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The critical dynamics of supersonic combustion waves is studied in the context of the
direct initiation of detonation in a spherical geometry. The study is performed by an
asymptotic analysis in the limit of small heat release, including unsteadiness, curvature
and the gradient of the burnt-gas flow. Derivation of analytical expressions for the
rarefaction wave in the burnt-gas flow, combined with numerical studies, provides the
basis of the analysis. The critical trajectories ‘detonation velocity vs front radius’ D(rf ) are
characterized by a decay well below the Chapman–Jouguet (CJ) velocity at a small radius
(however, larger than the detonation thickness), followed by a re-acceleration process
back to a CJ detonation. The phenomenon is explained by the dynamics of the sonic
point inside the inert rarefaction wave behind the reaction zone. The key mechanism is
a critical slowdown as soon as the sonic condition (relative to the lead shock) approaches
the reaction zone from behind, leading to an increase of the time delay in the nonlinear
response of the combustion wave to the rarefaction-wave-induced decay. Detonation fails
if the rate of decay is strong enough to prevent the sonic point catching the reaction
zone. Concerning successful initiation, the link between the trajectories D(rf ) of the
fully unsteady problem and of the self-similar CJ solution of the discontinuous model
is deciphered in the long-time limit.

Key words: detonation waves, combustion, gas dynamics

1. Introduction

The dynamics of spherical gaseous detonations is controlled by small modifications of
its inner structure which is thin compared to the radius. The direct-initiation process is
a typical example of such a sensitivity, see Clavin & Denet (2020). For large activation
energy, a critical radius larger than the detonation thickness by two orders of magnitude
has been identified by He & Clavin (1994), illustrating a quasi-steady curvature-induced
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quenching of spherical detonations. Direct numerical simulations have confirmed such a
large critical radius but they also show that strong unsteadiness of the inner-detonation
structure is involved in the trajectories ‘propagation velocity vs radius’, especially near
criticality, see He & Clavin (1994), He (1996), Eckett, Quirk & Shepherd (2000) and Ng
& Lee (2003). Investigating successful initiation far from the critical radius (supercritical
regime) and neglecting the small gradient of the burnt-gas flow, Clavin & Denet (2020)
have shown that, near the CJ regime, unsteadiness is produced by the upstream-running
compressible mode which controls the delayed response of the detonation structure to
the burnt-gas flow. The analysis was performed in the limit of small heat release which
provides us with a systematic framework for studying the problem which is one of two
time scales.

The present paper is an extension of the Clavin & Denet (2020) analysis to the
critical dynamics in a spherical geometry. The objective is to elucidate further the
mechanism responsible for the complex dynamics observed near criticality in direct
numerical simulations, namely re-ignition after a quasi-quenching of the detonation with a
propagation velocity decreasing well below the CJ velocity accompanied by a substantial
increase of the reaction-zone thickness, called sometimes ‘decoupling of the reaction from
the lead shock’. The problem is investigated here by an asymptotic analysis in the limit of
small heat release, including unsteadiness, curvature and the gradient of the burnt-gas flow
(rarefaction wave) at the exit of the reaction zone. The gradient of the rarefaction flow,
which is small at the scale of the detonation thickness, plays, however, an important role
in the critical dynamics; it controls the dynamics of the sonic point inside the rarefaction
wave behind the reaction wave. Our attention will be limited to stable or weakly unstable
detonations.

In the limit of small heat release, the Mach number is everywhere close to unity, 0 <

M − 1 � 1, and the problem reduces to a single equation for the flow. In a preliminary
step, an analytical solution is obtained for the rarefaction wave behind a detonation treated
as a discontinuity. Near the detonation front, the solution presents the same local properties
as in ordinary spherical detonations approaching the CJ regime. For example, the decrease
rate at the front is given by the curvature of the flow, as in Liñán, Kurdyumov & Sanchez
(2012) in the limit of large Mach number. The analytical solution of the burnt-gas flow is
used as the external solution of the unsteady inner structure of curved detonations. The
latter is analysed with the same formalism as in Clavin & Denet (2020). A combination of
matched asymptotic method and numerical study of the asymptotic equation is then used
for improving our understanding of the phenomenon. When the detonation velocity is
larger than the planar CJ velocity the detonation is overdrive and the sonic point is outside
the inner structure of the reaction wave. Near the critical threshold of direct initiation,
the propagation velocity of the lead shock first decreases below the CJ velocity and the
unsteady regime is still overdriven. The dynamics of the sonic point (sonic condition of
the flow relative to the lead shock) then controls the subsequent critical dynamics that
leads to either sustained detonation propagation or detonation failure. In that respect, the
gradient of the burnt-gas flow, even small, plays an important role, and analytical solutions
for the rarefaction wave behind the reaction wave are quite useful.

The analysis also clarifies the question raised by Taylor (1950a) concerning the
self-similar solution of the rarefaction flow behind a spherical CJ detonation, obtained
by Zeldovich (1942) and Taylor (1950a) in the limit of large Mach number. The detonation
being treated as a discontinuity, the radial rate of change of the flow becomes infinite
on the detonation front. According to Taylor (1950a), it is unlikely that this result
would be true if the modification of the inner structure is taken into account (non-zero
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detonation thickness). To address this question, a self-similar solution is derived in the
present article for the CJ detonation moving with a propagation Mach number larger
than unity by a small amount 0 < M − 1 � 1 (small heat release). Amazingly, the new
self-similar solution is qualitatively similar to that obtained in the opposite limit M � 1;
the gradient of the flow is also infinite on the front. However, this self-similar CJ flow is
quite different from the unsteady flow behind an overdriven detonation approaching the
CJ regime. The transitory flow, bridging the gap between the two flows, is obtained by a
numerical solution of the asymptotic equation and is re-constructed by combining method
of characteristics and analytical solutions. We will then see to what extent the self-similar
flow is meaningful when the inner structure is taken into account.

The paper is organized as follows. The first part of the paper in §§ 2 and 3 is
devoted to the rarefaction wave in a spherical geometry in the limit 0 < M − 1 � 1. The
two-time-scale nature of this flow is discussed in § 2.1. The self-similar solution behind
a spherical CJ detonation treated as a discontinuity is obtained in § 2.2. The unsteady
rarefaction wave behind an overdriven detonation is presented in § 2.3. The transitory
flow describing the transition from the overdriven regime to the self-similar CJ solution is
obtained in § 3 for a detonation treated as a discontinuity. The rest of the paper is devoted
to the study of the dynamics near criticality when the modifications to the inner structure
are taken into account. The formulation of the problem and the method of solution are
presented in § 4.1. The asymptotic analysis of overdriven detonations near the CJ regime is
performed in § 4.2. The critical dynamics is discussed in § 5 where the numerical results
are presented. Conclusions and perspectives are given in § 6.

Five appendices are added. The jump conditions across a detonation treated as a
discontinuity are recalled in Appendix A. The linear acoustic wave in a spherical geometry
is briefly recalled in Appendix B and compared with the nonlinear structure of the
rarefaction wave for 0 < M − 1 � 1. Technical details are presented in Appendix C,
including the calculation of the motion of the sonic point in the rarefaction wave. The
decay of an inert spherical shock wave freely propagating in open space is presented in
Appendix D. The C-shaped curve of the steady-state approximation is briefly revisited in
Appendix E, extending the previous analysis to a non-uniform flow of burnt gas.

2. Rarefaction wave behind a detonation treated as a discontinuity

In principle, gaseous detonations could be treated as a discontinuity if the length scale
of the burnt-gas flow is larger than the detonation thickness, namely for a radius large
enough in a spherical geometry. Even though the discontinuous model is not relevant for
the critical dynamics, the unsteady solution of the rarefaction wave is first analysed with
this model in the limit of small heat release. This is a useful preliminary step providing us
with the external solution of the solution including the modification of the inner structure.

2.1. Two-time-scale analysis of the rarefaction wave
In the limit of small heat release, the flow of burnt gas close to the detonation front is
controlled by a single equation, which corresponds to (6.6) of Clavin & Denet (2020) by
setting the reaction rate equal to zero. In this section, we show that this equation can be
extended throughout the rarefaction wave. For that purpose we study the problem of fluid
mechanics behind a supersonic discontinuity in the limit of a propagation velocity larger
than the sound speed by a small amount. Denoting γ , a, p and u the ratio of specific heat,
the isentropic speed of sound, the pressure and the gas velocity (relative to the laboratory
frame where the uncompressed gas is at rest), an inert compressible flow in a spherical
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geometry is governed by two hyperbolic equations

1
γ p

[
∂

∂t
+ (u ± a)

∂

∂r

]
p ± 1

a

[
∂

∂t
+ (u ± a)

∂

∂r

]
u = −2

u
r
, (2.1)

where r is the radius and t the time, see Liñán et al. (2012) and Clavin & Denet (2020).
For a detonation treated as a discontinuity, the pressure p and the gas velocity u on the
detonation front r = rf (t) are given in terms of the propagation velocity D(t) by the
conservation equations recalled in Appendix A, see (A1)–(A6),

r = rf (t) :
1
γ

p − pu

pu
= M(t)

u
au

, (2.2a,b)

where M(t) ≡ D(t)/a is the Mach number and the subscript u identifies the constant
properties upstream from the front. Written in the reference frame attached to the front
equations (2.1) read

x ≡ r − rf (t) � 0, drf (t)/dt = D(t)

1
γ p

[
∂

∂t
+ (u ± a − D)

∂

∂x

]
p ± 1

a

[
∂

∂t
+ (u ± a − D)

∂

∂x

]
u = −2

u
rf (t) + x

.

⎫⎪⎬
⎪⎭ (2.3)

In the limit of small heat release qm/cpTu ≡ ε2 � 1, where qm and cp are respectively
the heat release and the specific heat per unit mass and Tu is the initial temperature of
the unburnt gaseous mixture, the velocity of the planar CJ wave in steady state is slightly
higher than the sound speed, see (A2),

0 < (DoCJ − a)/a ≈ ε � 1, DoCJ ≈ (1 + ε)a, (2.4a,b)

and attention is focused on detonations sufficiently close to the CJ regime

0 � (D − DoCJ )/εa = O(1) or smaller. (2.5)

In the limit ε � 1, 0 < (M − 1) = O(ε), according to (A1)–(A6), the gas velocity is
smaller than the speed of sound u/a = O(ε) at the front. The condition for which a
weak shock wave 0 < (M − 1) � 1 can be considered as a discontinuity is discussed
in Clavin & Williams (2002). According to (2.2a,b), the relative pressure variation is as
small as u/a and the variation of (1/γ )δp/p − u/a is even smaller, of order (M − 1)u/a,
(1/γ )δp/p − u/a = O(ε2). The variation of the speed of sound is also of order ε2 δa/a =
O(ε2). Neglecting terms of order ε2, the variation of a is negligible, and the isentropic
relation (1/γ )δp/p ≈ u/a holds at the front, up to the second order in the perturbation
analysis for ε � 1 under the conditions (2.4a,b) and (2.5) for which the relative jump
of entropy across the detonation front is of order ε2. Then, the rarefaction wave is a
quasi-transonic flow which can be analysed by a two-time-scale analysis.

It was known long ago that the rarefaction wave u(r, t) behind a spherical detonation
is delimited by a weak discontinuity at the radius r0(t) of a core of stagnant gas (r0 < rf )
which grows with the speed of sound

dr0(t)/dt = a, r � r0(t) : u = 0 ⇒ du (r0(t), t) /dt = 0; r > r0(t) : u > 0.

(2.6a–c)

The flow u is oriented in the same direction as the propagation D > 0, u � 0, and is
increasing monotonically from zero at r = r0(t) to a value (at the detonation front rf )
smaller than the speed of sound by a factor ε, so that the ordering u/a = O(ε) holds
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throughout the rarefaction wave. The equations of the two characteristics C± in (2.3)
involve two differential operators

∂/∂t + V±∂/∂x, V± ≡ (u ± a) − D. (2.7a,b)

The scalars I+ ≡ (1/γ )δp/p + u/a and I− ≡ (1/γ )δp/p − u/a that are transported
by upstream running characteristic C+ and downstream running characteristic C−
respectively, are modified by the flow divergence on the right-hand side of (2.3) whose
order of magnitude is εa/r,

∂I±
∂t

+ V±
∂I±
∂x

= −2
u
r

= O(εa/r). (2.8)

Under the conditions (2.4a,b) and (2.5), the flow with respect to the front is
quasi-transonic, D − u = O(εa). The propagation velocity V− ≡ u − a − D < 0 of the
downstream-running characteristics C− is approximately −a throughout the rarefaction
wave. (We use here the same convention as in Clavin & Williams 2002; upstream-running
(downstream-running) characterizes a propagation towards the shock (the core of
stagnation gas) in the frame attached to the front.) Near the detonation front where the
flow relative to the front is subsonic D − u � a (overdriven regime), the characteristic C+
is upstream running V+ = a − (D − u) > 0. But a sonic point appears when u decreases
since V+ = 0 when D − u = a. Therefore the characteristic C+ becomes downstream
running (V+ < 0) behind the sonic point, which stands close to the front because we
consider propagation regimes of the detonation that are close to the CJ regime which
is characterized by the sonic condition at the detonation front. Then, the transport of I−
by C− from the sonic point to r0 is quasi-instantaneous compared to the slow transport of
I+ by C+, |V+|/a = O(ε), |V−|/a ≈ 1. Anticipating that the thickness of the rarefaction
wave �r ≡ (rf − r0) is smaller than the detonation radius �r/rf = O(ε), see § 2.2, the
modification of I− by the geometrical effect during the transit time �r/a of C− is of
order ε�r/rf = O(ε2) and can be neglected. Then, to leading order in the limit ε � 1,
the isentropic relation of acoustics (1/γ )δp/p = u/a, which is valid inside the detonation
structure in the limit of small heat release, holds throughout the rarefaction wave u � a,
u/εa = O(1). Then, neglecting the short time delay and the small flow modification (of
order ε2a) introduced by the fastest downstream-running mode and retaining only the
slow time scale, the leading order of the flow u(r, t) is controlled by a single equation
corresponding to the simple wave associated with C+,[

∂

∂t
+ (u + a)

∂

∂r

]
u = −a

u
r
, (2.9)

x ≡ r − rf (t) � 0,

[
∂

∂t
+ (u + a − D)

∂

∂x

]
u = −a

u
rf (t) + x

,
drf

dt
= D(t).

(2.10a–c)

2.2. Self-similar rarefaction wave behind a spherical CJ detonation
Generally speaking, when the modification to the inner structure of the leading front is
ignored (zero detonation thickness), a self-similar solution exists when a finite amount of
energy is deposited quasi-instantaneously by a quasi-punctual external source at the centre
because there are no length and time scales in the problem. This is the case for the blast
wave of Sedov (1946) and Taylor (1950b) and the rarefaction wave of Zeldovich (1942) and
Taylor (1950a) behind a CJ detonation, obtained in the limit of large Mach number M � 1,
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see, for example, Clavin & Searby (2016). We show below that, in the opposite limit of
small heat release MoCJ − 1 � 1, there is also a self-similar solution for the rarefaction
wave behind a CJ detonation, which is qualitatively similar to the self-similar solution of
Zeldovich (1942) and Taylor (1950a). The difference concerns mainly the extension of the
self-similar rarefaction wave which is small compared to the radius of the detonation in
the limit MoCJ − 1 � 1.

2.2.1. Formulation
Consider the spherical detonation propagating with the constant CJ velocity DoCJ ≈ (1 +
ε)a in the limit (2.4a,b) ε � 1. According to the conservation equations (A1)–(A6), the
boundary condition at the front takes the form

x = 0 : u ≈ εa. (2.11a,b)

Dividing by εa and introducing the non-dimensional flow of order unity in the limit ε � 1,
v(x, t) ≡ u/(εa), v ∈ [0, 1], (2.10a–c) yields[

∂

∂t
+ (u + a − DoCJ )

∂

∂x

]
v = −a

v

rf (t) + x
, v ≡ u

εa
, (2.12a,b)

[
1
a

∂

∂t
+ (v − 1)ε

∂

∂x

]
v = − v

rf (t) + x
, (2.13)

where (2.4a,b) has been used. This suggests rescaling the distance from the front by using
the new space variable η ≡ x/ε, so that (2.11a,b) and (2.13) read

η ≡ [r − rf (t)]/ε,
[

1
a

∂

∂t
+ (v − 1)

∂

∂η

]
v = − v

rf (t) + εη
; η = 0 : v = 1.

(2.14a,b)

The downstream relation (2.6a–c) is automatically fulfilled at η = η0(t) ≡ [r0(t) −
rf (t)]/ε since the relations v(η0(t), t) = 0 and dv(η0(t), t)/dt = 0 are verified by (2.14a,b),
v = 0 : ∂v/∂t − a∂v/∂η = 0, yielding dη0(t)/dt = −a, so that, using (2.4a,b) drf /dt =
(1 + ε)a, one gets dr0/dt = a.

Introducing the two lengths rfi and r0i characterizing the initial condition t = 0,

rf (t) = DoCJ t + rfi ≈ (1 + ε)at + rfi, r0(t) = at + r0i, rfi > r0i, (2.15a–c)

η0(t) ≡ −[rf (t) − r0(t)]/ε = −at + η0i, η0i ≡ −(rfi − r0i)/ε < 0, (2.16a,b)

with ε|η0i| being the initial thickness of the rarefaction wave, we will show below that
a self-similar solution of (2.14a,b) exists in the limit ε � 1 if the initial thickness of the
rarefaction wave rfi − r0i is smaller than the initial radius of the detonation rfi by a factor
ε, as it is the case in the linear solution presented in Appendix B.1,

(rfi − r0i)/r0i = O(ε), rf (t) − r0(t) = ε(at − η0i), |η0i| = O(r0i). (2.17a–c)

To leading order, the denominator r = rf + εη on the right-hand side of (2.14a,b) can
be replaced by r0(t) throughout the rarefaction wave r0(t) � r � rf (t) since, according
to (2.17a–c), rf (t) = r0(t) + εat − εη0i so that rf (t) = (1 + ε)r0(t) + O(εr0i). Therefore,
replacing the time variable t by a time-like variable ν ≡ r0(t) = at + r0i whose dimension
is a length, (2.14a,b) for the flow v(η, ν) takes the form of a Burgers-like equation, free
from parameter, in which the local viscous dissipation is replaced by a global (linear)
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damping rate on the right-hand side,

ε → 0 :
[

∂

∂ν
+ (v − 1)

∂

∂η

]
v = −v

ν
, η = 0 : v = 1, (2.18)

where

ν ≡ at + r0i, η ≡ r − rf (t)
ε

, v(η, ν) ≡ u(x, t)
εa

. (2.19a–c)

The parameter r0i in the definition of the time-like variable ν can be eliminated by a change
of time origin.

2.2.2. Infinite gradient of the flow on the front. Self-similar solution
As in the self-similar solution of Zeldovich (1942) and Taylor (1950a) obtained in the
opposite limit of large Mach number DoCJ /a � 1, the solution of (2.18) is singular on the
detonation front where the gradient of the flow becomes infinite. The flow being constant
on the front v = 1, the unsteady term ∂v/∂ν in (2.18) is negligible around η = 0− so that
the steady-state approximation holds near the detonation front (v − 1)∂v/∂η ≈ −1/ν

1 − v =
√

2
ν
(−η), 1 − u

εa
=
√

2[rf (t) − r]
ε(at + r0i)

, (2.20a,b)

the time derivative ∂v/∂ν|η=0− = √−2η/(2ν3/2) being negligible in a boundary layer at
the front |∂v/∂ν|η=0− � 1/ν,

|η| � 2ν, rf (t) − r � 2ε(at + r0i). (2.21a,b)

The divergence of the flow gradient on the front of a spherical CJ detonation
∂v/∂η|η=0− ∝ 1/(−η)1/2 is a consequence of the sonic condition η = 0 : v − 1 = 0, ∀t.

The self-similar solution of (2.18) is obtained by looking for a solution in the form

v(η, ν) = V(z), with z ≡ η/ν ⇒ u
εa

= V
(

r − rf (t))
εr0(t)

)
, (2.22)

[ − (1 + z) + V]
dV
dz

= −V, z = 0 : V = 1. (2.23)

After multiplication by 1/V2, (2.23) takes the form d[(1 + z)/V]/dz + (1/V)dV/dz = 0,
then, the solution V(z) satisfying the boundary condition at z = 0 is the root of a
transcendental equation

V ln V − V + (z + 1) = 0. (2.24)

According to this equation, the radius r = r0(t) of the spherical core of stagnant gas V = 0
corresponds to z = −1. Therefore, r0(t) and rf (t) are linked by the relation

z ≡ [r0(t) − rf (t)]/εr0(t) = −1 ⇔ (1 + ε)r0(t) = rf (t), (2.25)

in agreement with the assumption (2.17a–c) in the limit of small heat release (2.4a,b),
which finally takes the more restrictive form

(rfi − r0i) = εr0i, (2.26)

in a consistent way with rf (t) ≈ (1 + ε)at + rfi and r0(t) = at + r0i yielding (2.26) for z =
−1. The velocity profile of the self-similar rarefaction wave is plotted in figure 1. Close to
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−1.0 −0.8 −0.6 –0.4 –0.2 0
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V(z)

Figure 1. Solution of (2.23)–(2.24) representing the self-similar rarefaction flow behind the front of a spherical
CJ detonation considered as a discontinuity for small heat release (DoCJ − a)/a ≈ ε � 1. The reduced flow
v = u(r, t)/εa is plotted vs the reduced distance from the front z = (r − rf (t))/εr0(t) with rf (t) = DoCI t + rfi,
r0(t) = at + r0i and, according to (2.26), rfi = (1 + ε)r0i.

the detonation front z ≈ 0, namely for V = 1 + δV with |δV| � 1, ln V ≈ δV − δV2/2 +
· · · , V ln V ≈ −1 + (δV)2/2 + · · · so that (2.24) yields (δV)2/2 + z ≈ 0 and the relation
(2.20a,b) is recovered for |z| � 1, V ≈ 1 − √−2z. At the radius of the stagnant core, the
root of (2.24) goes to zero limz=−1 V = 0+ with a zero gradient dV/dz|z=−1 = 0, as shown
by taking the limit V → 0+ of the derivative of (2.24) d(V ln V)/dz − dV/dz + 1 = 0
leading to limV→0+(dV/dz) = −2/ ln V → 0+.

To conclude the rarefaction wave behind a spherical CJ detonation sustained by a small
heat release (MoCJ − 1 ≈ ε � 1) is similar to the self-similar solution for MoCJ � 1. The
only difference is quantitative; the extension of the rarefaction wave is smaller than the
detonation radius rf (t) by a factor MoCJ − 1, (rf − r0)/rf ≈ (MoCJ − 1)/MoCJ for small
heat release while (rf − r0)/rf = 1/2 for MoCJ � 1.

2.3. Rarefaction wave behind an overdriven detonation considered as a discontinuity
Within the framework of the discontinuous model the decay of the propagation velocity of
an overdriven detonation D(τ ) in a spherical geometry to the planar Chapmann–Jouguet
velocity DoCJ occurs systematically after a finite time and at a finite radius. In this section,
we derive an analytical expression for the rarefaction wave behind an overdriven detonation
treated as a discontinuity approaching the CJ velocity, in the limit ε � 1. The subsequent
relaxation to the self-similar solution is discussed in § 3.

2.3.1. Formulation
As already mentioned, there is no length (or time) scale in the direct-initiation problem
with the discontinuous model. However, in view of bridging the gap with the study in the
second part of this manuscript, it is useful to introduce the non-dimensional space and time
variables ξ and τ as well as the reduced flow field μ(ξ, τ ) that are of order unity inside

915 A122-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

19
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.196


Spherical detonations

the unsteady (and curved) inner structure of the detonation in the limit (2.4a,b)–(2.5)

ξ ≡ (r − rf (t))
l

, τ ≡ ε
a t
l

, D = drf

dt
, (2.27a–c)

μ(ξ, τ ) ≡ v − 1 = u/εa − 1 ⇔ u/a = ε(1 + μ), (2.28)

where l is the detonation thickness and 1/tr = a/l the reaction rate at the Neumann state,

∂

∂r
= 1

l
∂

∂ξ
,

∂

∂t
= ε

tr

∂

∂τ
− D

l
∂

∂ξ
. (2.29a,b)

For clarity, the results will be written with the two types of variables. Introducing the
reduced radius r̃f (τ ) and propagation velocity α̇τ (τ )

r̃f (τ ) ≡ εrf (τ )/l, α̇τ (τ ) ≡ [D(τ ) − DoCJ ]/(εa), (2.30a,b)

(2.10a–c) reduces to (6.6) in Clavin & Denet (2020) without the reaction term

∂μ

∂τ
+ (μ − α̇τ )

∂μ

∂ξ
= − 1

r̃f (τ ) + εξ
(1 + μ), (2.31)

where

dr̃f (τ )

dτ
= D

a
= (1 + ε) + εα̇τ (τ ), r̃f (τ ) = r̃fi + (1 + ε)τ + ε

∫ τ

0
α̇τ dτ, (2.32a,b)

see Appendix C.1. In (2.31), r̃fi ≡ εrfi/l is associated with the initial position of the front
rfi ≡ rf (0). The sonic condition with respect to the front (D − u) = a corresponds to (μ −
α̇τ ) = 0, and a subsonic condition (D − u) < a corresponds to (μ − α̇τ ) > 0 while (μ −
α̇τ ) < 0 characterizes a supersonic flow relative to the detonation front. The decay of the
detonation velocity to the CJ velocity corresponds to α̇τ → 0+ and μf → 0+.

As already mentioned, the radius r = r0(τ ) of the spherical core of stagnant gas
u(r0(τ ), τ ) = 0

r < r0(τ ) : u = 0, r > r0(τ ) : u > 0, ∂u/∂r|r=r+
0

� 0 (2.33a–c)

is a weak discontinuity of the flow moving at the speed of sound dr0(t)/dt = a. Introducing
the reduced thickness of the rarefaction wave |ξ0(τ )|

ξ0(τ ) ≡ [r0(τ ) − rf (τ )]
l

< 0; ξ = ξ0(τ ) : μ = −1 i.e. μ (ξ0(τ ), τ ) = −1, (2.34)

the weak discontinuity is recovered in (2.31) at ξ = ξ0(τ ) where ∂μ/∂τ |ξ=ξ+
0

−
(1 + α̇τ )∂μ/∂ξ |ξ=ξ+

0
= 0 and μ = −1 by differentiating the last expression in (2.34),

dμ(ξ0(τ ), τ )/dτ = ∂μ/∂τ |ξ=ξ+
0

+ (dξ0/dτ)∂μ/∂ξ |ξ=ξ+
0

= 0 yielding

dξ0/dτ = −(1 + α̇τ ), ξ0(τ ) = −τ −
∫ τ

0
α̇τ (τ

′) dτ ′ + ξ0i, (2.35a,b)

which corresponds effectively to dr0/dt = a that is d(r0 − rf )/dt = a − D with, according
to (2.4a,b) and (2.30a,b), (a − D) = −εa(1 + α̇τ ). When the order of magnitude of α̇τ

is not larger than unity in the limit ε → 0, (D − a)/a = O(ε), (2.35a,b) shows that the
thickness of the rarefaction wave rf (t) − r0(t) increases with a velocity of order εa smaller
than the speed of sound by a factor ε. Considering τ = O(1) in the limit of small heat
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release, limε→0 εξ0 = 0, (2.32a,b) yields limε→0 r̃f = τ + r̃fi, so that, to leading order,
(2.31) reduces to

ε → 0,
∂μ

∂τ
+ [μ − α̇τ (τ )]

∂μ

∂ξ
= − 1 + μ

τ + r̃fi
, where r̃fi ≡ ε

rfi

l
= O(1). (2.36)

Rescaling the non-dimensional length ξ and time τ with r̃fi ≡ εrfi/l,

τ̃ ≡ τ

r̃fi
= at

rfi
, ξ̃ ≡ ξ

r̃fi
= r − rf (t)

ε rfi
, ξ̃0(τ̃ ) ≡ ξ0(τ )

r̃fi
= r0(t) − rf (t)

ε rfi
(2.37a–c)

(2.35a,b)–(2.36) take a form free from parameter

∂μ

∂τ̃
+ [μ − α̇τ (τ̃ )]

∂μ

∂ξ̃
= −(1 + μ)

τ̃ + 1
,

dξ̃0

dτ̃
= −[1 + α̇τ (τ̃ )]. (2.38a,b)

Once a general solution of (2.38a,b) is known, the dynamics of the front α̇τ (τ̃ )

is obtained by a boundary condition at the front. For the discontinuous model, the
instantaneous flow of burned gas at the front, denoted by μf (τ̃ ) ≡ μ(ξ̃ = 0, τ̃ ), is given
by the conservation of mass, momentum and energy in Appendix A, leading to express
μf (τ̃ ) in terms of α̇τ (τ̃ )

ξ̃ = 0 : μ ≡ μf (τ̃ ) = Mf (α̇τ (τ̃ )). (2.39)

Equations (2.38a,b) and (2.39) represent an eigenvalue problem in which the unknown
function α̇τ (τ̃ ) appears in the boundary condition (2.39) and in (2.38a,b).

2.3.2. Simplified formulation near the CJ velocity
The formulation gets simpler when attention is focused on the end of the detonation decay
when the velocity is close to the CJ velocity,

0 <
(Di − DoCJ )

εa
� 1, 0 � α̇τ ≡ (D − DoCJ )

εa
� 1. (2.40a,b)

Expanding (A1)–(A2) for small values of (D − DoCJ )/εa yields the well-known square
root relation between the flow of burnt gas at the front ub(t) and the detonation
velocity D(τ ) near the CJ regime ub/εa ≈ 1 +√

2(D − DoCJ )/εa, obtained by the
relation (MoCJ − M−1

oCJ
)2/(M − M−1)2 ≈ 1–2(D − DoCJ )/εa in (A1). Then the boundary

condition at the front simplifies to

uf (τ )/εa ≈ 1 +
√

2
(D(τ ) − DoCJ

)
/εa, μf (τ ) ≈

√
2α̇τ (τ ) � 1, (2.41a,b)

0 < μfi ≡ ufi/εa − 1 ≈ √
2(Di − DoCJ )/εa � 1, (2.42)

where ufi and μfi denote the initial value of uf (τ ) and μf (τ ) ≡ ufi/εa − 1 with ufi >

εa. The term [μ − α̇τ (τ̃ )] can then be replaced by μ in (2.36) because the flow
field in the rarefaction wave increases monotonically with the radius, from u = 0 at
r = r0 to a positive value uf on the front (r = rf ), μ ∈ [−1, μf ], with, according to
(2.40a,b)–(2.41a,b), 0 � α̇τ � μf � 1 so that α̇τ (τ ) � |μ(ξ, τ )| ∀ξ ∈ [ξ0, 0]. Under the
condition (2.40a,b), the unknown velocity of the front α̇τ (τ̃ ) does not appear explicitly
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anymore on the left-hand side of (2.38a,b) which reduces to the Burgers-like equation in
(2.18),

ε → 0, 0 < α̇τ � 1 ⇒ ∂μ

∂τ̃
+ μ

∂μ

∂ξ̃
= −(1 + μ)

τ̃ + 1
, ξ̃0(τ̃ ) = −τ̃ + ξ̃0i, (2.43)

the unknown function being the flow at the front μf (τ̃ ) ≡ uf (τ̃ )/εa − 1.
As we shall see in § 3.1, the solution μ(ξ̃, τ̃ ) of (2.43) reaches the self-similar CJ

solution (2.23)–(2.24) in the long-time limit if the initial thickness of the rarefaction
wave scales as (2.17a–c), |ξ̃0i| = O(1) in the limit ε → 0. Notice that (2.43), divided by
rfi, yields (2.18) for v = μ + 1, the difference with the CJ problem being the boundary
condition on the front (ξ̃ = 0) which now involves an unknown flow μf (τ̃ ) /= 0, v(η =
0, ν) /= 1.

2.3.3. Analytical solutions
The rarefaction wave behind a spherical detonation is a nonlinear solution of the Euler
equations, which cannot be described by a linearized approximation, even if the flow
velocity is smaller than the speed of sound as it is the case in the limit of small heat release.
By comparison, the linear solution is briefly recalled in Appendix B. Equations (2.38a,b)
and (2.43) have analytical solutions μ(ξ̃, τ̃ ) which provide us with an expression of the
unsteady flow on the front μf (τ̃ ) = μ(0, τ̃ ) in terms of the unknown function α̇τ (τ̃ ) which,
according to (2.30a,b), represents the propagation velocity of the front D(t). The dynamics
of the front α̇τ (τ̃ ) is then obtained in a second step through the boundary condition on the
front. For example, the Rankine–Hugoniot condition yields the relaxation of a pure shock
freely propagating in a spherical geometry which is derived in Appendix D. The end of
the decay of an overdriven detonation, treated as a discontinuity, is obtained from (2.43)
by using the boundary condition (2.41a,b).

Analytical solutions of (2.38a,b) are obtained in the form of separated variables,

μ(ξ̃, τ̃ ) = A(τ̃ )B(η̃) − 1, η̃ ≡ ξ̃ − ξ̃0(τ̃ ), μ(ξ̃0(τ̃ ), τ ) = −1,
dξ̃0

dτ̃
= −(1 + α̇τ ).

(2.44a–d)

Introducing the notation B′ ≡ dB/dη̃ and Ȧ ≡ dA/dτ̃ , ∂μ/∂τ̃ = Ȧ + (1 + α̇τ )AB′,
μ∂μ/∂ξ̃ = (AB − α̇τ )AB′, the unknown function α̇(τ̃ ) disappears from the equations for
A(τ̃ ) and B(η̃), yielding

ȦB + A2BB′ = −AB/(τ̃ + 1) ⇒ −dA−1/dτ̃ + A−1/(τ̃ + 1) = −B′, (2.45)

the second equation being obtained after division by A2B. The left-hand side of the second
equation in (2.45) is a function of τ̃ only, while the right-hand side is a function of
η̃. Therefore, the two sides should be equal to the same constant yielding an ordinary
differential equation for A(τ̃ ) and B(η̃) respectively

dA−1/dτ̃ − A−1/(τ̃ + 1) = k, dB/dη̃ = k. (2.46a,b)

The constant k has to be obtained by an initial condition. Integration of the second
equation is straightforward leading to a uniform gradient (straight profile of the flow).
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Introducing the initial value τ = 0 : A = Ai, the solution of the first equation is,

A−1 = (1 + τ̃ )A−1
i + k(1 + τ̃ ) ln(1 + τ̃ ), (2.47)

the first term on the right-hand side being the general solution of the homogeneous
equation and the second term a particular solution. Solutions of (2.43) then take the form

μ(ξ̃, τ̃ ) = k[ξ̃ − ξ̃0(τ̃ )]

(1 + τ̃ )[A−1
i + k ln(1 + τ̃ )]

− 1 (2.48)

ξ̃ = 0 : μf (τ̃ ) = −kξ̃0(τ̃ )

(1 + τ̃ )[A−1
i + k ln(1 + τ̃ )]

− 1, τ̃ = 0 : 1 + μfi = −kξ̃0iAi,

(2.49)

where the initial values μfi and ξ̃0i have been used, τ̃ = 0 : μf = μfi, ξ̃0 = ξ̃0i. Eliminating
Ai in favour of μfi, A−1

i = −kξ̃0i/(1 + μfi), the constant k is also eliminated from the
expressions of μ(ξ̃, τ̃ ) and μf (τ̃ ), leading to a two-parameter family of solutions involving
the parameters μfi and ξ̃0i,

μ(ξ̃, τ̃ ) = [ξ̃ − ξ̃0(τ̃ )]
(1 + τ̃ )[θi + ln(1 + τ̃ )]

− 1, θi ≡ −ξ̃0i

(1 + μfi)
> 0, (2.50a,b)

μf (τ̃ ) = −ξ̃0(τ̃ )

(1 + τ̃ )[θi + ln(1 + τ̃ )]
− 1, ξ̃0(τ̃ ) = −

[
τ̃ +

∫ τ̃

0
α̇τ (τ̃

′)dτ̃ ′
]

+ ξ̃0i.

(2.51a,b)

These expressions for the flow field are solutions to (2.38a,b) and also to (2.43) when α̇τ (τ̃ )

is small. Notice that the unknown function α̇τ (τ̃ ) appears only through ξ̃0(τ̃ ). Written with
the original variables, denoting uf (t) the flow on the front, ufi its initial value (t = 0), rfi the
initial radius of the front and Di > D(t) the initial detonation velocity, (2.50a,b)–(2.51a,b),
using the definition in (2.28) 1 + μ = u/εa, take the form

0 <
ufi

εa
− 1 � 1, r0(t) � r � rf (t) :

u(r, t)
uf (t)

= r − r0(t)
rf (t) − r0(t)

, (2.52a–c)

r0(t) = at + r0i,
uf (t)
ufi

= rf (t) − r0(t)
rfi + at

[
rfi − r0i

rfi
+ ufi

a
ln
(

1 + at
rfi

)]−1

, (2.53a,b)

where ufi/a = (rfi − r0i)/(r0iθi). Self-consistency of the asymptotic analysis in the limit
ε → 0 ufi/a = O(ε) is ensured by the scaling

ε → 0 :
rf (t) − r0(t)

ε r0(t)
= − ξ̃0(τ̃ )

τ̃ + 1
= O(1). (2.54)

Under the condition (2.42), the integral term can be neglected in the expression (2.51a,b)
of ξ̃0, so that (2.54) reduces to (2.25) (rf (t) − r0(t))/ε r0(t) = 1 for ξ̃0i = −1.

Notice also that μ(ξ̃, τ̃ ) in (2.50a,b)–(2.53a,b) can be written in the same form as the
self-similar solution of (2.18), v = [z + A(ν)]/B(ν) with z = η/ν, B(ν) = (θi + ln ν) and
A(ν) = [rf (t) − r0(t)]/εr0(t) which reduces to A(ν) = 1 − (1 + ξ̃0i)/ν for α̇τ � 1 and
A(ν) = 1 for ξ̃0i = −1.
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2.3.4. Simplified expression of the rarefaction flow near the CJ regime
According to (2.50a,b) and/or (2.52a–c), the gradient of the flow is uniform and decreases
monotonically with the time. According to (2.51a,b) and/or (2.53a,b) the flow velocity on
the front also decreases and the planar CJ velocity is reached at finite time tt

t = tt : uf /εa = 1, D = DoCJ ⇔ τ̃ = τ̃t : μf = 0, τ̃t ≡ att/rfi = τt/r̃fi. (2.55a–c)

However, at t − tt = 0−, the flow field (2.50a,b)–(2.53a,b) is different from the
self-similar rarefaction wave behind a CJ wave (2.22)–(2.24) plotted in figure 1. We
will show in § 3.1 that the relaxation of the flow towards the CJ rarefaction wave occurs
progressively for t > tt after a sudden and sharp transition of the flow gradient on the front
at t = tt.

At the end of the decay, |α̇τ | � 1, (2.51a,b) where the integral term
∫ τ̃

0 α̇τ (τ̃
′) dτ̃ ′ is

neglected (initial condition close to the CJ velocity), introducing μf (τ̃t) = 0, leads to a
transcendental equation for τ̃t in terms of ξ̃0i and μfi

∫ τt

0
α̇τ (τ

′)dτ ′ � τt, μf (τ̃t) = 0 ⇒ τ̃t − ξ̃0i = (1 + τ̃t)

[
− ξ̃0i

(1 + μfi)
+ ln(1 + τ̃t)

]
,

(2.56a,b)

which has a single positive root which is small for μfi � 1 whatever ξ̃0i < 0, see
Appendix C.2. This root yields a simple expression of τ̃t (and/or tt) in terms of the initial
value of the flow at the front

μfi � 1 : τ̃t ≈ μfi � 1 ⇒ τ̃t ≡ att
rfi

≈
(ufi

εa
− 1

)
� 1, ∀ ξ̃0i < 0 (2.57)

obtained from the Taylor expansion of (2.56a,b) when the quadratic terms τ̃ 2
t are neglected.

Limiting our attention to 0 � t � tt, 0 � τ̃ = O(τ̃t), quadratic terms τ̃ 2 = (at/rfi)
2 are

negligible, and a Taylor expansion of (2.50a,b)–(2.51a,b) in powers of τ̃t ≈ μfi � 1,
limited to first order, yields

0 � τ̃ � τ̃t � 1 : μ ≈ ξ̃

(−ξ̃0i)

[
1 + τ̃t −

(
1 + 1

−ξ̃0i

)
τ̃

]
+ τ̃t − τ̃, |ξ̃0i| = O(1).

(2.58)
The downstream condition at the weak discontinuity, ξ = ξ0(τ̃ ) : μ = −1 with ξ̃0 =
−τ̃ + ξ̃0i in (2.43), is recovered at the first order of the Taylor expansion of (2.58) in
the form ξ̃0/(−ξ̃0i) = −1 − τ̃/(−ξ̃0i). According to (2.42) and (2.57), there is a boundary
layer near the detonation front where the flow (2.58) takes an even simpler form at the end
of the decay 0 � τ̃ � τ̃t � 1

−ξ̃ ≡ (rf − r)
εrfi

= O(τ̃t), τ̃t ≈ μfi =
√

2(Di − DoCI )

εa
� 1, (2.59a,b)

μ(ξ̃, τ̃ ) ≈ ξ̃

−ξ̃0i
− (τ̃ − τ̃t), μf (τ̃ ) ≈ (τ̃t − τ̃ ), (2.60a,b)

u(r, t)
εa

− 1 ≈ r − rf (t)
εrfi

+ a (tt − t)
rfi

,
uf (t)
εa

− 1 ≈ a(tt − t)
rfi

, (2.61a,b)
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obtained when terms of second order τ̃ 2
t are neglected. This leads to

∂μ(ξ̃, τ̃ )

∂τ̃
≈ −1,

∂u(r, t)
∂r

∣∣∣∣
r=rf

≈ a
rf

,
1
εa

duf (t)
dt

≈ − a
rf

⇒ duf (t)
dt

≈ −a
uf

rf
,

(2.62a–c)

where rfi has been replaced by rf in the denominators since rf − rfi = O(εrf ). The terms
of order ε being neglected in (2.43), retaining the small term (τ̃t − τ̃ ) which is of order
τ̃t ≈ μfi ≡ (ufi/εa) − 1, is meaningful in (2.60a,b) in an intermediate asymptotic limit
ε � √

2(Di − DoCJ )/εa � 1.
The last equation in (2.62a–c) corresponds to the closure assumption used in Clavin &

Denet (2020) who neglected the small gradient of the flow at the exit of the reaction
zone. This equation is indeed quite general close to the CJ regime and was derived
previously in the opposite limit MoCJ � 1 by Liñán et al. (2012). This can be seen
in (2.9)–(2.10a–c); because of the transonic character of the burnt gas flow near the
detonation, u + a − D � 1, the term involving the gradient of the flow on the left-hand
side becomes negligible near the detonation front, the unsteady term being balanced by
the divergence of the flow −au/r. More precisely in the limit of small heat release, using
DoCJ − a ≈ εa, D − a = εa(1 + α̇τ ) ≈ εa, uf = O(εa), μ = u/εa − 1, see (2.28), and,
according to (2.62a–c), ∂u/∂r|r=rf ≈ a/rf with (2.57) μf < μfi � 1, the gradient term on
the left-hand side of (2.10a–c) is shown to be smaller than the curvature term au/r on the
right-hand side by a factor ε,

(uf + a − D)
∂u
∂x

∣∣∣∣
x=0

≈ εμf a
a
rf

� a
εa
rf

= O
(

auf

rf

)
. (2.63)

As we shall see, this small gradient of the rarefaction flow cannot be ignored in the critical
dynamics studied in § 4 because it controls the instantaneous position of the sonic point
inside the rarefaction wave.

3. Transitory flow for the discontinuous model

The way the rarefaction wave (2.50a,b) reaches the self-similar solution behind the CJ
wave (2.22)–(2.23) after tt, is presented in this section for MoCJ − 1 � 1. The transition is
similar to that described by Liñán et al. (2012) in the opposite limit MoCJ � 1.

3.1. Abrupt transition of the flow on the front
Both the flows (2.50a,b) and (2.22)–(2.23) vanish at the radius of the spherical core of
stagnant gas but the gradient of the flow is uniform and finite in the former while it is
infinite on the detonation front in the latter, see figure 1. The sonic condition of (2.50a,b)
(relative to the detonation front) which is located at finite distance behind the detonation
front for t < tt, reaches the front at t = tt. Within the framework of the discontinuous
model, the velocity of the burnt gas relative to the lead shock cannot become smaller than
the sound speed on the detonation front. According to (2.41a,b)–(2.42), neither α̇t(t) nor
μf (t) can become negative; they should vanish simultaneously at t = tt and stay equal to
zero at later times t > tt

t > tt : uf = εa, μf = 0, D = DoCJ , rf (t) = DoCJ (t − tt) + rf (tt). (3.1)

Therefore, the decrease of uf (t) with a quasi-constant deceleration rate (2.61a,b) for t � tt
stops suddenly at t = tt since uf stays constant after tt. A jump of deceleration of the flow
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Spherical detonations

is thus produced at t = tt on the detonation front

1
εa

duf

dt

∣∣∣∣
t+t

t−t
= a

rf (tt)
,

dμf

dτ̃

∣∣∣∣
τ̃+

t

τ̃−
t

= rfi

rf (tt)
≈ 1. (3.2a,b)

However, the trajectory in the phase space of velocity–radius “D-rf ” is tangent to the
axis D = DoCJ at t = tt, as shown by (2.41a,b) α̇τ = μ2

f (τ )/2 by using (2.61a,b) μf ≈
a(tt − t)rfi

ε � 1, (t − tt) → 0− : [D(t) − DoCJ ]/a → (ε/2)[(t − tt)a/rfi]2,

drf /dt ≈ DoCJ = a(1 + ε), (D − DoCJ )/a → (ε/2)(rf − rf (tt))2/r2
fi, (3.3)

the last relation being valid near the CJ regime 0 � D − DoCJ � DoCJ in the limit of
small heat release (DoCJ − a)/a = ε � 1. The jumps in (3.2a,b) and the tangency of the
trajectories at t = tt are consequences of the discontinuous model and are no longer valid
when small modification of the inner structure of the detonation is taken into account.

3.2. Transitory regime. An analytical study
The transitory flow between the transition from the straight profile (2.50a,b) for τ̃ � τ̃t to
the self-similar solution (2.22)–(2.24), denoted μ(tr)(ξ̃, τ̃ ) in the following, is solution of
(2.43) for a flow velocity at the front kept equal to its CJ value after tt

τ̃ � τ̃t :
∂μ(tr)

∂τ̃
+ μ(tr) ∂μ(tr)

∂ξ̃
= −1 + μ(tr)

τ̃ + 1
, ξ̃ = 0 : μ(tr) = 0. (3.4)

This flow is equal to (2.50a,b) (with μfi > 0) when t < tt,

τ̃ ≈ τ̃−
t , ξ̃0(τ̃t) � ξ̃ � 0 : μ(tr)(ξ̃, τ̃t) = ξ̃

−ξ̃0i + τ̃t
= ξ̃

−ξ̃0(τ̃t)
, (3.5)

where the simplified expression (2.58) has been used by introducing (2.56a,b)–(2.57) into
(2.50a,b) neglecting the quadratic terms τ̃ 2

t . Equation (3.5) says simply that the transitory
flow at τ̃ = τ̃t has a straight profile corresponding to the reduced thickness |ξ̃0(τ̃t)| of the
rarefaction wave. Simultaneously with the jump of deceleration (3.2a,b), the flow gradient
on the detonation front, which is finite for τ̃ < τ̃t, jumps at τ̃ = τ̃t to become infinite at
τ̃ = τ̃+

t and stays infinite afterwards τ̃ > τ̃t

τ̃ = τ̃−
t �1 :

∂μ

∂ξ̃

∣∣∣∣
ξ̃=0−

= 1

−ξ̃0(τ̃t)
, τ̃ > τ̃t : lim

ξ̃→0−

∂μ(tr)

∂ξ̃
≈ 1√

−2ξ̃

. (3.6a,b)

These expressions are obtained by the same method as in § 2.2.2 for the self-similar CJ
solution (2.22)–(2.23). Recalling that no boundary condition is used on the front to derive
(2.50a,b)–(2.51a,b), this flow is still solution of (2.43) for τ̃ > τ̃t when μf (τ̃ ) decreases
below zero. The corresponding flow, denoted μ(wd)(ξ̃, τ̃ ) from now on, takes the form

τ̃t ≈ μfi � 1, τ̃ � τ̃t, μ(wd)(ξ̃, τ̃ ) ≈ ξ̃ + τ̃ − ξ̃0i

(1 + τ̃ )[−ξ̃0i/(1 + τ̃t) + ln(1 + τ̃ )]
− 1,

(3.7a–c)

where, neglecting the quadratic terms τ̃ 2
t , the flow at τ = τt is given in (3.5), μ(wd)(ξ̃, τ̃t) =

μ(tr)(ξ̃, τ̃t). The instantaneous position of the weak discontinuity corresponding to
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P. Clavin, R. Hernández Sánchez and B. Denet

(3.7a–c), ξ̃ = ξ̃0(τ̃ ): 1 + μ(wd)(ξ̃0, τ̃t) = 0, takes the form

ξ̃0(τ̃ ) = ξ̃0(τ̃t) − (τ̃ − τ̃t). (3.8)

Equation (3.7a–c) cannot represent the transitory flow nearby the detonation front for
τ̃ > τ̃t : μ(wd)(ξ̃, τ̃ ) /=μ(tr)(ξ̃, τ̃ ) since μ(tr)(0, τ̃ ) = 0 while μ(wd)(0, τ̃ ) < 0 ∀ τ̃ > τ̃t.
However, (3.7a–c) still represents the transitory flow at a distance from the front large
enough, as explained now by the method of characteristics.

The singular perturbation (3.6a,b), which is generated instantaneously at τ̃ = τ̃t on the
front, induces a disturbance which is transported downstream with the velocity μ(tr) by
the mode C+ (downstream running for τ̃ > τ̃t since μ(tr) � 0). According to (3.4), the
characteristic curves ξ̃ = ξ̃C+ (τ̃ )

dξ̃C+ /dτ̃ = μ(tr)(ξ̃C+ (τ̃ ), τ̃ ) (3.9)

corresponds to the following equation for the flow velocity transported by C+

μ(tr)
C+ (τ̃ ) ≡ μ(tr)(ξ̃C+ (τ̃ ), τ̃ ),

dμ(tr)
C+ (τ̃ )

dτ̃
= −

1 + μ(tr)
C+ (τ̃ )

τ̃ + 1
. (3.10a,b)

Denoting ξ̃ = ξ̃C+ (τ̃, τ̃ ′) the characteristic curve leaving the front (ξ̃ = 0) at τ̃ = τ̃ ′ � τ̃t,
integration of (3.10a,b) from τ̃ = τ̃ ′ : μ(tr)

C+ (τ̃ ′) = 0 yields the flow velocity transported by
this characteristic in the form

τ̃ � τ̃ ′ � τ̃t : 1 + μ(tr)(ξ̃C+ (τ̃, τ̃ ′), τ̃ ) = τ̃ ′ + 1
τ̃ + 1

. (3.11)

Integrating (3.9) from τ = τ ′ : ξ̃C+ (τ̃ ′, τ̃ ′) = 0 using (3.11), then determines the
characteristic curves ξ̃ = ξ̃C+ (τ̃, τ̃ ′)

τ̃ � τ̃ ′ � τ̃t :
∂ξ̃C+ (τ̃, τ̃ ′)

∂τ̃
= τ̃ ′ + 1

τ̃ + 1
− 1 � 0 (3.12)

ξ̃C+ (τ̃, τ̃ ′) = (τ̃ ′ + 1) ln
τ̃ + 1
τ̃ ′ + 1

− (τ̃ − τ̃ ′). (3.13)

All these characteristics leave the front slowly since their velocity is zero at the front
(ξ = 0) μ(tr)(0, τ̃ ′) = 0, ∂ξ̃C+ (τ̃, τ̃ ′)/∂τ̃ |τ̃=τ̃ ′ = 0 ∀τ̃ ′ � τ̃t. They all reach the same
velocity in the long-time limit, limτ̃→∞ ∂ξ̃C+ (τ̃, τ̃ ′)/∂τ̃ = −1. Moreover, in agreement
with the fact that no shock can be created when the flow u(r, t) increases in space in the
direction of the flow, ∂u/∂r > 0, these characteristic curves do not cross each other. This
is checked by noticing that the modulus of their velocity satisfies the following relation
τ̃ ′

1 > τ̃ ′
2 ⇒ |∂ξ̃C+ (τ̃, τ̃ ′

1)/∂τ̃ | < |∂ξ̃C+ (τ̃, τ̃ ′
2)/∂τ̃ |, see figure 2. Therefore, the trajectory

ξ̃ = ξ̃C+ (τ̃, τ̃t) associated with the characteristic curve leaving the front at the earliest time
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ξ̃

τ̃

τ̃1
′

τ̃2
′

τ̃t

0

Figure 2. Example of three characteristic curves ξ̃ = ξ̃C+ (τ̃, τ̃ ′) for τ̃ ′ = τ̃t, τ̃ ′ = τ̃ ′
2 and τ̃ ′ = τ̃ ′

1 with τ̃t <

τ ′
2 < τ ′

1. In the dashed region ξ̃ � ξ̃C+ (τ̃, τ̃t), the transitory flow is equal to the unperturbed flow (3.7a–c)
(straight profile whose slope is decreasing to zero) μ(tr)(ξ̃, τ̃ ) = μ(wd)(ξ̃, τ̃ ).

τ̃ ′ = τ̃t is, according to (3.13),

τ̃ � τ̃t, ξ̃C+ (τ̃, τ̃t) = (τ̃t + 1) ln
τ̃ + 1
τ̃t + 1

− (τ̃ − τ̃t), (3.14)

= (τ̃t + 1) ln(τ̃ + 1) − τ̃ + O(τ̃ 2
t ), (3.15)

with, according to (3.11), the following expression of the flow which is transported

μ(tr)(ξ̃C+ (τ̃, τ̃t), τ̃ ) = τ̃t + 1
τ̃ + 1

− 1. (3.16)

In other words, ξ̃ = ξ̃C+ (τ̃, τ̃t) is the equation of the leading edge of the disturbance
resulting from keeping equal to zero the front velocity ξ̃ = 0 : μ(tr) = 0 ∀τ̃ > τ̃t. Ahead
of this leading edge, the flow μ(tr)(ξ̃, τ̃ ) is equal to the ‘unperturbed’ flow (3.7a–c),

ξ̃ � ξ̃C+ (τ̃, τ̃t) : μ(tr)(ξ̃, τ̃ ) = μ(wd)(ξ̃, τ̃ ). (3.17)

The junction point at which μ(wd)(ξ̃, τ̃ ) is equal to (3.16)

ξ̃(τ̃ ) + τ̃ − ξ̃0i

−ξ̃0i/(1 + τ̃t) + ln(1 + τ̃ )
= τ̃t + 1 ⇒ ξ̃(τ̃ ) = −τ̃ + (τ̃t + 1) ln(1 + τ̃ ) ∀ ξ̃0i, (3.18)

corresponds effectively to the characteristics (3.14) when the quadratic terms τ̃ 2
t are

neglected as it should be.
Strictly speaking, this point does not reach the core of stagnant gas (3.8) ξ̃0(τ̃ ) in

the long-time limit, limτ̃→∞ ξ̃C+ (τ̃, τ̃t) − ξ̃0(τ̃ ) ≈ ln τ̃ . However, this is true in the sense
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r − rf (τ̃)

rf (τ̃) − r0(τ̃)
0

−1

1 + ln
1+ τ̃
1 + τ̃t

−1

1

u/εa

0

τ̃ =
 τ̃ t

τ̃ t <
 τ̃ 

<
 ∞

τ̃ <
 τ̃ t

1 + τ̃ 1+ τ̃t
1 + τ̃t 1 + τ̃

1 + ln − 1

Figure 3. Sketch of the transitory flow, plotted in a universal form for ξ̃0i = −1 and τ̃t ≈ μfi � 1, τ̃t being
the cross-over time (2.56a,b). The bold curve in black is the rarefaction wave u(tr)/εa = 1 + μ(tr) behind a
detonation treated as a discontinuity, after the cross-over time τ̃ > τ̃t. The slope is infinite at the front and the
profile is straight away from the front where μ(tr) = μ(wd). Expressed in terms of the space variable ξ̃/(−ξ̃0) =
[r − rf (t)]/[rf (t) − r0(t)], −ξ̃0(τ̃ ) = τ̃ + 1, the profile of the transitory flow is parameter free, provided the
time is measured by (1 + τ̃ )/(1 + τ̃t). The bold points are the time dependent radius and flow velocity of the
junction point where the transitory flow μ(tr) matches μwd in (3.7a–c). The coloured straight lines represent
the rarefaction wave (2.50a,b) of the overdriven detonations before the velocity reaches the planar CJ velocity
τ̃ < τ̃t, the red one being just before the transition to CJ, τ̃ − τ̃t = 0−.

of the self-similar analysis when using the self-similar variable zC+ (τ̃ ) ≡ [rC+ (t) −
rf (t)]/εr0(t) ≈ ξ̃C+ (τ̃, τ̃t)/(−τ̃ ), yielding, according to (3.15)

lim
τ̃→∞

ξ̃C+ (τ̃, τ̃t)/ξ̃0(τ̃ ) = 1, lim
τ̃→∞

zC+ (τ̃ ) = −1. (3.19a,b)

To conclude, the transitory flow μ(tr)(ξ̃, τ̃ ) is composed of two parts. The part
corresponding to ξ̃ � ξ̃C+ (τ̃, τ̃t) is the straight profile μ(wd)(ξ̃, τ̃ ) in (3.7a–c) whose slope
is uniform and decreases to zero limτ̃→∞(1 + τ̃ )−1[−ξ̃0i/(1 + τ̃t) + ln(1 + τ̃ )]−1 = 0.
The transitory flow has a curved shape in the range ξ̃C+ (τ̃, τ̃t) � ξ̃ � 0, joining the straight
solution μ(wd)(ξ̃, τ̃ ) at ξ̃ = ξ̃C+ (τ̃, τ̃t), while the slope is infinite at the front (ξ̃ = 0). The
evolution of the rarefaction wave is sketched in figure 3 where the theoretical expressions
for the coordinates (position and flow velocity at time t) of the point of junction with the
straight profile are given.

These theoretical results are fully confirmed by the numerical solution of (3.4)–(3.5). An
example of numerical result is shown in figure 4. When the result is plotted with a space
coordinate reduced by the thickness of the CJ rarefaction wave, the numerical analysis
shows that the transitory flow and the self-similar CJ solution are quasi-identical in the
range between the detonation front and the junction point travelling with the characteristic
C+ issued from the front at t = tt at which the front reaches the CJ velocity. Outside this
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–1.0 –0.8 –0.6 –0.4 –0.2 0
ξ̃/(– ξ̃0)

0

0.2

0.4

0.6

0.8

1.0

u(t
r)

/ε
a

Figure 4. Numerical solution (solid line) of (3.4)–(3.5), describing the transitory flow u(tr)/εa = 1 + μ(tr) for
τ̃ − τ̃t = 3, using the non-dimensional radius, reduced by the thickness of the rarefaction wave. The dotted
line is the self-similar rarefaction flow (2.23)–(2.25) behind the spherical CJ detonation, which is reached
in the long-time limit τ̃ − τ̃t → ∞. The dashed straight line is (3.7a–c) for τ̃ − τ̃t = 3. The trajectory of
the point at the junction of the numerical solution of (3.4)–(3.5) and the straight profile (3.7a–c) is in full
agreement with the theoretical prediction (3.12)–(3.18). To summarize, the numerical solution of (3.4)–(3.5)
is found to be exactly the straight profile (3.7a–c) below the junction while, in the range between the front
and the junction point, there is no noticeable difference between the numerical solution of (3.4)–(3.5) and the
self-similar solution (2.23)–(2.25).

range, the numerical result shows a straight profile down to the stagnant core, in full
agreement with (3.7a–c). The trajectory of the junction point between the two parts of
the transitory flow corresponds exactly to the theoretical result plotted in figure 3.

4. Direct initiation of detonation

Modification to the inner structure influences drastically the dynamics of a spherical
detonation. In contrast to the discontinuous model, detonation failure is observed when
the detonation velocity reaches the CJ velocity for the first time at a too small radius
(however, larger than the detonation thickness). Moreover, during successful initiation of
a stable detonation, the CJ velocity is no longer reached abruptly. The critical dynamics is
analysed here in the limit of small heat release.

4.1. Detonation model and method of solution
The reduced variables of order unity governing the structure and the dynamics of the inner
structure in the limit of small heat release ε → 0 are ξ = O(1) and τ = O(1) in (2.27a–c)
where rfi is the initial radius of the detonation at τ = 0. According to (2.36)–(2.37a–c),
the link of ξ , τ with ξ̃ ≡ ξ/r̃fi and τ̃ = τ/r̃fi is through the parameter r̃fi ≡ εrfi/l of order
unity in the limit ε → 0.

As in Clavin & Denet (2020), we will use the detonation model of Clavin & Williams
(2002), obtained by an asymptotic analysis in the limit of small heat release, coupled to
the Newtonian approximation neglecting the compressional heating in the reaction zone
where the chemical energy is released (after the induction period),

ε ≡ √
qm/cpTu ≈ MoCJ − 1 � 1, (γ − 1) < ε. (4.1)
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The Rankine–Hugoniot conditions (A3)–(A5) in the limit (4.1) take the form,

TN/Tu ≈ 1 + 2(γ − 1)(M − 1), b ≡ 2ε(γ − 1)E/kBTu, (4.2a,b)

TNoCJ/Tu ≈ 1 + 2(γ − 1)ε, (E/kBT2
u )(TN − TNoCJ ) = bα̇τ , (4.3a,b)

where E is the activation energy governing the induction length, and b = O(1) is its
reduced form. A first simplification concerns the temperature and the mass fraction of
species which, to leading order in the limit (4.1), are solutions of the steady-state version
of the conservation equations of energy and mass, satisfying the Rankine–Hugoniot
conditions at the lead shock, see the original article Clavin & Williams (2002) recalled
in § B.1 of Clavin & Denet (2018). The unsteady distribution of the rate of heat release
ω(ξ, τ ) can then be expressed in terms of the unsteady detonation velocity and the
distribution in steady state, ω(ξ, τ ) = ω̄(ξ, α̇τ (τ )). Focusing our attention on propagation
velocity close enough to the CJ velocity, y(τ ) ≡ bα̇τ (τ ) = O(1), the unsteady distribution
of reaction rate takes the form ω(ξ, τ ) = ω̄(ξ, y(τ )) which will be denoted simply ω(ξ, y)
in the following. For the sake of simplicity we will use here the scaling law assuming that
the distribution of reaction rate is fully governed by the induction length. Introducing the
distribution of the planar CJ wave ωoCJ (ξ), the reaction-rate distribution ω(ξ, y) then takes
the form

ω(ξ, y) = ey(τ )ωoCJ (ξey(τ )), y(τ ) ≡ bα̇τ (τ ) = b
ε

(D(τ ) − DoCJ )

a
= O(1). (4.4a,b)

The chemical kinetics thus appears only through the activation energy b and the CJ
distribution ωoCJ (ξ).

In order to further simplify the presentation, the same bounded-thickness model for the
inner structure of the planar CJ detonation as in (3.15)–(3.17b) of Clavin & Denet (2020)
will be used,

ξ � −1 : ωoCJ (ξ) = 0, ξ > −1 : ωoCJ (ξ) > 0, (4.5a,b)∫ 0

−1
ωoCJ (ξ

′) dξ ′ = 1, dωoCJ/dξ |ξ+1=0+ � 0, (4.6a,b)

so that, in the limit of small heat release, the structure of the flow in the planar CJ wave
(y = 0) μoCJ (ξ) is solution to

μoCJ

dμoCJ

dξ
= 1

2
ωoCJ (ξ), ξ � −1 : μoCJ = 0, ξ = 0 : μoCJ = 1. (4.7a–c)

According to (4.4a,b) and (4.5a,b) the exit of the reaction zone ξ = ξb(τ ) of the unsteady
inner structure of the spherical combustion wave is

ξb(τ ) = −e−y(τ ), (4.8)

describing a substantial increase of the reaction-wave thickness when the velocity
decreases below the CJ velocity y < 0. However, for a reduced detonation velocity of order
unity |y| = O(1), the thickness of the detonation is of the same order of magnitude as in the
planar CJ wave, e−y = O(1) in the limit ε → 0. The variation of y is bounded from below
since a supersonic velocity D � a implies α̇τ ≡ (D − DoCJ )/εa = (D − a)/εa − 1 � −1
so that y ≡ bα̇τ � −b. In fact, according to the well-known chemical-kinetics quenching
in combustion, occurring at a cross-over temperature for which the recombination
reactions become faster than the chain-branching reactions, the rate of heat release
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vanishes earlier. In real combustion, this cross-over temperature Tc at which the reaction
rate decreases sharply and the induction time increases strongly is typically Tc ≈ 1000 K in
ordinary condition while the Neumann temperature of a CJ wave is approximately TNoCJ ≈
2000 K, see Sanchez & Williams (2014) and Clavin & Searby (2016). Considering
that ordinary combustion cannot proceed below Tc with TNoCJ − Tc ≈ (TNoCJ − Tu)/2, a
chemical quenching is assumed to be produced in the limit of small heat release for y = yc
with typically yc = −b/2. Then, the following condition is added to (4.4a,b)–(4.5a,b)

y � yc ≈ −b/2 : ω(ξ, y) = 0, ∀ ξ. (4.9)

The reaction being quenched below y � yc, detonation fails systematically as soon as the
detonation velocity decreases below the lower bound yc.

Another key simplification of the limit (4.1) concerns the two-time-scale nature of the
dynamics which, to a lesser extent, characterizes also real detonations. To leading order
in the limit (4.1), following the reasoning used in § 2.1, the unsteady flow inside the inner
structure of a spherical detonation is governed by a single equation corresponding to (2.36)
plus an additional term on the right-hand side associated with the reaction rate

ε → 0 :
∂μ

∂τ
+
(
μ − y

b

) ∂μ

∂ξ
= 1

2
ω(ξ, y(τ )) − (1 + μ)

r̃f (τ )
, (4.10)

ξ = 0 : μ = 1 + 2y(τ )/b, (4.11)

with, according to (2.30a,b)–(2.32a,b),

ε → 0 : r̃f (τ ) ≡ εrf (τ )/l ≈ τ + r̃fi. (4.12)

The key point which is used to obtain (4.10) is that the variations of pressure and flow
velocity across the inner structure of the reaction wave are identical to leading order in the
limit (4.1), π = μ + 1 where π ≡ (1/εμ), ln( p/pu) ≈ u/a, see Clavin & Williams (2002)
and also § B.1 of Clavin & Denet (2018) and § 3.1 of Clavin & Denet (2020) for a spherical
geometry. The boundary condition at the lead shock (4.11) is the Rankine–Hugoniot
relation (4.2a,b)–(4.3a,b) obtained from (A5)–(A6) for M − 1 = ε(1 + y/b). The last term
on the right-hand side of (4.10) is the damping rate (2.36) (l/a)(u/r) due to the divergence
of the burnt-gas flow near the front for rf � l in a spherical geometry, u/r ≈ u/rf .

When attention is focused on the inner structure, ξ = O(1), the time-dependent velocity
of the lead shock y(τ ) is obtained as an eigenfunction of the system (4.10)–(4.11) plus
a boundary condition at the exit of the reaction zone. In contrast to Clavin & Denet
(2020) where, considering the burnt-gas flow as uniform, the decelerating flow μb(τ ),
solution to dμb/dτ ≈ −(1 + μb)/r̃f , was imposed in the burnt gas ξ = −e−y, the solution
of (4.10)–(4.11) will be matched now with the non-uniform flow of the rarefaction
wave, solution to the inert version (2.36) of (4.10), denoted μext(ξ, τ ) from now on. In
overdriven regimes, this external flow field μext(ξ, τ ) is given by the analytical expressions
(2.50a,b)–(2.51a,b), as discussed now.

4.2. Overdriven regimes. Splitting and matching
The burnt-gas flow at the exit of the reaction zone of a supersonic reaction wave in
the overdriven regime is, by definition, subsonic relative to the lead shock, D − ub <

a ⇔ μext(−e−y(τ ), τ ) > y(τ )/b. The sonic point ξ = ξs(τ ), μext(ξs(τ ), τ ) = y(τ )/b, is
located inside the rarefaction flow, behind the inner structure of the combustion wave.
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0

ξ0−e−y

End of the reaction
μ

ext  (ξ, τ)

C+C+

Sonic point

1 +
2y
b

y > 0

τ < τt

ξs(τ)ξ∗(τ)

y(τ)/b

≈ τt – τ
r̃fi

μ(ξ, τ)

μf (τ)ex

≈ (τt − τ)(−ξ̃0i)

Figure 5. Sketch of the flow in an overdriven regime with 0 < y/b < μext
f , μext(ξs, 0) = y/b < μext

f , ξs <

−e−y. The distances plotted on the horizontal and vertical axis correspond to the simplified expressions (C12),
τt corresponding to the time at which μext

f = 0.

Overdriven regimes are then characterized by the relations

ξs(τ ) < −e−y(τ ), μext(ξs(τ ), τ ) = y(τ )/b, μext(−e−y(τ ), τ ) > y(τ )/b, , (4.13a–c)

the last inequality being in agreement with a rarefaction flow of inert gas which is
an increasing function of the radius ∂μext/∂ξ > 0. The larger the overdrive factor
μext(−e−y(τ ), τ ) − y(τ )/b > 0 is, the larger is the distance between the sonic point and
the exit of the reaction zone.The characteristic C+ of (2.36) is downstream running
(towards the weak discontinuity ξ = ξ0 < 0) behind the sonic point (ξ < ξs, μext < y/b))
while it is upstream running (towards the lead shock ξ = 0) for ξ > ξs, μext > y/b, see
figure 5. Then, under the condition (4.13a–c), modifications of the inner structure of the
combustion wave cannot influence the rarefaction flow in the burnt gas, which is still given
by (2.50a,b)–(2.51a,b),

ξ � −e−y(τ ) : μ(ξ, τ ) = μext(ξ, τ ), (4.14)

μext(ξ, τ ) = ξ

r̃f (τ )[(−ξ̃0i)/(1 + μext
fi ) + ln(r̃f /r̃fi)]

+ μext
f (τ ), (4.15)

where r̃f (τ ) is the reduced radius (4.12). Introducing the notation

Y(τ ) ≡ (1/τ)

∫ τ

0
α̇τ (τ

′) dτ ′ = O( y/b), (4.16)

the function μext
f (τ ) is, according to (2.51a,b),

μext
f (τ ) = τ [1 + Y(τ )] + (−ξ̃0i)r̃fi

r̃f (τ )[(−ξ̃0i)/(1 + μext
fi ) + ln(r̃f /r̃fi)]

− 1. (4.17)
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The external flow μext(ξ, τ ) is a linear function of the radius (straight shape) with a
slope decreasing monotonically to zero, regardless of the time-dependent velocity of the
front y(τ ). The dependence of μext

f (τ ) on the past of the unknown solution y(τ ) through
the integral Y(τ ) comes from the increase of the thickness of the rarefaction wave with
the time, −ξ0(τ ) ≡ [rf (τ ) − r0(τ )]/l, −dξ0/dτ = 1 + y/b, see (2.34)–(2.35a,b). At large
radius and close to the CJ velocity the external flow takes the simplified form (C12),
reminiscent of (2.61a,b). To summarize, for overdriven regimes, the boundary condition
in the burnt gas of the solution of (4.10) is (4.14)

ξs(τ ) < −e−y(τ ); ξ � −e−y(τ ) : μ(ξ, τ ) = μext(ξ, τ ), (4.18)

and, in particular ξ = −e−y(τ ) : μ(ξ, τ ) = μext(−e−y(τ ), τ ). (4.19)

Introducing the decomposition

μ(ξ, τ ) = μext(ξ, τ ) + μ̂(ξ, τ ), (4.20)

and subtracting (2.36) from (4.10)

∂μ̂

∂τ
+
(
μ − y

b

) ∂μ

∂ξ
−
(
μext − y

b

) ∂μext

∂ξ
= 1

2
ey(τ )ωoCJ (ξ ey(τ )) − μ̂

r̃f
, (4.21)

the dynamics of the lead shock y(τ ) during the decay of a combustion wave in the
overdriven regime corresponds to the eigenfunction of the following problem

τ � τs :
∂μ̂

∂τ
+
(
μ̂ − y

b

) ∂μ̂

∂ξ
= 1

2
ey(τ )ωoCJ (ξ ey(τ )) − μ̂

r̃f
− ∂

∂ξ
[μextμ̂], (4.22)

ξ = 0 : μ̂ = 1 + 2y(τ )/b − μext
f (τ ); ξ � −e−y(τ ) : μ̂ = 0, (4.23)

where μext(ξ, τ ) is given in (4.15) and τs denotes the time at which the overdriven regime is
no longer verified. The boundary conditions at ξ = 0 and at ξ = −e−y(τ ) are respectively
the Rankine–Hugoniot relation (4.11) and (4.18).

Typically, ξs(τ ) increases when y(τ ) decreases, see § 5.1, so that the sonic point
approaches the end of the reaction ξb(τ ) = −e−y. As soon as the sonic point crosses the
exit of the reaction zone, τ � τs, ξs(τs) = −e−y(τs), μext(ξs, τ ) = y/b, the propagation
regime is no more overdriven; the external flow which is still solution of (2.38a,b) in
the burnt gas ξ < −e−y(τ ), is influenced by the disturbances emitted from the reactive
transonic flow and transported downstream (towards the weak discontinuity ξ = ξ0 < 0)
by the characteristic C+. Then, for τ > τs, ξs(τ ) > −e−y(τ ), the boundary condition (4.19)
is no longer valid and the rarefaction wave is no longer represented accurately by the
analytical expression (4.15) everywhere in the burnt gas. In other words, soon after τs,
the rarefaction flow behind the end of the reaction (ξ < −e−y(τ )) is modified by the heat
which is released in the region delimited by the end of the reaction and the sonic point
(−e−y � ξ � ξs). However, as in the discontinuous model in § 3.2, see figures 3 and 4,
the solution (4.15) is recovered downstream until the arrival of the disturbance transported
by the characteristic C+. The subsequent dynamics for τ � τs should then be analysed by
the numerical solution of (4.10)–(4.11) using an initial condition at τ = τs given by the
solution of the eigenvalue problem (4.22)–(4.23).

4.3. Initial condition
In a real initiation process the trajectory of the lead shock is fully determined by
the strong blast wave (inert flow) which is generated initially by a quasi-punctual and
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quasi-instantaneous deposit of external energy at the centre. According to the self-similar
solution of Sedov (1946) and Taylor (1950b), this strong blast wave depends only on the
amount of energy which is deposited, see the discussion of Liñán et al. (2012) for more
details. Such an initial stage corresponds to a large Mach number which is beyond the
scope of the asymptotic analysis in the limit 0 < M − 1 � 1. The critical condition of
initiation will be investigated in the present article by a parametric study of the initial
conditions of the solution of (4.10)–(4.17). Three parameters of order unity in the limit ε →
0 are involved at τ = 0; the initial radius r̃fi ≡ εrfi/l, the initial thickness of the rarefaction
wave −ξ̃0i ≡ (rfi − r0i)/εrfi > 0 and a positive parameter μext

fi . The initial propagation
velocity yi = b(Di − DoCJ )/εa is related to the above-mentioned parameters through the
inner structure of the detonation. Our attention will be focused on the initial velocity of
weakly overdriven detonations close to the CJ velocity, typically yi/b = 0.15–0.5 and on
an initial extension of the rarefaction wave much larger than the detonation thickness, as
in real initiation processes near criticality

rfi − r0i � l ⇒ (−ξ̃0i)r̃fi � 1. (4.24)

The numerical integration of (4.10)–(4.11) is initialized at τ = 0 by igniting the exothermal
reaction in the inert flow (4.15)

τ = 0 : μext(ξ) =
(1 + μext

fi )

(−ξ̃0i)r̃fi
ξ + μext

fi with μext
fi > 0, (4.25)

leading quickly, on a time scale shorter than unity, to the structure (4.13a–c) of an
overdriven regime sketched in figure 5, D − ub < a ⇔ μext

fi (−e−yi) − yi/b > 0. For μext
fi

large enough, the initial detonation velocity is larger than the CJ velocity yi > 0. As
explained at the beginning of § 4.2, the rarefaction flow of burnt gas (4.15)–(4.17) is not
perturbed by the heat release since the regime is overdriven.

5. Discussion of the critical dynamics

As discussed in Clavin & Denet (2020), the case of large activation energy leading
to strongly overdriven detonations is difficult and is left for future works. Within the
framework of the detonation model (4.4a,b)–(4.9) in the limit of small heat release,
the threshold of the longitudinal instability corresponds to a critical activation energy
b = bc of order unity, bc = O(1), for example bc = 1.27 for the distribution ωoCJ (ξ)

used in Clavin & Denet (2018). Therefore, focusing our attention on marginally stable
and/or unstable detonations (b of order unity), the curvature-induced quenching which is
described in the quasi-steady approximation for b � 1 in Appendix E cannot provide an
accurate picture of detonation failure. However, we will see that the order of magnitude of
the critical radius is correctly predicted.

5.1. Slowdown mechanism of overdriven waves. Failure and successful initiation
Consider initial conditions for which the propagation velocity crosses the planar CJ
velocity for the first time at τ = τt, y(τt) = 0, −e−y(τt) = −1, with a radius small enough
and an overdrive factor μext(−1, τt) > 0 large enough so that the flow at the exit of the
reaction zone continues to be subsonic (relative to the lead shock) well below the planar
CJ velocity, y < 0 : μext(−e−y(τ ), τ ) − y/b > 0. According to (2.50a,b)–(2.51a,b), the
sonic point inside the rarefaction flow of burnt gas behind an overdriven detonation moves
towards the reaction zone when the acceleration |dy/dτ | is not too large (dy/dτ < 0), more
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Spherical detonations

precisely when the decrease rate of 1 + y(τ )/b > 0 is smaller than the damping rate by
the curvature

− d( y/b)

dτ

1
1 + y(τ )/b

<
1
r̃f

⇔ dξs

dτ
> 0, (5.1)

see (C17). The exit of the reaction zone ξ = −e−y moving in the opposite direction when
y decreases, the overdrive factor μext(−e−y(τ ), τ ) − y(τ )/b > 0 decreases and the sonic
point can catch the exit of the inner structure of the reaction wave at a later time.

The curvature term on the right-hand side of (4.10) influences the inner structure of
the reaction wave and also the burnt-gas flow at the exit of the reaction zone, see (4.19).
These two mechanisms have an opposite effect on the dynamics of the lead shock, as
shown by the following rough arguments. Considering a constant flow (subsonic/shock)
at the exit of the reaction zone, the solution of (4.10)–(4.11) describes the dynamics of
an overdriven wave which is isolated from the external world. In the context of direct
initiation, for a velocity y < 0 well below the CJ wave, namely for |y| not small, the
flow μ(ξ, τ ) in the inner structure of the combustion wave is fully out of equilibrium.
Then, if the CJ wave is stable, the nonlinear relaxation towards equilibrium is expected
to correspond to an increase of y, especially if the overdrive factor is small since the
equilibrium would correspond to y ≈ 0. Therefore, the decay of y should be associated
with the rarefaction-wave-induced flow at the exit of the reaction zone μext(−e−y, τ ). The
corresponding response of the inner structure for adjusting the propagation velocity y is
thus delayed by the transit time of the characteristics C+ ξ = ξc(τ, τ

′) leaving the end of
the reaction ξ = −e−y(τ ) at time τ to reach the point ξ > −e−y at a later time τ ′ > τ .
According to the left-hand side of the hyperbolic equation (4.10), the corresponding delay
�τ+(ξ, τ ), τ ′ = τ + �τ+, takes the form,

ξs(τ ) < −e−y(τ ), ξc > −e−y(τ ), (5.2a,b)

τ ′ � τ : ∂ξc(τ, τ
′)/∂τ ′ = μ(ξc, τ

′) − y(τ ′)/b > 0, (5.3)

τ ′ = τ : ξc = −e−y(τ ), μ = μext(−e−y(τ ), τ ), (5.4a,b)

�τ+(ξ, τ ) =
∫ ξ

−e−y(τ )

dξc

μ(ξc, τ + �τ+) − y(τ + �τ+)/b
> 0, (5.5)

reflecting the complexity of the dynamics since the delay (5.5) depends on the future
of the inner structure μ(ξ, τ ′), y(τ ′), τ ′ = τ + �τ+. Except for the integral term Y(τ ),
which is negligible in (4.17), the decay of the velocity y(τ ) of an overdriven wave can be
considered as slaved by the decreasing rate of the rarefaction flow μext(−e−y, τ ) but with
the time delay �τ+(0, τ ) introduced by the characteristics C+ travelling from the exit of
the reaction zone to the lead shock.

This is true up to a time τ = τs at which the sonic point catches the exit of the
inner structure μext(−e−y(τs), τ ) = y(τs)/b (sonic condition). When the sonic condition
approaches the end of the reaction μext(−e−y) = y/b the denominator on the right-hand
side of (5.5) approaches zero at the lower bound of the integral, ∂ξc(τ, τ

′)/∂τ ′|τ ′=τ → 0+,
see (5.3)–(5.4a,b), so that the time delay �τ+(0, τ ) which is introduced by the response of
the inner structure increases strongly. Keeping in mind that the time delay becomes infinite
for a CJ wave in steady state when the burnt-gas flow is uniform, �τ+(0, τ ) → ∞ see
§ C.3 of Clavin & Denet (2020), a slowdown of the velocity decay y(τ ) should occur when
the sonic point ξs(τ ) approaches the end of the reaction −e−y(τ ) since the time delay of the
response becomes much larger than the characteristic time of the forcing term responsible
for the decay, namely the inverse of the decreasing rate of the rarefaction flow μext(ξ, τ ).
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Therefore, the derivative dy/dτ approaches 0 for y(τ ) < 0 (local minimum below the CJ
velocity), and the decay of the propagation velocity is stopped.

Consider the case for which this occurs when the propagation velocity is larger than the
lower bound yc corresponding to the chemical-kinetics quenching yc < y(τs) < 0. Then, as
soon as ξs(τ ) + e−y(τ ) crosses zero, the domain of the inner structure corresponding to ξ �
ξs(τ ) > −e−y(τ ) becomes isolated from the rarefaction wave and thus from its damping
rate. In other words the driving mechanism of the decay is switched off. As said earlier, the
state of the flow inside the inner-detonation structure being out of equilibrium, a nonlinear
relaxation process toward the stable CJ regime starts, so that the velocity y increases after
τs for ending with a success of initiation. We will come back to the slowdown mechanism
in § 5.2. Notice, however, that, for a large activation energy b, the success of initiation is
not guarantee when the sonic point approaches the exit of the reaction zone because of a
possible mechanism of curvature-induced quenching, similar to that in Appendix E. This
case is not considered here and is left for future works.

In any case, a detonation failure will be produced by the chemical-kinetics quenching
(4.9) if the latter occurs before the sonic condition y(τs) � yc < 0. Another possibility is
that the condition in (5.1) is not verified by the initial conditions so that the sonic point
could never catch the exit of the reaction zone. This will be investigated in future works.

5.2. Numerical results
In order to illustrate the asymptotic analysis, preliminary numerical solutions of
(4.10)–(4.12) are presented with the scaling law (4.4a,b), using the re-scaled distribution
ωoCJ (ξ),

∫ 0
−1 ωoCJ (ξ) dξ = 1, of the three-step kinetic scheme (B16)–(B18) in Clavin &

Denet (2018) whose instability threshold corresponds to b = 1.27. Two values of the
reduced activation energy will be considered; b = 1 for a stable CJ wave and b = 2 for
a weakly unstable CJ wave. Typical results of a parametric study of the trajectories in the
plane y − r̃f are presented for an initial thickness of the rarefaction wave 30 times larger
than the detonation thickness, −ξ̃0ir̃fi ≡ (rfi − r0i)/l = 30, by varying the initial radius
r̃fi ≡ εrfi/l in the range 0.3 − 3.5 for an initial velocity yi in the range 0.25–0.5.

Successful initiation and detonation failure are shown in figure 6 for a stable case,
b = 1, yi = 0.25 and yc = −0.5 (chemical-kinetics quenching). A weakly unstable case
for b = 2, yi = 0.5 and yc = −1 is presented in figure 7. The results for such marginally
unstable and stable detonations are similar, except for a nonlinear oscillation superimposed
on the trajectories. For such moderate values of b, detonation failure is produced by
the chemical-kinetics quenching. This is clearly shown by decreasing the lower bound
yc associated with the chemical-kinetics quenching. For example, considering the case
b = 1 and yc = −0.8, a successful initiation is observed in figure 8 for r̃fi = 0.5 which
corresponds to a detonation failure for yc = −0.5 in figure 6.

The slowdown mechanism, discussed in § 5.1, leading to a minimum of propagation
velocity well below the planar CJ velocity y < 0, is clearly observed when the sonic
point ξ = ξs(τ ) approaches the end of the reaction ξ = −ey(τ ), see figures 8 and 13
where the minimum y ≈ −0.71 is reached at τ ≈ 3. During the subsequent re-acceleration
of the propagation velocity y(τ ) for τ > 3, the position of the sonic point inside the
inner structure stays close to the end of the reaction, as in the solution of a steady
and weakly curved CJ detonation with large activation energy, but, here the flow in
the inner-detonation structure is out of equilibrium, as already mentioned. Notice that
the minimum of propagation velocity y(τ ) occurs just before the sonic point catches
the exit of the inner structure of the reaction wave. This means that the external
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Figure 6. Examples of numerical integration of (4.10)–(4.11) for b = 1 and yc = −0.5. The failure occurs for
a small initial radius r̃fi < 0.85 because of chemical-kinetics quenching.
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–

Figure 7. Examples of numerical integration of (4.10)–(4.11) for a weakly unstable detonation b = 2 and
yc = −1. The failure occurs for initial radius small enough r̃fi < 1.5 because of chemical-kinetics quenching.

damping rate is balanced by the internal mechanism of re-acceleration for a small
overdrive factor μext(−e−y(τ ), τ ) − y(τ )/b > 0, a little bit before τs for which the sonic
condition is obtained μext(−e−y(τs), τ ) − y(τs)/b = 0. Notice also that the minimum of
y(τ ) corresponds to a non-dimensional radius r̃f /b of order unity as for the critical radius
of the C-shaped curve obtained by the quasi-steady state approximation, see Appendix E.

Inside the induction zone where the heat release is negligible, ω ≈ 0, the curvature term
on the right-hand side of (4.10) makes the instantaneous distribution of the flow decreasing
when approaching the lead shock, ∂μ/∂ξ < 0. Then, the distribution μ(ξ, τ ) presents a
maximum inside the inner structure of the reaction wave, clearly shown in figures 8(a) and
10. The corresponding peak of pressure was observed in direct numerical simulations and
was considered by Ng & Lee (2003) to be the driving mechanism of the re-acceleration
of the wave leading to the detonation initiation in the critical regime. The flow velocity
decreasing in space in the direction of propagation, formation of shock waves is possible
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Figure 8. Numerical integration of (4.10)–(4.11) for a stable detonation b = 1 for yc = −0.8 and r̃fi = 0.5,
showing a successful initiation. The profiles of the reduced flow velocity u(ξ, τ )/εa are plotted in (a) at
different times. The trajectory y(r̃f ) is plotted in (b). The full points denote the exit of the reaction zone and the
open circles in (a) are the sonic points (relative to the lead shock).
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Figure 9. Numerical integration of (4.10)–(4.11) for stable detonation, b = 1 and yc = −0.8. The trajectory
corresponding to r̃fi = 0.1 describes a failure of initiation y(τ ) → −1 and that corresponding to r̃fi = 0.3 is a
successful initiation with jumps during the increase of the detonation velocity resulting from the formation of
shock waves in the induction zone, as explained in the text.

inside the induction zone. This is observed in the numerical solutions of (4.10)–(4.12)
during the increase of the detonation velocity for trajectories whose minimum of y is just
above the lower bound (chemical-kinetics quenching) when the latter is small, 0 < (D −
a)/εa ≡ 1 + y/b ≈ 0+, y + b � b. This occurs for initial radius small enough, see for
example the trajectory corresponding to r̃fi = 0.3 in figure 9. The physical relevance of a
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Figure 10. Comparison of the numerical solution with the theoretical expression (4.15)–(4.17) of the
rarefaction wave μext(ξ, τ ) for a successful initiation.
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Figure 11. Comparison of the numerical solution with the theoretical expression (4.15)–(4.17) of the
rarefaction wave μext(ξ, τ ) for a detonation failure.

detonation velocity becoming so close to y = −b is questionable since it corresponds to a
cross-over temperature for the chemical-kinetics quenching close to the initial temperature,
since typically in real detonations the chemical-kinetics quenching corresponds to yc =
−b/2, see the paragraph above (4.9). The phenomenon of shock formation during the
re-acceleration was also observed in the direct numerical simulations of Ng & Lee (2003)
for a one-step kinetic rate law in a planar geometry. This question deserves more work.

Comparison between the numerical solution and the asymptotic analysis shows a
very good agreement, confirming the validity and relevance of both numerical method
and analytical solution. Solving numerically (4.10)–(4.12) for an initial condition (4.25),
down to the radius of the core of stagnant gas ξ = ξ0(τ ) where u = 0, a straight part
of the numerical solution is observed. The latter fits with an excellent accuracy the
theoretical expression μext(ξ, τ ) in (4.15)–(4.17) for either successful initiation or failure,
see figures 10 and 11. Moreover, the theoretical result (4.17) with Y = 0 fits also with
a good accuracy the numerical result. This could be quite helpful for further theoretical
analyses.
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Figure 12. Numerical solutions at different times compared to the self-similar solution of (2.23)–(2.24) (dotted
line) representing the self-similar rarefaction flow behind the front of a spherical CJ detonation considered as a
discontinuity for small heat release (DoCJ − a)/a ≈ ε � 1. The reduced flow v = u(r, t)/εa is plotted vs the
reduced distance from the front z = (r − rf (t))/εr0(t) with rf (t) = DoCI t + rfi, r0(t) = at + r0i and, according
to (2.26), rfi = (1 + ε)r0i. Because of the finite thickness of the reaction zone e−y the origin of space variable
has been shifted in the figure.
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Figure 13. Zoom of the velocity profiles for the same parameters as in figure 10 for later time. The sonic
point is out of the picture at τ = 3.

Moreover, the numerical solution of successful initiation clarifies the question raised
long ago by Taylor (1950a) concerning the link between the self-similar solution and the
trajectory ‘detonation velocity vs radius’ for a successful initiation when the inner structure
of the reaction wave is taken into account. A first indication is given by the instantaneous
profiles of the burnt-gas flow behind the reaction zone in figure 10 for τ � 7 showing
similitudes with the discontinuous model in figure 4. The self-similar profile of figure 1
is recovered by the numerical result in the long-time limit τ̃ ≡ τ/r̃fi � −ξ̃0i when the
reduced flow μ(ξ, τ ) + 1 is plotted vs the self-similar variable (2.25) [r − rf (t)]/[rf (t) −
r0(t)] ≡ ξ̃/(−ξ̃0) with ξ̃0 = −τ̃ + ξ̃0i. This is shown in figure 12. According to the zoom
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in figure 13, the slope ∂μ/∂ξ |ξ=−e−y , which is initially small (at the scale of the detonation
thickness ξ = O(1)) in the overdriven regimes, increases when the sonic point gets into
the inner structure, so that the flow gradient becomes infinite at the scale of the thickness
of the rarefaction wave which increases linearly with the time.

6. Conclusion and perspectives

The critical dynamics of the direct initiation of detonation is studied in the limit of
small heat release reducing the problem to solve a single hyperbolic equation. This
limit emphasizes the two-time-scale nature of the problem which also characterizes real
detonations when the condition at the exit of the reaction zone is nearly sonic. The
simplification comes from a flow Mach number differing from unity by a small amount
everywhere. In real detonations near the CJ regime, this is true at the end of the reaction
zone, but not close to the lead shock. Concerning the trajectories of the lead shock in
direct initiation, the limit of small heat release introduces differences that are mainly
quantitative, except for the overshoot during the re-acceleration phase which is sometimes
observed in direct numerical simulations. Useful results of the asymptotic limit are the
analytical expressions of the rarefaction flow for both discontinuous model of detonation
and combustion waves whose inner structure is unsteady. Amazingly, these asymptotic
solutions present the same characteristic properties as those of the flow in the opposite
limit of a large Mach number of propagation. This confirms the relevance of the limit of
small heat release for improving our understanding of the detonation dynamics.

The evolution of the sonic point (sonic condition relatively to the lead shock) inside
the rarefaction wave is then found to be the key element of the overall dynamics. Due
to the increase of the time delay by the response of the detonation inner structure to
the burnt-gas flow, a slowdown mechanism is identified when the sonic point, located
initially in the burnt gas away from the reaction wave (overdriven regimes), approaches
the exit of the reaction zone. This mechanism explains the behaviour of the trajectories
‘propagation velocity vs radius’ observed near criticality in direct numerical simulations
of successful initiation. The detonation velocity decreases well below the CJ velocity like
for a failure and reaches a minimum associated with the onset of the sonic condition. This
deceleration phase is followed by a re-acceleration back to the CJ regime corresponding
to an isolated combustion wave whose inner structure is out of equilibrium. During this
nonlinear relaxation, the sonic point stays inside the inner structure of the combustion
wave, close to the end of the reaction zone. Failure is produced if the detonation velocity
decreases so much that the chemical-kinetics quenching occurs in overdriven regimes
when the sonic point is still in the burnt gas behind the exit of the reaction zone. This
depends on the radius at which the velocity of the overdriven detonation crosses the CJ
velocity for the first time; the smaller the radius, the stronger the damping rate and the
detonation is more likely. Another outcome of the asymptotic analysis is to indicate how
the self-similar CJ solution for the rarefaction wave is reached in the long-time limit,
showing a behaviour similar to the discontinuous model.

Due to the difficulty pointed out in Clavin & Denet (2020) for strongly unstable
detonations in the limit of small heat release using the scaling law (4.4a,b), attention was
limited in this article to a reduced activation energy of order unity b = O(1). This prevents
us seeing whether or not the curvature-induced quenching which is predicted without
multiple-step chemistry (no cross-over temperature) by a quasi-steady approximation for
large b, can also occur in the unsteady regime after the sonic point has caught the end
of the reaction. Notice, however, that the radius at the minimum of velocity is of same
order of magnitude as the quasi-steady critical radius. Future works will be devoted to
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this question. This should be performed with an unsteady reaction rate different from the
scaling law (4.4a,b). More generally, improvements of the asymptotic analysis in the limit
of small heat release will be sought to provide a better quantitative accuracy with real
detonations. Another point which deserves more investigation is the re-ignition by shock
waves observed when the minimum velocity is very low.

In this paper the analysis of the critical dynamics is limited to a spherical geometry. The
result of plane or cylindrical detonations cannot be conjectured by dimensional arguments,
the analysis has to be reconsidered from the beginning. The dynamics of the sonic point
inside the rarefaction wave is expected to also play an essential role.
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Appendix A. Conditions in the burnt gas behind the detonation front

The conditions behind a detonation treated as a discontinuity is obtained by the
conservation of mass, momentum and energy across a planar detonation in quasi-steady
state. They can be put in the form, see Clavin & Searby (2016),

M � MoCJ > 1 : 1 − ρu

ρb
= 1

γ + 1
(M2 − 1)

M2

⎡
⎢⎣1 +

√√√√1 −
(

MoCJ − M−1
oCJ

M − M−1

)2
⎤
⎥⎦ , (A1)

pb

pu
− 1 = γ M2

(
1 − ρu

ρb

)
,

ub

au
=
(

1 − ρu

ρb

)
M, MoCJ − M−1

oCJ
= 2

√
Q, (A2a–c)

where ρ is the density, the subscripts u and b denote respectively the fresh mixture and the
burnt gas, Q ∝ qm/cpTu is the reduced heat release and M ≡ D/au is the propagation
Mach number. The square root is zero for the CJ regime corresponding to the sonic
condition in the burnt gas M = MoCJ : uboCJ = DoCJ − aboCJ with aboCJ = √

γ pboCJ /ρboCJ .
According to the last equation in (A2), the CJ Mach number is close to unity in the limit
of small heat release, 0 < (MoCJ − 1) � 1. For weakly overdriven regimes 0 < (M −
MoCJ )/MoCJ � 1 the square root in (A1) is small so that the propagation Mach number
is also close to unity 0 < (M − 1) � 1 for small heat release and the flow velocity in the
laboratory frame is much smaller than the sound speed ub/au = O(M − 1). However, the
rarefaction wave is not a spherical acoustic wave even though it is a linear function of
the radius behind a weakly overdriven detonation M > MoCJ , as shown § 2.3, while the
rarefaction wave behind a spherical CJ detonation investigated in § 2.2 is quite different.

The Rankine–Hugoniot conditions at the Neumann state of an inert shock correspond
to (A1)–(A2) when the square root on the right-hand side of (A1) is set equal to unity,

Q = 0 : 1 − ρu

ρN
= 2

γ + 1
(M2 − 1)

M2 ,
pN

pu
− 1 = γ M2

(
1 − ρu

ρN

)
, (A3)
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uN

au
= M

(
1 − ρu

ρN

)
,

TN

Tu
= 1

M2

[
1 + 2γ

γ + 1
(M2 − 1)

] [
1 + γ − 1

γ + 1
(M2 − 1)

]
,

(A4)

M − 1 � 1 :
uN

au
≈ 4

γ + 1
(M − 1),

TN

Tu
− 1 ≈ 4(γ − 1)

γ + 1
(M − 1), (A5)

pN

pu
− 1 ≈ 4γ

γ + 1
(M − 1), (A6)

where the subscript N denotes the Neumann state.

Appendix B. Linear solution

A linear solution of the small flow behind a spherical detonation, treated as a discontinuity
in the limit of small heat release (0 < MoCJ − 1 � 1), is performed here. By comparison
with the development in § 2, the purpose is to stress the nonlinear character of the
rarefaction wave when approaching the CJ regime.

B.1. Spherical acoustic wave
Let us first briefly recall the acoustic waves in a spherical geometry. The linear version of
the isentropic Euler equations yields

∂(ρ − ρ̄b)/ρ̄b

∂t
+ ∇ · u = 0,

∂u
∂t

= −a2

ρ̄b
∇ρ, (B1a,b)

where (ρ − ρ̄b)/ρ̄b � 1 with ρ̄b and a = ab ≈ au constant. Introducing the potential ϕ,
(B1) yield

(ρ − ρ̄b)

ρ̄b
= ∂ϕ

∂t
, u = −a2∇ϕ,

∂2ϕ

∂t2
− a2�ϕ = 0, (B2a–c)

where

�ϕ = 1
r2

∂

∂r

(
r2 ∂ϕ

∂r

)
(B3)

in a spherical geometry. Introducing the function f (r, t), and looking for the solution in
the form ϕ = f /r,

∂2f
∂t2

− a2 ∂2f
∂r2 = 0, (B4)

the flow expressed in terms of the non-dimensional the transit time is

ϕ = f1(t − r) + f2(t + r)
r

⇒ (ρ − ρ̄b)

ρ̄b
= f ′

1(t − r) + f ′
2(t + r)

r
, (B5)

v(r, t) ≡ u(r, t)
a

= f ′
1(t − r) − f ′

2(t + r)
r

+ f1(t − r) + f2(t + r)
r2 , (B6)

where f ′
1(η) and f ′

2(η) denote the derivative of f1(η) and f2(η), f ′
1(η) ≡ df1(η)/dη, f ′

2(η) ≡
df2(η)/dη, the unknown functions f1(η) and f2(η) being determined by the boundary
conditions.
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Consider the flow behind a supersonic front r = rf (t) propagating with the velocity
D(t) = drf /dt, M(t) = D(t)/a > 1. Denoting ub(t) and ρb(t) the flow velocity and the
density on the lead front and introducing the notations rf (t) = rf (t)/a, drf /dt = M(t)

F1(t) ≡ f1(t − rf (t)), Ḟ1(t) ≡ dF1/dt = [1 − M(t)] f ′
1(t − rf (t)), (B7a,b)

F2(t) ≡ f2(t + rf (t)), Ḟ2(t) ≡ dF2/dt = [1 + M(t)] f ′
2(t + rf (t)), (B8a,b)

the boundary conditions at the front take the form

1
rf (t)

[
Ḟ1(t)

1 − M(t)
+ Ḟ2(t)

1 + M(t)

]
= δρb(t)

ρ̄b
≡ (ρb(t) − ρ̄b)

ρ̄b
, (B9)

1
rf (t)

[
Ḟ1(t)

1 − M(t)
− Ḟ2(t)

1 + M(t)

]
+ F1(t) + F2(t)

r2
f (t)

= ub(t)
a

, (B10)

where ρb and ub/a are expressed in terms of the propagation Mach number M(t) through
(A1)–(A2). The radius at which the flow vanishes u(r0(t), t) = 0, du/dr|r−r0=0+ > 0
should be a weak discontinuity,

r = r0(t) : u(r, t) = 0, r − r0(t) = 0+ : dr0/dt = a < D. (B11)

B.2. Solution
We look for the linear solution for the flow behind a CJ regime in a spherical geometry
treated as a discontinuity propagating with the constant velocity of the planar wave in
steady state D = DoCJ (constant Mach number M = MoCJ ≡ DoCJ /a > 1)

rfoCJ (t) = DoCJ t + rfoi, rfoCJ (t) = MoCJ t + rfoi, rfoi = const. (B12a–c)

According to (A1) and (A2) for the square root =0, the right-hand side of (B9) and (B10)
are constant,

1 − ρu

ρboCJ

= 1
MoCJ

uboCJ

a
,

uboCJ

a
= 1

γ + 1

(M2
oCJ

− 1)

MoCJ

. (B13a,b)

Taking ρ̄b = ρboCJ , the right-hand side of (B9) is zero,

r = rfoCJ (t) : ub = uboCJ , ρb − ρ̄ = ρb − ρboCJ = 0. (B14a–c)

For small heat release ε ≡ (MoCJ − 1) � 1, uboCJ/a � 1 ⇒ u/a � 1, the linear solution
(B5)–(B6) with (B9)–(B10) satisfying the boundary conditions (B13)–(B14) is

r0(t) � r � rfoCJ :
u(r, t)
uboCJ

=
[

1 − 1
M2

oCJ
− 1

(
r2

foCJ
(t)

r2 − 1

)]
, r � r0(t) : u = 0,

(B15)

1 − ρ(r, t)
ρboCJ

= uboCJ

a
2MoCJ

M2
oCJ

− 1

(
rfoCJ (t)

r
− 1

)
, r � r0(t) : ρ = ρu, (B16)

where, according to (A1), uboCJ/a = (M2
oCJ

− 1)M−1
oCJ

/(γ + 1). The solution also satisfies
the downstream condition (B11) of a weak discontinuity provided r0(t) ≡ a t + rfoi/MoCJ

r0(t) ≡ a t + rfoi/MoCJ ⇒ rfoi(t)/r0(t) = MoCJ ⇒ r = r0(t) : u = 0, ρ = ρu, (B17)
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the last relation being valid to leading order in the limit ε → 0, (γ − 1) → 0. Therefore,
the thickness of the rarefaction wave rfoCJ − r0 increases also linearly with the time

rfoCJ (t) − r0(t)
r0(t)

= MoCJ − 1,
1
a

d
dt

(rfoCJ − r0) = MoCJ − 1. (B18)

The calculation proceeds as follows. Using (B11) and (B14) integration of (B9) yields

F1(t)
1 − M

+ F2(t)
1 + M

= A′ ⇒ F2 = −1 + M
1 − M

F1 + (1 + M)A′, (B19)

where A′ is a constant. In order to save the notation the subscript oCJ has been omitted
in MoCJ which is replaced by M. Adding (B9) and (B10) yields a differential equation for
F1(t) when F2(t) is eliminated by using (B19)(

t + rfoi/M
)

Ḟ1 − F1 = −A + (
t + rfoi/M

)2
(ub/a)(1 − M)M/2, (B20)

where A = (1 − M2)A′/(2M) is constant. Equation (B20) is easily integrated

F1(t) = A + (
t + rfi/M

)
B + (

t + rfi/M
)2

(ub/a)(1 − M)M/2, (B21)

where B is another constant and F2(t) is obtained from (B19). According to (B7)–(B8),
f1(t − r) and f2(t + r) are obtained from F1(t) and F2(t) by the substitution t → [(t −
r) + rfi]/(1 − M) and t → [(t + r) + rfi]/(1 + M) respectively,

f1(t − r) = A + B
1 − M

[
(t − r) + rfi

M

]
+ (ub/a)

M/2
1 − M

[
(t − r) + rfi

M

]2
, (B22)

f2(t + r) = −A − B
1 − M

[
(t + r) + rfi

M

]
− (ub/a)

M/2
1 + M

[
(t + r) + rfi

M

]2
. (B23)

The constants A and B disappear from (B6) leading to (B16).
Because of the sonic condition at the front this linear solution is not self-consistent since

the nonlinear terms are essential near the sonic condition as discussed now.

B.3. Inconsistency of the linear approximation behind a CJ detonation
The flow (B15) is effectively small for r0(t) � r � rfoCJ (t) when the heat release is small

ε2 ≡ [qm/cpTu](γ + 1)/2 � 1, (MoCJ − 1) ≈ ε, DoCJ ≈ (1 + ε)a, (B24a–c)

because the flow increases from 0 to its value at the leading edge of the rarefaction wave
uboCJ which is, according to (B13), smaller than the sound speed uboCJ /a ≈ ε

rfoCJ (t) − r0(t)
r0(t)

= ε, rfoCJ (t) = (1 + ε)r0(t),
rfoCJ (t)

r
− 1 = O(ε), (B25a–c)

uoCJ (r, t)
a

= 2
γ + 1

[
ε −

(
rfoCJ (t)

r
− 1

)]
+ O(ε2), (B26)

1
a

∂uoCJ

∂t
= − 2

γ + 1
(1 + ε)

a
r

≈ (1 + ε)
a
r
,

1
a

∂uoCJ

∂r
≈ rfoCJ (t)

r2 . (B27a,b)

Inside the rarefaction wave, r0(t) � r � rfoCJ (t), r/r0(t) − 1 = O(ε), to leading order in
the limit ε � 1, the velocity profile is linear since, according to (B25)–(B18)

r0(t) � r � rfoCJ (t) :
(γ + 1)

2
uoCJ (r, t)

a
= (1 + ε)[r − r0(t)]

r
∈ [0, ε], (B28)
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neglecting terms of order ε2, one has

r0(t) � r � rfoCJ (t) :
(γ + 1)

2
uoCJ (r, t)

a
≈ r − r0(t)

r0(t)
∈ [0, ε]. (B29)

The physical interpretation is simple, the numerator on the right-hand side of (B29)
describes a propagation at the speed of sound while the denominator is the geometrical
damping in a spherical geometry. The linear solution (B29) is different from the
self-similar solution in figure 1. It is also different from the rarefaction wave
(2.52a–c)–(2.53a,b), even though they are both linear in space. The flow (B29) is
effectively solution of the linear version of (2.9) for u � a and rf (t) − r0(t) = εr0(t),
r ≈ r0(t),

∂u
∂t

+ a
∂u
∂r

= −a
u

r0(t)
, r0(t) = a t + r0i, (B30)

as verified by the general solution of (B30) for the initial condition u(r, t = 0) = ui(r),
u = ui(r − at)r0i/r0(t), leading to (B29) if the initial flow increases linearly in space
ui(r) = a (r − r0i)/r0i. The inconsistency of the linear solution (B29) is pointed out by
computing the nonlinear term u∂u/∂r = a2(r − r0)/r2

0 = au/r0 which has the same order
of magnitude as the right-hand side. This illustrates that the nonlinear term u∂u/∂r plays
an essential role in the transonic flow relative to the front.

Appendix C. Details of calculation

C.1. Equation (2.31)
Using the notations (2.28), (2.10a–c) takes the form[

ε

tr

∂

∂τ
+ 1

tr

(
u
a

+ 1 − D
a

)
∂

∂ξ

]
μ = −a

(1 + μ)

r
, (C1)

DoCJ /a = 1 + ε ⇒
[
ε

∂

∂τ
+
(

u
a

− ε − (D − DoCJ )

a

)
∂

∂ξ

]
μ = − l

r
(1 + μ), (C2)

[
ε

∂

∂τ
+
(

εμ − (D − DoCJ )

a

)
∂

∂ξ

]
μ = − l

r
(1 + μ), (C3)

[
∂

∂τ
+
(

μ − (D − DoCJ )

εa

)
∂

∂ξ

]
μ = − l

εr
(1 + μ). (C4)

This is (2.31).

C.2. Solution to (2.56a,b)
Attention is focused on

0 < μfi � 1 with ξ̃0i < 0, (C5)

and one considers the positive solution τt > 0. Equation (2.56a,b) can be put in the form

τ̃t

[
1 − |ξ̃0i|

1 + μfi

]
+ |ξ̃0i| μfi

(1 + μfi)
= (1 + τ̃t) ln(1 + τ̃t). (C6)
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τ̃t

(1 + τ̃t)ln(1 + τ̃t)

0
−1

|ξ̃0i|μf i /(1 + μfi)

Figure 14. Graphical solution of (C6) for 0 < μfi � 1 and ξ̃0i < 0. The thick straight line is the left-hand
side of (C6) plotted for |ξ̃0i| < 1 + μfi.

A graphical representation of the solution is plotted in figure 14 showing that τ̃t � 1 if
0 < μfi � 1. To leading order, a Taylor expansion in powers of τ̃t then leads to

τt(1 − |ξ̃0i|) + |ξ̃0i|μfi ≈ τ̃t ⇒ τ̃t ≈ μfi. (C7)

which is also right for ξ̃0i = −1 that is, according to the definition (2.37a–c), for (rfi −
r0i) = εr0i which is valid in the self-similar solution of the CJ detonation (2.26). In this
particular case, (C6) yields

(1 + τ̃t)
μfi

(1 + μfi)
= (1 + τ̃t) ln(1 + τ̃t) ⇒ τ̃t = eμfi/(1+μfi) − 1 ≈ μfi. (C8)

C.3. Simplified expression for the external flow
Discarding the integral term Y(τ )/b = O( yi/b), the time scale of the external flow (4.15)
is larger than the response of the inner structure of the detonation by a factor r̃fi. According
to (2.57), the time τt, solution to the equation μext

f (τt) = 0, is close to μext
fi r̃fi if μext

fi is
sufficiently smaller than unity,

μext
fi � 1 ⇒ τt ≈ μext

fi r̃fi ∀ξ̃0i. (C9)

Consider a large radius r̃fi and an initial propagation velocity close to the CJ velocity as in
(2.42), for which

r̃fi � 1, μext
fi � 1, r̃fiμ

ext
fi � 1, (C10a–c)

so that the time τt ≈ r̃fiμ
ext
fi is larger than the characteristic time of the linear response of

the inner structure which is of order unity, but τ̃t ≡ τt/r̃fi ≈ μext
fi � 1 is small. For a lapse

of time τ of the same order as τt, using (4.12),

τ = O(τt), r̃f (τ ) = r̃fi(1 + τ/r̃fi) ≈ r̃fi, (C11a,b)

the instantaneous reduced curvature 1/r̃f does not vary much and can be considered as a
constant in (4.10). Under the condition (C10), the thickness of the boundary layer (2.59a,b)
�|ξ̃ | ≈ μext

fi , �|ξ | = O(μext
fi r̃fi), is larger than the thickness of the inner structure which is
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of order unity for e−y = O(1), so that the outer flow of an overdriven detonation reduces
to (2.60a,b),

μext(ξ, τ ) ≈ 1
r̃fi

[
ξ

−ξ̃0i
+ (τt − τ)

]
, μext

f (τ ) ≈ (τt − τ)

r̃fi
, (C12a,b)

with a length scale larger than the detonation thickness by a factor r̃fi|ξ̃0i| and a time scale
larger than the response time of the inner structure by a factor r̃fi � 1.

C.4. Motion of the sonic point
In overdriven regimes, the position of the sonic point ξ = ξs(τ ) is related to the
evolution of the detonation velocity y(τ )/b. Introducing the relation μext(ξs(τ ), τ ) =
y(τ )/b into(4.15) and using (4.17) yields

1 + y(τ )

b
= ξs(τ )

r̃f (τ )[(−ξ̃0i)/(1 + μext
fi ) + ln(r̃f /r̃fi)]

+ (1 + μext
f (τ )),

[
1 + y(τ )

b

][
r̃f (τ ))

(−ξ̃0i)

(1 + μext
fi )

+ r̃f ln(r̃f /r̃fi)

]
= ξs(τ ) + τ [1 + Y(τ )] + (−ξ̃0i)r̃fi.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(C13)
According to (4.12), the relation r̃f (τ ) = τ + r̃fi leads to

ξs(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(τ )

b

[
(τ + r̃fi)

(−ξ̃0i)

(1 + μext
fi )

+ r̃f ln(r̃f /r̃fi)

]
,

τ
(−ξ̃0i)

(1 + μext
fi )

− τ − 1
b

∫ τ

0
y(τ ′)dτ ′ + r̃f ln(r̃f /r̃fi),

r̃fi
(−ξ̃0i)

(1 + μext
fi )

− (−ξ̃0i)r̃fi.

(C14)

Using d[r̃f ln(r̃f /r̃fi)]/dτ = ln(r̃f /r̃fi) + 1, derivation of (C14) yields

dξs

dτ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
b

dy
dτ

[
(τ + r̃fi)

(−ξ̃0i)

(1 + μext
fi )

+ r̃f ln(r̃f /r̃fi)

]
,

y(τ )

b

[
(−ξ̃0i)

(1 + μext
fi )

+ ln(r̃f /r̃fi) + 1

]
,

(−ξ̃0i)

(1 + μext
fi )

− 1 − y
b

+ ln(r̃f /r̃fi) + 1,

(C15)

to give

dξs

dτ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
b

dy
dτ

r̃f

[
(−ξ̃0i)

(1 + μext
fi )

+ ln(r̃f /r̃fi)

]
,

y(τ )

b

[
(−ξ̃0i)

(1 + μext
fi )

+ ln(r̃f /r̃fi)

]
,

(−ξ̃0i)

(1 + μext
fi )

+ ln(r̃f /r̃fi),

(C16)
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yielding
1

(−ξ̃0i)/(1 + μext
fi ) + ln(r̃f /r̃fi)

dξs

dτ
= r̃f

1
b

dy
dτ

+
[

1 + y(τ )

b

]
. (C17)

The coefficient of dξs/dτ on the left-hand side being positive, the sign of dξs/dτ is the
same as r̃f d[1 + y(τ )/b]/dτ + [1 + y(τ )/b] on the right-hand side.

Appendix D. Relaxation of spherical shock waves in open space

Introducing the reduced propagation velocity α̇τ defined in (2.30a,b), 1 + α̇τ ≈ (D −
a)/εa, the relaxation of an inert shock wave in spherical geometry corresponds to

D � a ⇔ α̇τ � −1, (D − a)/a → 0+ : (α̇τ + 1) → 0+. (D1)

Therefore, the end of the decay cannot be described by the approximation |α̇τ | � 1 used
in (2.40a,b). At the Neumann state (ξ = 0), the flow is subsonic with respect to the shock
(D − uf ) � a, and, according to the Rankine–Hugoniot condition for (D − a)/a � 1, the
boundary condition at the shock front reads uf ≈ 2(D − a) see (A1)-(A2) for Q = 0,
which, using μ + 1 ≡ u/εa in (2.28), corresponds to μf = 1 + 2α̇τ . Focusing attention
on an initial velocity Di > a close to the sound speed, the function D(t) is decreasing
monotonically from an initial value (Di − a)/a � 1 to a. This is an eigenvalue problem
consisting in determining the decreasing function α̇τ (τ̃ ) → −1 (μf (τ̃ ) → −1), solution
of

∂μ

∂τ̃
+ (μ − α̇τ )

∂μ

∂ξ̃
= −(1 + μ)

τ̃ + 1
, (D2)

satisfying the boundary condition

ξ̃ = 0 : μ = μf (τ̃ ), μf = 1 + 2α̇τ , (D3)

for a given initial condition

τ = 0 : α̇τ = α̇τ i, α̇τ i > −1 ⇒ μfi > −1. (D4)

The flow of the rarefaction wave decreases from its Neumann value at the shock to
u = 0 when the distance from the shock increases, so that the instantaneous flow field
μ(ξ̃, τ̃ ) decreases from 1 + 2α̇τ (τ̃ ) at ξ̃ = 0 to μ = −1 at ξ̃ = ξ̃0(τ̃ ) < 0 corresponding
to the radius of the sphere of quiescent gas (u = 0). This point is a weak discontinuity
propagating with the speed of the sound in the laboratory frame, according to (2.34),

ξ̃ = ξ̃0(τ̃ ) : μ = −1, dξ̃0/dτ̃ = − (1 + α̇τ ) , (D5a,b)

since dξ̃0/dτ̃ = dξ0/dτ . As before, (D5) is automatically satisfied by the solution of (D2)
which reduces to ∂μ/∂τ̃ − (1 + α̇τ )∂μ/∂ξ̃ = 0 at μ = −1. Notice that the scalar field
[μ(ξ̃, τ̃ ) − α̇τ (τ̃ )] decreases from a positive value 1 + α̇τ at the shock ξ̃ = 0 to a negative
value −(1 + α̇τ ) at ξ̃0(τ̃ ) < 0 so that there should be a sonic point (relative to the shock)
inside the rarefaction wave at the point where (μ − α̇τ ) = 0 ⇔ (D − u) = a.

Equation (D2) has solutions in the same form as (2.44a–d) and (2.46a,b)–(2.48) are
still valid since α̇τ is eliminated from (2.45) when using ∂μ/∂τ̃ = Ȧ + (1 + α̇τ )AB′
and (μ − α̇τ )∂μ/∂ξ̃ = (AB − 1 − α̇τ )AB′. Then, following the same development as in
(2.46a,b)–(2.49), the solution to (D2), μ(ξ̃, τ̃ ) and μf (τ̃ ), expressed in terms of ξ̃0(τ̃ ) and
the initial values ξ̃0i and μfi, take the same form as (2.50a,b)–(2.51a,b), obtained without
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using the boundary condition at the front. Using the boundary condition (D3) at the front
and (D5) in the form

− dξ̃0/dτ̃ = (1 + α̇τ ) = [μf (τ̃ ) + 1]/2, (D6)

the expression of μf (τ̃ ) in (2.51a,b) yields an ordinary differential equation for ξ̃0(τ̃ )

1

ξ̃0(τ̃ )

dξ̃0(τ̃ )

dτ̃
= 1

2(1 + τ̃ )[θi + ln(1 + τ̃ )]
, where θi ≡ − ξ̃0i

(1 + μfi)
> 0. (D7)

This equation can be integrated by considering the integral

I(τ ) =
∫ τ

0

dτ̃ ′

(1 + τ̃ ′)[θi + ln(1 + τ̃ ′)]
= ln

[
1 + 1

θi
ln(1 + τ̃ )

]
(D8)

obtained by the change of variable Y = ln(1 + τ̃ ′) leading to

ξ̃0(τ̃ )/ξ̃0i =
√

1 + 1
θi

ln(1 + τ̃ ), ⇒ dξ̃0

dτ̃
= ξ̃0i

2
1

θi(1 + τ̃ )

√
1 + 1

θi
ln(1 + τ̃ )

. (D9)

Putting together (D6) and (D9) provides us with the propagation velocity α̇τ (τ̃ )

1 + α̇τ (τ̃ ) = −ξ̃0i/2

θi(1 + τ̃ )

√
1 + 1

θi
ln(1 + τ̃ )

(D10)

showing a relaxation toward the sound speed in the long-time limit in the form

lim
τ̃→∞

[1 + α̇τ (τ̃ )] = cst.

τ̃
√

ln τ̃
⇒ lim

t→∞
D(t) − a

a
= cst.

t
√

ln t
. (D11)

Appendix E. Steady-state approximation for large activation energy

The quasi-steady approximation pointed out a curvature-induced quenching which is
worth comparing with the unsteady trajectories. The steady-state approximation is not
expected to be an accurate approximation in the direct initiation of spherical gaseous
detonation, because the unsteady terms are of the same order of magnitude as the curvature
term, see the discussion in Clavin & Denet (2020). In this appendix the quasi-steady
approximation of the inner structure is revisited in the limit of small heat release for
large activation energy when the unsteady gradient of the burnt-gas flow of overdriven
detonations is taken into account. Then, when the unsteady term on the left-hand side of
(4.21) is neglected, the problem reduces to

(
μ − y

b

) ∂μ

∂ξ
−
(
μext − y

b

) ∂μext

∂ξ
= 1

2
ey(τ )ωoCJ (ξ ey(τ )) − μ̂

r̃f
, (E1)

ξ = 0 : μ = 1 + 2y(τ )/b; ξ � −e−y(τ ) : μ̂ = 0. (E2)

Equations (E1)–(E2) correspond to a better quasi-steady approximation than in Clavin &
Denet (2020), because here, the unsteady effect of the external flow is retained, assuming
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a steady-state approximation only for the inner structure of the overdriven detonation.
Equation (E1) can be written

∂

∂ξ

[(
μ − y

b

)2 −
(
μext − y

b

)2
]

= ∂

∂ξ

[
μoCJ (ξey)

]2 − 2
μ̂

r̃f
, (E3)

and its integration from the end of the reaction zone where, according to (4.23) or (E2)
ξ = −e−y: μ = μext (μ̂ = 0), leads to(

μ − y
b

)2 −
(
μext − y

b

)2 = μ 2
oCJ

(ξey) − 2
r̃f

∫ ξ

−e−y
μ̂(ξ ′, τ ) dξ ′. (E4)

Then, the boundary condition on the lead shock in (4.11) or (E2), ξ = 0 : μ = 1 +
2y(τ )/b, μext = μext

f (τ ), μoCJ = 1, provides us with an implicit relation for y(τ ) involving
the solution μ̂(ξ, τ )

2(1 + μext
f )

y
b

= (μext
f )2 − 2

r̃f

∫ 0

−e−y
μ̂(ξ ′, τ ) dξ ′. (E5)

A closed equation relating y(τ ) and μext
f (τ ) is obtained for a large activation energy b � 1,

since μ̂(ξ, τ ) can be replaced by μoCJ (ξey) in the integral term

b � 1 : 2(1 + μext
f )

y
b

≈ (μext
f )2 − 2e−y

r̃f

∫ 0

−1
μoCJ (ξ) dξ, (E6)

as shown now. Looking for a solution corresponding to y of order unity and r̃f of order b,
rfi/l = O(b/ε), one is led to consider (μext

f )2 = O(1/b) in (E6). This is consistent with the
simplified expression (C12) of the rarefaction wave behind a overdriven detonation

μext
f (τ ) = (τt − τ)

r̃fi
= O(1/

√
b), μext

fi = τt

r̃fi
= O(1/

√
b), (E7a,b)

leading to

b � 1, r̃f ≈ r̃fi = O(b), τ = O(τt), τt = O(
√

b). (E8a–d)

Then, the zeroth-order μ̂o(ξ
′, τ ) of μ̂(ξ ′, τ ) in the limit b � 1 can be used in the integral

term on the right-hand side of (E5). This zeroth-order solution μ̂o(ξ
′, τ ) is solution to the

steady version of (4.21)–(4.23) when the terms smaller than unity are neglected,

μ̂o
∂μ̂o

∂ξ
= 1

2
eyωoCJ (ξ ey), ξ = 0 : μ̂o = 1, ξ � −e−y : μ̂o = 0, (E9a–c)

yielding, according to (4.6a,b)-(4.7a–c), μ̂o(ξ
′, τ ) = μoCJ (ξ

′ey(τ )). This leads to the
transcendental equation for y in (E6) which, neglecting the term μext

f on the left-hand
side in front of unity, can be written in the form

b � 1 : y + e−y

x
= 1

2
b[μext

f (τ )]2, where x ≡ r̃f

b
1∫ 0

−1 μoCJ (ξ
′)dξ ′ = O(1), (E10)

and b[μext
f (τ )]2 = O(1), see (C11) and (E7), the integral

∫ 0
−1 μoCJ (ξ

′) dξ ′ being close
to 1/2. Using (4.12) r̃f ≈ τ + r̃fi and the simplified expression μext

f (τ ) in (E7) to
eliminate τ in favour of x, (E10) yields the leading order in the limit b � 1 of the
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quasi-steady trajectories in the phase space ‘velocity–radius’ y − x. Using the substitutions√
b/2 μext

f → √
b/2 μb ≡ mb and

∫ 0
−1 μoCJ (ξ

′) dξ ′ → 1 + ∫ 0
−1 μoCJ (ξ

′) dξ ′, (E10) takes
the same form as (7.1a) in Clavin & Denet (2020) and the trajectories have a form
similar to figure 1 ibid. with a definition of x which differs by a factor of order unity,
compare (4.20a,b) ibid. with (E10). In particular, the critical radius r∗

f at the turning
point (y = −1, x = e) of the C-shaped curve ‘CJ velocity–radius’, obtained from (E10)
for b[μext

f (τ )]2 = 0, is

b � 1 :
r∗

f

l
= b

ε
e
∫ 0

−1
μoCJ (ξ

′) dξ ′ (E11)

while it was r∗
f /l = (b/ε) e[1 + ∫ 0

−1 μoCJ (ξ
′) dξ ′] in (4.20c) of Clavin & Denet (2020)

where the gradient of the burnt-gas flow was ignored. In any case the critical radius
corresponds to a non-dimensional radius r̃f /b of order unity.
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