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We extend the work of A. Ciaffaglione and P. di Gianantonio on the mechanical verification

of algorithms for exact computation on real numbers, using infinite streams of digits

implemented as a co-inductive type. Four aspects are studied. The first concerns the proof

that digit streams correspond to axiomatised real numbers when they are already present in

the proof system. The second re-visits the definition of an addition function, looking at

techniques to let the proof search engine perform the effective construction of an algorithm

that is correct by construction. The third concerns the definition of a function to compute

affine formulas with positive rational coefficients. This is an example where we need to

combine co-recursion and recursion. Finally, the fourth aspect concerns the definition of a

function to compute series, with an application on the series that is used to compute Euler’s

number e. All these experiments should be reproducible in any proof system that supports

co-inductive types, co-recursion and general forms of terminating recursion; we used the

Coq system (Dowek et al. 1993; Bertot and Castéran 2004; Giménez 1994).

1. Introduction

Several proof systems provide data-types to describe real numbers, together with basic

operations and theorems giving an ordered, complete and archimedian field (Harrison

1996; Harrison 1998; Mayero 2001). In the Coq system, several approaches have been

taken; depending on whether developers wanted to adhere to pure constructive mathem-

atics or more classical approaches. In the classical approach, the type of real numbers is

merely ‘axiomatised’, the existence of the type and the elementary operations is assumed

and the properties of these operations are asserted as axioms. This approach has been used

extensively to provide a large collection of results, going all the way to the description of

trigonometric functions, calculus and the like. However, because the type of real numbers

is axiomatised, there is no ‘physical representation of numbers’ and basic operations do

not correspond to any algorithms.

In an alternative approach, a type of constructive numbers may be defined as a data-

type and the basic operations may be described as algorithms manipulating elements of

this data-type. This approach is used, for instance, in C-CoRN (Cruz-Filipe et al. 2004).

A. Ciaffaglione and P. di Gianantonio (Ciaffaglione and di Gianantonio 2000) showed

that a well-known representation of real numbers as infinite sequences of redundant digits

could easily be implemented inside theorem provers with co-inductive types. We say the

digits are redundant because several representation are possible for every number. In

the case of Ciaffaglione and di Gianantonio (2000) the representation is simply inspired
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by the usual binary representation of fractional numbers and made more redundant by

adding the possibility of using a negative digit. Ciaffaglione and di Gianantonio then

provide addition and multiplication, and show that these operations enjoy the properties

that are expected from a constructive field of real numbers.

In our approach there is also an extra digit, but its meaning is intermediary between

the existing 0 and 1. Edalat and Potts (Edalat and Potts 1998) show that both approaches

are special cases of a more general family of representations based on linear fractional

transformations.

Once we have chosen the way to represent real numbers as a data-type, we proceed by

establishing a relation between this data-type and the axiomatised type of real numbers.

This is a departure from the prescription of pure constructive mathematics, because

we rely on the non-constructive axioms of that theory to state the correctness of our

algorithms. Still, we also describe the relation between our representation and constructive

approaches to real numbers, by showing how infinite sequences of digits can be produced

from constructive Cauchy sequences. We also show the relation between infinite sequences

and a constructive subset of Dedekind cuts.

Once we have provided the basic data-type and its relation to the axiomatised theory of

real numbers, we proceed by defining an addition function. We rely on proof search tools

to construct the addition algorithm: we only provide some guidelines for the construction

of the algorithm, without actually describing all 25 cases in the function. The correctness

proof then consists of showing that there is a morphism between the data-type and the

axiomatised type. Our contribution in Section 3 is to show how to use the proof search

engine to construct a well-formed addition function.

We then focus on affine formulas combining two real values with rational coefficients.

For these more general operations, we need to combine co-recursion and well-founded

recursion. We show that the function responsible for producing the infinite stream of

digits representing the result can be decomposed into two recursive functions. One of

the functions is a guarded co-recursive function as proposed in Giménez (1994), the

other function is a well-founded recursive function as in Nordström (1988). Each function

satisfies a different form of constraint: the co-recursive function does not need to be

terminating, but it must produce at least one digit at each recursive call, while the well-

founded function does not need to produce a digit at each recursive call, but it must

terminate. Our main contribution in this part is to show that some functions that appear

at first sight to be beyond the expressive power of guarded co-recursion can actually be

modelled and proved correct.

In Section 5, we focus on constructively converging infinite sums. We show how to

avoid having to consider the infinity of terms that are parts of the sum. We exhibit a

framework that can be re-used from one series to the other. We present two examples,

we show how to compute the infinite stream representing Euler’s number e and how

to multiply two real numbers represented as infinite streams of digits. In particular, the

algorithm we obtain can be executed directly using the reduction mechanism provided in

Coq to compute e to a great precision in a reasonable time.

Our account stops here, although the experiments described in this paper seem to open

the door for a more complete study of real functions, especially analytic functions.
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2. Related work

Real numbers are usually represented for the purposes of numerical computation as

approximates using floating point numbers. These floating point numbers are composed

of a mantissa and an exponent, so the value of the least significant bit in the mantissa

varies with the exponent. However, both the exponent and the mantissa have a fixed

size, so there is only a finite number of floating point numbers, and real values must be

rounded to find the closest floating point numbers. Floating point based computations are

thus only approximative and errors stemming from successive rounding operations may

accumulate to the point that some computations can become grossly wrong (Muller 1997).

In spite of their limitations, floating point numbers are used extensively: most processors

provide a direct implementation of the elementary operations (addition, subtraction,

multiplication, division) according to a standard that gives a precise mathematical meaning

to the rounding operations (IEEE 1987). This standard provides the basis for implementing

computations with a guaranteed precision (Muller 1997; Hanrot et al. 2000), sometimes

with correctness proofs that can be verified with the help of computer-aided proof tools

(Daumas et al. 2001; Harrison 2000; Russinoff 1999; Boldo 2004). In particular, some

approaches, named expansions, make it possible to increase the number of representable

numbers drastically by extending the length of the mantissa (Boldo et al. 2002).

An alternative to floating point and rounding concentrates on data-structures that

support exact computation. Among the possible approaches, the best known are based

on continued fractions (Gosper 1972; Vuillemin 1990) or representations with mantissas

that grow as needed (Ménissier-Morain 1995). In the latter case, the representation is very

close to the floating point representations with rounding modes. One way to understand

this ‘growing mantissa’ is to view it as an infinite sequence of digits, where only a finite

prefix is known at any one time. An introduction to exact real arithmetics can be found

in Edalat and Potts (1998). Implementations are provided in the setting of conventional

programming languages (Lambov 2005; Müller 2005), or in the setting of functional

programming (Boehm et al. 1986; Ménissier-Morain 1994; Bauer et al. 2002).

Formal proofs about computations on infinite data-structures are a privileged ground

for the use of co-inductive types (Coquand 1993; Giménez 1994). The first experiments

on formalising exact real number computation algorithms using co-inductive types were

performed by Ciaffaglione and di Gianantonio (Ciaffaglione and di Gianantonio 2000)

who showed that one could represent infinite sequences of digits with co-inductive types

and the basic operations of arithmetic (addition, multiplication and comparison) with

simple co-recursive functions, as long as the set of digits was extended to allow for

enough redundancy. Niqui (Niqui 2004) has also studied the problems of modelling real

number arithmetic for use in formal proofs, providing a single point of view to account for

both continued fractions and infinite sequences of digits. Our approach is very similar to

Ciaffaglione and di Gianantonio’s, differing only in the collection of digits that we consider.

The example of the combination of co-recursive functions and well-founded recursive

functions that we exhibit in our treatment of affine formulas is related to work by di

Gianantonio and Miculan (di Gianantonio and Miculan 2003) and our own work on

partial co-recursive functions (Bertot 2005).

https://doi.org/10.1017/S0960129506005809 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005809


Y. Bertot 40

With regard to the computation of series, we are aware through personal communication

that computations of e had already been done using the real numbers as they are

formalised in the C-CoRN library (Cruz-Filipe et al. 2004); it seems that co-inductive

presentations make it possible to achieve a higher efficiency. While the C-CoRN library

aims to provide a comprehensive study of constructive mathematics, our work abandons

some of the foundations of constructive mathematics: we let our logical reasoning depend

on non-constructive arguments, although we do provide algorithms working on concrete

data structures to represent real numbers and the basic operations. We believe the

algorithms we develop will be useful even in the context of constructive mathematics, but

the proofs of correctness will probably have to be re-done.

3. Redundant digit representation for real numbers

We are all used to the notation using a decimal point to represent real numbers. For

instance, we usually write a number between 0 and 1 as a string of the form 0.1354647 · · ·,
and we know that the sequence of digits must be infinite for some numbers, actually all

those that are not of the form a
10b

, where a and b are positive integers. It is a bit less

natural, but still easy to understand, that all numbers can be represented by an infinite

sequence: for those that have a finite representation, it suffices to add an infinite sequence

of zeros. Moreover, the number 1 can also be represented by the sequence 0.999 · · ·. In

general, decimal numbers have two possible infinite representations.

When we know a prefix of an infinite sequence with length p, we actually know precisely

the bounds of an interval of width 1
10p

that contains the number. We are accustomed to

reasoning with these prefixes of infinite sequences, and we expect tools to return correct

prefixes of an operation’s output when this operation has been fed with correct prefixes

for the inputs.

In the conventional representation, the number ten plays a special role: it is the base.

We can change the base and use digits that are between 0 and the base. For instance,

we can use two as the base, so that the digits are only 0 and 1. The number 1
2

can then

be represented by the sequence 0.1000 · · · and the number 1 can be represented by the

sequence 0.1111 · · ·. For a sequence 0.d1d2 · · ·, the number being represented is:

∞∑
i=1

di

2i
.

The following equalities hold:

0.0s =
0.s

2

0.1s =
0.s + 1

2

A prefix with p digits gives an interval of width 1
2p

that contains the number represented

by the infinite sequence. In the rest of this paper, we will carry on using base 2 (but the

set of digits will change).
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For the computation of basic operations, the base-2 conventional representation is not

really well adapted. Here is an example that exhibits the main flaw of this representation.

The numbers 1
3

and 1
6

add up to give 1
2
. However, the infinite sequences for these numbers

are given in the following equations:

1

3
= 0.01010101 · · ·

1

6
= 0.00101010 · · ·

1

2
= 0.10000000 · · · = 0.01111111 · · ·

The following reasoning steps justify the first equation:

0.01010101 · · · =

∞∑
i=1

1

22i
=

1

1 − 1
4

− 1 =
1

3

Similar justifications can be used for the other equations. If w is a prefix of 0.0101 · · ·,
then w is also the prefix of all numbers between w00 · · · and w111 · · ·. These two numbers

are rational numbers of the form a
2b

and neither can be equal to 1
3
. Thus, we actually have

an interval of possible values that contains both values that are smaller and values that

are larger than 1
3
. The same property occurs for the representation of 1

6
. When considering

the sum of values in the interval around 1
3

and values in the interval around 1
6
, the results

are in an interval that contains both values that are smaller and values that are larger

than 1
2
. However, numbers of the form 0.1 · · · can only be larger than or equal to 1

2
and

numbers of the form 0.0 · · · can only be smaller than or equal to 1
2
. Thus, even if we

know the inputs with a great number of digits, we must indefinitely delay the decision

and require more information on the input before choosing the first digit of the result:

we need to know the whole infinite sequences of digits for both inputs before deciding

the first digit of the output.

We solve this problem by adding a third digit in the notation. This digit provides a way

to express the fact that the interval given by a prefix has 1
2

in its interior. This new digit

adds more redundancy to the representation. We now have three digits, even though we

still work in base 2. We choose to name the three digits L (for left), R (for right), and C

(for center).

— The digit L is used like the digit 0. If s is an infinite sequence of digits representing the

number x, the sequence Ls represents x/2.

— The digit R is used like the digit 1. If s is an infinite sequence of digits representing the

number x, the sequence Rs represents x/2 + 1/2.

— The digit C is used with the following meaning: if s is an infinite sequence of digits

representing the number x, the sequence Cs represents x/2 + 1/4.

The fact that L is like 0, R is like 1, etcetera, can also be expressed using a function α

such that α(L) = 0, α(R) = 1 and α(C) = 1
2
. With this function we can still interpret a digit
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sequence 0.d1d2 · · · as an infinite sum:

∞∑
i=1

α(di)

2i
.

From now on, we will only consider numbers in the interval [0, 1] and we drop the first

characters ‘0.’ when writing a sequence of digits. We use the same notation for a sequence

of digits and the real number it represents. In the same spirit, we use the same notation

for a digit d and the function it represents, the function that maps x to x+α(d)
2

. Finally, we

associate the digits L, R, C with the intervals [0, 1
2
], [ 1

2
, 1], and [ 1

4
, 3

4
], respectively. These

intervals are called the basic intervals.

The redundancy of the new digit gives us a very simple property: a number that can

be written CLx can also be written LRx and a number that can be written CRx can also

be written RLx. This property is used several times in this paper.

3.1. Formal details of infinite sequences and real numbers

In our formalisation, we benefit from theories that state the main properties of natural

numbers (type nat), integers (type Z) and real numbers (the type is usually written R,

but in this article we shall write it as Rdefinitions.R in Coq excerpts to avoid any

ambiguity with the ‘digit’ R). The two integer types come with addition, subtraction and

multiplication, while the type of real numbers is also equipped with division. The integer

types are actually described as inductive types and the basic operations are implemented

as recursive functions. For the real numbers, the existence of the type, two constants 0

and 1, the operations and comparison predicates, and the properties of these operations

(associativity, distributivity, inverse, and so on) are assumed. Among the assumed features,

there is an axiom that expresses completeness. This axiom states that every bound and

non-empty subset of � has a least upper bound in �. This means that whenever we

exhibit a property E and prove that it is bounded, we can construct a function that

returns its least upper bound. This completeness axiom is inherently non-constructive. To

be more precise, our work describes a collection of algorithms on a representation of real

numbers, which is in some sense a construction of real numbers, but many justifications

of correctness, which rely on the axiomatised real numbers, are non-constructive.

The axiomatisation of real numbers also provides a few decision procedures. The

decision procedure field (Delahaye and Mayero 2001) solves equalities between rational

expressions, occasionally leaving proof obligations to make sure denominators are non-

zero. The decision procedure fourier determines when a collection of inequalities

concerning affine formulas with rational coefficients is satisfiable.

The type of digits is described as an enumerated type:

Inductive idigit: Set := L | R | C.

We provide both a numeric interpretation (named alpha) and a functional interpretation

(named lift) for these digits. These can be defined in Coq with the following text:

Definition alpha (d:idigit): Rdefinitions.R :=

match d with L => 0 | C => 1/2 | R => 1 end.
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Definition lift (d:idigit)(x:Rdefinitions.R) := (x+ alpha d)/2.

The type of infinite sequences of digits is based on a polymorphic type of streams, which

is defined as a co-inductive type using a declaration with the following form:

CoInductive stream (A:Set): Set := Cons: A -> stream A -> stream A.

This definition defines stream A to be a data-type for any type A. It also defines the

constructor Cons, with the type given in the definition. This definition is similar to a

recursive data-type definition in a conventional functional programming language. In our

mathematical notation, we will simply write ds instead of Cons d s. In Coq excerpts, we

will also use the notation d::s.

In proof systems, recursion is seldom unrestricted. In the Coq system, it is mostly

provided as a companion to inductive and co-inductive data structures. For inductive

structures, the form of recursion provided is called structural recursion, and it basically

imposes the requirement that a recursive function takes an element of an inductive type

as argument and a recursive call can only be performed if the argument is a sub-term of

the initial argument. For co-inductive structures, the form of recursion provided is called

guarded co-recursion, and it basically imposes the requirement that a co-recursive value

must be an element of a co-inductive type and that co-recursive calls can only be used

to produce sub-terms of the output. More general forms of recursion are also provided,

such as well-founded recursion, where recursive calls are allowed only if the argument of

the recursive call is a predecessor of the initial argument with respect to a relation that is

known to be well-founded (which intuitively means that this function contains no infinite

chain of predecessors). In fact, well-founded recursion can be shown to be a special case of

structural recursion (Nordström 1988; Paulin-Mohring 1993; Bertot and Castéran 2004).

Co-recursive values need not be functions. For instance, 0 and 1 are represented by

the infinite sequences LLL. . . and RRR. . . , these are defined as co-recursive values with the

following definition:

CoFixpoint zero: stream idigit := L::zero.

CoFixpoint one: stream idigit := R::one.

To relate infinite streams of digits to real numbers, we define a co-inductive relation:

CoInductive represents: stream idigit -> Rdefinitions.R -> Prop:=

repr: forall d s r,

represents s r -> 0 <= r <= 1 -> represents (d::s) (lift d r).

This definition introduces both the two-place predicate represents, and a constructor,

named repr, which can be used as a theorem to prove instances of this predicate.

The statement of this theorem can be read as ‘for every s and r, if the proposition

represents s r holds and the proposition 0 <= r <= 1 holds, then the proposition

represents (d::s) (lift d r) holds’. This relation really states that infinite streams

are only used to represent numbers between 0 and 1, and it confirms the correspondence

between the digits and their function interpretations.

An alternative approach to relating sequences of digits and real numbers is to build a

function that maps an infinite sequence to a real value. Every prefix of an infinite sequence
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corresponds to an interval that contains all the values that could have the same prefix.

As the prefix grows, the new intervals are included in each other, and the size is divided

by 2 at each step, while the bounds remain rational. We can define a function bounds to

compute the interval corresponding to the prefix of a given length for a given sequence.

This function takes as arguments a digit sequence and a number n and it computes the

bounds of an interval that contains all the real numbers whose representation shares the

same prefix of length n. This function is primitive recursive in n (in other words, it is

structural recursive with respect to the conventional representation of natural numbers as

an inductive type).

bounds(. . . , 0) = [0, 1]

bounds(ds, n + 1) = [lift d a, lift d b] where bounds(s, n) = [a, b].

In practice, we do not manipulate real numbers in this function, but only integers. The

result of the function is a structure ((a, b), k) such that the interval is [ a
2k
, b

2k
].

We then define a function that maps a stream of digits to a sequence of real numbers,

which are the lower bounds of the intervals. This function is called si un and is defined

by the following text, where IZR is the function that injects integers in the type of real

numbers:

Definition si_un (s:stream idigit) (n:nat): Rdefinitions.R :=

let (p,k) := bounds n s in let (a,b) := p in IZR a/IZR(2^k).

We can prove that for every d, lift d is monotonic, so si un s is a growing sequence

bounded by 1. All this leads us to a proof that si un s has a limit and that this limit is in

[0,1]. This makes it possible to define the function real value that associates an infinite

sequence of digits to the limit.

We then prove that adding a digit in front of a sequence is the same as using this digit

as a function:

Theorem real_value_lift:

forall d s, real_value (d::s) = lift d (real_value s).

This allows us to show that real value and represents follow the same structure and

to obtain the following theorem:

Theorem represents_real_value: forall s, represents s (real_value s).

To complete the correspondence between the two notions, we need to express the fact that

the relation represents is actually a function. We do this by showing that the distance

between two possible values represented by a sequence is smaller than 1
2n

, which is proved

by induction over n.

Theorem represent_diff_2pow_n :

forall n x r1 r2, represents x r1 -> represents x r2 ->

-1/(2^n) <= r1 - r2 <= 1/(2^n).

It is then easy to conclude with the following theorem:

Theorem represents_equal: forall s r, represents s r -> real_value s = r.
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We thus have two ways to express the fact that a given sequence represents a real number.

The function real value is more suited to use in theorem statements, but the co-inductive

property makes proofs more elegant. Actually, all proofs of function correctness presented

in this paper are performed using a proof by co-induction based on represents, even

though theorem statements are sometimes expressed using real value.

This raises a third question: given an arbitrary real number, is there a digit stream that

represents it? The answer to this question is related to question of constructivism in

mathematics. Consider a constructive description of your real number, such as a Cauchy

sequence of rational numbers and a constructive proof that it satisfies the Cauchy criterion.

One way to describe Cauchy sequences is to fix a function h from nat to �, with its limit

in 0 when the argument goes to infinity. A Cauchy sequence may then be given by a

function f from Z to �, and the Cauchy criterion may be given by a monotonic function

g from Z to Z such that

∀n m p, g(n) � m ∧ g(n) � p ⇒ |f(m) − f(p)| < h(n).

To construct the infinite list of digits for a given Cauchy sequence, we simply need to

repeat the following process:

1 Compute the first n elements of the stream, which actually gives an interval of width
1
2n

, and compute the lower bound b of this interval,

2 Find the least n such that h(n) � 1
2n+3 .

3 Compute f(g(n)). We know that the distance between this value and the sequence’s

limit is less than 1
2n+3 .

4 Compute the value a = 2n(f(g(n)) − b), which lies in [0,1] by an invariant of the

recursive process.

5 If a � 3
8
, we know that for every m � g(n), f(m) � 1

2
and we choose the n + 1th digit

to be L.

6 If 3
8

� a � 5
8
, we know that for every m � g(n), 1

4
� f(m) � 3

4
, and we choose the

n + 1th digit to be C.

7 If 5
8

� a, we know that for every m � g(n), 1
2

� f(m), and we choose the n+1th digit

to be R.

We contend that this technique gives a constructive process for associating a sequence of

digits with a sequence of rational numbers associated with a constructive proof that this

sequence satisfies the Cauchy criterion.

When implementing this recursive process as a co-inductive function, we propose to

represent rational numbers with pairs of integers and to replace comparisons of rational

numbers with comparisons of integers. It is also more convenient to restrict ourselves to

the case where h(n) = 1
2n

. In the recursive process, we do not need to keep the list of the

first n digits, we only need to know n and the lower bound of the represented interval,

these are given as arguments to the co-recursive function:

CoFixpoint stream_of_cauchy (f: Z -> Z*Z)(g: Z -> Z)

(n:Z)(b:Z*Z) : stream idigit :=

let (vn,vd) := f(g n) in

let (bn,bd) := b in
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let (d, r) :=

if is_smaller (8*2^n*(vn*bd-vd*bn)) (3*vd*bd) then

(L,b)

else if is_smaller (8*2^n*(vn*bd-vd*bn)) (5*vd*bd) then

(C,(4*2^n*bn+bd,4*2^n*bd))

else (R, (2*2^n*bn+bd,2*2^n*bd)) in

let (new_bn, new_bd) := r in

d::stream_of_cauchy f g (n+1) (new_bn, new_bd).

Alternatively, some constructive real numbers correspond to a boolean predicate on

rational numbers, which corresponds to viewing this number as a Dedekind cut (a boolean

predicate that is false for every rational number smaller than the represented real number

and true for any rational number that is larger). For instance, the fractional part of the

square root of 2 can be described as a Dedekind cut and represented by the predicate

that is true on x if (x+ 1)2 > 2 and false if (x+ 1)2 < 2. We can produce the co-recursive

value corresponding to any boolean predicate using a co-recursive function. The following

is an example where the rational numbers are viewed as pairs of integers (we use the

convention that p (a, b) = true means that the real number of interest is smaller than

or equal to a
b
):

CoFixpoint stream_of_cut (p:Z*Z->bool) : stream idigit :=

match p (1, 2) with

true => R::stream_of_cut (fun r => let (a,b) := r in p (a+b, 2*b))

| false => L::stream_of_cut (fun r => let (a,b) := r in p (a, 2*b))

end.

The functions stream of cut and stream of cauchy are only given here to show

the feasibility of connecting streams of digits with the usual notions of real number

constructions, but more efficient ways to handle rational numbers should be used if these

functions were to be used effectively, for instance least common denominators should be

computed between fraction numerators and denominators.

For an arbitrary real number between 0 and 1 given by its binary representation

(an infinite sequence of 0 and 1 digits), this real number is simply represented by the

corresponding infinite stream where 0 is replaced by L and 1 is replaced by R.

3.2. Addition

It is well known† that adding two infinite sequences of redundant digits can be described

as a simple automaton that reads digits from both inputs and produces digits at every

recursive call. Two approaches can be taken: either this automaton is understood as a

program that keeps a carry as it processes the inputs, or it can be viewed as a program that

performs a little look-ahead before outputting the result and processing the rest, maybe

† P. Martin-Löf suggested to the author that Cauchy had devised an algorithm for addition in a similar

representation. Di Gianantonio refers to Cauchy and Leslie, but the reference to Cauchy’s work is wrong,

and the reference to Leslie could not be found at the time of writing.
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with a slight modification of the first digit in both inputs. The algorithm we describe

follows the second approach.

Our algorithm has two parts. The first part is a function that computes the arithmetic

mean of two values (in other words, the half-sum). The second part is a function that

computes the double of a value. The first algorithm maps two real numbers in [0, 1] to a

value in [0, 1]. The doubling function only returns a meaningful value when the input is

smaller than or equal to 1
2
.

For the half-sum, the structure of the algorithm is as follows: if the inputs have the

form d1d2x and d3d4y, then the algorithm outputs a digit d and calls itself recursively with

the new arguments d5x and d6y. Written as an equation, this yields the following formula:

half sum(d1d2x, d3d4y) = d(half sum(d5x, d6y)).

As an example, suppose that d1 = L and d3 = R. In this case we can choose d = C and

d5 = d2 and d6 = d4, because the following equalities hold, using the interpretations of

digits as functions:

half sum(Ld2x, Rd4y) =
Ld2x + Rd4y

2

=
d2x
2

+ d4y
2

+ 1
2

2

=
d2x

4
+

d4y

4
+

1

4

=
d2x+d4y

2

2
+

1

4

= C(half sum(d2x, d4y)).

In this case, it is not necessary to scrutinise d2 and d4 to decide the value of d and the

arguments for the recursive call. The equation can be re-written as

half sum(Lx, Ry) = C(half sum(x, y)).

As a second example, consider the case where d5 and d6 are modified with respect to d2

and d4. We suppose d1 = C, d2 = L, and d3 = L. In this case, the following equalities hold:

half sum(CLx, Ld4y) =
x
4

+ 1
4

+ d4y
2

2

=
x
2

+ 1
2

+ d4y

4

= L(half sum(Rx, d4y))

In this case, it is not necessary to scrutinise d4, but the value d5 is modified with respect

to d6. The equation can be re-written as

half sum(CLx, Ly) = L(half sum(Rx, y)).

If we had designed the algorithm to scrutinise two digits in each input, there would be

81 cases, but since some cases can be handled with a scrutiny of only the first digit in
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each input, or only one digit in one of the inputs, the number of cases is brought down

to 25 cases. Moreover, the exact behaviour of the algorithm in each case can be found

automatically with the help of proof search procedures.

3.3. Automatic generation of function code

We can use the proof engine to construct the half-sum function by making this program

use its proof search facility to construct a term with the right type, which should be

stream idigit -> stream idigit -> stream idigit.

We have enough control on the proof search mechanism to express the fact that the value

of this type that we want to construct should be a co-recursive function and that it should

analyse the first digit of the two input streams. This is simply done by stating that a case

analysis on these arguments should be performed. Doing a case analysis on the first digit

of the first input yields three arguments, doing a case analysis on the first digit of the

second argument also gives three cases, so there are at least nine cases to consider. Some

cases are easily solved directly by simply finding an output digit that makes the addition

correct. For instance, if the two inputs are dx and dy (in other words, they have the same

initial digit), the result should be d(half sum x y). This is because the following formula

holds:

( x
2

+ α(d)
2

) + ( y
2

+ α(d)
2

)

2
=

x+y
2

2
+

α(d)

2
.

When no output digit can be computed to make the formula work directly, more

information is gathered from the inputs by performing more case analysis. When this case

analysis is performed, we look at possible values of the second digit of one of the inputs

and decide if we have enough information to decide what the first output digit should be.

This decision is taken by performing some interval reasoning. If two digits of one of the

inputs are fixed, this input belongs in an interval of length 1
4
. Then, adding this interval

with an input for which only one digit is known gives an interval of length 3
4
, and taking

half of this gives an interval of length 3
8
. If the lower bound of this interval is 0, 1

16
, 1

8
,

1
4
, . . . , we know what the output first digit can be, but if the lower bound of this interval

is 3
16

(this happens when one of the inputs is LCx and the other is Cy), the upper bound is
9
16

and we cannot conclude because this interval may contain values lower than 1
4

(which

should not start with a C or a R) and values larger than 1
2

(which should not start with a L):

for these cases an extra case analysis on the second input is required.

When the first digit of the output is fixed, we still need to decide what the first digit of

the arguments to recursive calls will be. This may include a change with the initial second

digit of the input. This difference is often related to the equivalence between LR and CL

prefixes on the one hand and between RL and CR on the other.

For instance, if the first input has the form CLx and the second input has the form

Ly, the function can return L(half sum(Rx y)), because the half sum of the two inputs is

equivalent to the half sum of LRx and Ly.

To determine the first digits of inputs in recursive calls, we must first respect an

important rule: variables that represent sub-streams should appear behind the same
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number of digits in the input pattern and in the output pattern. This rule comes from the

fact that the real number represented by these variables is divided by 2 every time a digit

is added in front of it. If we want the half-sum equation to be satisfied, we must make

sure that the number of divisions by 2 is preserved between the inputs and the output.

Thus, we can only prescribe the first digit of one of the arguments to the co-recursive call

of half sum if the corresponding input had two digits in the input pattern.

To determine which first digit can be used for the recursive call on an argument, the

proof search procedure compares the lower bound of the output as prescribed by its first

digit to the lower bound of possible results that we can predict from the shape of the

input patterns. In the example, the lower bound of the output as prescribed by the first

digit L is 0, and the lower bound predicted from the half-sum of CLx and Ly is 1
8
. The

discrepancy must be resolved by making sure that the sum of all the digits appearing at

the head of recursive call arguments adds up to 1
2

(which does fit with a target 1
8

since

we are computing a half-sum and place the output’s first digit L in front). Here there is

only one digit available, and we can only choose its value to be R.

Although the half-sum function is obtained by mechanical means to be correct by

construction, its type is only

stream idigit -> stream idigit -> stream idigit.

This type does not express what the function does. We need to add a theorem to state

that it has the right behaviour with respect to the real numbers represented by the inputs

and outputs. The statement has the following shape:

Theorem half_sum_correct :

forall x y u v, represents x u -> represents y v ->

represents (half_sum x y) ((u + v)/2).

The proof of this statement relies on a proof by co-induction: we assume that the

statement is already satisfied for any output stream that is a strict sub-stream of the

current output and we show that this is enough to prove the result for the current output.

The proof analyses the behaviour of the half sum function and explores all the 25 cases

that were found at the time the function was constructed. In all cases, it is a simple matter

to verify the equality between the algebraic formulas corresponding to the half-sum of the

inputs and the output pattern present in the half sum function. The tactic named field

(Delahaye and Mayero 2001) solves this kind of equality between rational expressions in

a field. A second statement that needs to be verified is that the half-sum of the inputs

does belong to [0,1] if the two inputs do. The tactic named fourier, which solves affine

comparisons between real values with rational coefficients, is suitable for this task.

We believe that our definition technique can be easily reproduced for different sets of

digits or for other simple binary operations, like subtraction.

3.4. Multiplication by 2

We also need to provide a function to multiply the output of half sum by 2. This function

is based on the following remarks.

— The double of a number of the form Lx is simply x.
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— The double of a number of the form Rx is either 1 or outside the interval [0,1].

— The double of a number of the form Cx is a number of the form Rx′ where x′ is the

double of x (so the algorithm exhibits a co-recursive call).

The formal definition is:

Cofixpoint mult2 (v:stream idigit): stream idigit :=

match v with L::x => x | C::x => R::mult2 x | R::x => one end.

The correctness of this function is expressed by the following statement:

Theorem mult2_correct : forall x u,

0 <= u <= 1/2 -> represents x u -> represents (mult2 x)(2*u).

Please note that this theorem explicitly states that the result value is specified correctly

only when the input is at most 1
2
.

3.5. Subtraction

In this section we discuss several approaches to subtraction. A first approach uses a few

intermediary functions. The first intermediary function mimics the opposite function. Of

course, the opposite function cannot be defined from [0,1] to [0,1], but we can define

the function that maps x to 1 − x. The general definition, where we name the function

minus aux, is:

minus aux(L(x)) = R(minus aux(x))

minus aux(C(x)) = C(minus aux(x))

minus aux(R(x)) = L(minus aux(x))

These equations are justified through simple computations. For instance, the last equation

is justified with the following reasoning steps:

minus aux(R(x)) = 1 −
(
x

2
+

1

2

)

=
1

2
− x

2

=
1

2
(1 − x)

= L(minus aux(x)).

Combining minus aux with addition, we can easily compute the binary function that

maps x and y to x + (1 − y) = 1 + x − y. Of course, this function returns a meaningful

result only when x is smaller than y.

Alternatively, we can combine minus aux with half sum to have a function that maps

x and y to 1+x−y
2

. Now, if we really want to have a subtraction, we can remove the 1
2

offset. We use another auxiliary function, which we name minus half, defined by the
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following equations:

minus half(Rx) = Lx

minus half(Lx) = zero

minus half(Cx) = L(minus half(x)).

The first of these equations is trivial to justify. The second is justified by the fact that the

only value inside [0, 1
2
] for which x − 1

2
belongs to [0, 1] is 1

2
, and the result is 0 in this

case. The third equation is justified by the following reasoning steps:

minus half(Cx) =
x

2
+

1

4
− 1

2

=
x

2
− 1

4

=
x − 1

2

2
= L(minus half(x)).

4. Parameterised affine operations

In this section we study another approach to addition, with the encoding of a more general

function that computes affine formulas in two real values with rational coefficients. More

precisely, we want to compute the value

a

a′ x +
b

b′ y +
c

c′ .

When a, b, c are non-negative integers and a′, b′, c′ are positive integers (a, b, c may be

null, but the others must not be), and x and y are real numbers, given as infinite sequences

of digits.

The interpretation of digits as affine functions (using our function lift) makes them a

special case of what Edalat and Potts call Linear Fractional Transformations (Edalat and

Potts 1998). They actually show that a more general form of two argument operations

can be programed on this form of real number representation, namely the computation

of the following operation, called a Möbius transform, where a, b, and so on, are integers:

axy + bx + cy + d

exy + fx + gy + h
.

Restricting consideration purely to affine formulas corresponds to restricting the general

study proposed by Edalat and Potts to the case where e, f and g are 0. A good reason

for studying this restricted case separately is that the formal proofs stay within the realm

of proofs about equalities and comparisons of affine formulas with rational coefficients,

a realm for which automatic proof tools exist at the time of writing this article, while

verifying the correctness of the general Möbius transform requires incursions into the

realm of proofs about equalities and comparisons of polynomial formulas, a domain for

which proof procedures are still only under development (Mahboubi and Pottier 2002;

McLaughlin and Harrison 2005; Mahboubi 2007).
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4.1. Main structure of the algorithm

The choice of digits for the result is based on the following observations:

1 Even without observing x and y, we already know that they lie between 0 and 1. The

result lies between the extrema

c

c′ and
ab′c′ + a′bc′ + abc′

a′b′c′ .

2 If the extrema belong to the same basic interval, it is possible to produce a digit and

perform a co-recursive call with a new affine formula. In this sense, the output does

not depend on reading more digits from the input, and the algorithm can be described

as a streaming algorithm in the sense of Gibbons (2004).

3 If the extrema are badly placed, we cannot choose an interval associated to a digit

that is sure to contain the result. In this case, we scrutinise x and y and observe their

first digit. As a result, we obtain a new estimate of the interval that may contain the

result, and its size is half the previous size. We can then perform a recursive call with

a new affine formula. In the long run, we are forced to arrive at a situation where the

extrema are within a basic interval and a co-recursive call can be performed. In fact,

this condition is guaranteed as soon as the distance between extrema is less than 1/4.

Let us study two examples. In the first example, suppose that the property c
c′ � 1/2

holds. We know that the result is larger than 1/2, so we can produce a R digit. The

following computation takes place:

a

a′ x +
b

b′ y +
c

c′ = R

(
2 ×

(
a

a′ x +
b

b′ y +
c

c′

)
− 1

)

= R

(
2a

a′ x +
2b

b′ y +
2c − c′

c′

)
.

There is a recursive call with a new affine formula, where all the coefficients are positive

integers or non-negative integers, as required.

In a second example, suppose that the properties x = Lx′ and y = Ry′ hold. The

following computation can take place:

a

a′ x +
b

b′ y +
c

c′ =

(
a

a′
x′

2

)
+

(
b

b′
y′ + 1

2

)
+

c

c′

=
a

2a′ x
′ +

b

2b′ y
′ +

bc′ + 2b′c

2b′c′ .

Here, again, we can have a recursive call with a new affine formula, no digit has been

produced (therefore the recursive call cannot be a co-recursive call) but the distance

between the extrema in the new formula is a/2a′ + b/2b′, which is half of a/a′ + b/b′,

which was the distance between extrema for the initial affine formula.

4.2. Formal details for affine formulas

When providing the formal description of the recursive algorithm for the computation of

affine formulas, we need to pay attention to the following two important aspects:
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1 The function must be partial, because we must ensure the sign conditions on the

coefficients of the affine formula.

2 Not all recursive calls are acceptable co-recursive calls, because recursive calls after

the consumption of digits from the two input streams are not associated with the

production of an output digit.

We define a record type named affine data that collects the eight elements of an affine

formula and a predicate named positive coefficients that states that the coefficients

satisfy the sign conditions.

The computation is then represented by a main function called axbyc to compute the

affine formula. This function has a dependent type: it takes as first argument an affine

formula and as second argument a proof that its coefficients satisfy the sign conditions:

axbyc: forall x: affine_data, positive_coefficients x -> stream idigit.

This function is defined as a co-recursive function. The constraints on recursive program-

ming require that this function can only perform the recursive calls that are associated

with the production of a digit in the output (phase 2 in the previous section). We need to

define an auxiliary function, not a co-recursive one, that takes charge of the recursive calls

that are only associated with the consumption of digits from the input streams (phase 3

in the previous section).

The auxiliary function is named axbyc rec. It takes as arguments an affine formula and

a proof that it satisfies the predicate positive coefficients. It returns an equivalent

affine formula, for which the decision to produce the next output digit can be taken. This

is represented by the fact that output of this function is in a type with three constructors,

called caseR, caseL, or caseC. Each constructor contains as its first field the new affine

formula, and as its second field a proof that this new formula satisfies the sign conditions.

The third field (for the constructors caseR and caseL) or the third and fourth fields (for

the constructor caseC) express the fact that the right interval conditions are satisfied to

output a digit. The final field is a proof that the new affine formula is equivalent to the

initial one.

The recursive structure of the function axbyc rec is based on well-founded recursion.

More precisely, it relies on the fact that the distance between extrema decreases at

each recursive step. This can be translated into an integer formula that decreases while

remaining positive. When this integer formula is 0, we can prove that one of the interval

conditions to output a digit is necessarily satisfied.

Two other collections of auxiliary functions perform the elementary operations. Func-

tions named prod R, prod L and prod C perform the coefficients’ transformations that

should be performed after producing an output digit. For instance prod R maps the affine

formula

a

a′ x +
b

b′ y +
c

c′

to the formula

2a

a′ x +
2b

b′ y +
2c − c′

c′ ,

as we have already justified in the first example of the previous section.
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The lemmas named A.prod R pos, A.prod L pos, and A.prod C pos ensure that the

functions prod R, prod L, and prod C, respectively, preserve the sign conditions on the

coefficients. These lemmas rely on the interval conditions produced by axbyc rec. For

instance, for A.prod R pos the extra interval condition is c′ � 2c. In our description of

the co-recursive function, this information is transferred from axbyc rec to A.prod R pos

with the help of a variable named Hc.

With these auxiliary functions, the main function can be given a simple structure:

CoFixpoint axbyc (x:affine_data)

(h:positive_coefficients x):stream idigit :=

match axbyc_rec x h with

caseR y Hpos Hc _ =>

R::(axbyc (prod_R y) (A.prod_R_pos y Hpos Hc))

| caseL y Hpos _ _ =>

L::(axbyc (prod_L y) (A.prod_L_pos y Hpos))

| caseC y Hpos H1 H2 _ =>

C::(axbyc (prod_C y) (A.prod_C_pos y Hpos H2))

end.

With the help of the function real value we can also define a function af real value

that maps any affine formula represented by an element of affine data to the real

number it represents. This function is used to express the correctness of our algorithm in

computing the affine formula:

axbyc_correct:

forall x, forall H :positive_coefficients x,

0 <= af_real_value x <= 1 ->

real_value (axbyc x H) = af_real_value x.

This proof is based on a lemma that is proved by co-induction:

axbyc_correct_aux :

forall x:affine_data, forall H :positive_coefficients x,

0 <= (af_real_value x) <= 1 ->

represents (axbyc x H) (af_real_value x).

This algorithm is interesting because it provides us with ways to add two real numbers,

to multiply them by rational numbers, and to encode rational numbers as real numbers.

Having formalised this algorithm, it may seem that the direct implementation of addition

described earlier is now redundant. However, this is not the case, since the direct imple-

mentation of addition makes no use of dependent types, proof arguments or well-founded

recursion. As a result, the direct addition can be executed directly within the theorem

prover using its internal reduction mechanism, while the affine formula computation can

only be executed outside the theorem prover as extracted code. Algorithms that can be

reduced within the proof system may play a role in reflection-based proof procedures

(Boutin 1997).
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5. Computing series

A series is an infinite sum of values. Knowing how to compute series can help in the

computation of famous constants, like e (Euler’s number) or π, and in implementing the

multiplication of two real numbers.

5.1. Main structure of the algorithm

We consider the problem of computing values of the form
∑∞

i=0 ai where the ai terms are

real numbers.

Studying series is very close to studying converging sequences, since it is enough to

consider the sequence un =
∑n

i=0 ai. Each element of the sequence can then be computed

as a finite combination of additions.

Computing the first p digits of the limit implies computing the bounds of an interval

of width 2−p containing this limit. If we know that a given element un is closer than ε

to the limit, and if we can compute an interval [a, b] of width 2−p such that ε � un − a

and ε � b − un, then the sequence of digits that corresponds to [a, b] is a correct prefix

for a representation of the limit. In particular, this means that we need to compute an

interval containing un of width strictly smaller than 2−p: in practice we need to compute

an interval containing un with width 2−(p+1) or 2−(p+2). This approach shows that we can

avoid considering the whole infinite sum before producing the first digit of the output.

We restrict our study to series whose convergence is described constructively by a

function µ that satisfies the following properties:

∀m. n � m ⇒
∣∣∣∣∣

∞∑
i=m

ai

∣∣∣∣∣ < µ(n), lim
n→∞

µ(n) = 0.

We actually formalise the computation of a function f that has the following informal

specification:

f(x, y, n) = x + y ×
∞∑
i=n

ai,

where x is a real number, y is a rational number and n is a natural number. Intuitively, y

represents the inverse of the interval size that is reached in the computation (y = 2p). If

we know that y × µ(n) � 1
16

, and we know three digits of x, then we are able to choose

the first digit d of x + y
∑∞

i=n ai. We can then perform the following computation:

f(x, y, n) = d f(2x − α(d), 2y, n).

In most cases, we also have x = dx′ for some x′, and the value 2x − α(d) is simply

represented by x′. If y×µ(n) > 1
16

, we compute a new value φ(y, n) such that y×µ(φ(y, n)) �
1
16

. This value is bound to exist because µ converges to 0 at infinity. We can then proceed

with the following step:

f(x, y, n) = f

(
x + y ×

φ(y,n)−1∑
i=n

ai, y, φ(y, n)

)
.
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In practice we first compute φ(y, n), then we compute v = x + y ×
∑φ(y,n)−1

i=n ai by

repeated binary additions. Let us assume that ρ is defined as y ×
∑∞

i=φ(y,n) ai. The number

we want to compute is v + ρ and we know that |ρ| � 1
16

. We then perform the following

case analysis:

1 If v has the form Rv′ and v′ has the form Rv′′, Cv′′, LCv′′ or LRv′′, we can deduce that

v � 9/16, and, therefore, v + ρ � 1
2
, and the first digit of the result can be R. The result

is R(f(v′, 2y, φ(y, n))).
2 If v has the form Cv′, where v′ has the form Cv′′, LCv′′, LRv′′, RLv′′ or RCv′′, we are certain

that 5
16

� v � 11
16

, and therefore 1
4

� v + ρ � 3
4
, so the result is C(f(v′, 2y, φ(y, n))).

3 If v has the form Lv′, where v′ has the form Lv′′, Cv′′, RLv′′ or RCv′′, we are certain that

v � 7
16

and v + ρ � 1
2
, so the result is L(f(v′, 2y, φ(y, n))).

4 If v has the form RLLv′′, then v could also be represented using CRLv′′ and this case has

already been considered above. The same goes for the cases LRR, CLL and CRR, using

CLR, LRL and RLR, respectively, as alternatives.

The number φ(y, n) is chosen so that y × µ(φ(y, n)) � 1
16

, because 1
16

is the shortest

distance between the bounds of the intervals for CLC and C, RLC and R, or LRC and L.

The computation of φ(y, n) and
∑φ(y,n)−1

i=n ai depends on the series being studied. Because

recursive calls to f always have 2y and φ(y, n) as arguments, we can also assume that the

invariant y × µ(n) < 1
8

is maintained through recursive calls.

5.2. Series with positive terms

When we know that the ai terms are all positive, we do not need to use 1
16

to bound the

infinite remainder of the series. The computation technique can be simplified.

We first compute φ(y, n) so that y × µ(φ(y, n)) � 1
8

and v = x +
∑φ(y,n)−1

i=n ai. In what

follows, let ρ be defined as y ×
∑∞

i=φ(y,n) ai; we know |ρ| � 1
8
. We perform the following

case analysis:

1 If v has the form Rv′, we are sure that the result is larger than or equal to 1/2, so the

result is R(f(v′, 2y, φ(y, n))).
2 If v has the form Cv′ but not CRv′, we can deduce v ∈ [ 1

4
, 5

8
] and v + ρ ∈ [ 1

4
, 3

4
], so the

result is C(f(v′, 2y, φ(y, n))).
3 If v has the form Lv′, but not LRv′, we can deduce v ∈ [0, 3

8
] and v + ρ ∈ [0, 1

2
], so the

result is L(f(v′, 2y, φ(y, n))).
4 If v has the form CRv′′ or LRv′′, we can use the equivalences with RLv′′ and CLv′′,

respectively, to switch to one of the previous cases.

For positive series, there is also the invariant

y × µ(n) is always smaller than 1
4
,

which plays a role in the correctness proofs.

5.3. Formal details for positive series

The whole case analysis on v described in the previous section is common between all the

series with positive terms that we may want to consider. To avoid code duplication, we
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define a function series body that can be re-used from one series with positive terms to

another. This function is higher-order, as it takes the function series as its argument.

The argument function series is supposed to perform the computations that are required

specifically for each series (computing φ(y, n) for instance), the values y and n are not

passed directly as arguments, but they should be computable from the value a of type A.

This type A can be chosen arbitrarily for each series.

Definition series_body (A:Set)

(series: stream idigit -> A -> stream idigit)

(v: stream idigit) (a:A): stream idigit :=

match v with

R::v’ => R::series v’ a

| L::R::v’’ => C::series (L::v’’) a

| L::v’ => L::series v’ a

| C::R::v’’ => R::series (L::v’’) a

| C::v’ => C::series v’ a

end.

5.4. Application to computing e

The number e is defined by the formula

e =

∞∑
k=0

1

k!
.

Of course, this number is larger than 2, but we only want to compute its fractional

part, so we actually compute
∑∞

k=2
1
k!

. The following properties are easy to obtain, by

remembering that n!nk−n < k! for every k � n, so

0 <

∞∑
k=n

1

k!
<

1

(n − 1)!(n − 1)
.

For this series, we choose µ(n) to be the value 1
(n−1)!(n−1)

. When 2 < n, we have µ(n+ 1) <
µ(n)
2

, which implies the following property:

∀n, y, 0 < y ∧ 2 < n ∧ y × µ(n) <
1

4
⇒ φ(y, n) � n + 1.

Thus, we never need to absorb more than one term from the infinite sum into x at each

co-recursive call.

The type A that appears in our use of series body is a triple type. The triple given

as argument has the form (y, n, θ), where θ is the precomputed value θ = (n − 1)!. This

invariant is maintained through recursive calls so that factorials are not recomputed from

scratch each time. Here the µ function is given by the formula

µ(n) =
1

(n − 1)!(n − 1)
=

1

θ × (n − 1)
,

and computing φ(y, n) is easy, because we know that this value is always n or n + 1. To

decide whether φ(y, n) = n, we simply need to compare y × 1
θ(n−1)

with 1
8
, in other words
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to compare 8y with µ′ = 1
µ

= θ(n − 1). In the following code, rat to stream builds the

infinite sequence of digits for a rational number given by its numerator and denominator.

CoFixpoint e_series (x:stream idigit)(s :Z*Z*Z) :stream idigit :=

let (aux, theta) := s in let (y, n) := aux in let mu’ := theta*(n-1) in

let (v, phi, theta’) :=

if Z_le_gt_dec (8*y) mu’ then

mk_triple x n theta

else

let theta’ := mu’+theta in

mk_triple (x+(rat_to_stream y theta’))(n+1) theta’ in

series_body _ e_series v (2*y, phi, theta’).

To express the fact that this function computes the series correctly, we rely on a

predicate infinite sum, which takes a function f from Z to � and a value v in � as

arguments and means
∑∞

i=0 f(i) converges and the limit is v. The correctness statement has

the following shape:

Theorem e_correct1 :

forall v vr r y n,

4 * y <= fact(n-1) * (n-1) -> 2 <= n -> 1 <= y ->

represents v vr ->

infinite_sum (fun i => 1/IZR(fact (i+n))) r ->

vr + (IZR y)*r <= 1 ->

represents (e_series v (y, n, fact(n-1))) (vr+(IZR y)*r).

This statement is made less clear by the simultaneous use of two types of numbers and

the function IZR is the natural injection of integers into the type of real numbers. In this

statement the formula fact(n-1)*(n-1) represents the inverse of µ(n), and the formula

4 * y <= fact(n-1) * (n-1) corresponds to the invariant of the series. Note that this

theorem expresses the fact that the series is computed correctly only if the series really

converges to a value that is smaller than or equal to 1. The proof that the series converges

has to be done independently.

We initialise the recursive computation with x = 1
2
, y = 1 and n = 3, so that the

invariant on y × µ(n) is satisfied.

Definition number_e_minus2: stream idigit :=

e_series (rat_to_stream 1 2+rat_to_stream 1 6) (1, 4, 6).

The correctness theorem then allows us to obtain the following statement:

Theorem e_correct :

infinite_sum (fun i => 1/IZR(fact(i+2)))(real_value number_e_minus2).

This statement really means
∑∞

i=2
1
i!

= number e minus2.

The value number e minus2 can then be used to construct rational approximations of

e − 2, using the bounds function. Actually, given n, we compute (a, b, k) so that

a

2k
� e − 2 �

b

2k
b

2k
− a

2k
=

1

2n
.
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For n = 320, this computation takes approximately a minute with the standard version of

Coq
†. These functions can be used in proof procedures to compute approximations of e.

The code can also be extracted to both Ocaml and Haskell. Running the Ocaml extracted

code, we can compute 2000 redundant digits of e − 2 in about a minute.

5.5. Multiplication as a special case of series

When u is the infinite sequence d1d2 . . ., we have uu′ is a series:

uu′ =

∞∑
i=1

α(di)u
′

2i
.

This is a series where all terms are positive. Moreover, two simplifications can be made

with respect to the general approach. First, while y is multiplied by 2 at every recursive

call, ai contains a divisor that is also multiplied by 2, so the two multiplications by 2

cancel out. Second, it is reasonable to simply consume one element from the infinite sum

at each recursive call, without scrutinising the value of u′. If this approach is followed,

the argument y is no longer necessary: only the digits di and u′ are needed. We can re-use

the general function series body as follows:

Definition sum_mult_d (d:idigit) (u v:stream idigit) :=

match d with L => u | C => u+L::L::v | R => u+L::v end.

CoFixpoint mult_a (x:stream idigit)(p:stream idigit*stream idigit)

: stream idigit :=

let (u,v) := p in

match u with d::w => series_body _ mult_a (sum_mult_d d x v)(w,v) end.

The function mult a x (u, u′) computes x + uu′ only when uu′ < 1
4

(here again we see

the invariant of the general approach). To obtain multiplication for the general case, we

divide the second operand by 4 before the multiplication and multiply the result by 4.

Here is a naive implementation:

Definition mult (x y:stream idigit): stream idigit :=

mult2(mult2(mult_a zero (x,L::L::y))).

The following theorem can then be verified formally:

mult_correct

: forall (x y: stream idigit) (vx vy: Rdefinitions.R),

represents x vx -> represents y vy -> represents (x*y)(vx*vy).

In this statement the notation x * y represents our multiplication as an operation on

infinite digit streams, while the notation vx * vy represents the multiplication of real

numbers, as they are axiomatised in the Coq system.

† Coq version 8.0pl2, Intel Pentium(R) M 1700Mhz.
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It turns out that our approach to multiplication, based on series, yields an imple-

mentation of multiplication that is very close to the implementation in Ciaffaglione and

di Gianantonio (2000).

We can also try this multiplication directly within Coq, for instance, we can compute

(e − 2)2. With the current standard version of Coq no effort is made to exploit possible

sharing in the lazy computation of values, so the same value may be computed several

times. For this reason, we cannot compute this number to a high precision as easily as for

e − 2. For example, our few experiments showed that it takes approximately 10 seconds

to compute an interval of width 1
230 and a minute to compute an interval of width 1

250

containing the value (e − 2)2.

6. Conclusion

The work described in this paper is available at

http://hal.inria.fr/inria-00001171

This is both an extension and a departure from the work of Ciaffaglione and

di Gianantonio. Like Ciaffaglione and di Gianantonio, we work in base 2 with an

extra digit, but they interpret the three digits as -1, 0, and 1, while we interpret them

as 0, 1
2

and 1. Because the difference is so systematic, there is a direct correspondence

between the number represented by the same stream in both settings. One advantage of

our experiment is that some algorithms are easier to design and easier to prove correct

because we avoid having to deal with negative numbers. One important drawback is that

this approach is less well adapted to expanding to the full real line.

We believe that the decision to rely on an existing axiomatisation of real numbers was

instrumental in making the proofs in this experiment quicker to obtain. In particular, we

relied on a collection of automatic decision procedures for equalities between polynomials

and sets of inequalities between affine formulas. This axiomatisation relies on classical

mathematics, and we do not know how the decision procedures rely on the classical axioms

or how they could be re-implemented in constructive mathematics. Admittedly, we only

provide algorithms for computing representations of real values that are constructively

definable. We believe that our experiment should be reproducible in the context of

constructive mathematics, but we were content with working in a classical setting and

taking advantage of a larger body of existing definitions and theorems. The question of

constructive or non-constructive mathematics was secondary in this experiment.

It is characteristic that the definition of series appears to be more basic than multiplic-

ation, but this is simply due to the fact that the digit-based representation of numbers

is already naturally interpretable as a series and that this structure is preserved by

multiplication thanks to distributivity.

Now that we have a multiplication for our representation of real numbers, we can

consider the task of implementing other functions, such as division and analytic functions.

For division, we expect to use a method of range reduction: to compute x
y
, we should

compute x
2ky

or x
y

− k where k should be chosen so that the result is within [0, 1], but

finding the right value for k is only possible when we have a constructive way to prove

that y is non-zero.
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An alternative approach to division is provided by generalising our approach to affine

formulas to consider Möbius transforms (which have already been studied in Edalat and

Potts (1998)):

(x, y) 	→ axy + bx + cy + d

exy + fx + gy + h
.

However, we suspect that the proofs of correctness for these transformations are less easy

to automatise, because they do not rely only on affine formulas (which are easily treated

with the Fourier–Motzkin decision procedure).

One of the interesting features of this experiment is that some series can be computed

directly within the theorem prover. This is an important feature if a proof requires us to

produce an accurate approximation of a series value.

When it comes to the computation of mathematical constants, we already have all the

ingredients to compute π using a Machin formula (we used the formula π
4

= arctan( 1
2
) +

arctan( 1
3
), which can be easily proved and computed as the sum of two series).

Several questions will be studied in future work. First, the choice of a digit set is

arbitrary. We have already experimented with a digit set that contains only two digits,

corresponding to intervals [0, 2
3
] and [ 1

3
, 1]; although some functions seem to be simpler

(because there are fewer cases to consider, for instance when considering affine formulas),

other problems arise because equalities between patterns do not exist for short patterns

(thus we cannot as easily mimic the equality CL = LR). di Gianantonio also studied a

two-digit representation and he proposes to work with intervals whose length is based on

the golden number (di Gianantonio 1996). However, the price to pay is that we now need

to solve a polynomial system of degree 2 to determine whether a given value belongs to

one of the basic intervals, formal proofs in this setting are again made more complex

because we are no longer in the realm of affine formulas.

In the long run, we wish to choose digit sets that are closer to the bounded integers

that are usually handled in computers, so that regular integer addition, subtraction,

multiplication and comparison, or even bitwise operations can be used to establish the

basic relations between various digits.

The second important question is related to the efficiency of co-recursive computation

within the theorem prover. While recent evolutions of the Coq system have brought

drastic improvements in the computation of recursive functions, it is not certain that

the co-recursive question is as well treated. In particular, lazy computation is needed to

achieve reasonable speeds, while the current version of Coq can only implement call-by-

name. This question is particularly difficult because the reduction mechanism also needs

to retain the property of strong normalisation for non-closed terms.

Eventually, we hope to develop a reasonably efficient and formally verified library for

mathematical computation. We believe this will be a stepping stone for more ambitious

projects like the Flyspeck project (Hales 2000; 2004).
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Hanrot, G., Lefèvre, V., Pélissier, P. and Zimmermann, P. (2000) The mpfr library. Available at

http://www.mpfr.org.

https://doi.org/10.1017/S0960129506005809 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005809


Affine functions and series with co-inductive real numbers 63

Harrison, J. (1996) Hol light: A tutorial introduction. In: Srivas, M.K. and Camilleri, A. J. (eds.)

FMCAD. Springer-Verlag Lecture Notes in Computer Science 1166 265–269.

Harrison, J. (1998) Theorem Proving with the Real Numbers, Springer-Verlag.

Harrison, J. (2000) Formal verification of IA-64 division algorithms. In: Harrison, J. and Aagaard,

M. (eds.) Theorem Proving in Higher Order Logics: 13th International Conference, TPHOLs

2000. Springer-Verlag Lecture Notes in Computer Science 1869 234–251.

IEEE (1987) IEEE standard for binary floating-point arithmetic. SIGPLAN Notices 22 (2) 9–25.

Lambov, B. (2005) Reallib: an efficient implementation of exact real arithmetic. In: Grubba, T.,

Hertling, P., Tsuiki, H. and Weihrauch, K. (eds.) CCA 2005 – Second International Conference

on Computability and Complexity in Analysis, August 25–29, 2005, Kyoto, Japan. Informatik

Berichte 326-7/2005, Fern Universität Hagen, Germany 169–175.

Mahboubi, A. (2007) Implementing the Cylindrical Algebraic Decomposition inside the Coq system.

Mathematical Structures in Computer Science, this issue.
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