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Influence of pressure-dependent surface
viscosity on dynamics of surfactant-laden drops

in shear flow
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We study numerically the dynamics of an insoluble surfactant-laden droplet in a
simple shear flow taking surface viscosity into account. The rheology of drop surface
is modelled via a Boussinesq–Scriven constitutive law with both surface tension and
surface viscosity depending strongly on the surface concentration of the surfactant.
Our results show that the surface viscosity exhibits non-trivial effects on the surfactant
transport on the deforming drop surface. Specifically, both dilatational and shear
surface viscosity tend to eliminate the non-uniformity of surfactant concentration over
the drop surface. However, their underlying mechanisms are entirely different; that is,
the shear surface viscosity inhibits local convection due to its suppression on drop
surface motion, while the dilatational surface viscosity inhibits local dilution due to its
suppression on local surface dilatation. By comparing with previous studies of droplets
with surface viscosity but with no surfactant transport, we find that the coupling
between surface viscosity and surfactant transport induces non-negligible deviations
in the dynamics of the whole droplet. More particularly, we demonstrate that the
dependence of surface viscosity on local surfactant concentration has remarkable
influences on the drop deformation. Besides, we analyse the full three-dimensional
shape of surfactant-laden droplets in simple shear flow and observe that the drop
shape can be approximated as an ellipsoid. More importantly, this ellipsoidal shape
can be described by a standard ellipsoidal equation with only one unknown owing
to the finding of an unexpected relationship among the drop’s three principal axes.
Moreover, this relationship remains the same for both clean and surfactant-laden
droplets with or without surface viscosity.

Key words: complex fluids, drops, drops and bubbles

1. Introduction
Owing to its significance in understanding the rheology of emulsions (Tucker III

& Moldenaers 2002; Derkach 2009), the dynamics of individual droplets in viscous
flows has received considerable attention in the discipline of fluid mechanics since
the pioneering work by Taylor (1934). A great number of theoretical, numerical
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and experimental studies have been dedicated to the deformation and breakup of an
isolated droplet, which has also been the subject of several reviews (Rallison 1984;
Stone 1994; Fischer & Erni 2007; Guido 2011). From the mechanical viewpoint,
the viscous force from the surrounding flow tends to deform the droplet, while
the interfacial force from drop surface plays the opposite role. Accordingly, the
deformation degree of the droplet (i.e. the deviation from its initially spherical shape)
increases with the capillary number that measures the relative importance of the
viscous force to the interfacial force. When the capillary number exceeds a critical
value, the droplet deforms continuously until it breaks up.

Many studies are focused on the simplest case, in which the drop surface
remains clean and the interfacial force is characterized by a constant surface tension.
However, the use of surfactants is often involved in engineering applications, such as
production/demulsification of emulsions or drop manipulation in microfluidics (Fischer
& Erni 2007; Derkach 2009; Anna 2016). Experimental studies have demonstrated the
great effects of surfactants on the deformation and breakup of droplets in shear flows
(Phillips, Graves & Flumerfelt 1980; Feigl et al. 2007; Vananroye, Van Puyvelde
& Moldenaers 2011). Besides, many theoretical and numerical studies have been
performed to unveil the mechanisms underlying the effects of surfactants (Stone &
Leal 1990; Li & Pozrikidis 1997; Vlahovska, Loewenberg & Blawzdziewicz 2005;
Vlahovska, Blawzdziewicz & Loewenberg 2009; Frijters, Gunther & Harting 2012;
Mandal, Ghosh & Chakraborty 2016). In general, the appearance of surfactants or
following an increase of their surface coverage tends to reduce the surface tension
and hence enlarge the drop deformation. Besides, the convection of surfactants
with the drop surface flow results in their non-uniform distribution on the evolving
interface, and hence the surface tension is usually not constant, contrary to the case
of clean droplets. For droplets suspended in a simple shear flow, the surfactant
accumulates at the drop tips and lowers the surface tension there, which increases
the drop deformation. On the other hand, the surfactant is diluted owing to the
drop-deformation-induced increase of the drop surface area. This dilution effect
tends to increase the surface tension and hence restrain the drop deformation. More
importantly, the surface tension gradient induced by the non-uniform surfactant
distribution leads to Marangoni stresses along the surface tangent, which hinder the
surfactant convection and also produce important effects on the drop dynamics.

Notably, in addition to Marangoni stresses, surfactants confer the drop surface
many other rheological properties, among which the surface viscosity is one of the
most important parameters (Sagis 2011; Langevin 2014). Recently, experiments have
indicated the crucial role of surface viscosity in the breakup of a surfactant-laden
droplet (Ponce-Torres et al. 2017). Several other analytical and numerical studies
have examined the effects of surface viscosity on drop deformation in shear flows.
Flumerfelt (1980) obtained an explicit expression for the steady-state deformation of
droplets with surface viscosity using small deformation analysis, which was then used
to measure the drop surface viscosity by comparing with experimental results (Phillips
et al. 1980). Recently, Yu & Zhou (2011) extended Flumerfelt’s small deformation
analysis to droplets with large deformation using an ellipsoidal shape tensor. Pozrikidis
(1994) studied numerically the effects of surface viscosity on the drop’s transient
deformation, but the steady state could not be obtained due to numerical instability.
Recently, Gounley et al. (2016) performed a systematic numerical investigation on the
influence of surface viscosity on the steady-state characteristics of a droplet in shear
flow, considering both small and large deformations of the droplet. To summarize,
previous studies have demonstrated that the surface viscosity acts to suppress the drop
surface motion, reduce the drop deformation degree and inhibit the drop breakup.
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Dynamics of surfactant-laden drops in shear flow 93

In the studies mentioned above, the surfactant transport along the deforming
drop surface is not taken into account and hence both surface tension and surface
viscosity remain constant. However, recent experimental studies have shown that
the surface viscosity is primarily induced by surfactants, and in fact, the magnitude
of the surface viscosity depends strongly on their surface concentration for most
surfactants (Kim et al. 2011, 2013; Hermans & Vermant 2014; Samaniuk &
Vermant 2014). More particularly, the surface viscosity may change by orders of
magnitude with small changes in surface pressure determined by the local surfactant
concentration. Manikantan & Squires (2017) highlighted the dramatic consequences
of surface-pressure-dependent surface viscosity on interfacially dominant flows, for
example, lubrication flows between two droplets. Similarly, the surface-pressure-
dependent surface viscosity is likely to exhibit strong impacts on the dynamics of
surfactant-laden droplets in shear flows. These influences are probably not fully
revealed by the previous studies with the assumption of constant surface viscosity,
because strong interactions are expected between surfactant transport and surface
viscous stress. To test this hypothesis, we present systematic simulations on a
surfactant-laden droplet in a simple shear flow by taking both surfactant transport
and surfactant-concentration-dependent surface viscosity into account. Evidently, our
results indicate the significant inhibition of surface viscous stress on surfactant
transport. More importantly, we find that a surfactant-concentration-dependent surface
viscosity induces non-trivial deviations in drop deformation compared with Gounley
et al. (2016) for droplets with a constant surface viscosity but without considering
surfactant transport.

2. Methodology
2.1. Problem description and mathematical formulation

As depicted in figure 1, we consider an insoluble surfactant-laden droplet suspended
in a simple shear flow. The two fluids (inside and outside the droplet, respectively)
are both Newtonian and incompressible with density ρ and viscosity µ. The droplet
is initially spherical with radius R and is placed at the centre of a cuboid box. It
is suddenly subjected to a steady simple shear flow with shear rate γ generated by
the upper and bottom plates moving in opposite directions but with the same speed.
The velocity, vorticity and velocity gradient directions are set as x-, y- and z-axes,
respectively. The drop surface is laden with an insoluble surfactant with an initially
uniform concentration Γ0. The surfactant transport (i.e. convection and diffusion)
on the deforming drop surface is considered. Thus, the surfactant concentration
Γ usually becomes non-uniform and so does the surface tension σ (figure 1b).
Marangoni stresses arising from the surface tension gradient are taken into account.
In the present study, of special note is the introduction of surfactant-induced surface
viscosity to the drop surface mechanics, and the surface viscosity depends strongly
on local surfactant concentration on the deforming drop surface.

The mathematical formulation described here is based on the front-tracking finite-
difference method that was developed in our previous studies on the flow dynamics
of liquid droplets enclosed by elastic membranes (Luo et al. 2013; Luo, He & Bai
2015; Luo & Bai 2016, 2018). Via scaling the length by R, velocity by γR, time
by 1/γ , pressure by µγ and interfacial stresses by initial surface tension σ0, the non-
dimensional form of flow governing equations can be given as:

∇ · u= 0, (2.1)
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FIGURE 1. (Colour online) Problem statement. (a) An isolated droplet is suspended in
a simple shear flow generated by the upper and bottom plates moving with the same
speed but in opposite directions. (b) The drop surface is laden with an insoluble surfactant,
and the surfactant concentration is usually non-uniform over the drop surface owing
to convection, diffusion and surface dilution. (c) In particular, the surface viscosity is
considered in this study, which depends strongly on the surface concentration of the
insoluble surfactant.

∂u
∂t
+∇ · (uu)=−

1
Re
[∇p+∇(∇u+∇uT)] + f . (2.2)

Here, u is the velocity vector, t is time, p is pressure and Re is the Reynolds number
defined as ργR2/µ. The body force term f results from the interfacial stress f s acting
only on the drop surface:

f =
∫

S

1
Re

1
Ca

f sδ(x− x′) dS. (2.3)

Here, Ca = µγR/σ0 is the capillary number, and δ(x − x′) is the three-dimensional
delta function. The Boussinesq–Scriven constitutive law (Scriven 1960) is employed
to compute f s:

f s =∇sσ − 2σκn+Ca∇s · τv, (2.4)
τv = Bq[P · (∇us +∇uT

s ) · P + (λds − 1)ΘP]. (2.5)

Note that all variables here are dimensionless. κ , n, us and Θ are mean curvature,
outward unit normal vector, surface velocity vector and surface rate of dilation,
respectively; P is the surface projection tensor defined as I − nnT, where I is the
identity matrix; λds is the ratio of dilatational viscosity µd to shear viscosity µs of
the surfactant-laden drop surface; Bq = µs/µR is the Boussinesq number measuring
the relative importance of surface viscous stress to bulk viscous stress. In (2.4), the
surface gradient of the surface tension ∇sσ represents the Marangoni stress, and τv
represents the surface viscous stress.
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The transport of the insoluble surfactant on the deforming drop surface is governed
by the time-dependent convection–diffusion equation:

∂Γ

∂t
+∇s · (Γ us)+ Γ (∇s · n)(u · n)=

1
Pes
∇s · (∇sΓ ). (2.6)

Here, Γ is local surfactant concentration non-dimensionalized by Γ0; Pes= γR2/Ds is
the surface Péclet number measuring the relative importance of convection to diffusion,
where Ds is diffusivity coefficient; note that ∇s = (I − nnT) · ∇. The surface tension
σ related to local surfactant concentration Γ in the dimensionless form is given by:

σ = 1− βΓ . (2.7)

Here, β = RgTgΓ0/σc is the elasticity number measuring the sensitivity of surface
tension to surfactant concentration variation, where σc is the clean surface tension
and Rg and Tg are the ideal gas constant and absolute temperature, respectively. This
linear equation of state is appropriate when the surfactant concentration is much lower
than the maximum concentration corresponding to the saturated surface covered by a
surfactant monolayer (Li & Pozrikidis 1997). Nevertheless, other nonlinear constitutive
equations applicable to non-dilute surfactants can be easily implemented into the front-
tracking framework (Muradoglu & Tryggvason 2014). Notably, the linear equation of
state (i.e. (2.7)) is used in all our simulations, unless other stated.

In this study, the surface viscosity µs is considered to be dependent upon surface
pressure Π = σc − σ(Γ ). In a recent study Ponce-Torres et al. (2017) focused on
the influence of surface viscosity on drop breakup and a linear relationship between
surface viscosity and surfactant concentration is employed for the sake of simplicity.
Good agreement between experimental and numerical results is observed, but they
also suggested that knowledge of the presumably nonlinear constitutive relationships
for surface viscosity is still required. On the other hand, several recent experimental
studies have demonstrated that the surface viscosity for some typical surfactants
depends on surface pressure exponentially (Kim et al. 2011, 2013; Hermans &
Vermant 2014; Samaniuk & Vermant 2014). Therefore, in the present study, the
exponential dependence (Manikantan & Squires 2017) is employed as follows:

µ+s (Π)=µs0e(Π−Π0)/Πc . (2.8)

Here, the superscript ‘+’ represents a Π -thickening surfactant; µs0 is a reference
surface viscosity at reference surface pressure Π0; Πc is a surface-pressure scale over
which significant changes in surface viscosity occur. Similarly, the surface viscosity
of a Π -thinning surfactant is given by:

µ−s (Π)=µs0e−(Π−Π0)/Πc . (2.9)

In our present study, the surface viscosity and surface pressure at the initial state
with surfactant concentration Γ0 are used as the reference parameters, i.e. Π0=σc−σ0
and µs0 = µs(Γ0). Following Underhill, Hirsa & Lopez (2017), we use Newtonian
form of the constitutive equation (i.e. (2.4) and (2.5)) for the surface mechanics of
droplets with Π -dependent surfactants, while the surface viscosity is a function of
local surfactant concentration. Thus the Boussinesq number Bq in equation (2.5) is
usually not constant over the deforming drop surface (figure 1c), but is a function of
dimensionless surfactant concentration Γ :

Bq= Bq0e±β(Γ−1)/Π∗c . (2.10)

Here, Bq0 = µs0/µR is the initial Boussinesq number based on the reference surface
viscosity; Π∗c is the ratio of surface-pressure scale Πc to clean surface tension σc.
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2.2. Numerical implementation
The governing equations are solved via a fully three-dimensional front-tracking finite-
difference code that is described in detail in our previous studies (Luo et al. 2013,
2015; Luo & Bai 2016, 2018; Luo, Shang & Bai 2018). Regarding the flow solver
(i.e. (2.1) and (2.2)), the velocity and pressure are solved on a collocated uniform
Cartesian grid, thus standard central difference schemes are used to discretize spatial
derivatives. For temporal discretization, the three-stage RKCN (Runge–Kutta/Crank–
Nicholson) four-step projection method proposed by Ni, Komori & Morley (2003) is
used, in which a three-stage Runge–Kutta technique and Crank–Nicolson semi-implicit
technique are used for the convective and diffusion terms, respectively. More details
of the flow solver can be found in our recent study of membrane-enclosed viscoelastic
droplets in shear flows (Luo & Bai 2018).

For the solution of the surfactant transport equation (i.e. (2.6)), we follow the
procedure proposed by Muradoglu & Tryggvason (2014) and Jesus et al. (2015) in
general. In the front-tracking method, the drop surface is discretized into a set of
triangular elements (i.e. the Lagrangian grid), thus the surfactant transport equation
can be solved using the standard finite-volume scheme. Using the explicit Euler
scheme for temporal discretization, the surfactant transport equation is discretized at
each triangular element as:

(Γk1Ak)
m+1
− (Γk1Ak)

m

1t
=

1
Pes

(
3∑

i=1

(∇sΓ )i · (ti × n) ·1li

)m

. (2.11)

Here, m is the time step number; Γk is surfactant concentration at the kth element;
1Ak and n are area and normal vector of the kth element; 1li and ti are the
length and tangential vector of the three edges of the kth element, respectively. The
surface gradient of surfactant concentration (∇sΓ )n at the nth triangular element is
approximated as:

(∇sΓ )n =
1

41A2
n



Γ i

[
(xi
− xj) · (xj

− xk)(xk
− xi)+

(xi
− xk) · (xk

− xj)(xj
− xi)

]
+

Γ j

[
(xj
− xk) · (xk

− xi)(xi
− xj)+

(xj
− xi) · (xi

− xk)(xk
− xj)

]
+

Γ k

[
(xk
− xi) · (xi

− xj)(xj
− xk)+

(xk
− xj) · (xj

− xi)(xi
− xk)

]


. (2.12)

Here, i, j and k represent the three nodes of the nth triangular element, x is the
position vector. Notably, in the front-tracking method, serious stretching and shrinking
of the Lagrangian grid may occur due to significant drop deformation and this may
lead to the degradation of Lagrangian mesh quality. To solve this issue, we split
elements larger than an upper threshold by inserting a point and delete those smaller
than a lower threshold by removing a point following the procedure proposed by
Tryggvason et al. (2001). Notably, special treatment of surfactant-concentration data
is also needed to maintain surfactant mass conservation during insertion and deletion
of elements. In our simulations, the change in the total surfactant mass is limited
to less than 1 %. Another important point is that numerical errors in drop surface
advection and the insertion and deletion procedures may induce drop volume loss. To
address this issue, the droplet volume is enforced to be equal to its initial value by
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moving Lagrangian points outward, which was used in our previous study (Luo et al.
2015) and is also recommended by Tryggvason et al. (2001).

Due to the presence of the Marangoni stress and surface viscous stress, special
attention is needed for the discretization of drop surface stress. In our method, surface
tension and surface viscous stress are calculated separately. To avoid computing
surface curvatures in the calculation of surface tension, the procedure proposed by
Tryggvason, Scardovelli & Zaleski (2011) is employed, in which the discrete surface
tension 1f σ at the kth Lagrangian point is given by:

1f σ =
∫
1Ak

(∇sσ − 2σκn) dA=
∫

Ck

σ · t× n dl. (2.13)

Here, Ck represents the boundary of surface segment 1Ak which consists of one third
of all triangular elements linked with the kth point, and t is the local tangential vector
of the boundary Ck. Note that σ is dependent on local surfactant concentration Γ .
Details of the derivation of (2.13) can be found in the appendix of Jesus et al. (2015).
On the other hand, via Gauss theorem, the calculation of the discrete surface viscous
stress 1f v at the kth triangular element is transformed as follows:

1f v =
∫
1Ak

∇s · τv dA=
∫

Ck

τv · t× n dl. (2.14)

Here, surface viscous stress τv is computed via (2.5), and note that Bq is dependent
on local surfactant concentration Γ just like σ . Following Li & Sarkar (2008), the
force acting on each element edge is calculated first and then the total force acting on
each Lagrangian point is computed by adding the forces acting on all element edges
connecting that Lagrangian point.

In this study, we are interested in the zero-Reynolds-number limit, while our
numerical method cannot simulate a Stokes flow (Luo & Bai 2018). From this
viewpoint, the boundary integral method (Pozrikidis 1994; Li & Pozrikidis 1997;
Cristini et al. 2003) is superior to our front-tracking finite-difference method, because
the drop surface is smeared and so fewer errors are generated. Nevertheless, the
front-tracking method is still widely used via setting quite low Reynolds numbers
to approximate the Stokes limit. Besides, it is much easier to further extend the
front-tracking method to flows with moderate-to-high Reynolds numbers (Aggarwal
& Sarkar 2007; Olgac & Muradoglu 2013; Yazdani & Bagchi 2013; Carroll & Gupta
2014; Luo et al. 2015). In our present study, the Reynolds number is set to 0.1
to eliminate the inertial effect according to our previous verification in the study
of membrane-enclosed droplets (Bai et al. 2013; Luo et al. 2013). Here, we also
examine the inertial effect on the deformation of droplets with surface viscosity by
decreasing the Reynolds number from 0.1 to 0.01, and find that the drop deformation
decreases by less than 1.5 %. Therefore, Re= 0.1 is used in the following simulations
to approximate the zero-Reynolds-number limit.

In this study, λds is set to 1 for simplicity, unless otherwise stated, in particular
when the effect of dilatational surface viscosity is examined. We focus on the
influence of surfactant-concentration-dependent surface viscosity on drop dynamics
via varying the initial Boussinesq number Bq0 and the dimensionless surface-pressure
scale Π∗c under different Ca, Pes and β. In particular, Pes, β, Bq and Π∗c that are
important parameters governing surfactant transport and surface viscous stress are
set in the range of 0.1–1000, 0–0.8, 0–10 and 0.05–0.5, respectively. The surface
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Péclet number Pes is usually much larger than O(1) for typical flows with surfactants.
Nevertheless, our simulations indicate that Pes no longer has a significant effect when
it is higher than 10, since convection already plays the dominant role over diffusion.
Therefore, Pes is set to 0.1–10 for most simulations in this study. In fact, experiments
have measured the surface viscosity for a variety of surfactants and the reported value
lies in a wide range of 10−3–10 µN s m−1 (Kim et al. 2013; Langevin 2014; Zell
et al. 2014; Ponce-Torres et al. 2017). Accordingly, the Boussinesq number Bq also
lies in a wide range from 0 to much higher than 10; especially, note that the drop
diameter usually lies in a wide range as well. Nevertheless, our simulations show that
the surfactant transport exhibits little effect at relatively high Bq since the surface
viscous stress becomes the predominant factor over the Marangoni stress. Thus, both
the small deformation analysis by Flumerfelt (1980) and the numerical simulation
by Gounley et al. (2016) can predict the drop deformation quite well. Considering
that higher Bq increases the computational expense substantially, we set Bq to below
10 in this study. Regarding the dimensionless surface-pressure scale Π∗c , previous
experiments have shown that Π∗c for typical surfactants is generally large but it may
also become lower than 0.2 (Kim et al. 2011, 2013; Manikantan & Squires 2017).

According to the verification presented in our previous work (Luo et al. 2013,
2015; Luo & Bai 2016), a computational domain size of 8R× 5R× 8R and Eulerian
resolution of 96 × 64 × 96 are sufficient to eliminate their effects. In the following
sections, five different configurations are simulated and compared to each other,
including (i) clean droplet, (ii) droplet with constant surface viscosity but with no
surfactant transport, (iii) droplet with surfactant transport but with no surface viscosity,
(iv) droplet with surfactant transport and a constant surface viscosity and (v) droplet
with surfactant transport and a surfactant-concentration-dependent surface viscosity.

3. Results and discussion
3.1. Validation: droplet with constant surface viscosity or surfactant transport only

Validations are performed via modelling of the first three cases as listed in § 2.2,
since they have been investigated extensively in previous studies and hence data can
be easily found for comparison purposes, i.e. (i) clean droplet (Kwak & Pozrikidis
1998; Li, Renardy & Renardy 2000; Vananroye et al. 2008; Komrakova et al. 2014),
(ii) droplet with constant surface viscosity but with no surfactant transport (Yu &
Zhou 2011; Gounley et al. 2016) and (iii) droplet with surfactant transport but with
no surface viscosity (Li & Pozrikidis 1997; Feigl et al. 2007; Jesus et al. 2015).
These studies have indicated that an initially spherical droplet is usually elongated
into a steady ellipsoid shape, but the droplet breaks up when the capillary number
is higher than a threshold. It is helpful to fully understand drop deformation first
since it precedes drop breakup (Derkach 2009). In this study, the main objective is
to reveal the fundamental influence of a surfactant-concentration-dependent surface
viscosity on the drop dynamics and to unveil the underlying mechanism. Therefore,
we usually present only the steady-state drop deformation characterized by the Taylor
parameter D= (L− B)/(L+ B), where L and B are the drop’s major and minor axes
in the shear plane, respectively.

Firstly, we present the deformation of a droplet with a clean interface in a simple
shear flow. The steady-state drop deformation D is plotted as a function of the
capillary number Ca in figure 2(b), in which our results are found to agree well with
those of Komrakova et al. (2014) using the lattice Boltzmann method. The largest
relative error is limited to below 2 %. Besides, the critical capillary number leading
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Symbols: Pozrikidis (1994)
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Gounley et al. (2016):

FIGURE 2. (Colour online) Validation of our numerical methodology on modelling the
deformation of droplets with surface viscosity but with no surfactant transport (i.e. both
surface viscosity and surface tension are constant). (a) Transient deformation of the droplet
at different Boussinesq number Bq with Ca= 0.1. Previous numerical result by Pozrikidis
(1994) is presented for validation purposes. (b) The steady-state deformation is plotted
as a function of the capillary number Ca for different Bq. Previous analytical result
by Flumerfelt (1980) and numerical result by Gounley et al. (2016) are presented for
validation purposes.

to drop breakup lies in the range of 0.37–0.38 in our simulations, which is also
consistent with the range of 0.37–0.43 found in previous studies (Kennedy, Pozrikidis
& Skalak 1994; Li et al. 2000; Cristini et al. 2003; Gounley et al. 2016). Notably,
the prediction from small deformation theory by Flumerfelt (1980) for clean droplets
agrees well with the numerical results of both our method and Komrakova et al.’s
only when the capillary number is sufficiently small.

As the second case for validation, we simulate the deformation of a droplet with a
constant surface viscosity but with no surfactant transport to validate our method for
computing surface viscous stresses. In figure 2(a), the drop’s transient deformation is
presented for different Boussinesq numbers Bq, in which previous numerical results
by Pozrikidis (1994) using the boundary integral method are also included. Good
agreement between our results and Pozrikidis’ is observed, except that Pozrikidis
could not obtain the steady state due to numerical instability and high computational
expense. Further, we compare our prediction on the drop’s steady-state deformation
D with that by Gounley et al. (2016) using boundary element simulation and that by
Flumerfelt (1980) using small deformation analysis. In figure 2(b), D is plotted as a
function of the capillary number Ca for different Bq. Excellent agreement is obtained
in quantitative terms with both Gounley et al.’s simulation and Flumerfelt’s analysis.
In general, the surface viscosity tends to reduce drop deformation, and it is enhanced
at larger Ca. Besides, the surface viscosity tends to inhibit drop breakup, i.e. higher
critical capillary number (larger than 0.5 for Bq > 2) than the clean droplet. This
inhibition effect on drop breakup is also observed by Gounley et al. (2016). Notably,
the small deformation analysis by Flumerfelt (1980) shows larger deviation from both
our numerical simulation and Gounley et al.’s at higher Ca and lower Bq, when the
droplet exhibits large deformation.

Finally, we simulate the deformation of a droplet with surfactant transport but
no surface viscosity to validate our numerical methodology for the solution of the
surfactant transport equation. In figure 3(a), the drop’s steady-state deformation D
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Clean droplets,
surfactant-laden droplets

Our numerical results
Mandal et al. (2017): analytical

Feigl et al. (2007): Experimental Numerical

FIGURE 3. (Colour online) Validation of our numerical methodology on modelling the
deformation of surfactant-laden droplets considering surfactant transport (i.e. σ depends on
surfactant concentration) but neglecting surface viscosity. (a) The steady-state deformation
is plotted as a function of the capillary number for β = 0.8, Pes = Ca and λµ = 0.335.
Here, previous analytical results by Mandal, Das & Chakraborty (2017), and numerical
and experimental data by Feigl et al. (2007) are presented for validation purposes. (b)
The drop deformation is analysed for different β and Pes while λµ is set to 1.

is plotted as a function of Ca. Previous analytical results by Mandal et al. (2017),
and numerical and experimental data by Feigl et al. (2007) are included. Our results
show excellent agreement with these reported data, especially with the numerical
results by Feigl et al. (2007). Notably, Mandal et al.’s small deformation analysis
predicts well at low Ca but it shows large deviations at high Ca compared to
both our results and Feigl et al. (2007)’s. In figure 3(b), the effects of surfactant
transport on drop deformation is also analysed by varying Pes and β. In principle,
local surfactant concentration Γ on the deforming drop surface is governed by the
competition of convection, diffusion and dilution. Particularly, convection leads to
high Γ at the drop tips and low Γ at the drop equator (figure 1b). When diffusion
dominates over convection at low Pes (i.e. Pes = 0.1), Γ is nearly uniform over
the entire drop surface. However, its magnitude is reduced owing to dilution that is
especially obvious at high Ca, thus Γ is usually lower than its initial value Γ0. As a
result, surfactant-laden droplets with low Pes present smaller deformations than clean
droplets at the same Ca (note that Ca is defined on Γ0 for surfactant-laden droplets).
When convection dominates over diffusion at high Pes (i.e. Pes = 10), the surfactant
accumulates around the drop tips, reduces the surface tension there and promotes
the drop elongation. Consequently, surfactant-laden droplets with high Pes present a
little larger deformation than clean droplets. However, at high Ca, they still present
smaller deformations than clean droplets since the dilution effect is quite strong and
inhibits the drop deformation significantly. The effect of β on drop deformation is
also examined. When β is small (i.e. β = 0.2), surface tension is insensitive to the
surfactant-concentration variation, and hence it remains close to that of clean surfaces.
As a consequence, surfactant-laden droplets with low β exhibit almost the same
deformation as clean droplets. While, at high β (i.e. β = 0.8) when surface tension
is very sensitive to the surfactant concentration variation, the drop deformation is
inhibited obviously due to the dilution effect. Moreover, the drop breakup is also
inhibited, which is reflected in the increased critical capillary number (larger than
0.5 at β = 0.8). Notably, these observations for the effects of surfactant transport on
drop deformation are also consistent in qualitative terms with previous studies (Li &
Pozrikidis 1997; Feigl et al. 2007).
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3.2. Droplet with surfactant transport and constant surface viscosity
In this section, we present our simulation results on the deformation of a droplet
considering both surfactant transport and surface viscosity, in particular to examine
the combined effects of the Marangoni stress and surface viscous stress on the
drop dynamics. Here, for the sake of simplicity, the surface viscosity is maintained
constant and independent of the local surfactant concentration, which can also serve
as an approximation to the infinite-surface-pressure-scale limit. We fist show a few
representative examples of the drop’s transient deformation to show the dynamical
effects. Then, we investigate the combined influence of Marangoni stress and surface
viscous stress on the drop’s steady-state deformation via comparing with the previous
study by Gounley et al. (2016) on droplets with constant surface viscosity but with
no surfactant transport. To reveal the underlying mechanism, we analyse the effects
of surface viscosity on surfactant transport via the distributions of surface velocity
and surfactant concentration. Next, the combined effect of a purely dilatational
surface viscosity and surfactant transport on drop deformation and the mechanism
underlying this combined effect are examined in particular. Finally, how the drop
breakup is affected by the coupling of Marangoni stress and surface viscous stress is
investigated via analysing the critical capillary number.

In figure 4, we present several typical examples for the time evolution of the
drop deformation D and inclination θ , for Boussinesq numbers Bq of 0, 1, 2, 4, 6
and 10. At low Bq, D and θ exhibit a monotonic increasing and a decreasing trend,
respectively, until they reach the plateau when the droplet reaches the steady state.
These transient behaviours have been well known for both clean and surfactant-laden
droplets in shear flow (Fischer & Erni 2007). However, when Bq becomes sufficiently
large (e.g. Bq = 10), an overshoot and undershoot is observed in the transient
deformation and inclination, respectively. Nevertheless, the droplet can still reach
the steady state eventually, including the drop’s deformation and inclination and the
surfactant transport on the drop surface, although the time period for the transient
deformation behaviour becomes longer with increasing Bq. Note that the overshoot
phenomenon is not observed for the droplet with only the Marangoni stress but
no surface viscous stress (i.e. Bq = 0). In fact, Kennedy et al. (1994) presented
this overshoot phenomenon and even damped oscillations (i.e. at least an overshoot
followed by an undershoot) for clean droplets once the internal-to-external viscosity
ratio λµ exceeds a critical value that is much larger than 1. Gounley et al. (2016)
found that a similar transient oscillating relaxation can occur at λµ = 1 for a droplet
with surface viscosity as long as Ca · Bq > 3.5. In our simulations, the transient
oscillating relaxation is also observed for high Ca (e.g. Ca= 0.5) at Bq= 10 (data not
shown). However, systematic analysis of this oscillating relaxation is not conducted
due to the high computational expense resulting from the oscillations significantly
increasing the computational time to obtain the steady state. Therefore, most of our
simulations are limited to low values of Ca · Bq.

We then study the combined effects of surfactant transport and surface viscosity on
the drop’s steady-state deformation. In figure 5, the steady-state deformation D and
inclination θ are plotted as functions of the Boussinesq number Bq under different
capillary numbers Ca. When Bq is quite small (e.g. Bq6 0.1), the influence of surface
viscosity is negligible. In contrast, at higher Bq (e.g. Bq= 1–10), the surface viscosity
shows a strong impact which is similar to the case with constant surface viscosity but
without considering surfactant transport (figure 2b). There is an important assumption
proposed by Gounley et al. (2016) that needs to be tested; that is, whether the
surfactant transport can be neglected once the surface viscosity is taken into account.
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FIGURE 4. (Colour online) Several typical examples of transient deformation of droplets
with both surface viscosity and surfactant transport taken into account, while the surface
viscosity is independent of surfactant concentration. Ca, Pes and β are set to 0.2, 1
and 0.8, respectively. Time evolution of (a) deformation index and (b) inclination angle
plotted for different Bq. Three-dimensional drop shape profiles with contours of (c) surface
velocity and (d) surfactant concentration are presented at different time frames for Bq=10.

To this end, we compare the deformation of droplets with both surfactant transport
and surface viscosity (figure 5a) to that with constant surface viscosity but with
no surfactant transport (figure 2b). The effects of surfactant transport cannot be
neglected, especially at relatively low Bq. Specifically, combining surfactant transport
leads to a difference in D that may become higher than 20 % at low Bq. However,
the difference is reduced by increasing Bq and it can be limited to below 5 % at
Bq> 4. In other words, the effects of surfactant transport on drop deformation can be
neglected only at sufficiently high surface viscosity when the surface viscous stress
plays the predominant role in drop deformation.

We compare our numerical results with the analytical results from small deformation
theory by Flumerfelt (1980). Flumerfelt (1980) obtained an expression to predict the
drop’s steady-state deformation and inclination in the presence of surface viscosity as
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FIGURE 5. (Colour online) (a) Deformation and (b) inclination of droplets with
both surface viscosity and surfactant transport taken into account. Analytical result by
Flumerfelt (1980) is presented for comparison purposes. Here, the surface viscosity is
independent of surfactant concentration, and hence it is constant over the entire drop
surface. Pes and β are set to 1 and 0.8, respectively.

follows:

D=
1

16
(19a+ 16)+ a(b− 9c)

(a+ 1)[(1/Ca)2 + (19ad/20)2]1/2
, (3.1)

θ =
π

4
+

1
2

tan−1

(
19adCa

20

)
. (3.2)

Here, a, b, c and d are related to the viscosity ratio λµ and the Boussinesq numbers
based on the shear (Bqs) and dilatational (Bqd) surface viscosities as follows:

a= λµ + 2
5(3Bqd + 2Bqs), (3.3)

b=
6
5

Bqd

a
, (3.4)

c=
4
5

Bqs

a
, (3.5)

d= 1− 1
114 [113Bqd + 33Bqs + (Bqd − 9Bqs)

2
]. (3.6)

As presented in the validation § 3.1, both our results (i.e. figure 2b) and those of
Gounley et al. (2016) indicate that the expression (3.1) predicts the drop deformation
quite well, especially at high Boussinesq numbers or low capillary numbers. In fact,
Flumerfelt (1980) also considered the combined effect of the Marangoni stress and
surface viscosity by integrating the Marangoni effect into an apparent dilatational
surface viscosity as:

Bq′d = Bqd +
NMβ

Ca
. (3.7)

Here, NM is related to the adsorption kinetics of soluble surfactants, while it is
incalculable for insoluble surfactants. The second term NMβ/Ca measures the effect
of the Marangoni stress resulting from the surfactant-concentration gradient on the
drop’s surface. In Flumerfelt’s theory, the surfactant-concentration gradient is induced
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by adsorption, but the effects of surface diffusion and convection are neglected. In
contrast, in our simulation, the surfactant concentration gradient is induced by surface
diffusion and convection but not adsorption. Considering that the small deformation
analysis by Flumerfelt (1980) is currently the only one taking into account the
combined effect of the Marangoni stress and surface viscosity, it is of interest to
compare our numerical results with Flumerfelt’s theory, although the surfactant
transport mechanism is quite different. Note that, in the small deformation analysis
by Flumerfelt (1980), NM is required to be sufficiently small, and we find the results
predicted by (3.7) show no significant change when NM < 0.1. Therefore, we use
NM = 0.1 to compare the analytical results with our numerical results, as shown in
figure 5. In general, Flumerfelt’s expression predicts the drop deformation quite well
for all capillary numbers, even if the droplet shows a large deformation. Flumerfelt’s
results become gradually lower than our results when Bq approaches zero, which
is similar to the case of droplets with a constant surface viscosity but with no
surfactant transport (Gounley et al. 2016). However, it is surprisingly observed that
the integration of the Marangoni stress lowers the deviation of Flumerfelt’s analysis
from the numerical simulations at low Bq. On the other hand, the deviation in the
inclination angle between Flumerfelt’s analysis and our simulation is more obvious,
which is similar to the observation of Gounley et al. (2016). Again, Flumerfelt’s
analysis predicts well at high Bq but it shows a larger discrepancy at low Bq. These
results indicate that the small deformation analysis by Flumerfelt (1980) produces an
obvious disparity at Bq→ 0 not just for clean droplets but also for surfactant-laden
droplets with no surface viscosity, under which condition the surface viscous stress
has little or no effect. Flumerfelt’s analysis predicts quite well however at high Bq
when the surface viscous stress plays the predominant role.

Here, we show that the surface viscous stress has a great impact on surfactant
transport on the deforming drop surface since it alters significantly the interfacial
flow pattern. In figure 6, we present three-dimensional contours of surface velocity
us and surfactant concentration Γ under different Boussinesq numbers. Generally, us
reaches its maximum and minimum nearly at the drop equator and tips, respectively.
As a result, the surfactant accumulates at the tips but depletes at the equator owing
to the convection effect. As pointed out by Pozrikidis (1994) and Gounley et al.
(2016), the surface viscous stress tends to eliminate the surface velocity gradient.
This is also indicated by our results as shown in figure 6(a,c). More specifically, the
surface viscous stress tends to eliminate the variation of surface velocity along the
flow rotation direction, while it induces an insignificant change along the vorticity
direction (figure 6a). As a result, the surface velocity increases at the drop tips but
decreases at the equator in the shear plane (figure 6c). At high Boussinesq numbers
(e.g. Bq= 10), the surface velocity becomes nearly uniform. Owing to these changes
in the flow pattern, the surfactant no longer accumulates at the drop tips and its
concentration becomes more uniform with Bq increasing. In this respect, increasing
Bq (representing larger surface viscous stress) has a similar effect on surfactant
transport as decreasing Pes (representing more significant diffusion) or increasing β

(representing a larger Marangoni stress) does, which is to eliminate the surfactant
concentration variation via inhibiting convection.

We next examine the combined effect of purely dilatational surface viscosity with
surfactant transport on drop deformation, since Flumerfelt (1980) integrated the
effect of small variations in surface tension into an apparent dilatational surface
viscosity. In figure 7(a,b), the steady-state deformation and inclination are plotted
as functions of the Boussinesq number based on dilatational surface viscosity (Bqd),
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FIGURE 6. (Colour online) Distribution of (a) surface velocity and (b) surfactant
concentration on the three-dimensional surface of surfactant-laden droplets with constant
surface viscosity and surfactant transport. (c) Surface velocity magnitude us and (d)
surfactant concentration Γ are plotted as functions of the phase angle α in the shear plane
(i.e. y= Ly/2). α is defined as shown in the inset of (c). Ca is 0.35 and other parameters
are same as shown in figure 5.

while the Boussinesq number based on shear surface viscosity (Bqs) is set to 0.
Flumerfelt’s analytical results calculated from equations (3.1) and (3.2) are also
presented for comparison purposes. Generally, the increase of drop deformation with
Bqd is observed and it is more obvious at higher capillary number, which is also
presented by Flumerfelt (1980) and Gounley et al. (2016) for droplets with surface
viscosity but with no surfactant transport. While we find this increasing effect is
significantly weakened by increasing elasticity number. At Bqd→ 0, both Flumerfelt’s
and our results indicate a slight increase of the drop deformation with elasticity
number. This slight increase results from the variation in surface tension, which has
already been discussed in figure 3(b) as well as previous studies of surfactant-laden
droplets with no surface viscosity (Li & Pozrikidis 1997; Feigl et al. 2007). On the
other hand, at high Bqd, the elasticity number shows little effect at low Ca, which is
also indicated by both Flumerfelt’s and our own results. On the contrary, at high Ca,
our results show an obvious decrease of drop deformation with increasing elasticity
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FIGURE 7. (Colour online) Coupled effect of purely dilatational surface viscosity and
surfactant transport on drop deformation. Steady-state deformation (a) and inclination (b)
are plotted as functions of dilatational surface viscosity Bqd. Bqs and Pes are set to 0 and
1, respectively. (c) Surface velocity magnitude us and (d) surfactant concentration Γ are
plotted as functions of the phase angle α. (e) Three-dimensional drop shape profile with
contour of surface rate of dilation. In (c), (d) and (e) Bqs, Pes, Ca and β are set to 0, 1,
0.2 and 0.8, respectively.

number, but Flumerfelt’s analysis does not predict this qualitative feature. As discussed
in § 3.1, the convection effect tends to increase the drop deformation slightly and it
plays a predominant role only in the small deformation regime. On the contrary, in
the large deformation regime, the dilution effect becomes the dominant factor and
it tends to decrease the drop deformation. However, the dilution effect is omitted at
the starting point in Flumerfelt’s small deformation analysis. We also observe larger
deviations between Flumerfelt’s and our results for the steady-state inclination angle.
Besides, our results show that the inclination angle decreases slightly with increasing
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Bqd or decreasing β since the drop deformation is enlarged. However, this variation
in the inclination angle is not captured by Flumerfelt’s small deformation analysis
since the drop’s large deformation is omitted.

We also discuss the effect of purely dilatational surface viscosity on surfactant
transport as shown in figure 7(c–e). Different from shear surface viscosity, the
dilatational surface viscosity does not produce a significant effect on both the
surface velocity distribution and the velocity magnitude in general, except that it
enlarges the surface velocity in the small region around the drop tips and lowers
the surfactant concentration there. As such, the convection is not significantly altered
by the dilatational surface viscosity. We take the case of β = 0.8 as an example in
figure 7(c–e). The whole drop deformation shows no obvious change with Bqd and
hence the drop’s steady shape is nearly the same and so is the drop’s total surface area.
This result reflects the fact that the dilatational surface viscosity also induces little
change in the dilution effect at the whole drop level. However, the dilatational surface
viscosity can indeed induce significant change in surfactant transport. Particularly,
increasing Bqd increases the surfactant concentration near the drop equator while
it lowers that near the drop tips, and hence it reduces the surfactant concentration
gradient as a whole. Notably, this effect of dilatational surface viscosity does not result
from the changes in surface velocity and the following suppression of convection,
which is the mechanism underlying the effect of shear surface viscosity (figure 6). On
the contrary, the effect of dilatational surface viscosity originates from its suppression
of the local dilution effect. As shown in figure 7(d), the surface rate of dilation is
generally positive around the drop equator but it is negative around the drop tips.
Thus, the surfactant is diluted around the drop equator and is condensed around the
drop tips. On the other hand, increasing Bqd tends to decrease the absolute value of
the surface rate of dilation on the whole drop surface, and hence the dilution around
the drop equator and the condensation around the drop tips are both suppressed. In
summary, the dilatational surface viscosity has the same apparent effect on surfactant
transport (i.e. eliminating the non-uniformity of surfactant concentration) as shear
surface viscosity does, while their underlying mechanisms are entirely different, i.e.
the dilatational surface viscosity inhibits the local dilution while the shear surface
viscosity inhibits the local convection.

Finally, we study the combined effect of surface viscosity and surfactant transport
on the stability of droplets in shear flow. It is well known that the droplet maintains
a steady shape with a tank-treading rotation at low capillary numbers, but it
deforms continuously until it breaks up once the capillary number exceeds Cac
(Li & Pozrikidis 1997; Li et al. 2000; Cristini et al. 2003; Fischer & Erni 2007;
Komrakova et al. 2014; Gounley et al. 2016). For clean droplets, Cac lies in the
range of 0.37–0.43 at λµ = 1 but it significantly increases with λµ in a nonlinear
manner. Gounley et al. (2016) found that the presence of surface viscosity also
inhibits drop breakup and Cac shows a nonlinear relationship with Bq as well. In
figure 8, we present Cac as a function of Bq for droplets with both surface viscosity
and surfactant transport, in which the Cac–Bq relationship of Gounley et al. (2016)
is also included for comparison purposes. Generally, compared to Gounley et al.’s
results, the consideration of surfactant transport further inhibits drop breakup (i.e.
increases Cac), since the drop deformation is inhibited due to the increased dilution
effect (figure 3b). On the other hand, the inclusion of surfactant transport makes the
Cac − Bq relationship more linear. In other words, the surfactant transport induces
a more obvious increase in Cac at low Bq, while the increase becomes weakened
with Bq increasing. It is because the inhibition effect of surfactant transport on drop
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Our results for surfactant-laden droplets

Gounley et al. (2016), no surfactant

Stable shape, tank-treading
Unstable shape, breakup

Cac = 0.63 + 0.76Bq + 0.14Bq2

Cac = 0.44 + 0.45Bq2

Bq

FIGURE 8. (Colour online) Diagram indicating the occurrence of stable (i.e. the droplet
deforms but eventually maintains a steady shape while its surface presents a tank-treading
rotation) and unstable (i.e. the droplet performs a continuous deformation and eventually
tends to break up) regimes for droplets with both surface viscosity and surfactant transport
taken into account. λds, Pes and β are set to 1, 1 and 0.8, respectively. The solid line is
just a guide for the eye indicating the critical capillary number for the stable-to-unstable
transition. The dash-dot line is the critical capillary number for droplets with surface
viscosity but with no surfactant transport, which was computed in a previous numerical
study by Gounley et al. (2016).

breakup mainly originates from the dilution effect, while it is significantly inhibited
by increasing surface viscous stress with Bq increasing (figures 6 and 7). Therefore,
at extremely high Bq, the inhibition effect of surfactant transport on Cac can be
neglected, as the surface viscous stress becomes predominant over the Marangoni
stress. Accordingly, it can be predicted that our Cac–Bq curve tends to coincide with
that obtained by Gounley et al. (2016) at extremely high Bq.

3.3. Droplet with surfactant-concentration-dependent surface viscosity
In this section, we first compare the deformation of droplets with both surface
viscosity and surfactant transport among three different configurations, i.e. Π -
thickening, Π -independent and Π -thinning surfactants, to demonstrate the effects
of surface viscosity variations on drop deformation. Then, we study the effects of the
dimensionless pressure scale Π∗c on drop deformation, since it is the most important
parameter determining surface viscosity variations from surfactant concentration.
Note that the surface viscosity variation depends on the surfactant concentration
distribution that is mainly governed by the surface Péclet number Pes and elasticity
number β. Therefore, we also study the effects of Pes and β on the deformation of
surfactant-laden droplets considering also a surfactant-concentration-dependent surface
viscosity. Finally, we re-examine the influence of surface viscosity variations on drop
deformation when a nonlinear equation of state is used for the relationship between
surface tension and surfactant concentration.

To reveal the effects of surfactant-concentration-induced variations in surface
viscosity on drop deformation, in figure 9(a,b), the drop’s steady-state deformation D
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FIGURE 9. (Colour online) Deformation of surfactant-laden droplets with surfactant-
concentration-dependent surface viscosity. Here, the surface viscosity is not constant
over the drop surface. Particularly, Bq increases (i.e. Π -thickening) or decreases
(i.e. Π -thinning) exponentially with the surface pressure Π determined by surfactant
concentration. Pes and β are set to 1 and 0.8, respectively. (a) Deformation index D and
(b) inclination angle θ versus Ca for different reference viscosity Bq0 with Π∗c = 0.2.
Differences between the Π -thickening and Π -thinning cases in terms of surface viscosity
distribution are presented in (c). (d) Surface velocity us, surface viscosity Bq and surfactant
concentration Γ are plotted as functions of the phase angle α. Ca, Bq0 and Π∗c are set
to 0.5, 1 and 0.1, respectively.

and inclination θ are plotted as functions of the capillary number Ca for three different
configurations, i.e. Π -thickening, Π -independent and Π -thinning surfactants. At all
given values of Ca, the Π -thickening case presents the largest deformation, while the
Π -thinning case presents the smallest. In general, the difference in D between the
Π -thickening and Π -thinning cases under different Bq0 and Π∗c is always positive
and not small, although the difference in θ is much smaller. On the other hand, the
difference in D between the Π -thickening and Π -thinning cases depends strongly on
Bq0 and Π∗c , since they are two key parameters determining the magnitude of the
surface viscosity (see (2.8) and (2.9)). To understand the underlying mechanism, we
plot three-dimensional contours of surface viscosity for both the Π -thickening and
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FIGURE 10. (Colour online) Effects of the dimensionless surface-pressure scale Π∗c on the
deformation of droplets with surfactant-concentration-dependent surface viscosity. (a) D is
plotted as a function of Ca under different Π∗c . For simplicity, negative and positive values
of Π∗c represent the Π -thinning and Π -thickening cases, respectively. Bq0, Pes and β are
set to 1, 1 and 0.8, respectively. (b) Surface viscosity Bq and surfactant concentration Γ
are plotted as functions of the phase angle α for Π -thickening cases with different Π∗c .

Π -thinning cases in figure 9(c,d). The locations of high or low surface viscosity are
swapped for these two cases, and more importantly, the surface viscosity over the
entire drop surface is higher for the Π -thinning case. This is because the surfactant
concentration on the deformed drop surface is lower than its initial value, and due to
this change, the surface viscosity increases for the Π -thinning case but it decreases for
the Π -thickening case. These surfactant-concentration-induced changes in the surface
viscosity distribution explain why the droplet with a Π -thickening surface viscosity
presents a larger deformation than the Π -independent case, and the Π -thinning case
exhibits the smallest deformation (figure 9a).

The surface-pressure scale is the most important parameter determining surface
viscosity from surfactant concentration. Thus, we next study how the dimensionless
surface-pressure scale Π∗c affects drop deformation. In figure 10(a), the drop’s
steady-state deformation D is plotted versus Ca for different Π∗c . At all given
values of Ca, as Π∗c increases, both the Π -thickening and Π -thinning cases tend to
approach the Π -independent case with Bq = Bq0. This is because increasing Π∗c is
characterized by a decreasing sensitivity of surface viscosity to the variation in Γ .
At high Π∗c (e.g. Π∗c = 0.5), Bq over the entire drop surface is close to its initial
value Bq0 (figure 10b). In contrast, the surface viscosity becomes rather sensitive to
the variation in Γ at low Π∗c (e.g. Π∗c = 0.05). Accordingly, Bq becomes close to 0
for the Π -thickening case but it becomes much larger than Bq0 for the Π -thinning
case. To understand the effect of Π∗c on the drop’s surface viscosity in quantitative
terms, the effective Boussinesq number Bqav averaged over the entire drop surface is
calculated for Ca= 0.5, Bq0= 1, Pes= 1 and β= 0.8. As Π∗c increases from 0.1 to 0.5,
Bqav increases from 0.37 to 0.85 for the Π -thickening case, while it decreases from
2.51 to 1.19 for the Π -thinning case. In order to explain the effect of Π∗c on drop
deformation more explicitly, the deformation of the surfactant-concentration-dependent
cases is compared with that of the constant surface viscosity cases with Bq equivalent
to Bqav of the surfactant-concentration-dependent cases. As shown in figure 11(a),
the non-uniform distribution of surface viscosity indeed induces a small deviation
in drop deformation compared to the constant surface viscosity cases. Nevertheless,
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FIGURE 11. (Colour online) Effects of surfactant-concentration-dependent surface viscosity
on drop deformation under different Pes and β. D is plotted as a function of Π∗c for
different Pes in (a) and for different β in (b). Ca and Bq0 are set to 0.5 and 1. The dashed
line represents the drop deformation for the Π -independent case with Bq= 1 at Pes = 1
and β = 0.8. The dot-dashed line represents the deformation of droplets with constant
Boussinesq numbers but equivalent to the surface-averaged Boussinesq numbers of the
surfactant-concentration-dependent cases of Pes= 1. (c) Surfactant concentration Γ and (d)
surface viscosity Bq versus the phase angle α are compared between the Π -thickening and
Π -thinning cases under different Pes, where Π∗c = 0.1 and β = 0.8.

most of the effect of Π∗c on drop deformation is due to its effect on the averaged
surface viscosity. Accordingly, it is expected that, with Π∗c increasing to ±∞, the
effect of a non-uniform distribution of surface viscosity would vanish and one may
recover the drop deformation at Bq0. This is because the averaged surface viscosity
would continuously approach the extreme (i.e. Bq0) with Π∗c →±∞. Whereas, the
effect of Π∗c on drop deformation would become more complex with Π∗c →0. For
the Π -thickening case, Π∗c → 0 has a similar effect as Bq0→ 0; that is, D increases
continuously or even diverges if the drop is unstable in the limit of Bq= 0 for this
set of parameters (including Ca, Pes and β). In contrast, for the Π -thinning case,
Π∗c → 0 has the similar effect as Bq0 → ∞; that is, the drop deformation would
continuously approach the extreme of 0.

Notably, the surface viscosity strongly depends on local surfactant concentration
Γ , while Γ is mainly governed by the surface Péclet number Pes and elasticity
number β. Therefore, we also study the effects of surfactant-concentration-dependent
surface viscosity on drop deformation under different Pes and β. In figure 11(a,b),
D is plotted versus Π∗c with varying Pes in the range 0.1–10 or varying β in
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the range 0.2–0.8. At all given values of Π∗c , the drop deformation for both the
Π -thickening and Π -thinning cases increases with increasing Pes or decreasing β.
These observed effects of Pes and β are similar to and even more significant than
those of surfactant-laden droplets with no surface viscosity (figure 3b). Notably, as
Pes increases from 0.1 to 10, the variation in surfactant concentration over the drop
surface is significantly increased since convection gradually becomes dominant over
diffusion (figure 11c). As a result, the difference in surface viscosity between the
Π -thickening and Π -thinning cases is also remarkably enlarged over a large area
around the drop equator (figure 11d). This explains the increasing difference in
drop deformation between the Π -thickening and Π -thinning cases with increasing
Pes (figure 11a). Note that increasing β has a similar effect as decreasing Pes on
surface viscosity since increasing the Marangoni stress also tends to eliminate the
surfactant-concentration variation. To summarize, surfactant-concentration-induced
variations in surface viscosity lead to non-trivial deviations in drop deformation
compared to droplets with constant surface viscosity but with no surfactant transport.
These deviations are especially obvious at low Π∗c when the surface viscosity is
quite sensitive to surfactant concentration variation or at high Pes when the surfactant
concentration shows large variations owing to a strong convection effect.

It is necessary to emphasize that the Marangoni stress and surface viscous stress
have mutual effects on each other. For the Π -independent case (i.e. constant surface
viscosity), the presence of surface viscosity tends to eliminate the surface tension
gradient, i.e. the shear surface viscosity via suppression of the local convection effect
(figure 6) and the dilatational surface viscosity via suppression of the local dilution
effect (figure 7). As a consequence, the Marangoni stress is reduced by the surface
viscous stress. On the other hand, it is well known that the Marangoni stress also
tends to immobilize the drop’s surface and hence the surface velocity gradient is
reduced. Accordingly, the surface viscous stress is also decreased by the Marangoni
stress, although the surface viscosity is constant. More importantly, when the surface
viscosity is dependent on local surfactant concentration, the mutual effect between
Marangoni stress and surface viscous stress becomes much more complex. For both
the Π -thickening and Π -thinning cases, the surface viscous stress always tends to
suppress the surface tension gradient and hence reduces the Marangoni stress, no
matter how large the dimensionless pressure scale is (figure 10b). However, this is
not the case for the influence of the Marangoni stress on the surface viscous stress.
For example, the surfactant concentration around the drop equator decreases with
increasing Pes while the surfactant concentration gradient increases due to stronger
convection (figure 11c). For the Π -thickening case, the surface viscous stress should
decrease with increasing Pes, because the local surface viscosity decreases with
surfactant concentration (figure 11d) and the enlarged Marangoni stress tends to
lower the surface velocity gradient. However, for the Π -thinning case, the surface
viscous stress may increase with Pes. This is because the local surface viscosity
significantly increases with surfactant concentration (figure 11d), though the enlarged
Marangoni stress still lowers the surface velocity gradient.

The dependence of surface tension σ on local surfactant concentration Γ is
important to determine the Marangoni stress, and it often follows a nonlinear equation
of state, especially at high surface coverage of surfactant (Johnson & Borhan 1999).
Therefore, we next examine the combined effects of surfactant transport and surface
viscosity on drop deformation employing a nonlinear equation of state for the σ–Γ
relation Muradoglu & Tryggvason (2014):

σ = 1+ β ln(1− xcoΓ ). (3.8)
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FIGURE 12. (Colour online) Effects of surfactant-concentration-dependent surface viscosity
on drop deformation with a nonlinear equation of state used for the Γ –σ relation. D is
plotted as a function of Π∗c under different but large Pes for the Π -thickening (a) and
Π -thinning (b) cases. Ca, β and Bq0 are set to 0.3, 0.8 and 2, respectively. The dashed
line in (a) represents the drop deformation of the Π -independent case at Pes = 1 and
β= 0.8. Surfactant concentration Γ , surface tension σ and surface viscosity Bq are plotted
as functions of the phase angle α for the Π -thickening (c) and Π -thinning (d) cases.

Here, xco = Γ0/Γ∞ is the dimensionless surfactant coverage, which is set to 0.1.
Note that, the larger Pes results in a higher local surfactant coverage (figure 11c).
Accordingly, at extremely large Pes, local surfactant coverage may become quite large,
though the initial uniform surfactant coverage is low (i.e. xco = 0.1). Therefore, in
figure 12, the drop deformation D is plotted versus Π∗c under different large Péclet
numbers (i.e. Pes = 1–1000), while our results for linear and nonlinear equations of
state are both presented for comparison purposes. In qualitative terms, the combined
effect of surfactant transport and surface viscosity shows the same features for the
linear and nonlinear equations of state. For instance, the drop deformation D of both
Π -thickening and Π -thinning cases approaches its value for the Π -independent case
once Π∗c increases to large values, and vice versa. Besides, D increases with Pes for
both Π -thickening and Π -thinning cases. Nevertheless, a relatively large difference
in D is also observed in quantitative terms as the Γ –σ relation is changed from
linear to nonlinear. More particularly, for all values of Π∗c , D is much larger for the
nonlinear equation of state. We find that this quantitative difference mainly results
from the change in surface tension. As shown in figure 12(c,d), for both Π -thickening
and Π -thinning cases, both surfactant concentration and surface viscosity show small
changes between the linear and nonlinear equations of state, while the surface tension
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is much larger for the linear equation of state. On the other hand, it is noted that
although the drop deformation is still increasing with Pes increasing from 10 to 1000,
the change is much smaller than that with Pes increasing from 1 to 10. This result
indicates that convection becomes dominant over diffusion at Pes > 10. Therefore, the
results in figure 11 with Pes increasing from 0.1 to 10 show the main features of the
effects of Pes on the deformation of droplets with both surface tension and surface
viscosity dependent on local surfactant concentration.

3.4. Full three-dimensional shape of surfactant-laden droplets
In this section, we study the combined effect of surfactant transport and surface
viscosity on the drop deformation in the third axis (i.e. the drop width in the vorticity
direction) and then the full three-dimensional shape of the droplet is also analysed.
Note that although the Taylor parameter D is widely adopted to characterize drop
deformation in the simple shear flow (Li & Pozrikidis 1997; Fischer & Erni 2007;
Gounley et al. 2016), it cannot provide the full three-dimensional picture of the drop
shape since it uses only the information of the drop shape in the shear plane (i.e. the
major and minor axes L and B). However, the drop deformation along the vorticity
direction is also crucial to grasping the whole picture of the drop shape. Experimental
studies (Guido & Villone 1998; Feigl et al. 2007; Vananroye et al. 2008, 2011) have
indicated that significant changes in the drop width W may occur. Therefore, we then
show the effects of the surfactant on the drop width and the full three-dimensional
shape in detail.

In figure 13(a), the dimensionless drop width W/R is plotted versus the capillary
number Ca for both clean and surfactant-laden droplets. The presence of a surfactant,
especially the inclusion of surfactant-induced surface viscosity, has a significant
influence on the drop width. More specifically, at all given values of Ca, the
consideration of surfactant transport results in larger drop width compared to that of
clean droplets, and the inclusion of surface viscosity enlarges the drop width further.
In general, as long as the droplet exhibits larger deformation in the shear plane
(characterized by the Taylor parameter D), it does the same in the third dimension,
i.e. in the vorticity direction (characterized by the drop width W/R). As such, we
plot W/R versus D in figure 13(b). We surprisingly observe that both surfactant
transport and surface viscosity have little effect on the relationship between W/R
and D compared to clean droplets. Notably, in figure 13(b), all data points from our
simulations collapse onto a single curve, that is W/R= 1−D2. More particularly, data
for five different configurations fall onto this same curve, including a (i) clean droplet,
(ii) droplet with constant surface viscosity but with no surfactant transport, (iii) droplet
with surfactant transport but with no surface viscosity, (iv) droplet with surfactant
transport and a constant surface viscosity and (iv) droplet with surfactant transport
and a surfactant-concentration-dependent surface viscosity. Further, we compare the
curve W/R= 1−D2 with experimental data from previous studies (Guido & Villone
1998; Vananroye et al. 2008, 2011), as shown in figure 13(c). Excellent agreement
is observed for both clean droplets and surfactant-laden droplets. Besides, the results
from small deformation analysis by Mandal et al. (2017) for surfactant-laden droplets
are also presented for comparison. It is observed that our curve also shows good
agreement with the analytical results, especially when the drop deformation is small
(i.e. D < 0.15). While, the small deformation analysis predicts a lower W than
our curve and the difference becomes larger at high D, which can be also found
in figure 3(a). Nevertheless, the relative error between our results and Mandal’s
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FIGURE 13. (Colour online) Full three-dimensional drop shape is analysed for droplets
with a clean surface, surfactant-laden surface with or without surface viscosity. (a) The
drop width W/R in the vorticity direction is plotted as a function of Ca. (b) W/R is
plotted as a function of the Taylor deformation parameter D. Note that all data points
(i.e. 315 points in total) from our numerical simulations are included. A fitting curve
(i.e. W/R = 1 − D2) exhibits an excellent agreement with these numerical data. (c) The
fitting curve of W/R = 1 − D2 also agrees quite well with experimental data from
previous studies (Guido & Villone 1998; Vananroye et al. 2008, 2011) for both clean and
surfactant-laden droplets. The result from the small deformation analysis of Mandal et al.
(2017) is also included. (d) The full three-dimensional shape of two examples of highly
deformed droplets from our numerical simulations (e.g. the surface with contours) agrees
well with the ellipsoidal shape described by (3.3) indicated by the three red solid lines.
Here, Ca, Pes, β, Bq0 and Π∗c are 0.5, 1, 0.8, 1 and 0.1, respectively. The colour contours
on the drop surface represent the prediction error, which is the relative error between the
ellipsoidal shape (i.e. equation (3.3)) and the shape obtained from numerical simulation.
The three principal axes of the ellipsoidal shape described by (3.3) are L/R= 1/(1−D),
W/R= 1−D2 and B/R= 1/(1+D), respectively. Note that, the prediction error averaged
over the entire drop surface is only 0.6 % and 0.4 % for the Π -thickening and Π -thinning
examples in (d), respectively.

analytical results is limited to less than 9 % for all cases. These results indicate that
the drop deformations in the shear plane and along the vorticity direction are actually
linked to each other in a specific relationship. Besides, surfactants have little effect
on this relationship, although they tend to alter the drop deformation significantly.

Finally, we analyse the three-dimensional shape of surfactant-laden droplets in a
simple shear flow. Since there is no mass transfer across the drop surface, the drop
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volume remains constant:

L
R

W
R

B
R
= 1. (3.9)

Besides, we have the definition of D as (L−B)/(L+B) and the relation W/R=1−D2

(figure 13b). Accordingly, we can obtain the lengths of the three principal axes as
functions of D:

L
R
=

1
1−D

,
W
R
= 1−D2,

B
R
=

1
1+D

. (3.10a−c)

Further, the three-dimensional shape of the deformed droplet as an ellipsoid can be
given by:

x2

[1/(1−D)]2
+

y2

(1−D2)2
+

z2

[1/(1+D)]2
= 1. (3.11)

By comparing with our simulations, we can quantitatively characterize the deviation
of the drop’s three-dimensional shape from the ellipsoid described by equation (3.11).
In figure 13(d), we show the contour of the prediction error over the entire drop
surface for two typical examples with modest or large deformation. It is observed
that the maximum error over the entire drop surface is lower than 2.5 % for both
cases. In fact, for all of our 315 data points of clean and surfactant-laden droplets, the
prediction error averaged over the drop surface is lower than 2 % (data not shown).
These results indicate that the ellipsoidal shape described by (3.11) with only one
unknown variable can predict the steady-state three-dimensional shape of the deformed
droplet in a simple shear flow very well, no matter whether the droplet is covered with
surfactants or not, and no matter whether the drop surface has a surface viscosity or
not.

4. Conclusion
We present a numerical study on the dynamics of an insoluble surfactant-laden

droplet in a simple shear flow. Of particular interest are the effects of surface
viscosity depending strongly upon local surfactant concentration on the deformation of
the whole droplet. This work is realized via a front-tracking finite-difference method
that we previously developed for membrane-enclosed droplets (Luo et al. 2015; Luo
& Bai 2016, 2018). Here, the convection–diffusion equation is solved to consider
surfactant transport on the deforming drop surface, and the Boussinesq–Scriven
constitutive law is integrated to model the complex rheology of the drop’s surface, i.e.
surfactant-concentration-dependent surface viscosity and surface tension. In addition
to our previous verification on the dynamics of membrane-enclosed droplets, our
numerical method is further validated by comparison with reported data on the
deformation of clean droplets and surfactant-laden droplets when considering either
surface viscosity or surfactant transport only (Li & Pozrikidis 1997; Komrakova et al.
2014; Gounley et al. 2016).

Our results show that the surfactant-concentration-dependent surface viscosity has
a non-trivial effect on drop deformation in general, although this effect may become
negligible when the Boussinesq number (Bq = µs/µR) is quite small, e.g. Bq < 0.1.
Note that, in real applications, the Boussinesq number could turn out to be much
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larger than 0.1, since the changes of both surface viscosity and drop size may
cover several orders of magnitude. Zell et al. (2014) presented experimentally results
showing that the shear surface viscosity (i.e. µs) of a variety of soluble surfactants is
lower than 10−2 µN s m−1. For a typical bulk fluid viscosity (i.e. µ) of 10−3 Pa s,
the effects of surface viscosity on drop deformation can be neglected for droplets
larger than 10 µm. In contrast, more studies have reported a surface shear viscosity
several orders of magnitude higher than 10−2 µN s m (Zell et al. 2014). Besides,
the surface viscosity for insoluble surfactants is usually higher than that for soluble
surfactants (Kim et al. 2013; Langevin 2014; Ponce-Torres et al. 2017). Therefore,
in general, the effects of surface viscosity need to be considered for droplets with a
micro-to-millimetre size.

Considering the importance of interfacial stresses (i.e. surface tension, Marangoni
stress and surface viscous stress) on droplet dynamics, we summarize the relevant
dimensionless parameters, including the capillary number Ca, the elasticity number
β, the surface Péclet number Pes, the Boussinesq numbers based on the shear (Bqs)
and dilatational (Bqd) surface viscosities. Besides, there are many other complexities,
e.g. concentration dependence of surface viscosities and nonlinear σ–Γ relationship.
It is necessary to give a simple summary on the separate, qualitative effect of each
parameter on drop dynamics in shear flow as follows: (i) low Ca stabilizes the drop,
i.e. decreases drop deformation and inhibits drop breakup; (ii) low β destabilizes the
drop, i.e. increases drop deformation and promotes drop breakup, but only at high
Ca; (iii) low Pes stabilizes the drop; (iv) increasing Bqs stabilizes the drop, especially
when the drop exhibits large deformation, e.g. at high Ca; and (v) increasing Bqd
destabilizes the drop. The qualitative effects of these dimensionless parameters were
also demonstrated in previous studies where they were studied in isolation. In this
study, particular interest is focused on how the coupling of surface tension, Marangoni
stress and surface viscous stress affects the drop dynamics in shear flow. According
to our numerical results, this coupling does not change the separate effect of those
dimensionless parameters in qualitative terms, while it indeed induces significant
changes in quantitative terms.

Next, we discuss whether and under what conditions the specific rheological
properties (e.g. Marangoni stresses and surface viscous stresses) of surfactant-laden
surfaces should be accounted for in the study of drop dynamics in shear flow.
By taking surfactant transport and surface viscosity into account together, we find
that the interaction between Marangoni stress and surface viscous stress induces
non-negligible deviations in drop deformation compared to studies where only
surface viscosity or surfactant transport is considered. For example, the deviation
in the prediction of drop deformation may become as high as 10–20 % (figure 5),
which may lead to an error of more than 50 % in surface viscosity measurement
based on the drop-deformation information (Flumerfelt 1980; Phillips et al. 1980).
Besides, the neglecting of surfactant transport may generate a deviation of more
than 100 % in the prediction of the critical capillary number for drop breakup
(figure 8). Nevertheless, when the Boussinesq number is quite large, e.g. Bq > 10
(for example, droplets with quite small sizes), the effects of surfactant transport
on drop deformation can be neglected while the surface viscous stress plays the
dominant role. In this case, the model by Gounley et al. (2016) considering surface
viscosity but neglecting surfactant transport can predict the drop deformation well.
Moreover, recent experiments have demonstrated that the surface viscosity for most
insoluble surfactants depends strongly on surfactant concentration (Kim et al. 2011,
2013; Hermans & Vermant 2014; Samaniuk & Vermant 2014). Our results show
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that surfactant-concentration-induced variations in surface viscosity lead to significant
changes in drop deformation, especially at a low dimensionless pressure scale (e.g.
Π∗c < 0.2) when the surface viscosity is quite sensitive to surfactant-concentration
variations. For example, for high Péclet numbers when the surfactant concentration
shows large variations, the neglecting of the surfactant-concentration-induced variation
in surface viscosity may generate a deviation larger than 30 % in the prediction
of drop deformation (figure 11), although both surface viscosity and surfactant
transport are taken into account. Notably, as a typical example of a surfactant system,
previous experiments have shown that the surface-pressure scale Πc for the ubiquitous
phospholipid dipalmitoylphosphatidylcholine (DPPC) can be as low as 6 mN m−1

(Kim et al. 2011, 2013; Manikantan & Squires 2017) and hence the dimensionless
pressure scale Π∗c may become lower than 0.2. Accordingly, it is of great importance
to account for the effects of surfactant-concentration-dependent surface viscosity
in the study of the dynamics of surfactant-laden droplets in shear flows. More
importantly, we find both shear and dilatational surface viscosities tend to eliminate
the surfactant-concentration gradient, though the underlying mechanisms are entirely
different, i.e. inhibiting convection and dilution respectively. This knowledge could be
particularly important in the analysis of surfactant distribution and transport during
different drop dynamics and motion, for example, the accumulation of surfactants on
a satellite droplet during the breakup of a pendant drop (Ponce-Torres et al. 2017).

It should be noted that no exchange of the surfactant is considered between
the drop surface and the bulk fluid in the present study. The surfactant transport
becomes much more complex for the soluble case, which is generally governed by
convection/diffusion in the bulk fluid, the adsorption/desorption between the drop
surface and the bulk fluid and convection/diffusion on the drop surface (Johnson &
Borhan 2003). If the adsorption/desorption is quite slow, the effect of surface viscosity
and surfactant transport on drop deformation approaches the analysis in this study
for an insoluble surfactant. In contrast, if the adsorption/desorption is rather fast and
at the same time the diffusion in the bulk fluid plays a dominant role, the surfactant
concentration tends to be constant over the entire drop surface. Under this condition,
the analysis by Gounley et al. (2016) with constant surface viscosity is sufficient
to capture the effects of surface viscosity on drop deformation. However, in most
practical cases, convection/diffusion in the bulk fluid and on the drop surface, and the
surfactant exchange between the bulk fluid and the drop surface, are all important to
determining the local surfactant concentration and surface viscosity, and these need
comprehensive study in the future.

We also study the full three-dimensional shape of surfactant-laden droplets
in a simple shear flow, and find that the drop shape can be described as an
ellipsoid determined by (3.11) with only one unknown variable. Although it is a
phenomenological equation obtained via fitting our numerical data, we believe that
it is an important supplement to the understanding of the whole picture of drop
deformation in shear flows. Previously, by comparing the drop projections along two
perpendicular views with two ellipses, Guido & Villone (1998) have demonstrated
experimentally that clean droplets deform into an ellipsoidal shape. In this study, by
comparing the drop shape contour with an ellipsoidal shape over its three-dimensional
surface, we confirm that the deformed shape of surfactant-laden droplets is also an
ellipsoid. Accordingly, we can use only the three principal axes to characterize the
whole picture of the drop shape. In experiments (Guido & Villone 1998; Feigl et al.
2007; Vananroye et al. 2008, 2011), to capture the three principal axes, two cameras
are needed to take images along two perpendicular directions (i.e. velocity gradient
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and vorticity axis). However, our results show a surprising finding that the three
principal axes are actually linked to each other as (3.10), with which one camera
may be sufficient to analyse the fully three-dimensional shape of the deformed droplet.
Besides, it is known that the adsorption of surfactants and their concentrations on
a drop’s surface significantly alter drop deformation owing to the effects of surface
tension alteration and surface viscosity. However, we surprisingly observe that the
relationships among the three principal axes show little change and can always be
described as (3.10), no matter whether surfactant transport or surface viscosity is
considered or not. These findings could be helpful for the development of simplified
phenomenological models predicting drop deformation in shear flows and for the
understanding of the interplay between shear flow, drop morphology and emulsion
rheology (Maffettone & Minale 1998; Minale 2010).
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