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Abstract

Answer set programming (ASP) is one of the major declarative programming paradigms in the
area of logic programming and non-monotonic reasoning. Despite that ASP features a simple
syntax and an intuitive semantics, errors are common during the development of ASP programs.
In this paper we propose a novel debugging approach allowing for interactive localization of
bugs in non-ground programs. The new approach points the user directly to a set of non-ground
rules involved in the bug, which might be refined (up to the point in which the bug is easily
identified) by asking the programmer a sequence of questions on an expected answer set. The
approach has been implemented on top of the ASP solver wasp. The resulting debugger has been
complemented by a user-friendly graphical interface, and integrated in aspide, a rich integrated
development environment (IDE) for answer set programs. In addition, an empirical analysis
shows that the new debugger is not affected by the grounding blowup limiting the application
of previous approaches based on meta-programming.

KEYWORDS: answer set programming, debugging, graphical user interface

1 Introduction

Answer set programming (ASP) (Brewka et al. 2011; Gelfond and Lifschitz 1991) is
a declarative programming paradigm proposed in the area of logic programming and
non-monotonic reasoning. ASP features an expressive language that can be used to

∗ This paper includes parts and significantly extends our previous work (Dodaro et al. 2015). The authors
are grateful to Marc Deneker and Ingmar Dasseville for the fruitful discussions about debugging for
logic programs and FO(ID) theories, and in particular for the useful suggestion improving the handling
of bugs caused by atoms missing a supporting rule. The authors are also grateful to Roland Kaminski
for providing gringo without simplifications.
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model computational problems of comparatively high complexity (Eiter et al. 1997)
often in a rather compact way. The availability of high-performance implementations
(Gebser et al. 2015; Lierler et al. 2016; Calimeri et al. 2016; Gebser et al. 2016) made
ASP a valuable tool for developing complex applications in several research areas (Erdem
et al. 2016), including Artificial Intelligence (Balduccini et al. 2001; Aschinger et al. 2011;
Dodaro et al. 2015; Abseher et al. 2016; Dodaro et al. 2016), Hydroinformatics (Gavanelli
et al. 2015), Nurse Scheduling (Alviano et al. 2017), and Bioinformatics (Erdem
and Öztok 2015; Koponen et al. 2015; Gebser et al. 2011), to mention a few. Espe-
cially the development of real-world applications outlined the advantages of ASP from a
software engineering viewpoint. Namely, ASP programs are flexible, compact, extensible,
and easy to maintain (Grasso et al. 2011; Grasso et al. 2009).

Although the basic syntax of ASP is not particularly difficult, one of the most tedious
and time-consuming programming tasks is the identification of (even trivial) faults in
a program. For this reason, several methodologies and tools have been proposed in the
last few years for debugging ASP programs (Brain and De Vos 2005; Pontelli et al. 2009;
Oetsch et al. 2011; Gebser et al. 2008; Oetsch et al. 2010; Shchekotykhin 2015) with the
goal of making the process of developing logic programs more rapid and comfortable.
Given a faulty ASP program Π and a set of atoms I representing an interpretation of
the program, these approaches find an explanation why I is not an answer set of Π.

The most prominent debugging approaches (Gebser et al. 2008; Oetsch et al. 2010)
apply the notion of meta-programming that uses ASP itself to debug a faulty ASP pro-
gram. The basic idea of the meta-programming method is to convert the inputs into a
program over a meta-language – a reified program – and then execute it together with
a debugging program. The latter finds causes of a fault, where each cause is encoded
by specific atoms in an answer set of the debugging program. However, reification-based
debuggers have some issues that may make them either difficult to apply or even inap-
plicable in some cases. The main issue, also observed in Oetsch et al. (2010), is related
to the computation of answer sets of the debugging program. Namely, the grounding
step of the solving process might produce ground instantiations of the debugging pro-
gram, which sizes are exponentially larger than the input. This problem is intrinsic in the
meta-programming approach, as it requires the ground debugging program to comprise
a set of ground rules encoding all possible explanations of faults in the input program.
Moreover, even if answer sets of the reified program can be computed, their number can
overwhelm a user, who has to analyze all explanations manually in order to find a true
cause of the problem. A recent approach suggested in Shchekotykhin (2015) allows for a
partial resolution of this issue, but it is applicable only to ground programs, which often
contains a large number of rules and, consequently, are hard to understand and to debug.

In this paper we propose a novel debugging approach allowing for interactive localiza-
tion of bugs in non-ground ASP programs. The new approach points the user directly to
a set of non-ground rules involved in the bug, which might be refined (up to the point
in which the bug is easily identified) by asking the programmer a sequence of questions
on an expected answer set. Roughly, the suggested approach can be described as follows:
First, given a non-ground program Π the debugger generates a debugging program ΔΠ by
adding marker atoms used later to match results of the debugger with rules of Π; Next,
the debugging program is grounded and passed, together with (the second input) an in-
terpretation I, to a specifically modified version of an ASP solver that determines the set
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of rules that are possible reasons for the bug. As previous approaches, our debugger allows
for a uniform treatment of over-constrained and missing support faults (see Section 3).
Since the number of reasons might be large (up to covering the entire program), we help
the user to find the guilty rules by applying an automated refining technique. In partic-
ular, the debugger automatically generates a sequence of queries, requiring the user to
answer whether a set of literals must be included or not in an expected answer set. This
additional knowledge is then injected in the system and the process is repeated up to a
point in which the (non-ground) rules causing a fault can easily be identified.

The approach has been implemented in the dwasp debugger that combines the
grounder gringo (Gebser et al. 2011) with an extension of the ASP solver wasp (Alviano
et al. 2015). The resulting implementation can be used via command-line interface.
In order to further ease the task of debugging logic programs, and appeal to those users
that prefer graphical interfaces, we also developed a graphical user interface for the dwasp
debugger, called dwasp-gui, and a plugin connector for the integrated development en-
vironment (IDE) aspide. An important reason to choose aspide over other ASP IDEs,
like Sealion (Busoniu et al. 2013), is its richer support for test-driven development of
ASP programs (Febbraro et al. 2011). The test-driven development process (Fraser et al.
2003) requires the repetition of a very short development cycle in which requirements are
encoded as specific test cases (assessing a possibly small unit of the program), and the
program is assessed against tests, and possibly fixed or improved. The cycle is then re-
peated to push forward the functionality, until the program satisfies all the requirements.
The rapid identification of the cause of a failing test case is fundamental for test-driven
development platforms. In aspide a user can naturally define test cases comprising in-
puts and expected (non-)outputs of a solver when applied to compute answer sets of
a developed ASP program. Services of the IDE allow a user to execute the test cases
and to generate a report of the results. Thus, for a reported failed test case, the plug-in
connector automatically generates and forwards to dwasp all required inputs, configures,
and executes of debugging tasks relevant to the studied test case. In this way the dwasp
debugger synergistically works with the test-driven framework of aspide resulting in a
more complete test-driven development environment. Overall, the combination provides
an intuitive user-experience with aspide similar to the one of modern IDEs for software
development with imperative languages.

To summarize, the paper makes the following contributions1:

1. We present an interactive and efficient debugging technique for non-ground ASP
programs (see Section 3).

2. We implement a tool, called dwasp, for debugging non-ground ASP programs sup-
porting all syntax of the latest ASP-Core (see Section 4.1).

3. We suggest a new graphical debugging interface for ASP programs, called dwasp-gui,
based on dwasp that improves the user-experience of the debugger (see Section 4.2).

4. We integrate dwasp-gui over a new plug-in connector with aspide (see Section 4.3).

1 This paper is an extended and improved version of Dodaro et al. (2015) featuring the following im-
provements: (i) we provide a new formal description of the debugging approach and (ii) we prove some
of its formal properties; (iii) we extend the approach with “missing support” faults; (iv) we implement
the dwasp-gui; (v) we extend aspide with the new debugger; and (vi) we perform a usability testing
assessment on students of a course on ASP.
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5. We compare our tool with state-of-the-art debuggers based on meta-programming
approaches (Gebser et al. 2008; Oetsch et al. 2010) and show that our approach is
basically unaffected by the combinatorial blow-up which limits the performance of
meta-programming approaches [cfr. (Oetsch et al. 2010)] (see Section 5).

6. We report the results of an assessment of usability and appreciation of the debugger
obtained by running a user-experience experiment involving students of a course on
ASP (see Section 6).

2 Answer set programming

In this section we overview ASP focusing on preliminary notions that are required for
describing the debugging approach implemented in dwasp. The reader is referred to Baral
(2010) and Gebser et al. (2012) for a more comprehensive presentation of ASP.

Syntax. A program Π is a finite set of rules of the form

a1 ∨ . . . ∨ am ← l1, . . . , ln, (1)

where a1, . . . , am are atoms and l1, . . . , ln are literals for m,n ≥ 0. In particular, an atom
is an expression of the form p(t1, . . . , tk), where p is a predicate symbol and t1, . . . , tk
are terms. Terms are alphanumeric strings and are distinguished in variables and con-
stants. According to the Prolog’s convention, only variables start with an uppercase letter.
A literal is an atom ai (positive) or its negation ∼ai (negative), where ∼ denotes the
negation as failure. An atom, literal, or rule is called ground if it contains no variable. The
complement of a literal l is denoted by l. In particular, given atom a it holds that a = ∼a

and ∼a = a. Moreover, the complement for a set of literals L is L := {l | l ∈ L}. Given
a rule r of the form (1), the set of atoms H(r) = {a1, . . . , am} is called head and the set
of literals B(r) = {l1, . . . , ln} is called body. Moreover, B(r) can be partitioned into the
sets B+(r) and B−(r) comprising the positive and negative body literals, respectively.
A rule r is called fact if |H(r)| = 1 and B(r) = ∅ and constraint if H(r) = ∅. Every rule
r ∈ Π must be safe, that is, each variable of r must occur in at least one positive literal
of B+(r). In the following, we will also use choice rules of the form {a}, where a is a
ground atom. A choice rule {a} is hereafter considered as a syntactic shortcut for the
rule a ∨ aF ←, where aF is a fresh new atom not appearing elsewhere in the program.

Semantics. Let Π be an ASP program, the Herbrand Universe UΠ, and the Herbrand
base BΠ are defined as usual. The semantics of an ASP program is given in terms of
the answer sets of its ground instantiation. The ground instantiation of Π, denoted by
ΠG, is the ground program obtained by properly substituting all variables occurring in
rules from Π with elements of UΠ. An interpretation is a set of ground atoms I ⊆ BΠ.
Relation |= is inductively defined as follows: for a ∈ BΠ, I |= a if a ∈ I, otherwise I 
|= a;
I |= ∼a if I 
|= a; for a set of atoms S, I |= S if I |= l for all l ∈ S, otherwise I 
|= S; for
a rule r ∈ ΠG, I |= r if I ∩H(r) 
= ∅ whenever I |= B(r); for a program ΠG, I |= ΠG if
I |= r for all r ∈ ΠG. I is a model of ΠG if I |= ΠG.

The reduct ΠG
I of a program ΠG with respect to an interpretation I is obtained from

ΠG as follows: (i) any rule r such that I 
|= B−(r) is removed; (ii) any negated literal l
such that I 
|= l is removed from the body of the remaining rules. An interpretation I is
an answer set (stable model) of a program ΠG if I |= ΠG, and there is no J ⊂ I such
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that J |= ΠG
I . The set of all answer sets of Π is denoted by AS(Π). Π is incoherent, if

AS(Π) = ∅, and coherent otherwise.

Support. Given a model I for a ground program Π, we say that a ground atom a ∈ I is
supported with respect to I if there exists a supporting rule r ∈ ΠG such that I |= B(r),
I |= a, and I 
|= (H(r)\{a}). As it follows from the definition of the semantics given
above, all atoms in an answer set I must be supported.

3 Debugging approach

In the following we present our approach to interactive localization of faults in non-ground
ASP programs. In general, one can differentiate between syntactic and semantic faults
which require specific methods for debugging them. The first type of faults is usually
detected by parsers of ASP grounders, whereas semantic faults can only be observed
by a user while analyzing answer sets returned by a solver. In order to detect faults of
the second type many ASP users verify the correctness of a program by testing it on a
sample instance, which is common for software development. In this case a user compares
a (sub)set of all answer sets returned by a solver with expected solutions determined by
hand. Therefore, often at least one answer set of the program for the sample instance is
known to the user, otherwise it is impossible to understand that some program is buggy.
That is, a bug is then revealed when the known answer set is not among the computed
ones.

Definition 1 (Buggy program)
Let Πc be the intended (correct) program that a user is going to formulate and AS(Πc)

be a set of its known answer sets. Then, a program Π is said to be buggy with respect to
a program Πc if there exists an answer set A ∈ AS(Πc) such that A 
∈ AS(Π).

Note that by this definition our approach deals only with situations in which some answer
set of the correct program is missing. The opposite problem – there is an answer set
A ∈ AS(Π) such that A 
∈ AS(Πc) – is not the focus of this paper.

Example 1 (Buggy program)
Consider the program Π′ representing a (buggy) encoding for the graph coloring problem:

node(X) ← edge(X,Y )

node(X) ← edge(Y,X)

col(X, blue) ∨ col(X, red) ∨ col(X, green) ← node(X)

← col(X,C1), col(Y,C2), edge(X,Y ), X 
= Y,C1 
= C2.

During the development of the encoding the user might create a simple graph, for exam-
ple, considering the sample instance comprising two facts:

edge(1, 2) ← edge(2, 3) ← .

For this instance the user expects the assignment of the blue color to the nodes 1 and
3 as well as of the red color to the node 2 to be among the solutions. However, the
corresponding answer set encoding this solution is missing due to a bug in the encoding.
In particular, note that the condition C1 
= C2 should be replaced by C1 = C2. �

https://doi.org/10.1017/S1471068418000492 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000492


Debugging Non-ground ASP Programs 295

The situation in which some solution is missing can be detected by means of test-
ing, which is a common approach in software engineering aiming at identification and
localization of faults in programs.

Definition 2 (Test case)
Let Πc be the intended program, Π be a program, and BΠ be a Herbrand base of Π.
A set of atoms T ⊆ BΠ is a test case for a program Π iff there exists an answer set
A ∈ AS(Πc) such that T ⊆ A.

Definition 3 (Test case failure)
Given a program Π and a test case T , let ΠT = {← l | l ∈ T}, we say that T fails if
Π ∪ΠT is incoherent.

Assertions of a test case are modeled by constraints that force the asserted atoms to
be in all answer sets. As a result, checking whether a test case T of a program Π passes
or not is reduced to checking whether Π ∪ΠT is coherent, as illustrated in Example 2.

Example 2 (Failing test case)
Consider the program Π′ from Example 1 and the test case

T = {col(1, blue), col(2, red), col(3, blue)}.
The program Π′

T is composed by the constraints ← ∼col(1, blue), ← ∼col(2, red), and
← ∼col(3, blue). Thus, T is failing since Π′ ∪Π′

T is incoherent. �

Whenever a test case fails, that is, the given program Π is buggy, the goal of a debugger
is to find an explanation for this observation. However, in many cases it might be obvious
to a user that some rules in Π are definitely correct and are not related to a fault, for
example, facts defining the test instance or some simple rules. In such situations, the
user might want to communicate this background knowledge to the debugger in order to
exclude explanation candidates that are not explanations of the fault. In practice, this
allows the debugger to stay focused on the fault and reduce its runtime.

Definition 4 (Background knowledge)
Given a program Π the background knowledge B ⊂ Π is a set of rules considered to be
correct.

Example 3 (Background knowledge)
Consider the program Π′ from Example 1 and assume that the user is sure that the
sample instance is encoded correctly. Therefore, the background knowledge B′ of Π′ is
composed by the facts edge(1, 2) ← and edge(2, 3) ←. �

Note that while working on various industrial applications and developing this debug-
ging approach, we found that it is advantageous to move facts of test instances to the
background knowledge. This behavior is implemented as the default one in our debugger,
unless the user provides a custom definition of the background knowledge.

In general, there are two possible causes for the incoherence of Π ∪ ΠT considered in
the literature on ASP debugging: (1) over-constrained programs and (2) missing support.
In the first case we would like to find and highlight a set of rules in Π\B that erroneously
constrain the set of all answer sets and eliminate the intended ones. If the problem is
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due to the missing support, that is, none of the rules in Π\B allow for derivation of some
atoms in the intended answer set, then we would like to highlight the corresponding
atoms in the test case.

Example 4 (Errors detection)
Consider the program Π′ and the test case T from Example 2. A debugger should identify
the buggy rule:

← col(X,C1), col(Y,C2), edge(X,Y ), X 
= Y,C1 
= C2.

Indeed, given the constraints ← ∼col(1, blue) and ← ∼col(2, red) in Π′
T , the above

constraint cannot be satisfied. In that case, the condition C1 
= C2 should be replaced by
C1 = C2. �

In our approach, fault identification is done by constructing a specific program that
allows a solver to find rules and/or atoms explaining the fault. Note that this program
is different from the one generated by meta-programming debuggers, since it uses no
reification (see Sections 5 and 7 for more details). Instead, we only extend the buggy
program in a way that allows the debugger to map its results back to the input program.

Definition 5 (Debugging program)
Let Π be a program, B be the background knowledge, and id : (Π\B) → N be an
assignment of unique identifiers to the non-background knowledge rules of Π. Then,
given

1. the program ΔD
Π = {H(r) ← B(r) ∪ {_debug(id(r), �vars)} | r ∈ (Π\B)}, where

_debug(id(r), �vars) is a fresh atom and �vars is a tuple with all variables of r and
2. the program ΔS

Π = {a ← ∼_support(a) | a ∈ BΠ}, where _support(a) is a fresh
atom called supporting atom of a,

the debugging program ΔΠ of Π is defined as ΔΠ = ΔD
Π ∪ΔS

Π ∪ B.

Example 5 (Debugging program)
Consider the program Π′ and the background knowledge B′ from Example 3. The debug-
ging program ΔΠ′ is the following set of rules:

ΔD
Π : node(X) ← edge(X,Y ),_debug(1, X, Y )

node(X) ← edge(Y,X),_debug(2, Y,X)

col(X, blue) ∨ col(X, red) ∨ col(X, green) ← node(X),_debug(3, X)

← col(X,C1), col(Y,C2), edge(X,Y ),

X 
= Y, C1 
= C2, _debug(4, X, Y, C1, C2)

ΔS
Π : node(i) ← ∼_support(node(i)) ∀ i ∈ {1, 2, 3}

edge(i, j) ← ∼_support(edge(i, j)) ∀ (i, j) ∈ {(1, 2), (2, 3)}
col(n, c) ← ∼_support(col(n, c)) ∀ n ∈ {1, 2, 3}, ∀ c ∈ {blue, red, green}

B : edge(1, 2) ← edge(2, 3) ← �

Since atoms of the form _debug(id(r), �vars) and _support(a) only appear in the body
of the rules of ΔΠ, they are not supported. Therefore, ΔΠ is extended to provide a
supporting rule for all atoms of this form.
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Definition 6 (Extended debugging program)
Let ΔΠ be a debugging program, AD = {_debug(id(r), �vars) | _debug(id(r), �vars) ∈
BΔΠ

} and AS = {_support(a) | _support(a) ∈ BΔΠ
}. Then, an extended debugging

program Δ∗
Π is defined as ΔΠ ∪{{a} ← | a ∈ (AD ∪AS)}, where {a} ← denotes a choice

rule (Simons et al. 2002).

Example 6 (Extended debugging program)
Consider ΔΠ′ from Example 5. Given ΔΠ′ an intelligent grounder would output a program
that comprises only the ground rules derived from the background knowledge, namely
edge(1, 2) ← and edge(2, 3) ←. All other rules will be dropped because of the atoms over
_debug and _support predicates.

The extended debugging program Δ∗
Π′ comprises the following additional set of rules:

{_debug(1, i, j)} ← ∀ (i, j) ∈ {(1, 2), (1, 3)}
{_debug(2, i, j)} ← ∀ (i, j) ∈ {(1, 2), (1, 3)}
{_debug(3, i)} ← ∀ i ∈ {1, 2, 3}
{_debug(4, 1, 2, c1, c2)} ← ∀ c1, c2 ∈ {blue, red, green} | c1 
= c2
{_support(node(i))} ← ∀ i ∈ {1, 2, 3}
{_support(edge(i, j))} ← ∀ (i, j) ∈ {(1, 2), (1, 3)}
{_support(col(n, c))} ← ∀ n ∈ {1, 2, 3}, ∀ c ∈ {blue, red, green} � .

These rules provide the necessary support to the fresh body atoms of the rules in ΔD
Π

and ΔS
Π thus disabling the simplifications of a grounder.

It is important to show that the extended debugging program preserves some properties
of the original program. In particular, in the following it is shown that, under some
conditions, the extended debugging program is coherent if and only if the original program
is coherent.

Proposition 1
Let Π be a program, B a background knowledge, and T a test case. In addition, let
ΠA = {a ←| a ∈ (AD ∪ AS)}. Then, a program ΓΠ = Δ

′∗
Π ∪ ΠT ∪ ΠA is coherent iff

Π ∪ΠT is coherent.

Proof sketch
The proof follows from the observation that the set of facts ΠA in the program ΓΠ reduces
Δ∗

Π to Π. Namely, the set of rules {{a} ← | a ∈ (AD ∪ AS)} is trivially satisfied given
ΠA and can be removed from consideration. Moreover, all atoms over _debug predicate
must be valuated to true because of ΠA and can be removed from bodies of corresponding
rules. Finally, none of the bodies of rules in ΔS

Π are satisfied given ΠA and, therefore,
these rules are also removed.

Consequently, checking the correctness of a test case T of a program Π and background
knowledge B can be done by verifying if ΓΠ is coherent. In case ΓΠ is incoherent, and so
is the Π ∪ΠT , we can use ΓΠ to find the reason of the incoherence.

Definition 7 (Reason of incoherence)
Let ΓΠ be an incoherent program. A set of rules R ⊆ ΠA is a reason of incoherence for
ΓΠ if (ΓΠ\ΠA)∪R is incoherent. A reason of incoherence R is minimal if there is no set
of rules R′ ⊂ R such that R′ is reason of incoherence for ΓΠ.
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Example 7 (Reason of incoherence)
Consider the extended debugging program Δ∗

Π′ from Example 6 and the following test
case:

T = {col(1, blue), col(2, red), col(3, blue)}.
Note that ΓΠ′\Π′

A is coherent, whereas ΓΠ is incoherent. Thus, a (trivial) reason of inco-
herence would be the whole set Π′

A. There are two minimal reasons of incoherence, that
is, R1 = {_debug(4, 1, 2, blue, red) ←} and R2 = {_debug(4, 2, 3, blue, red) ←}. Clearly,
when atoms col(1, blue) and col(2, red) are true, the rule

← col(X,C1), col(Y,C2), edge(X,Y ), X 
= Y,C1 
= C2

with the instantiation X = 1, Y = 2, C1 = blue, and C2 = red is violated, thus the atom
_debug(4, 1, 2, blue, red) cannot be true. Moreover, note that both reasons originate from
the same non-ground rule and are due to the symmetry of substitutions. �

One important property of reasons of incoherence is their monotonicity, that is, if a set
of rules R ⊆ ΠA is a reason of incoherence, then all supersets R1 ⊆ ΠA of R are also
reasons of incoherence.

Theorem 1 (Monotonicity)
Let Π be a program, T a test case, B a background knowledge, and Δ∗

Π an extended
debugging program over Π and B. Let ΓΠ = Δ∗

Π ∪ ΠT ∪ ΠA be an incoherent program
and R ⊆ ΠA be a reason of incoherence, that is, (ΓΠ\ΠA)∪R is incoherent by definition.
Then, any set of rules R1, such that R ⊂ R1 ⊆ ΠA, is a reason of incoherence.

Proof
Let P = ΓΠ\ΠA. Suppose that P ∪ R1 is coherent and M1 is an answer set. We will
prove that M1 is an answer set of P ∪R. Therefore, we have a contradiction.

Let R2 = R1\R and let AR2
= {a | a ← ∈ R2}. For each atom a ∈ AR2

[i.e. of the
form _debug(·) or _support(·)] there is a choice rule of the form {a} ← ∈ P. Therefore,
since {a} ← is the only rule containing a in the head, the following property holds:

AS(P ∪R)

=

AS(P ∪R ∪ {{a} ←| a ∈ AR2
})

⊇
AS(P ∪R ∪ {a ←| a ∈ AR2

})
=

AS(P ∪R ∪R2)

=

AS(P ∪R1).

Therefore, AS(P ∪ R) ⊇ AS(P ∪ R1). Thus, if M1 is an answer set of P ∪ R1, then M1

is an answer set of P ∪ R, which is impossible since by definition P ∪ R is incoherent.
Consequently, P ∪R1 is also incoherent.

Note that there are multiple ways to prove Theorem 1. For instance, we can use the
definition of reduct given in Section 2. The idea of the proof is based on the fact that for
any test case T the program ΠT defines a set of possible interpretations by constraining
the truth assignments of atoms in T . According to the definition of the reduct, for each
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interpretation I there is only one reduct corresponding to it. Since bodies of all rules in
the reduct are positive, that is, comprise no negative literals, the consequence relation is
monotonic. Therefore, we can always find at least one minimal reason of incoherence for
every reduct and, consequently, for every interpretation allowed by the given test case.

Intuitively, a reason of incoherence represents a set of rules that makes the program
incoherent. If the reason is minimal, removing one of those rules from the program makes
it coherent. Thus, debugging an incoherent program can be reduced to the process of
finding a minimal reason of incoherence, fix it and then reiterate the process until all
reasons have been analyzed. However, in some cases a reason of incoherence might contain
a large number of rules, thus making it infeasible to find the buggy rule among them.
Therefore, we aim at reducing the reasons of incoherence by querying the user on the
atoms that must belong to the intended answer set.

Example 8 (Buggy encoding)
Consider the following program Π′′:

a ← c b ← ∼c c ← ∼b ← c,∼b

and the test case T = {a}. The program ΔΠ′′ obtained from Π′′ is the following:

a ← c,_debug(1) b ← ∼c,_debug(2) c ← ∼b,_debug(3) ← c,∼b,_debug(4)

a ← ∼_support(a) b ← ∼_support(b) c ← ∼_support(c).

In this case, R = {_debug(4) ←,_support(a) ←,_support(b) ←} is a minimal reason of
incoherence of the program ΓΠ′′ . The intuitive meaning is that when the rule ← c,∼b is
in the program the test case fails because a and b cannot be supported. Thus, the source
of the error might be the rule ← c,∼b or one of the rules containing a and b in the head.
The idea is to query the user to reduce the possible source of errors. �

Definition 8 (Query)
Let ΓΠ be an incoherent program , let T be a test case, and let R be a minimal reason
of incoherence. A query is an atom q ∈ BΠ\T . Let Γ∗

Π = (ΓΠ\ΠA) ∪R, we define

Q+(q) =
⋃

r∈R{I | q ∈ I, I ∈ AS(Γ∗
Π\{r})}

and

Q−(q) =
⋃

r∈R{I | q /∈ I, I ∈ AS(Γ∗
Π\{r})}.

Note that if R is minimal, then Γ∗
Π\{r} is coherent, for each r ∈ R. For a query atom q,

the set Q+(q) contains all answer sets in which the query atom q is true, whereas Q−(q)
contains all answer sets in which q is false. Such sets are used to discriminate which atom
is selected as query atom. The user then should confirm whether the query atom q is or
not in the intended answer set.

Example 9 (Query)
Consider the program Π′′ from Example 8 and the minimal reason of incoherence R =

{_debug(4) ←,_support(a) ←,_support(b) ←}. A query atom is one of b and c. The
program Γ′′∗

Π \{_debug(4) ←} admits the following answer sets:

I1 = {a, c,_support(a),_support(b),_debug(1),_debug(3)},
I2 = {a, c,_support(a),_support(b),_debug(1),_debug(2),_debug(3)},
I3 = {a, c,_support(a),_support(b),_support(c),_debug(1),_debug(3)},
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I4 = {a, c,_support(a),_support(b),_support(c),_debug(1),_debug(2),_debug(3)},
I5 = {a, c,_support(a),_support(b),_debug(1)},
I6 = {a, c,_support(a),_support(b),_debug(1),_debug(2)}.

Next, the program Γ′′∗
Π \{_support(a)} admits the following answer sets:

I7 = {a, b,_support(b),_support(c),_debug(2),_debug(4)},
I8 = {a, b,_support(b),_support(c),_debug(2),_debug(3),_debug(4)},
I9 = {a, b,_support(b),_support(c),_debug(1),_debug(2),_debug(4)},
I10 = {a, b,_support(b),_support(c),_debug(1),_debug(2),_debug(3),_debug(4)},
I11 = {a,_support(b),_support(c),_debug(4)},
I12 = {a,_support(b),_support(c),_debug(1),_debug(4)}.

Finally, the program Γ′′∗
Π \{_support(b)} admits the following answer sets:

I13 = {a, b, c,_support(a),_debug(1),_debug(4)},
I14 = {a, b, c,_support(a),_debug(1),_debug(2),_debug(4)},
I15 = {a, b, c,_support(a),_debug(1),_debug(3),_debug(4)},
I16 = {a, b, c,_support(a),_debug(1),_debug(2),_debug(3),_debug(4)}.

Then, Q+(b)= {I7, . . . , I10, I13, . . . , I16} and Q−(b)= {I1, . . . , I6, I11, I12}, while Q+(c) =

{I1, . . . , I6, I13, . . . , I16} and Q−(c) = {I7, . . . , I12}. �

After computing the sets Q+(p) and Q−(p) for all atoms p, the idea is to select a query
atom in a way that, regardless the answer to the query, the number of possible fixes is cut
in half, that is, the atom q such that the absolute value of |Q+(q)|− |Q−(q)| is minimum.
When the atom q is selected, the user considers whether q to be true in the expected
answer set. If q must be true, then ← ∼q is added to the extended debugging program,
otherwise ← q is added.

Example 10 (Query session)
Let us continue Example 8. The atom b is selected as query atom, since |Q+(b)| −
|Q−(b)| = 0. When the query b is selected, the user considers whether b to be true in the
expected answer set. Assume the user selects b to be true and ← ∼b is added to Δ∗

Π′′ .
For the new version of the extended debugging program we compute the new minimal
reason of incoherence R = {_support(a) ←,_support(b) ←}. If the user answers the
next only possible query c with false, the Δ∗

Π′′ is extended with ← c. Thus, the newly
computed reason of incoherence comprises only one rule R = {_support(a) ←}.

4 A debugger based on dwasp

In this section, a new graphical debugger based on dwasp, called dwasp-gui, and its
integration in aspide (Febbraro et al. 2011) are presented by running an example.

4.1 The dwasp debugger

Our implementation of the dwasp debugger consists of two components: the debug-
ging grounder gringo-wrapper and dwasp. Figure 1 illustrates the interaction of both
components to debug a program Π. First, the program Π is read by gringo-wrapper
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Fig. 1. Interaction of gringo-wrapper and dwasp in debugging mode.

from either the standard input or several input files. The debugging grounder internally
transforms the input program, passes the result to an ASP grounder, and outputs the
ground debugging program to the standard output, which is then processed by dwasp
to start the interactive debugging session. In general, gringo-wrapper supports any
lparse-compatible grounder; however, in our implementation we use gringo (Gebser
et al. 2011).

Grounding with gringo-wrapper. The task of gringo-wrapper is to obtain the
grounded debugging program given an input program Π and some test case T . First,
Π is translated to the extended debugging program Δ∗

Π, as described in Definition 6 and
T is translated into ΠT . In case a user does not provide the background knowledge, by
default, all facts of Π are assumed to be correct, that is, the background knowledge B
comprises all facts of Π. After this transformation, gringo is used to obtain the ground
version of Δ∗

Π ∪ ΠT . However, modern grounders perform several optimizations during
grounding, such as deriving new facts from normal rules. Although these optimizations
potentially decrease the time required by the solver, they are counterproductive when
debugging a logic program because wrong facts could be derived from faulty rules. More-
over, a grounder might remove entire non-ground rules that are missing support. In this
case, gringo-wrapper issues a warning message that highlights the rules that were
removed by the grounder.

There are a number of ways to avoid the removal of atoms or simplification of rules
done by grounders. One can use --keep-facts option of gringo (since version 4.5.4)
or use the following workaround implemented in gringo-wrapper: first, the wrapper
performs a call to the grounder and analyzes the produced atoms table of the lparse
format, that is, a list of ground atoms occurring in the ground program. Then, for each
atom p the choice rule {p} is added to the original program and the grounder is called
again. These additional rules are removed in a postprocessing step.

Debugging session with dwasp. dwasp is a specialized variant of wasp (Alviano et al.
2015), a state-of-the-art ASP solver. wasp is based on a CDCL-like backtracking algo-
rithm (Silva and Sakallah 1999), featuring the so-called incremental interface (Alviano
et al. 2015). In particular, wasp can take as input a ground ASP program Π and a
set of atoms A, called assumptions, and computes either an answer set I ⊇ A (if Π is
coherent) or a reason of incoherence R ⊆ A (if Π is incoherent). During a debugging
session the solver is first invoked by providing as input the program produced by the
gringo-wrapper, that is, Π = (Δ∗

Π ∪ ΠT )
G, and A = AD ∪ AS . In case an answer

set is found the execution terminates and a message outlining the condition is provided
to the user. Otherwise, a reason of incoherence R is returned by wasp. Note that, as
argued in Alviano and Dodaro (2016), reasons of incoherence computed by wasp are not
minimal in general. Therefore, dwasp computes a minimal reason of incoherence R∗ by
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Fig. 2. Interaction of the user with the debugging system: The front-end dwasp-gui uses
gringo-wrapper and dwasp to debug the program.

using the state-of-the-art algorithm quickxplain (Junker 2004). R∗ is then provided to
the user. Subsequently, dwasp computes one or more query atoms according to the def-
initions of previous section. Actually, in order to reduce the number of queries provided
to the user, dwasp implements a heuristic for the computation of query atoms. Given a
minimal reason of incoherence R∗, | R∗ | calls to the solver are performed. In particular,
for each element p ∈ R∗ a call is performed where Π = Δ∗

Π ∪ ΠT and A = R∗\{p}.
A heuristically limited number of answer sets for each call is then used to compute an
estimation of the sets Q+ and Q− [note that the heuristic is needed to avoid to compute
all possible answer sets; Dodaro et al. (2015)]. Then the queries are computed, and user
may provide answers according to the expected solution. The answers are added in the
solver input as described in previous section, and the process is repeated (computing a
smaller reason of incoherence) until the bug is identified (or the user stops the debugger).

4.2 The dwasp-gui

Architecture. The architecture of the visual debugging system is depicted in Figure 2.
There are two main components: the dwasp-gui and the debugger presented in the
previous section. The dwasp-gui implements the graphical user interface, handles input
and output, and controls the invocation of the debugger. In particular, the dwasp-gui
wraps both gringo-wrapper and dwasp during the entire debugging session, so that
the user can control them from a more friendly graphical environment. The components
implement an interaction protocol that allows to exchange information and maintain the
debugger in execution until it is interrupted by the user.

User interface. An instance of the dwasp-gui running Example 1 is depicted in
Figure 3(a). The main window is split in two parts. The panels devoted to the speci-
fication of the inputs are on the left. There, the files containing the ASP program in
input are listed below the label “Workspace”, and the files containing test cases are listed
below the label “Test Case”. Indeed, the user can specify several test case for the same
program, and the interface allows to debug one case at time. Test cases are provided
by the user as text files according to a simple syntax. For each atom a that is expected
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Fig. 3. Debugging and testing the 3-Colorability encoding (Example 1). (a) Main window of
the dwasp-gui. (b) A test case in dwasp-gui. (c) Unit testing and debugging (interaction with
aspide).

to be true (resp. false) in the answer set, the user writes a statement assertTrue(a)
[resp. assertFalse(a)]. The test case of Example 1 was encoded as depicted in Figure 3(b).
On the right middle part of the window [see Figure 3(a)] there is a program editor fea-
turing syntax highlights, where the user can edit both program and test case files. On
top of the program editor is a tool-bar containing the buttons for running or concluding
a debugging session on a specific test case. The button with a red square icon is used
to stop a running debugger. The test case to run can be selected from a drop-down list
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that is enabled by clicking on the run button (having a green triangle as icon). When a
debugging session is started, dwasp returns a minimal reason of incoherence R, which
is interpreted by the dwasp-gui by highlighting the corresponding non-ground rules in
red. In particular, atoms of the form _debug(i, . . . ) cause the highlight of the i-th rule,
and when there are only atoms of the form _support(a(. . . )), the rules having atoms of
predicate a in the head are highlighted. The user can inspect a highlighted rule hovering
over such a rule with the cursor, and the dwasp-gui shows in a pop-up both a substi-
tution and a ground version of the rule causing the incoherence. To have an idea of this
functionality, the faulty constraints of Example 1 are shown highlighted and inspected
by the user in Figure 3(a).

The identification of the faulty constraints of Example 1 is rather straightforward.
To illustrate how the interface handles more complex programs, and demonstrating the
query feature of dwasp, we purposely modified (introducing a simple bug in the last
rule) the encoding of the Knight Tour used in the ASP Competitions 2011. The result
obtained by running the debugger on a simple instance of that problem with the buggy
encoding is depicted in Figure 4(b). In this case, dwasp identifies at first a number
of rules as cause for the incoherence, but just one is guilty. At the same time dwasp
computes a set of possible queries to be answered by the user. Queries are displayed in
dwasp-gui on the left panel, and the user can answer yes (resp. no) by clicking on the
green (resp. red) sign, or can leave the query unanswered. Note that the user can answer
several queries at once and in random order, a feature not available in the command-line
interface of dwasp. In our debugging session we answer that we expect cell(3,2) and
reached(3,2) to be true, and as a result dwasp is able to precisely identify the bug as
depicted in Figure 4(a), and no further query can be posed to the user. Note that, on
the left dwasp-gui displays a query history where the answers given by the user can be
inspected and possibly unrolled.

4.3 Integration with aspide

We integrated the graphical user interface dwasp-gui inside the IDE aspide (Febbraro
et al. 2011) by developing a plug-in connector and extending some components of the
user interface.

As a result, aspide offers several options for invoking the dwasp-gui. In the simplest
scenario the user has to press a button in the main tool bar of aspide. This button
(having a bug as icon) is pointed by a blue arrow in Figure 5(a) and starts the debugger
using current run configuration. Alternatively, he/she can run the dwasp-gui on some
specific files of a project. Figure 5(a) depicts also this use case, where the user (i) selects
some files to debug in the project explorer (they are highlighted in blue on the left-hand
side) and (ii) right-clicks the mouse to select (iii) the menu item labeled “Debug Directly”
(that starts the dwasp-gui).

Another handy option available in aspide lets the user call the debugger directly from
the window presenting the results of the execution of a solver. In Figure 5(b) we see
that current execution terminated and no answer set has been found; thus the user can
start the debugger directly from that window by clicking on the dedicated button labeled
“Debug” from the toolbar in the bottom left side of the window.
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Fig. 4. Debugging the Knight Tour encoding from ASP Competition 2011. (a) Knight Tour
(queries). (b) Knight Tour (identified).
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Fig. 5. Debugging the Knight Tour encoding from ASP Competition 2011. (a) Run from the
main window. (b) Run from results window.
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In all the mentioned use cases the user has to do nothing for configuring dwasp-gui, all
the needed intermediate files are automatically generated by aspide, and the debugger
is launched automatically on the specified program.

We now use a more general use case to present the combination of the new debugger
with the unit testing framework of the IDE (Febbraro et al. 2011). Unit testing is a white-
box testing technique that requires to assess separately subparts of a source code called
units to verify whether they behave as intended. aspide supports a testing language that
allows the developer to specify the rules composing one or several units, specify one or
more inputs and assert a number of conditions on both expected outputs and the expected
behavior of sub-programs. Test case specifications can be developed and run in aspide,
and the assertions are automatically verified by analyzing the output of the execution.
aspide provides the user with some graphic tools for simplifying the development and
the inspection of results of test cases executions.2 In the aspide testing tool one could
easily identify a failing test case, but there was no support for understanding the cause of
failure of a test case. We solved this issue by connecting the debugger in the unit testing
framework.

The workflow for testing and debugging is now illustrated by using the program and
the test case presented in Example 2. In Figure 3(c), we present a screenshot of aspide
with a workspace that has the buggy graph colorability encoding loaded (see the file
threecol.dl on the left panel of aspide). Test cases in aspide can be defined according to
a rich test case specification language that was introduced in Febbraro et al. (2011), and
that inspired the specification of test cases in dwasp. Actually, every dwasp test case
is also a valid unit test case specification for aspide, modulo some additional syntactic
construct needed to configure the testing tool with the program file to be tested and its
input. According to Example 2 we defined the test case in file newTestFile.test, and its
specification is shown in the central editor window of aspide of Figure 3(c). When test
cases are executed, a new window is opened [small window in Figure 3(c)], where the
result of the execution is shown. Failing test cases are highlighted in red. The user can
start debugging of one of the failing test case by just clicking on the Debug button, and
the dwasp-gui window of Figure 3(a) is displayed. Note that, once more the user has to
do nothing for configuring dwasp-gui, all the needed files are automatically generated
by aspide. Finally, the Back to ASPIDE button allows to see the faulty rule highlighted
also in aspide.

5 Performance analysis

We have assessed the performance of our implementation by comparing it with the de-
bugger Ouroboros (Oetsch et al. 2010; Polleres et al. 2013), which is the only main-
tained solution able to cope with non-ground programs. In particular, we have employed
the same ASP encodings and instances taken from ASP competitions that have been
used in Polleres et al. (2013) for analyzing the performance of a debugger. The bench-
mark considered are Graph Colouring, Hanoi Tower, Knights Tour, and Partner Units.

2 A complete description of the aspide framework for unit testing is out of the scope of this paper, for
more details we refer the reader to Febbraro et al. (2011).
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Table 1. Comparison of grounding programs produced by gringo-wrapper
and Ouroboros

gringo gringo-wrapper Ouroboros

Time Time Time
Benchmark Instance #n-ground #ground (s) #ground (s) #ground (s)

Graph Col. 1-125 1672 6145 0.22 8031 0.63 19,020 0.95
Graph Col. 11-130 1757 6455 0.21 8416 0.68 19,845 1.10
Graph Col. 21-135 1986 7269 0.24 9305 0.73 21,174 1.04
Graph Col. 30-135 1794 6597 0.25 8633 0.64 20,502 1.02
Graph Col. 31-140 2039 7467 0.22 9578 0.67 21,887 1.03
Graph Col. 40-140 2219 8097 0.32 10,208 0.68 22,517 1.03
Graph Col. 41-145 2262 8260 0.25 10,446 0.68 23,195 1.04
Graph Col. 51-120 2405 8773 0.36 11,034 0.76 24,223 1.05
Hanoi 09-28 104 31,748 0.40 94,166 1.61 1,739,800 8.09
Hanoi 11-30 106 34,056 0.33 100,942 1.58 1,864,222 9.50
Hanoi 15-34 110 38,672 0.38 114,524 2.11 2,112,986 9.43
Hanoi 16-40 100 27,137 0.35 80,615 1.40 1,491,281 7.04
Hanoi 22-60 102 28,311 0.29 84,644 1.43 1,678,483 7.80
Hanoi 38-80 106 34,044 0.23 100,942 1.68 1,864,250 8.53
Hanoi 41-100 104 31,738 0.39 94,166 1.52 1,739,830 13.24
Hanoi 47-120 99 25,968 0.19 77,227 1.49 1,429,695 6.90
Knights Tour 01-08 21 1384 0.34 3413 1.14 12,985,716 59.44
Knights Tour 03-12 22 3356 0.13 8652 0.60 >72,244,034 >300
Knights Tour 05-16 21 6192 0.16 16,285 0.64 >69,494,641 >300
Knights Tour 06-20 21 9892 0.16 26,321 0.88 >62,785,993 >300
Knights Tour 07-30 21 22,922 0.40 61,911 1.13 >59,166,564 >300
Knights Tour 08-40 21 41,352 0.44 112,501 1.27 >54,944,042 >300
Knights Tour 09-46 21 55,002 0.53 150,055 1.58 >56,443,633 >300
Knights Tour 10-50 22 65,182 0.86 178,094 2.15 >62,402,315 >300
Partner Units 176-24 68 12,563 0.22 14,218 1.03 102,023 1.47
Partner Units 23-30 117 39,231 0.29 42,106 1.20 276,645 2.11
Partner Units 29-40 108 59,979 0.34 64,413 1.67 629,639 3.35
Partner Units 207-58 136 158,564 0.61 168,289 3.07 2,726,182 11.94
Partner Units 204-67 141 218,808 0.78 231,083 5.30 4,280,282 17.79
Partner Units 175-75 290 682,015 2.10 699,472 16.03 8,604,415 40.60
Partner Units 52-100 254 952,363 2.68 979,603 16.61 20,125,857 90.10
Partner Units 115-100 254 952,369 2.86 979,759 16.07 20,317,011 94.26

For grounding we use gringo (v4.4.0) in both methods. The comparison is done by
measuring grounding size and running time of gringo for both debugging tools.

Results are reported in Table 1, where the first two columns represent the benchmarks
and the instances considered, respectively. The third column is the number of rules of the
non-ground program, while #ground and time(s) are the size of the ground program and
the execution time of gringo, respectively. In our approach the increase in grounding
size is due to the fact that the gringo-wrapper disables the optimizations performed by
gringo, whereas in Ouroboros the grounding of an ASP program modeling debugging
is required. Considering the instances that were groundable with gringo within 5min
by our Intel Core i7-3667U machine with 8GB of RAM, we report that in our approach
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the size of the instantiation of the debugging program is from 1.5 to 3 times the size of
grounding the original program, whereas the debugging program of Ouroboros gener-
ates groundings that are from 50 times up to 9382 times larger than the original program.
Note that, the performance of our approach is only limited by the performance of the
underlying solver, whereas in the case of Ouroboros the limit is in the grounding of
the debugging program, which may not be feasible.

6 Usability test

In order to assess usability of the interface and degree of appreciation for our debugger
tool we have set up a usability experiment. The test has been conducted during a regular
class of the course on ASP given by Prof. Nicola Leone for Bachelor Degree students in
Computer Science at University of Calabria. The assessment was executed on January 19,
2017, during a regular practice class at the end of the course. The tool was not explained
in a previous lecture and the experiment was not announced in advance to ensure that:
(i) users (i.e. students) never used the tool before, and (ii) represent a sample of a
distribution including both sufficiently skilled and less skilled ASP programmers; (iii)
do not include only those that are interested in tools or have specific bias on using
programming environments.

Test setup. We prepared a test in which students were asked to find a bug on three
ASP encodings. We selected for this purpose tree well-known problems, and modified
the encodings available from the third ASP competition (Calimeri et al. 2014) website
for the following problems: 3-Colorability, Hamiltonian Path, and Stable Marriage. The
first encoding is a classical example, which was familiar to the majority of users since
it was presented during a lecture few months before to explain the guess and check
methodology, and comprises only two (non-ground) rules. The encodings for the second
and third problem were completely new to the audience, and they are much more complex
featuring six rules each. In particular, the encoding of Stable Marriage is the least intuitive
one and thus it was expected to be the hardest to fix.

We modified one constraint per encoding so that some expected answer sets were
missing on a given test case. All the encodings use basic features of the language, that
is, disjunctive normal logic programs as described in the founding paper by Gelfond and
Lifschitz (1991) as well as in ASPCore 2.0 syntax (Calimeri et al. 2016). This choice
ensures that the encodings and causes of faults in every test are comprehensible to
the audience and no knowledge of advanced language constructs – not covered by the
lectures – is required. The students were provided with complete textual descriptions
of the problems, including an explanation of the signatures and meaning of input and
output predicates, one buggy encoding, and one test instance per problem. Students
were working on own notebooks where aspide with debugger was pre-installed and
launched with a pre-loaded workspace containing one project per problem with all
required files: problem description, encoding, and sample instances.

The test started after providing the users with: (i) a description of the task to accom-
plish, (ii) some minimal instructions on how to start the debugger and operate on the
main buttons of the interface using a different example from the ones used in the test,
and (iii) an anonymous questionnaire with a time annotating and debugger usage sheets
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for each problem. In these sheets the students had to give notes on elapsed time and
degree to which the debugger helped to find a bug. The questionnaire, to fill at the end
of the experience, contained the following questions:

• Do you find the debugger easy to use?
• Is bug detection faster using the debugger?
• Will you consider using it next time?
• How do you judge the user interface usability?

The student could answer one of Strongly disagree, Disagree, Neither agree nor disagree,
Agree, Strongly agree for the first three questions and one of Poor, Fair, Average, Good,
Excellent for the latter.

Collection of results and hypothesis testing. We collected the results provided by 26
students on three usage tests (one per problem) of 30 min each. These number are in line
with the Jakob Nielsen recommendation (Nielsen and Landauer 1993) for finding serious
usability problems in user interfaces.3 Moreover, to test the validity of our conclusions
we applied the Kolmogorov–Smirnov (K–S) test on the results, that refused the null
hypothesis with an accuracy ≥95%.4

Debugger applicability for complex problems. One of our test goals was to determine the
impact of bug fixing complexity on the applicability of the debugger. To verify that a
problem is more difficult to solve than another we measured average bug fixing times on
“fixed” cases as well as the number of cases in which a bug was identified. 3-Colorability –
the easiest problem – was solved by all students but one in 6.4 min on average, and only
38.5% declared the debugger was actually used for finding the bug. Hamiltonian Path
required 9.1 min on average to be fixed, of which 91% declared the debugger was used,
and only one student failed the test. Stable marriage was fixed in 8.2 min on average, and
100% of the students declared the debugger was used, and two students failed the test.
For the sake of completeness, we observed that the student failing in 3-Colorability, failed
also on Stable Marriage, and could solve Hamiltonian path in 25 min (the maximum, and
clearly an outlier), thus we believe this was just a non-proficient student with limited
understanding of the language. Thus, from this findings we conclude that the debugger
was used more (and, thus empirically it was more useful) as the complexity of finding
the bug increases.

Probing the opinion of the users. Results of the questionnaire are summarized in Figure 6.
All students agreed that the debugger is easy to use – 77% of students answered “Agree”
and the 23% “Strongly agree” to the first question as shown in Figure 6(a). Concerning
the second question [see Figure 6(b)], 64% conclude that using the debugger accelerates
the bug fixing process (of which 8% strongly agrees), 8% is neutral, and 30% disagrees.
Interestingly, the last group includes all those students that failed at least one test as
well as some of those that did not use the debugger for some test. We interpret this

3 The Jakob Nielsen claim roughly says that few testers (no more than five users) and running as many
small tests as you can afford is enough to identify a serious usability problem (Nielsen and Landauer
1993).

4 The K–S test is one of the most useful and general non-parametric tests that we used because it is
more powerful than other methods (e.g. χ2 tests) when the size of the sample is below 50 elements,
and some events (possible answers) have low frequency.
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Fig. 6. Results of the usability testing. (a) Do you find the debugger easy to use? (b) Is bug
detection faster using the debugger? (c) Will you consider using it next time? (d) How do you
judge the user interface usability?

result as follows: since the debugger was not needed to solve the easiest test, one cannot
agree in general that it always makes bug fixing faster. This explanation agrees with the
message that comes from results to the third question presented in Figure 6(c). In this
case all students would consider using the debugger again – actually 46% strongly agree.
This further outlines that also the critical users found it better to have our tool at their
disposal. Finally, with the last question we asked whether they were satisfied with the
user interface. The results are positive [see Figure 6(d)]: no student found the interface
insufficient, 38% claims it is a good interface, and 23% finds it excellent.

We can conclude that our debugger was considered easy to use, and effective when the
difficulty of bug-fixing is high; moreover, no serious usability problem was revealed, and
the user interface was perceived to be largely acceptable.

7 Related work

There are multiple approaches to ASP debugging suggested in the literature includ-
ing algorithmic (Brain and De Vos 2005; Syrjänen 2006), stepping-based (Oetsch et al.
2011), and meta-programming (Brain et al. 2007; Gebser et al. 2008; Oetsch et al.
2010; Polleres et al. 2013; Shchekotykhin 2015) methods. Among the algorithmic ap-
proaches ideas (Brain and De Vos 2005) aims at explaining: (a) why a set of atoms
S is in an answer set M , and (b) why S is not in any answer set. ideas allows a
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programmer: (1) to query for an explanation of an observed fault, (2) to analyze the
obtained results, and (3) reformulate the query to make it more precise. In our approach
refinements are found automatically once the user provides additional knowledge on an
expected answer set, thus, making the steps (2) and (3) obsolete.

Meta-programming debuggers use a program over a meta-language – a kind of ASP
solver simulation – to manipulate a program over an object language – the faulty program.
Each answer set of a meta-program comprises a diagnosis, which is a set of meta-atoms
describing the cause why some interpretation of the faulty program is not its answer set.
The spock (Gebser et al. 2008) and Ouroboros (Oetsch et al. 2010; Polleres et al. 2013)
debuggers enable the identification of faults connected with over-constraint problems and
unfounded sets. Both approaches represent the input program in a reified form allowing
application of a debugging meta-program. In case of spock the debugging can be applied
only to grounded programs, whereas Ouroboros can tackle non-grounded programs
as well. Our approach does not fall in the meta-programming classification because it
does not need any reification, nor a specific debugging program that manipulates the
reified input program. These design choices are the main reason why meta-programming
are affected by the grounding blowup (the grounding of the meta-program could be
huge) (Polleres et al. 2013). Thus, the ground debugging program has to comprise all
atoms explaining all possible faults in an input faulty program, which is not the case in
our approach. Moreover, our approach generalizes the query-based method built on top
of spock (Shchekotykhin 2015) by enabling its application to non-ground programs. We
also observe that our approach works in a radically different way with respect to meta-
programming ones, since we just add a marker to each rule and compute (and minimize)
reasons of incoherence. Another difference is that Ouroboros, in case the bug is caused
by an unfounded loop, is able to provide a loop comprising the atom. This information
is missing in our approach, which just treats unfounded loops as missing support.

The approach of smdebug (Syrjänen 2006) addresses debugging of incoherent non-
disjunctive ASP programs by adaption of Reiter’s model-based diagnosis. Similarly to our
approach the debugger focuses on analyzing contradictions, but cannot detect problems
arising due to some atom missing support (since only odd loops are considered to be
errors).

There are other approaches enabling faults localization in ASP, but not directly com-
parable with dwasp, including Consistency-Restoring Prolog (Balduccini and Gelfond
2003), translation of ASP programs to natural language (Mikitiuk et al. 2007), visualiza-
tion of justifications for an answer set (Pontelli et al. 2009) as well as stepping through
an ASP program (Oetsch et al. 2011). In Li et al. (2015), the authors present a debug-
ging technique for normal ASP programs that is based on inductive logic programming
(ILP) and test cases. The idea is to allow the programmer to specify test cases modeling
features that are expected to appear in some solution and those that should not. These
are used to revise the original program semi-automatically so that it satisfies the stated
properties. This approach offers the possibility to learn rules (and modifications of rules),
whereas dwasp focus only on identifying the buggy rules of a given program. Combining
these approaches with ideas implemented in dwasp is part of our future work.

In Schulz et al. (2015) and Schulz and Toni (2016) bugs are studied in terms of a
set of culprits (atoms) using semantics which are weaker than the answer set semantics.
A technique for explaining the set of culprits in terms of derivations is also provided.
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Approaches explaining bugs with the truth of a set of atoms are, in a sense, complemen-
tary to our approach (we identify the rules involved in a conflict).

In Dasseville and Janssens (2015) the web-based programming environment for the IDP
system is presented that also features a debugging approach based on the computation
of a reason of incoherence. This debugger does not feature a question-answering schema
that is fundamental for reducing the set of buggy rules. Moreover, we are not aware
of any IDE for ASP that provides a tight combination of debugging and unit testing
environments as the one presented in this paper.

8 Conclusion

ASP features an intuitive syntax and a well-known semantics, nonetheless the process
of finding bugs in logic programs can be non-trivial and is often a tedious task. For this
reason, valid ASP debuggers have emerged during the recent years. The most prominent
approaches, using ASP itself to compute explanations, are however affected by two main
issues somehow limiting their applicability some in practical cases: (i) the grounding
blowup, which may make impossible to compute the causes of a bug; and (ii) the over-
whelming number of produced explanations, which might be impossible to be browsed
by users.

In this paper we propose a novel debugging approach for non-ground ASP programs
that is not affected by both the above issues. Indeed, it points the user directly to a set
of rules involved in the bug, and – importantly – allows to refine that set interactively by
asking the user-specific questions on an expected answer set, until the bug can be easily
identified.

The new approach has been implemented in the dwasp Debugger, which was obtained
by properly combining the grounder gringo with an extended version of the ASP solver
wasp. An empirical analysis shows that the new debugger is not affected by the grounding
blowup and can handle instances that are pragmatically out of reach for state-of-the-art
meta-programming-based debuggers.

The dwasp Debugger has been complemented by a user-friendly graphical interface,
called dwasp-gui. The graphical interface improves the user-experience of debugging
ASP programs, as demonstrated by running a usability test on a class of students at-
tending a university course on ASP. Indeed, besides the usual advantages provided by
visual tools, the dwasp-gui simplifies two tasks that are not easy to carry out in the
command line interface, namely: the definition of test cases and the interactive query
answering. The query-answering feature is made much more user-friendly, since the user
can simply select answers by clicking on dedicated buttons, and several possible answers
are presented to the user in a convenient list. Problematic rules are outlined immediately
in the text editor so the user is pointed immediately from the interface to sources of bugs.
dwasp-gui has also been integrated in aspide, which was missing a complete debugger
interface supporting non-ground ASP programs. The integration includes specific support
for creating failing test cases to debug directly from the unit test framework provided
by aspide supporting test-driven development. The rapid identification of the cause of
a failig test case is fundamental for test-driven development (Fraser et al. 2003). With
our extension aspide turns into a more complete IDE by offering improved debugging
support and a more effective test-driven development environment.
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Concerning future works, one possibility would be to study a possible integration of our
approach with existing ones. Moreover, an interesting work would be to investigate if our
debugging approach can be generalized also in the case when an extra, incorrect, answer
set is provided. We also plan to extend the tool in order to better handle some specific
bugs related to missing support, in particular those due to the so-called unfounded sets.
Availability. The dwasp-gui can be obtained from https://github.com/gaste/
dwasp-gui, and aspide from http://www.mat.unical.it/ricca/aspide, the plugin
connector installation starts the first time the debugger is launched.
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