stripes
and white stripes):

Z [ Zebra) BlackStripes (Z) ^ WhiteStripes (Z)

Such knowledge, although intuitive to humans, needs to be
fed into a computer to process information. In the context of
specific domains, there is a need to formally store facts that

constitute domain knowledge. First-order logic serves as a
classical means to provide this formalism and has been tradi-
tionally used in AI.

KR has been further discussed in the interdisciplinary lit-
erature in AI and engineering. The issue of representing
knowledge specifically for applications pertaining to the Se-
mantic Web has been addressed by Felfering et al. (2003).
The use of ontology in IR has been emphasized in works
such as Li and Ramani (2007). Cross-domain IR is described
in the work of Chiu and Shu (2007). They propose the specific
concept of biomimetic design considering NLP. First-order
logic has been further used in several works.An interesting piece
of work involves enhancing knowledge management by the use
of first-order logic with specific reference to engineering design
by Witherell et al. (2009). Likewise, other standards have been
developed and used in the AI and engineering communities.

Other relevant literature in KR includes work in Thomere
et al. (2002), where a system of nomenclature is developed
with the goal of enabling domain experts to build knowledge
bases without relying on human scientists. Another interest-
ing piece of work is described in Riloff (1996), where do-
main-specific dictionaries are created for information extrac-
tion given an appropriate training corpus. Miller et al. (1990)
proposed an online lexical database that attaches different
possible meanings to words in several contexts, making an
important contribution to KR that is globally accessible.
Hence, the vast realm of KR has been addressed by several
researchers from various perspectives.

Today, XML and Semantic Web standards such as the
OWL (World Wide Web Consortium, 2004a) can serve as
means for KR. They are found highly suitable in the context
of globalization and also help to capture semantics, so they
are very useful for storing information in science and engi-
neering domains. We shall discuss these in more detail with
specific reference to our work. Before that, we present a brief
background on our domain of focus, quenching.

2.2. The quenching domain

Heat treating is an area of materials science that deals with the
combination of operations involving controlled heating and
cooling of a metal in the solid state for the purpose of obtain-
ing certain mechanical and thermal properties. Quenching in-
volves rapid cooling of a material to make it undergo transfor-
mations and is a very crucial step in heat treatment, thereby
forming an important branch of study in the heat treating of
materials (Totten et al., 1993; Mills, 1995).

The material undergoing quenching is normally referred to
as the part, probe, or workpiece. The cooling medium is
known as the quenchant. Quenchants can be of various types,
such as oil, water, gas, and polymer. These have properties,
including age (how old it is), viscosity (its capacity to
flow), and degradation (how much it loses its quality over
time). The part is made of a certain alloy. It has characteris-
tics, namely, geometry (shape of the part), surface roughness
(rough, smooth, or medium), oxidation (formation and its
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thickness), size (dimensions of the part), and more. The part
also has some details pertaining to its manufacturing. Some
of these are the occurrence of welding (fabrication by joining)
and stamping (whether the part was stamped during produc-
tion). There are also properties based on the microstructure of
the alloy (e.g., uniformity of the part grains).

An example of a quenching process is illustrated in Figure 1,
which shows a typical apparatus used for experiments at the
Center for Heat Treating Excellence (CHTE) at Worcester Poly-
technic Institute (WPI). During the quenching process, the
quenchant has a certain temperature and a certain level of agita-
tion (extent to which the fluid is stirred). The part has a certain
orientation when it is suspended into the quenchant (e.g., it
could be immersed vertically or horizontally). The quench
conditions affect the rate of cooling (fast, slow, or medium),
the nature of cooling (uniform or nonuniform), and other
factors.

After quenching, the part acquires desired properties (e.g., a
specific level of hardness). There is also a tendency for distor-
tion in the part while being quenched, that is, the part gets de-
formed to some extent. It is obviously desirable to prevent dis-
tortion or to minimize its extent (Totten et al., 1993). There are
factors affecting distortion, including cooling rate, cooling uni-
formity, nature of the quenchant, and the alloy used in the part.

Data gathered during quenching has traditionally been
stored in sources such as flat files and more recently is being
stored in database formats. However, there could be some raw

data scattered in different locations. There is related literature
in quenching such as research papers, user specifications,
technical reports, and other text sources. This is likely to be
stored in bibliographic databases or as hard copies of docu-
ments. This is mostly plain text along with diagrams, graphs,
and numeric values. In order to publish all this information in
a meaningful manner and facilitate its exchange, there is a
need for an efficient medium of communication that pre-
serves the semantics of the quenching process. There is also
a need to have all the data in a common format for easy access.

2.3. Hyper Text Markup Language (HTML) and
XML

HTML is the programming language that Internet browsers
typically use to display a Web page. Each element, commonly
known as a tag, contains an instruction commanding the brow-
ser how to display images and words (Bouvier, 1995). An
example of HTML data storage appears in Figure 2. This is a
very simple example referring to a bookstore. The tags such
as ,HEAD. and ,BODY. are called elements, and their
properties such as bgcolor and alink are called attributes.

HTML has its limitations. Its tags do not capture seman-
tics. They stress more the display and form of the information
than its content. For example, in Figure 2, the link would ap-
pear in red, a detail of presentation not semantics. This poses
problems in interpretation with reference to context. In addi-
tion, HTML has a fixed tag set, not extensible to a domain.
Another issue is that the data stored in other formats such
as relational databases needs conversion to be stored in
HTML. Because it is essential to have up-to-date information
available on the Web, conversion needs to be performed
whenever new data have to be published. This is a recurrent
and time-consuming task.

XML is designed to improve the functionality of the Web
by providing more flexible and adaptable information identi-
fication. It is called extensible because it is not a fixed format
like HTML (a single, predefined markup language). XML is
a metalanguage, that is, a language for describing other lan-
guages that facilitates designing customized markup languages
for different types of documents (Flynn, 2002).

Figure 3 shows an example of data storage in a bookstore
using XML. Here, elements are tags such as ,book. and

Fig. 1. The Center for Heat Treating Excellence quenching apparatus. [A color
version of this figure can be viewed online at http://journals.cambridge.org/aie] Fig. 2. A Hyper Text Markup Language example.

QuenchML: A markup language in quenching 67

https://doi.org/10.1017/S0890060412000352 Published online by Cambridge University Press

http://journals.cambridge.org/aie
http://journals.cambridge.org/aie
https://doi.org/10.1017/S0890060412000352


,title., and attributes are properties such as category and lang
(language). Thus, elements and attributes are descriptive with
respect to the domain. The format of XML is described as semi-
structured, because it is not fully structured like relational data
nor is it unstructured like free-flowing natural language. It seam-
lessly allows storage of textual and nontextual formats in a com-
mon integrated fashion. For example, experimental numerical
data and related plain text literature in a given domain can be
stored in a common XML document.

Due to the extensible nature of XML, there are domain-spe-
cific markup languages defined within its context. A few exam-
ples include Chemical Markup Language (Murray-Rust, 1997),
Mathematics Markup Language (Carlisle et al., 2001), and
Medical Markup Language (Guo et al., 2003). These follow
the XML syntax and encompass the semantics of the concerned
domain. We discuss one such language, MatML, because it is
relevant to our work.

2.4. MatML for materials science

The domain-specific markup language MatML was devel-
oped to serve as the XML for materials property data. This
was proposed by the National Institute of Standards and Tech-
nology (Begley, 2003). It has been used in applications where
domain semantics is important (e.g., Fahrenholz, 2006; Varde
et al., 2006). Figure 4 is an example of data stored using
MatML (Begley, 2003).

This example depicts the storage of aluminum alloy data. It
can be seen from this example that compared to HTML tags
and attributes that only explain presentation details, MatML
is more meaningful. A few MatML tags shown here are
,Material., ,BulkDetails., and ,PropertyData.. These
store information about the material, its details in bulk as a
whole, and data on its specific properties.

MatML tags have been designed based on entities and
attributes in materials science. Users of MatML find it
more convenient to store information in this format as op-
posed to HTML. They find MatML tags more easily inter-
pretable and also find it easier to publish data directly over
the Web without requiring conversion from other formats.
MatML thus provides a good standard for KR in materials
science.

2.5. QuenchML proposal

In spite of the advantages of MatML, it has been observed
that this standard is fairly generic. MatML is not enough to
capture specific details of processes such as quenching. For
example, information related to viscosity (capacity to flow)
of a cooling medium used in the process or the geometry of
the part being quenched cannot be represented using
MatML. This is because MatML has been designed to serve
as the XML-based standard for storage of materials property
data (Begley, 2003). It does not encompass the details of all
processes executed with materials. Quenching is a crucial
process and generates a huge amount of data that needs to
be stored in an integrated format, published worldwide,
and analyzed with reference to context, all in a semantics-
preserving manner.

This presents the motivation for the development of a do-
main-specific markup language customized for quenching.

Fig. 3. An eXtensible Markup Language example.

Fig. 4. A Materials Markup Language example. [A color version of this
figure can be viewed online at http://journals.cambridge.org/aie]
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Thus, a KR standard called QuenchML was proposed at the
CHTE at WPI. It was developed with the intention of captur-
ing the semantics of quenching. The initial layout of
QuenchML presented at a conference (Varde et al., 2004)
was appreciated by the materials science community, serving
as the motivation for further enhancement.

QuenchML has been developed such that it can be used in
conjunction with MatML. Information from MatML that
would overlap with quenching such as quenchant properties
and thermal effects can be used in QuenchML. However,
QuenchML is not directly integrated with MatML. It is as
an independent language, although it indirectly serves to aug-
ment MatML with quenching functionality. Note that do-
main-specific markup languages are typically developed so
as to facilitate extendibility by cross-referencing and other
means (Yokota et al., 2001; Varde et al., 2010). This applies
to MatML as well. Thus, a QuenchML document can easily
reference a MatML document and vice versa. This avoids
the storage of duplicate information and also facilitates se-
mantics-preserving knowledge exchange.

3. DEVELOPMENT OF QuenchML

3.1. Data modeling for KR

There are real-world entities involved in the quenching pro-
cess (e.g., the quenchant and the probe). These entities have
properties. For example, viscosity is a property of the
quenchant. Entities also relate to each other (e.g., the
quenchant cools the part). In order to have semantics-pre-
serving KR, it is useful to model these entities and their rela-
tionships to illustrate the process and serve as a blueprint for
further work.

Several data modeling methods exist in the literature of
which entity relationship (ER) diagrams are found to be the
most suitable here. An ER diagram serves as a data model
to represent real-world entities along with their respective at-
tributes and relationships with each other (Chen, 1976). This
is extremely useful in pictorially depicting domain-specific
entities in quenching along with their attributes and relation-
ships, thus forming a precursor for designing the structure of
the language.

Figure 5 shows a partial snapshot of the ER diagram drawn
to model quenching. Here, Quenchant depicts the cooling
medium used in the process, some of its attributes being Vis-
cosity (capacity to flow) and Composition (chemical composi-
tion of quenchant material). PartSurface represents the sur-
face of the part being cooled and has attributes such as
OxideLayer (thickness of oxide on surface) and Roughness
(extent to which part is rough). QuenchConditions stores de-
tails of the apparatus and has attributes such as Temperature
(part temperature during cooling) and Orientation (manner in
which part is immersed in quenchant, e.g., vertical, horizon-
tal, diagonal). Manufacturing has data about how the part was
made. Examples of its attributes are Welding (whether part
was welded, i.e., fabricated to join materials) and Stamping
(whether part was stamped during production). Results de-
picts the outputs of the quenching process. Examples of its at-
tributes are CoolingRate (speed at which part was cooled) and
Distortion (extent to which part got distorted while being
quenched).

From this ER diagram, we also get an idea of the relation-
ships between the concerned entities. The Quenchant cools
the PartSurface. QuenchConditions and Manufacturing af-
fect the PartSurface. All the entities control the Results en-
tity: Quenchant, PartSurface, QuenchConditions, and Man-
ufacturing. These relationships as depicted in the ER

Fig. 5. A partial snapshot of an entity relationship diagram for quenching. [A color version of this figure can be viewed online at http://
journals.cambridge.org/aie]
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diagram correspond to the relationships in the quenching
process.

3.2. Defining the quenching ontology

Ontology is defined in AI as a formal manner of KR about the
world or a part of it through a set of concepts (Russell & Nor-
vig, 2009). Greek roots of the word ontology refer to the phi-
losophical study of the nature of existence. An ontological
commitment is thus a commitment to an existence claim
that is an important aspect of KR. Because capturing knowl-
edge is the key to designing powerful AI systems, it is impor-
tant to define a good ontology.

There are several issues in ontological design. An impor-
tant issue is synonymy. Synonyms are two or more words
with the same meaning. In quenching, the terms part,
probe, and workpiece are synonyms. They all refer to the
part being cooled in quenching. We are interested in the sur-
face of the part, the region that gets affected by quenching.
Hence, PartSurface can also be ProbeSurface or Workpiece-
Surface and can commonly be called Part, Probe, Work-
piece, or Surface. This similarity is only with reference to
context. Another ontological issue is polysemy, or one
word with multiple connotations. For example, Temperature
may refer to the furnace temperature in quench conditions,

the part surface temperature while the part is being cooled,
or the fluid temperature of the quenchant itself. It is impor-
tant to clarify this by using the Temperature attribute in the
appropriate entity and explaining it. Such issues are ad-
dressed through ontology.

Figure 6 shows a partial diagrammatic representation of
the ontology designed for quenching. This is a high-level
subset that relates to some entities identified by the ER dia-
gram shown earlier. We do not show all the entities and at-
tributes. This diagram only helps to convey the purpose of
the ontology design. Ontology is formalized using Semantic
Web standards Resource Description Framework (RDF) and
OWL. RDF is a framework for representing information
about resources on the web according to which vocabularies
can be defined (World Wide Web Consortium, 2004b). OWL
is a language useful for describing classes and relations be-
tween them inherent in web documents (World Wide Web
Consortium, 2004a). The use of RDF and OWL along with
XML is popular worldwide. These Semantic Web standards
are suitable in capturing semantics through ontology defini-
tion in markup languages.

For example, synonymy in quenching can be represented
using the sameAs feature of OWL in conjunction with the
ID and resource features of RDF as shown in the following
code snippet:

,Quenchant rdf:ID¼“Quenchant”.

,owl:sameAs rdf:resource¼“#CoolingMedium”/.

,owl:sameAs rdf:resource¼“#Coolant”/.

,owl:sameAs rdf:resource¼“#QuenchingMedium”/.

,owl:sameAs rdf:resource¼“#Fluid”/.

,/Quenchant.

,PartSurface rdf:ID¼“PartSurface”.

,owl:sameAs rdf:resource¼“#ProbeSurface”/.

,owl:sameAs rdf:resource¼“#WorkpieceSurface”/.

,owl:sameAs rdf:resource¼“#Part”/.

,owl:sameAs rdf:resource¼“#Probe”/.

,owl:sameAs rdf:resource¼“#Workpiece”/.

,owl:sameAs rdf:resource¼“#Surface”/.

,/PartSurface.

,QuenchConditions rdf:ID¼“QuenchConditions”.

,owl:sameAs rdf:resource¼“#InputConditions”/.

,owl:sameAs rdf:resource¼“#ExperimentalConditions”/.

,owl:sameAs rdf:resource¼“#Conditions”/.

,/QuenchConditions.

,Manufacturing rdf:ID¼“Manufacturing”.

,owl:sameAs rdf:resource¼“#Production”/.

,/Manufacturing.

,Results rdf:ID¼“Results”.

,owl:sameAs rdf:resource¼“#Output”/.

,/Results.

,Graphs rdf:ID¼“Graphs”.

,owl:sameAs rdf:resource¼“#Curves”/.

,/Graphs.
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Polysemy and related issues can be addressed using the dif-
ferentFrom feature of OWL with the RDF ID from RDF
as shown in the examples next. We give one example of the
,Type. tag used in two different places: within PartSurface
and Quenchant, which refers to the type of material in the part
(e.g., steel) and the type of quenchant (e.g., mineral oil), respec-
tively. We give another example of the common word Curve ap-
pearing in the tags of different curves stored in heat treatment.

Accordingly, a detailed ontology is defined for quenching.
It is not included in this article. However, it can be provided to
users upon request.

3.3. Designing the QuenchML schema

The schema provides the structure or grammar for a markup
language. Typically in markup language development, after

the ontology is formally approved by a team of experts, the
first draft of the schema is outlined. Thus, the ER model
and ontology serve as the basis for schema design. Each en-
tity in an ER model usually corresponds to one schema ele-
ment, though there can be additional elements as needed.
The ontology helps to include the tags in the schema based
on the established system of nomenclature. Schema design
is usually subject to revisions.

Figure 7 shows a partial panoramic view of the QuenchML
schema that portrays the general structure of the QuenchML
language. The tags are nested here such that they depict the
relationships between the concerned quenching entities.
With reference to data modeling shown earlier, Figure 7
shows that each entity in quenching depicted in the ER dia-
gram more or less corresponds to one element in the schema.
The Results element in this figure is expanded to show the
next level of detail to give an idea of how each element
would be structured in the schema. The tags shown here,
such as ,HeatTransferCoefficient. and ,Hardness., refer
to details of results that users would be interested in observing
in the quenching process. For example, the heat-transfer coef-
ficient is a characteristic that refers to the heat extraction capac-
ity of the quenching process. The hardness indicates the extent
to which the part has been toughened while being quenched.

Figure 7 is only a part of the entire QuenchML schema. This
depicts the manner in which the tags are generally designed in
accordance with the entities, attributes, and relationships in
quenching to preserve domain semantics. The complete schema
can be made available to the concerned users upon request.

4. ENFORCING CONSTRAINTS IN KR

Constraints are defined in AI as consistency conditions that
need to be satisfied in order to ensure meaningful search or rep-
resentation (Winston, 1992; Russell & Norvig, 2009). With
reference to our work, a markup language needs to preserve
the consistency conditions applicable to restrictions within

the domain. For example, a part can be manufactured by either
casting or powder metallurgy but not both (more on this later).
Thus, in order to ensure consistency, it is important to preserve
this restriction and select one out of these two manufacturing
approaches while storing the information.

In order to enforce such restrictions in an XML-based
markup language, we use mechanisms in XML that relate
to the manner in which a human user would mentally tend

,Quenching rdf:ID¼“PartSurface/Type”/.

,owl:differentFrom rdf:resource¼“#Quenchant/Type”/.

,/Quenching.

,Quenching rdf:ID¼“#CoolingCurve”/.

,owl:differentFrom rdf:resource¼“#CoolingRateCurve”/.

,owl:differentFrom rdf:resource¼“#HeatTransferCoefficientCurve”/.

,/Quenching.

Fig. 6. A partial diagrammatic representation of the quenching ontology. [A
color version of this figure can be viewed online at http://journals.cambridge.
org/aie]
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to enforce restrictions while analyzing data. These are called
XML constraints (World Wide Web Consortium, 2004c).
They enable the representation of knowledge adhering to
rules such as preserving order and declaring mutual exclu-
siveness. XML constraints are often used by the Semantic
Web community. Some XML constraints have been useful
in developing QuenchML and are explained below with
suitable examples.

4.1. Sequence constraint for order

The sequence constraint is used for declaring elements to oc-
cur in a particular order. It is enforced by enclosing the ele-
ments in ,xsd:sequence. tags (World Wide Web Consor-
tium, 2004c). For example, QuenchConditions should appear
before Results because QuenchConditions refers to input
conditions of the process, and Results depicts observations.
The conditions obviously impact the observations, so it is
important for a user to first read them to understand the impact.

Figure 8 depicts an example of the sequence constraint in
QuenchML.

4.2. Choice constraint for mutual exclusiveness

The choice constraint is used to declare mutually exclusive
elements (i.e., only one of them can exist). This is enforced
by using ,xsd:choice. in the schema (World Wide Web
Consortium, 2004c). For example, consider two manufactur-
ing processes: powder metallurgy and casting.

Powder metallurgy involves physically powdering the con-
cerned material, that is, dividing it into small particles, fol-
lowed by inserting the powder into a mold or a die for cohesion
to produce the part of the desired shape. In casting, a liquid ma-
terial (not a powder) is poured into the mold or die with the re-
quired shape and is then subject to solidification. Thus, it is ob-
vious that a given part can be made by either casting or powder
metallurgy but not both (Pellack, 2002).

Manufacturing affects the quenching process, and hence it is
important to capture its relevant details while storing quenching
data. Thus, the subelements Casting and PowderMetallurgy in
the Manufacturing element of QuenchML are mutually exclu-
sive and are enclosed in ,xsd::choice. tags. Figure 9 is an ex-
ample of the choice constraint used in QuenchML.

4.3. Key constraint for identification

A key constraint can be considered similar to a key attribute
with reference to relational databases and ER modeling
(Chen, 1976). This constraint is used to declare an attribute
to be an identifier, which means that the attribute must have
unique values and cannot have null values.

The key constraint is enforced in the schema by declaring
the corresponding attribute as type ,xsd:ID. and declaring
its use as required (World Wide Web Consortium, 2004c).
Figure 10 shows a key constraint in QuenchML.

In this example, Quenchant refers to the cooling medium in
a quenching process. Its ID is crucial because that serves to
uniquely identify the medium (Totten et al., 1993). It is to be
noted that an important purpose of conducting quenching ex-
periments is to characterize the quenchants, making the “ID”
attribute of the Quenchant element even more significant.

Fig. 8. The use of sequence constraint in the Quenching Markup Language. [A
color version of this figure can be viewed online at http://journals.cambridge.
org/aie]

Fig. 9. The use of choice constraint in the Quenching Markup Language. [A
color version of this figure can be viewed online at http://journals.cambridge.
org/aie]

Fig. 7. A partial panoramic view of the Quenching Markup Language
schema. [A color version of this figure can be viewed online at http://
journals.cambridge.org/aie]
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4.4. Occurrence constraint for limits

The occurrence constraint is used to limit the minimum and
maximum occurrences of an element (World Wide Web
Consortium, 2004c). It is enforced as minOccurs¼x,
maxOccurs¼y, where x and y are the values for the minimum
and maximum occurrences, respectively. A maxOccurs value
of unbounded means that there is no upper limit on the number
of times the element can occur in the schema. A minOccurs
value greater than zero means that it is essential to include the
element in the schema at least once. Figure 11 illustrates an ex-
ample of the occurrence constraint utilized in QuenchML.

This example can be interpreted to mean that the Cooling
Rate element must occur at least eight times, although there is
no upper bound on the number of times it can occur. This
is because the value of cooling rate must be stored for a mini-
mum of eight points in order to adequately gather the details
of the quenching process. However, cooling rate values may
be recorded at thousands of points, so there is no upper
bound.

For the Graphs element, it is not essential for at least one
graph to be stored, but it is important to keep the number of
graphs to less than three as required in the domain. Typically,
two graphs are stored in quenching: a cooling rate curve and a
heat transfer coefficient curve. In addition, a cooling curve
also may be stored.

These curves are vital in quenching and briefly explained
here (Totten et al., 1993). A cooling curve is a plot of tem-
perature (T ) versus time (t) during quenching. A cooling
rate curve is the derivative of the cooling curve, that is, a
plot of cooling rate (dT/dt) versus t. A heat transfer coefficient

curve is a plot of heat transfer coefficient (h) versus T, where a
heat transfer coefficient characterizes the heat extraction ca-
pacity in quenching. It is obtained from a cooling curve by
using a heat transfer coefficient equation and is of greatest in-
terest to materials science users. These curves serve as good
visual depictions of the quenching process for analysis, and
hence it is important to store them.

5. USEFULNESS OF QuenchML IN KR

5.1. Semantics-preserving storage functionality

QuenchML is proposed to be a worldwide standard for se-
mantics-preserving KR in quenching. It functions as a means
to seamlessly integrate various types of data such as numbers
and text in a semistructured format.

An XML-based integrated development environment
such as XML Spy (Altova, 2010) can be used to provide
the editor functionality for data storage within QuenchML.
XML Spy can also be used as a plug-in with other environ-
ments (e.g., with the Eclipse integrated development envi-
ronment for programmers who wish to use XML-based
tools in conjunction with Java for Web development appli-
cations). Other examples of XML editors include XML
Marker (Symbol Click, 2001) and Stylus Studio (Compo-
nent Source, 1996).

Figure 12 is a simple example of how a user would store
QuenchML data in a document using XML Spy. This figure
shows a part of the whole document (e.g., the dots indicate
that more values are recorded for cooling rate). Some more
detailed examples can be provided upon request to interested
users. As shown in this example, each QuenchML document
would be enclosed within a pair of ,QuenchML_Doc.

tags. Several instances of a quenching process can be
stored in this document, each instance enclosed within a pair
of ,Quenching. tags. In the given example, we show one in-
stance of a quenching process. The first part of this example as
shown in the ,Quenchant. element can be read as follows:
“The quenchant used in the process is called Durixol V35
and is of type mineral oil with viscosity 21.4, its age being 1
year with no degradation.” Likewise, the rest of the document
can be easily interpreted. Note that user-friendly software can
be developed to enable entering all this information through
a graphical user interface. The tags would be displayed to the
users who could simply type in the contents. This information
would then get converted to a QuenchML document as shown
above, all this being transparent to the users.

In order to use QuenchML in conjunction with MatML,
users can record relevant information using MatML, which
serves as the XML for materials property data (Begley, 2003).
For example, the property details of the part material being
quenched in the given process can be stored in a MatML docu-
ment. The reference can be made using the element tag called
,Material. within the MatML document, which would
correspond to the subelement tag called ,Material. within
the ,PartSurface. element in the respective QuenchML

Fig. 10. The use of key constraint in the Quenching Markup Language. [A
color version of this figure can be viewed online at http://journals.cambridge.
org/aie]

Fig. 11. The use of occurrence constraint in the Quenching Markup
Language. [A color version of this figure can be viewed online at http://
journals.cambridge.org/aie]
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Fig. 12. A partial sample of a Quenching Markup Language document. [A color version of this figure can be viewed online at http://
journals.cambridge.org/aie]
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document. This can be further clarified through the ontology, as
shown in the following relevant lines of code:

,Quenching rdf:ID¼“PartSurface/Material”.

,owl:sameAsrdf:resource¼“#MatML/Material”/.

,/Quenching.

This would avoid duplicate storage and provide easy cross-
reference. MatML and QuenchML documents can refer to
each other. From this example, it is clear that users can auto-
matically understand the stored data due to the self-descrip-
tive tags and nesting of entities. They would not need much
reference to related documentation. In addition, the data is
easily publishable worldwide owing to direct storage using
an XML-based standard without requiring any conversion,
a significant advantage in terms of efficiency. Furthermore,
any change would need to be made in only one location on
the server used for data storage and would be immediately
visible to all users.

5.2. Meaningful IR over the Web

Because QuenchML uses the XML syntax, this serves to pro-
vide customized retrieval of information over the Web
through XML-based standards. There are many forms of de-
clarative access in the XML family. Of these, we discuss
XQuery below with specific examples from QuenchML, giv-
ing references to the others.

The XML query language, XQuery, was developed by the
World Wide Web Consortium and can be used to retrieve
XML data (Boag et al., 2003). Hence, it can be used to query
data stored using QuenchML that has been designed with

XML tags. XQuery is case sensitive, so it is important to
place emphasis on case in QuenchML data.

We demonstrate the use of XQuery through the use of the
for, let, where, order, return (FLWOR) expression. FLWOR
clauses in XQuery are explained as follows:

† for specifies items in the XML document to be selected
in the query and is required in the expression,

† let is used to create temporary names used in the return
and is an optional clause,

† where limits the items returned by the query and is also
optional,

† order is used to change the order of the results and is op-
tional as well, and

† return indicates the structure of the data returned and is a
mandatory clause.

Based on this, an example of querying QuenchML data di-
rectly on the Web using XQuery is shown in Figure 13. This
can be entered using an editor such as XML Spy.

The FLWOR expression shown in Figure 13 would tra-
verse the concerned QuenchML_Doc and return all the
quenchants with viscosity greater than 20.00 ordered by their
quenchant types. Such querying is directly possible over the
Web because the data has been stored using QuenchML (an
XML-based standard) and XQuery works with XML-based
formats. If the data had been stored using HTML, then the
query would have to be posed over the corresponding data-
base (e.g., in relational format as a SQL query). This would
require conversion of the data from HTML to relational for-
mats and vice versa during query processing, a recurrent
time-consuming operation to be performed for each individ-

Fig. 13. An example of using XQuery for information retrieval in the Quenching Markup Language. [A color version of this figure can be
viewed online at http://journals.cambridge.org/aie]
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ual query. The retrieved information is also more meaningful
in QuenchML. Because HTML tags are generic, they do not
make the reference to context obvious to the user. In contrast,
QuenchML tags provide a quick and easy interpretation by
automatically capturing the domain semantics.

Other types of declarative access in the XML family are
XSLT: XML Style Sheet Language Transformations (Clark,
1999) and Xpath: XML Path Language (Clark & DeRose,
1999). XSLT and XPath can each be used for IR in
QuenchML, although XQuery seems more suitable owing
to its similarity with relational querying languages that are al-
ready popular. Note that user-friendly tools with interactive
graphic user interfaces can be developed using XQuery and
others for querying over QuenchML data.

5.3. Advantages of QuenchML

KR in the quenching domain using the semantics-preserving
QuenchML language offers several advantages:

1. Customizing storage: QuenchML serves to provide a
customized form of storage of all the relevant quench-
ing information over the Web for various bodies of tar-
geted users, serving as a nonproprietary Esperanto in
the quenching domain.

2. Avoiding redundancy: Storage in QuenchML avoids re-
dundancy because QuenchML tags augment MatML
without duplication (e.g., data already stored in MatML
such as ,BulkDetails. is not stored again in
QuenchML).

3. Removing ambiguity: QuenchML helps to present in-
formation in a nonambiguous manner by clarifying
concepts such as synonyms through a well-defined on-
tology using Semantic Web standards.

4. Promoting interpretability: The use of QuenchML al-
lows better interpretability owing to domain-specific
tags that are self-descriptive and are nested to preserve
relationships between entities, not requiring reference
to related documentation.

5. Enforcing domain-specific needs: The design of
QuenchML incorporates various requirements specific
to the domain through the use of XML constraints,
thus incorporating features such as mutually exclusive
elements and primary keys.

6. Facilitating Web IR: Using QuenchML for data storage
in quenching makes it easy and efficient to publish the
information over the Web and perform IR using de-
clarative access such as XQuery.

7. Enhancing knowledge discovery: Storing data using
QuenchML sets the stage for data mining and machine
learning, that is, discovering knowledge from sources in
quenching and learning from that knowledge to assist
future decision making.

Given this, we explain the significance of QuenchML from
a data mining and machine learning perspective. QuenchML

can help in mining data by preserving semantics, thereby cap-
turing human judgment and giving meaningful results. This
topic deserves special attention because it does not seem ob-
vious from the description in the earlier sections. In particu-
lar, we discuss how the use of a markup language can help
in mining from natural language sources. The explanation
we provide for data mining using QuenchML in the quench-
ing domain can also be extended to markup languages in
other domains.

6. QuenchML FOR DATA MINING
IN QUENCHING

6.1. Data mining and machine learning approaches

Data mining is the nontrivial process of finding novel, useful,
and interesting patterns from large data sets to discover
knowledge from data (Han & Kamber, 2006). It relates to ma-
chine learning that involves development of algorithms to
make a machine, more specifically, a computer, learn and
evolve behavior usually based on empirical data (Mitchell,
1997). An important goal here is often to support decisions
by discovering knowledge and learning from experience.
Common techniques for this include association rules, clus-
tering, and classification (Mitchell, 1997; Han & Kamber,
2006). We explain the use of QuenchML in mining quench-
ing data with association rules. Similar arguments can be ap-
plied to other techniques (Varde, Suchanek, et al., 2009).

Association rule mining is the discovery of associations of
the type A) B, where A is the antecedent and B is the con-
sequent. It gained popularity with market basket analysis to
identify items commonly purchased together (e.g., fish )
chips). A popular algorithm for association rule mining is
Apriori (Agrawal et al., 1993). It uses prior information about
frequency items in the data set to discover knowledge about
their likelihood of occurring together. Interestingness measures
for association rules are rule confidence and rule support. Rule
confidence is the probability that the consequent occurs given
that the antecedent occurs. Rule support is the probability of
the antecedent and consequent occurring in the whole set.
Thus, Rule Confidence¼P(B/A)¼count (A^B) / count (A)
and Rule Support¼P(A^B)¼count (A^B) / count (set).

Using these measures along with suitable thresholds for
minimum confidence and minimum support, the Apriori al-
gorithm mines association rules. These rules can be used to
support decisions. For example, in the market basket sce-
nario, we can decide to place fish and chips far from each
other so that a customer buying one of these items, being
very likely to buy the other, would be tempted to buy more
items along the way.

6.2. Mining rules over quenching data

Considering data mining in the context of quenching, if data
is stored using QuenchML, it is convenient to use approaches
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for mining association rules. Consider applying the Apriori
algorithm for the discovery of a rule such as A) B.

Suppose we have 100 instances of data stored using
QuenchML within ,Agitation. and ,Distortion. tags. (Agi-
tation is the extent to which the cooling medium is stirred while
the part is quenched, whereas distortion is the amount of defor-
mation that occurs in the part.) Consider that 90 of the 100 in-
stances show parts with high agitation indicated by the
QuenchML data ,Agitation. high ,/Agitation.. Further-
more, 70 of them indicate the occurrence of high distortion de-
noted by ,Distortion. high ,/Distortion.. Among these in-
stances, we find that 60 have both high agitation and high
distortion. On running the Apriori algorithm over this data,
we would find an association rule, Agitation¼high )
Distortion¼high, with confidence¼ 60/90 (i.e., 67%) and
support¼ 60/100 (i.e., 60%). This process of association rule
mining is summarized in Figure 14. This figure highlights the
main aspects of rule discovery at a glance with respect to data
storage in QuenchML.

Thus, the use of QuenchML facilitates rule derivation. A big
advantage is that the method described above for rule discovery
can be applied to plain text sources as well. There are sources of
literature in quenching stored in textual formats (i.e., natural
language), as opposed to a structured format such as databases.
The plain text in such formats can be converted to XML-based
formats (i.e., semistructured text) using QuenchML with the
help of NLP tools such as the Stanford parser (Klein & Man-
ning, 2003). This semistructured text can then be further pro-
cessed to a form suitable for rule mining. An algorithm such
as Apriori (Agrawal et al., 1993) can then be used to extract
rules from these text sources after conversion. The use of se-
mantic tags facilitates capturing relevant information from
text sources. This helps to automate knowledge discovery
from text that can be useful in AI applications (e.g., expert sys-
tems, simulation tools, and intelligent tutors; Jackson, 1999;
Russell & Norvig, 2009). QuenchML has been used to de-
velop a system for text mining, which we describe next, in or-
der to exemplify the significance of this markup language.

6.3. The RuleExtractor system for text mining using
QuenchML

The importance of QuenchML in data mining and machine
learning, especially over text, is evident from a software tool

called RuleExtractor (Varde, Aker, et al., 2009) that extracts
rules from natural language sources to discover domain knowl-
edge. RuleExtractor performs mining over text sources guided
by a markup language. The knowledge discovered is helpful in
building predictive and diagnostic systems (Jackson, 1999).

The functioning of RuleExtractor is illustrated in Figure 15,
which constitutes its system architecture. RuleExtractor
requires that all concerned text sources be integrated into a
common repository, serving as a scientific data warehouse
(Varde, Aker, et al., 2009). It converts plain text from each
source to semistructured text using the Stanford parser for
NLP (Klein & Manning, 2003). It does further processing
guided by QuenchML tags to convert relevant data in semi-
structured format to the Attribute Relation File Format
(ARFF), required by the data mining tool WEKA (Witten
& Frank, 2005). WEKA provides an implementation of asso-
ciation rule mining using Apriori.

In order to emphasize the role that QuenchML plays, we
explain the functioning of RuleExtactor. The Stanford Parser
used here deploys Treebank tags by the University of Penn-
sylvania (Marcus et al., 1993). Treebank is a corpus of parsed
sentences used to train data-driven parsing algorithms. Tags
relevant to our task are simple declarative clause (S), noun
phrase (NP), noun (NN), coordinating conjunction (CC), and
adjective (JJ). Figure 16 shows a tree structure governing the
grammatical structure of the sentence: “Moderate agitation
and thick surface implies low distortion tendency.” Each
node contains a grammatical decomposition of the sentence
such that leaves have the words.

The partial output of the parser used by RuleExtractor over
this sentence is given below.

(S
(NP
(NP (JJ Moderate) (NN agitation))
(CC and)
(NP (JJ thick) (NN surface) (NN area)))
(VP
(VBZ implies)

(NP (JJ low) (NN distortion) (NN tendency))))

From this output it can be observed that subjects or objects
like agitation, distortion, and surface are parsed as NN and
their descriptors are parsed as JJ tags. It can also be seen
that JJ and NN tags are the children of NP.

Fig. 14. Association rule mining over Quenching Markup Language data. [A color version of this figure can be viewed online at http://
journals.cambridge.org/aie]
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After conversion to semistructured text, RuleExtractor
then checks if there are any predefined QuenchML tags
(e.g., ,Agitation., ,Surface., and ,Distortion.). The
closest matching similar tags are searched (e.g., “surface”
in the sentence is similar to the ,PartSurface. tag in
QuenchML). RuleExtractor then determines whether those
tags are accompanied by descriptive words. This process
continues until the end of the text file is reached. The main
process of extraction can thus be summarized by the follow-
ing steps:

1. Find if NP exists.
2. Find if NN exists under NP.
3. Find if JJ exists corresponding to NP found in step 2.

Finally, after completing these steps, the above plain text
gives the following semistructured text.

,Distortion. Low ,/Distortion.

,Agitation. Moderate ,/Agitation.

,PartSurface. Thick ,/PartSurface.

Here, ,Distortion., ,Agitation., and ,PartSurface.

correspond to the tags in QuenchML, and low, moderate,
and thick are the contents of the respective tags. This semi-
structured text is subject to further preprocessing. It is con-
verted to a format suitable for applying the Apriori algorithm.
Because we deploy WEKA, we convert to ARFF. The

QuenchML tags are useful here, because these tags form attri-
butes in ARFF and their contents form the data instances. A
sample part of our WEKA file thus consists of the following:

@relation Quenching
@attribute Agitation fmoderate, low, high, higher,

lower. . . .g
@attribute Distortion flow, high. more, less. . . . .g
@attribute PartSurface fthick, thin, medium. . . . .g
@data
moderate, low, thick . . . . . . . . . . . . . . . . . . . . .
low, low, thin . . . . . . . . . . . . . . . . . .

This can be interpreted as follows. We are referring to the
“quenching” relation (a relation name is required in ARFF,
so we say quenching), such that the attribute “agitation” has
possible values “moderate,” “low,” “high,” and so forth.
The @data portion of this file contains the actual values that
correspond to each instance of the data. Thus, for example,
the given instance indicates that agitation is moderate, distor-
tion is low, and part surface is thick. Likewise, we have several
instances stored in ARFF that are processed from the corre-
sponding contents of the QuenchML tags after the conversion
from plain text to semistructured text.

This ARFF data is then subject to rule derivation using the
Apriori algorithm for association rule mining. After running
several experiments altering different parameters, we get a
set of rules, a sample of which is shown below.

Fig. 15. The RuleExtractor system architecture. [A color version of this figure can be viewed online at http://journals.cambridge.org/aie]
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1. Agitation¼high) HeatTransferCoefficient¼high
2. Distortion¼more) Agitation¼higher
3. ResidualStress¼yes) Cracking¼likely
4. Fixture¼improper) Cracking¼likely
5. HeatTransferCoefficient¼high) Agitation¼high
6. Cracking¼likely) Distortion¼high
7. GrainNature¼Nonuniform) Cracking¼likely
8. Degradation¼no) Distortion¼less
9. Viscosity¼high) Distortion¼low

10. Agitation¼higher) Distortion¼more

These rules are such that they could be used for both pre-
dictive and diagnostic analysis in AI systems. In predictive
analysis, the goal is to estimate a tendency in advance based
on given inputs (Jackson, 1999). For example, the first rule
above (i.e., Agitation¼high ) HeatTransferCoefficient¼
high) would enable a system to predict that high agitation
as an input would lead to a high heat transfer coefficient in
the output (i.e., quenching with high agitation would give a
high heat extraction capacity). In diagnostic analysis, there
is a need to find out what is the cause of a particular occur-
rence, given a certain output (Jackson, 1999). For example,
the second rule shown above (i.e., Distortion¼more )
Agitation¼higher) would help to diagnose that high agitation
was one of the causes of high distortion occurring as an
output of quenching. The derived rules can therefore be

used to develop AI software such as predictive and diagnostic
tools.

Domain experts have verified that many meaningful rules
were mined by RuleExtractor (Varde, Aker, et al., 2009).
This rule automation saves significant time and effort that
would be involved if a system developer had to manually
infer rules from text sources or by detailed discussion with
domain experts. An important factor leading to the success
of an automated system like RuleExtractor is that it used se-
mantic tags provided by a markup language such as
QuenchML. These tags guided the system as a domain expert
would while converting plain text to semistructured text and
while selecting the various attributes for mining the data. As a
comparative study, we also tried to run experiments without
using the tags, and we was found that there were too many
words to consider for mining, which did not yield meaningful
information (e.g., we got rules such as experiment) appara-
tus in the absence of guidance by the markup language).
Thus, the markup language certainly provides meaningful in-
terpretation of text for rule derivation.

7. DISCUSSION ON QuenchML USE IN AI
SOFTWARE TOOLS

Knowledge discovery over quenching data is useful in build-
ing and enhancing AI tools such as expert systems, intelligent

Fig. 16. The tree structure of an example sentence in quenching. [A color version of this figure can be viewed online at http://journals.
cambridge.org/aie]
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tutors, and fault diagnostic software (Jackson, 1999; Russell
& Norvig, 2009). One such tool is an expert system called
QuenchMiner (Varde et al., 2003). An expert system is de-
signed to play the role of a human expert in one or more tasks

such as providing suggestions, making decisions, predicting
answers, diagnosing problems, or performing a narrative
role of a storyteller (Jackson, 1999). The QuenchMiner expert
system focuses on predictive analysis for decision support. It

Fig. 17. The input for predicting distortion.

Fig. 18. The output for predicting distortion.
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was earlier developed at the CHTE at WPI. Some of the work
in developing QuenchMiner involved considerable manual
interaction with domain experts in discovering domain
knowledge from text sources of literature. Such knowledge
discovery can now be automated using RuleExtractor guided
by QuenchML. The expert system can be used for various
purposes (e.g., to predict the extent of distortion given several
experimental input conditions). Performing such estimation
in advance is useful in order to design quenching processes
so as to minimize distortion. Quenching conditions can also
be chosen accordingly to optimize performance in industrial
applications. Figure 17 and Figure 18 present an example of
analyzing a distortion case.

The input conditions are shown in Figure 17 and the pre-
dicted output in Figure 18. In this example, input conditions
in quenching about the quenchant, part, and manufacturing
are entered by the user. The QuenchMiner expert system ana-
lyzes this information using rules such as Viscosity¼high)
Distortion¼low.

QuenchMiner presents the analysis as the predicted output
along with an estimate of the extent of distortion and ten-
dency for cracking in this case. Such output can be used to de-
termine whether to use the corresponding quenching condi-
tions while conducting an actual laboratory experiment or
while executing detailed quenching processes in the materials
science industry.

Other software tools that use QuenchML can be potentially
developed for areas such as IR. Various data mining tech-
niques such as clustering and classification (Han & Kamber,
2006) can be used in the development of such tools besides
association rules already described here. Without a detailed
discussion on these techniques and their targeted applica-
tions, we claim that the basic principle would be to use
QuenchML for providing the semantic guidance needed to
execute data mining and machine learning approaches.
Such guidance would otherwise be provided by domain ex-
perts, especially in dealing with text sources containing nat-
ural language, and consumes considerable time and effort.

Thus, the semantics-preserving nature of QuenchML is use-
ful in domain-specific data mining and in developing AI soft-
ware tools. The justification presented here for the quenching
domain with respect to QuenchML can also be applied to other
domains with their respective markup languages.

8. CONCLUSIONS

QuenchML has been proposed to serve as a KR standard in
the quenching domain, an important branch of the heat treat-
ing of materials. QuenchML follows the syntax of XML and
encompasses the semantics of quenching. It seamlessly al-
lows the storage of data and text in an integrated manner using
a semistructured XML-based format. It enables better inter-
pretability of data, facilitates IR using XML-based standards
such as XQuery, and assists data mining in the quenching do-
main. QuenchML has been developed closely on the lines of
MatML, in order to provide compatibility.

This article describes the development and use of QuenchML.
It makes contributions to materials science by proposing a stan-
dard to capture domain semantics for storing quenching data,
explaining how that standard serves as a communication me-
dium for easy exchange of up-to-date information worldwide,
describing how it enables the querying of relevant information
in an efficient manner, and also emphasizing its usefulness
with respect to knowledge discovery in quenching.

The article contributes to AI by outlining the detailed pro-
cess of designing a domain-specific markup language for KR,
describing semantics-preserving IR using means of declara-
tive access, portraying ontological developments with Se-
mantic Web standards, and explaining constraint preservation
using features of XML. It also emphasizes the significance of
the markup language in conjunction with machine learning
and data mining approaches especially over text sources,
and discusses the relevance of this work in AI tools such as
expert systems.
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