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Radiation of waves by a cylinder submerged in
water with ice floe or polynya

Izolda V. Sturova†
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(Received 16 March 2015; revised 16 September 2015; accepted 2 October 2015;
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The problems of radiation (sway, heave and roll) of surface and flexural-gravity waves
by a submerged cylinder are investigated for two configurations, concerning; (i) a
freely floating finite elastic plate modelling an ice floe, and (ii) two semi-infinite
elastic plates separated by a region of open water (polynya). The fluid of finite
depth is assumed to be inviscid, incompressible and homogeneous. The linear
two-dimensional problems are formulated within the framework of potential-flow
theory. The method of mass sources distributed along the body contour is applied.
The corresponding Green’s function is obtained by using matched eigenfunction
expansions. The radiation load (added mass and damping coefficients) and the
amplitudes of vertical displacements of the free surface and elastic plates are
calculated. Reciprocity relations which demonstrate both symmetry of the radiation
load coefficients and the relation of damping coefficients with the far-field form of
the radiation potentials are found. It is shown that wave motion essentially depends
on the position of the submerged body relative to the elastic plate edges. The results
of solving the radiation problem are compared with the solution of the diffraction
problem. It is noted that resonant frequencies in the radiation problem correlate with
those frequencies at which the reflection coefficient in the diffraction problem has a
local minimum.

Key words: ice sheets, surface gravity waves, wave–structure interactions

1. Introduction
In a linear treatment, the problem of oscillations of a submerged body under a

free surface and the resulting hydrodynamic loads have been thoroughly studied. A
wide range of mathematical techniques were given by Linton & McIver (2001) for
the solution of problems involving the interaction of waves with structures. Extensive
bibliographical notes were taken in this book. The investigations of wave fluid motions
generated by oscillations of a body beneath a floating elastic plate have been begun
relatively recently. Practical applications of this problem are related to studying the
effect of floating ice-cover and artificial large floating platforms on submerged bodies.
At present, all known theoretical studies of the ice-cover effect on the motion of
a submerged body have been carried out under the assumptions that the ice cover
is homogeneous and unbounded along the horizontal coordinates. A review of these
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investigations can be found in Sturova (2013). The two-dimensional problem of waves
generated by a point source pulsating beneath an ice cover in deep water was solved
by Savin & Savin (2013).

In reality, sea ice is strongly inhomogeneous in composition and properties (e.g.
Squire 2011). The ice floes have finite dimensions. Cracks, polynyas, and hummocks
are the characteristic irregularities of dense ice. Radiation of waves by a horizontal
cylinder submerged in fluid having mixed boundary conditions on the upper surface
were studied by Sturova (2014) for a floating semi-infinite elastic plate, and Sturova
(2015) for two semi-infinite elastic plates connected by the vertical and flexural
rotational springs as a model of a partially frozen crack in an ice sheet. These
two-dimensional problems were solved by the method of matched eigenfunction
expansions (MEE) for the velocity potentials. This method is an efficient direct
method to study wave interaction with floating flexible structures (e.g. Sahoo 2012).
It provides closed form solutions by transforming the boundary-value problem into a
linear system of algebraic equations.

The interaction of a submerged cylinder with a floating elastic platform of finite
length was considered by Hermans (2014) and Tkacheva (2015). Hermans extended
a semi-analytical method he had earlier proposed to solve the problem of the two-
dimensional interaction of a plane wave with a floating flexible platform (e.g. Hermans
2004). To determine the velocity potential, he used the integral equation with Green’s
function that fulfils the free-surface boundary condition. The deflection of the elastic
plate was written as a series of exponential functions. As a result, the problem reduced
to solving the differential–integral equation for the deflection of the platform. The
computations of the hydrodynamic load for a circular cylinder submerged in front of
the platform were presented. The solution to this problem with the use of the Wiener–
Hopf technique (WHT) will be published by Tkacheva (2015). The calculations of the
hydrodynamic load acting on the elliptical cylinder at different positions with respect
to the floating platform are given. The advantage of WHT is that it gives an explicit
analytical solution and does not require the use of matching conditions. However, this
method is more complicated than the one presented here both in the construction of
the solution and in the preparation of a computer program.

In this paper, the linear time-harmonic water–wave problem describing small
oscillations of a horizontal cylinder is considered for two classes of hydroelastic
system. The fluid surface is either open, except for a finite region where it is covered
by a thin elastic platform which represents an ice floe, or covered by two semi-infinite
thin elastic plates with different properties, except for a finite patch of ice-free water
(polynya). In both cases, the fluid domain is of infinite horizontal extent and finite
depth. The uniform Euler–Bernoulli elastic thin plates are used. The axis of the
cylinder is parallel to the plate edges and the problems are two-dimensional. The
solution is written as a distribution of mass sources over the surface of the cylinder
and an integral equation is applied for the unknown source strength. The appropriate
Green’s function is introduced using the method MEE. While the problem regarding
the interaction of a submerged cylinder with a floating elastic platform of finite
length has been solved previously, the present study shows that this problem is also
amenable to the most simple method MEE. Good agreement between the results
obtained by the method MEE and WHT was demonstrated by Sturova & Tkacheva
(2015). The case of polynya is considered for the first time. The hydrodynamic load
(added mass and damping coefficients) and the amplitudes of vertical displacements
of the free surface and elastic plates are calculated as functions of the cylinder
oscillation frequency and the location of the cylinder with respect to the plate edges.
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FIGURE 1. Schematic diagram: (a) the case of finite elastic platform, (b) the case of two
semi-infinite elastic plates separated by a region of open water.

The solution of the radiation problem is compared with that of the diffraction problem
for the considered elastic plate configurations. It is shown that resonance regimes
exist corresponding to local minima of the reflection coefficient in the diffraction
problem.

2. Mathematical formulation
The problem is analysed in the 2-D Cartesian coordinate system with the x-axis

directed along the undisturbed mean water surface perpendicular to the cylinder axis,
and the y-axis pointing vertically upwards. The fluid is assumed to be inviscid and
incompressible, its motion is irrotational. The depth of fluid is equal to H. Figure 1
shows a schematic diagram of the problem. The plates are in contact with water at
all points for all times. The plate draft is neglected. It is assumed that the edges of
plates are free.

Wave motions in the fluid, which is initially at rest, are generated by small
horizontal, vertical and rotational oscillations of a submerged rigid body with a
wetted surface S. Assuming that the disturbed fluid motion is steady-state, we can
write the time-dependent velocity potential under the usual assumptions of linear
theory in the form (e.g. Linton & McIver 2001):

Φ(x, y, t)=Re

[
iω

3∑
j=1

ζjϕj(x, y) exp(iωt)

]
, (2.1)

where complex radiation potentials ϕj(x, y) characterize the motion due to body
oscillations at a frequency ω with respect to the three degrees of freedom with
amplitudes ζ1, ζ2 and ζ3 for the sway, heave and roll problems, respectively, and t is
time.

The vertical displacements of the free surface and elastic plates W(x, t) can be
determined from the relation

∂W/∂t= ∂Φ/∂y|y=0. (2.2)

By analogy with representation (2.1), the expression for W(x, t) can be written in the
form:

W(x, t)=Re

[
3∑

j=1

ζjwj(x) exp(iωt)

]
, wj(x)= ∂ϕj/∂y|y=0. (2.3)
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The radiation potentials ϕj(x, y) satisfy the Laplace equation in the fluid domain

∇2ϕj = 0 (−∞< x<∞,−H < y< 0) (2.4)

except for the region occupied by the cylinder.
The boundary condition on the closed smooth contour of the submerged body S has

the form:
∂ϕj/∂n= nj (x, y ∈ S), ( j= 1, 2, 3). (2.5)

Here, n= (nx, ny) is the inward normal to the contour S. The notation

n1 = nx, n2 = ny, n3 = (y− y0)n1 − (x− x0)n2 (2.6a−c)

is used where x0, y0 are the coordinates of the centre of roll oscillations.
The boundary condition at the bottom is

∂ϕj/∂y= 0 (−∞< x<∞, y=−H). (2.7)

In the far field, a radiation condition should be imposed that requires the radiated
waves to be outgoing.

For a finite platform (see figure 1a), the upper boundary of the fluid is covered
partly with an elastic homogeneous plate of length L, uniform mass density ρ and
thickness d. The fluid surface not covered by the plate is free. The vertical y-axis
passes through the left edge of the plate. The free surface condition in the open water
regions is given by

∂ϕj/∂y−Ωϕj = 0, (x< 0, x> L, y= 0), Ω =ω2/g, (2.8)

where g is the acceleration due to gravity.
On the elastic covered surface, the radiation potentials ϕj(x, y) satisfy boundary

condition of the form(
D
∂4

∂x4
−ΩB+ 1

)
∂ϕj

∂y
−Ωϕj = 0 (0< x< L, y= 0), (2.9)

where D= Ed3/[12gρ0(1− ν2)], B= ρd/ρ0, E is the Young’s modulus for the elastic
plate, ν is its Poisson’s ration and ρ0 is the fluid density. At the plate edges, free edge
conditions require vanishing bending moment and shear force:

∂3ϕj/∂x2∂y= ∂4ϕj/∂x3∂y= 0 (x= 0+, L−, y= 0). (2.10)

For the polynya of length L (see figure 1b), two semi-infinite elastic plates Λ1 and
Λ2 float on the water surface. The vertical y-axis passes through the right edge of the
plate Λ1. The left plate Λ1(x< 0) and the right plate Λ2(x> L) have characteristics
E1, d1, ρ1, ν1 and E2, d2, ρ2, ν2, respectively. The boundary conditions for the fluid in
contact with the plates Λ1 and Λ2 are similar (2.9):(

D1
∂4

∂x4
−ΩB1 + 1

)
∂ϕj

∂y
−Ωϕj = 0 (x< 0, y= 0), (2.11a)(

D2
∂4

∂x4
−ΩB2 + 1

)
∂ϕj

∂y
−Ωϕj = 0 (x> L, y= 0), (2.11b)

where Dn = End3
n/[12gρ0(1 − ν2

n)], Bn = ρndn/ρ0 (n = 1, 2). The free edge conditions
(2.10) are fulfilled at (x= 0−, L+, y= 0). The free surface condition (2.8) takes place
at (0< x< L, y= 0).
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3. Method of solution
To solve the Laplace equation (2.4) with the appropriate boundary conditions we

introduce an unknown mass source distribution σj(x, y) over the contour S for each
of the body oscillation modes. Then, the radiation potentials at any point of the fluid
can be represented in the form

ϕj(x, y)=
∫

S
σj(ξ , η)G(x, y; ξ, η) ds ( j= 1, 2, 3). (3.1)

Here, G(x, y; ξ, η) is the Green’s function which determines the fluid velocity potential
initiated by a mass source of unit intensity located at the point with coordinates (ξ , η).
In order to determine the Green’s function, it is necessary to solve the equation

∇2G= 2πδ(x− ξ)δ(y− η), (3.2)

where δ is the Dirac delta-function, with the boundary conditions similar to
(2.7)–(2.11) and the radiation condition in the far field.

The Green’s function can be found using the method MME. The domain occupied
by fluid is divided into three subdomains: Γ1(−∞< x< 0,−H < y< 0), Γ2(0< x<
L,−H < y< 0) and Γ3(L< x<∞,−H < y< 0). The value of G(x, y; ξ, η) in Γi is
denoted by Gi(x, y; ξ, η) (i = 1, 2, 3). The Green’s function depends significantly on
the location of the source. The cases of finite platform and polynya will be considered
further separately.

3.1. The Green’s function for the case of finite elastic platform
The functions Gi(x, y; ξ, η) (i = 1, 2, 3) will be sought as expansions in terms of
eigenfunctions of corresponding boundary value problems:

G1 = α1Gf + R0eik0xf (y, k0)+
∞∑

m=1

Rmekmxψ(y, km) (x, y ∈ Γ1), (3.3)

G2 = α2Gp + [C0e−is0x + S0eis0(x−L)] f (y, s0)

+
∞∑

m=−2
m6=0

[Cme−smx + Smesm(x−L)]ψ(y, sm) (x, y ∈ Γ2), (3.4)

G3 = α3Gf + T0eik0(L−x)f (y, k0)+
∞∑

m=1

Tmekm(L−x)ψ(y, km) (x, y ∈ Γ3), (3.5)

where

f (y, k)= cosh k(y+H)/cosh kH, ψ(y, k)= cos k(y+H)/ cos kH. (3.6a,b)

The value αi (i= 1, 2, 3) in (3.3)–(3.5) is equal to one if the observation point (x, y)
and the mass source (ξ , η) are located in the same subdomain Γi, otherwise αi = 0.

The constants km’s satisfy the dispersion relations

Ω = k0 tanh k0H =−km tan kmH (m= 1, 2, 3, . . .) (3.7)

with (m − 1)π/H < km < mπ/H (m = 1, 2, 3, . . .). The eigenfunctions f (y, k0),
ψ(y, km) (m = 1, 2, 3, . . .) are orthogonal and form the complete system. These
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functions are determined by taking (2.4), the boundary conditions (2.7) and (2.8) into
account.

Taking into account the boundary condition (2.9), the constant sm’s satisfy the
dispersion relation

K = s0(1+L s4
0) tanh s0H =−sm(1+L s4

m) tan smH (m=−2,−1, 1 . . .) (3.8)

with K = Ω/(1 − ΩB) and L = D/(1 − ΩB). It should be noted that s−2 and
s−1 are complex conjugates with positive real parts, sm’s are positive and real with
(m − 1)π/H < sm < mπ/H (m = 1, 2, 3, . . .). The eigenfunctions f (y, s0), ψ(y, sm)

(m = −2, −1, 1, . . .) are not orthogonal, however they do form a complete set (e.g.
Fox & Squire 1994).

The function Gf (x, y; ξ, η) is a velocity potential due to a source submerged under
an infinitely extended free surface (e.g. Linton & McIver 2001, (B.38), (B.40)):

Gf = ln
r
r1
+ pv

∫ ∞
0

P0(y, η; k)cos k(x− ξ)
Z0(k)

dk− iπP0(y, η; k0)
cos k0(x− ξ)

Z′0(k0)
, (3.9)

where ‘pv’ indicates the principal-value integration,

r2 = (x− ξ)2 + (y− η)2, r2
1 = (x− ξ)2 + (y+ η)2, (3.10a,b)

P0 = 2
k(1+ e−2kH)

{[(kcosh kη+Ω sinh kη)e−ky − (Ω + k)eky sinh kη]e−2kH + kek(y+η)},
(3.11)

Z0(k)=Ω − k tanh kH, Z′0(k0)≡ dZ0/dk|k=k0 . (3.12a,b)

The function Gp(x, y; ξ, η) represents the velocity potential due to a source
submerged beneath an infinitely extended elastic plate:

Gp = ln
r
r1
+ pv

∫ ∞
0

P(y, η; k)cos k(x− ξ)
Z(k)

dk− iπP(y, η; s0)
cos s0(x− ξ)

Z′(s0)
, (3.13)

where

P(y, η; k) = 2
k(1+ e−2kH)

{
k(L k4 + 1)[(e−kycosh kη− eky sinh kη)e−2kH + ek(y+η)]

− 2K e−2kH sinh kη sinh ky
}
, (3.14)

Z(k)=K − k(1+L k4) tanh kH, Z′(s0)≡ dZ/dk|k=s0 . (3.15a,b)

The unknown constants Rm, Cm, Sm, Tm in (3.3)–(3.5) should be determined to
obtain the Green’s function completely. Since the pressure and horizontal velocity
are continuous across the boundary between the subdomains Γ1 and Γ2 and also on
the boundary between Γ2 and Γ3, the full solution can be obtained from matching
conditions

G1|x=0− =G2|x=0+, ∂G1/∂x|x=0− = ∂G2/∂x|x=0+, (3.16a,b)

G2|x=L− =G3|x=L+, ∂G2/∂x|x=L− = ∂G3/∂x|x=L+ (−H < y< 0). (3.16c,d)
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Radiation of waves by a cylinder 379

In accordance with the radiation condition, in the far field there exist only waves
outgoing from the source with wavenumber k0. In order to determine the behaviour
of the Green’s function in (3.3) and (3.5) as x− ξ→±∞ it is sufficient to consider
only the limiting values of the first terms:

G1 =Q1(ξ , η)f (y, k0)eik0x (x− ξ→−∞), (3.17a)

G3 =Q2(ξ , η)f (y, k0)e−ik0x (x− ξ→∞), (3.17b)
where

Q1(ξ , η)= R0 − 2iπα1e−ik0ξ f (η, k0)/Z′0(k0), (3.18a)
Q2(ξ , η)= T0eik0L − 2iπα3eik0ξ f (η, k0)/Z′0(k0). (3.18b)

3.2. The Green’s function for the case of polynya
The functions Gi(x, y; ξ, η) (i= 1, 2, 3) can be sought in the form:

G1 = α1G(1)
p + R0eiq0xf (y, q0)+

∞∑
m=−2
m6=0

Rmeqmxψ(y, qm) (x, y ∈ Γ1), (3.19)

G2 = α2Gf +
[
C0e−ik0x + S0eik0(x−L)

]
f (y, k0)

+
∞∑

m=1

[
Cme−kmx + Smekm(x−L)

]
ψ(y, km) (x, y ∈ Γ2), (3.20)

G3 = α3G(2)
p + T0eip0(L−x)f (y, p0)+

∞∑
m=−2
m6=0

Tmepm(L−x)ψ(y, pm) (x, y ∈ Γ3). (3.21)

The constant qm’s and pm’s satisfy dispersion relations (3.8) using in place of
E, d, ρ, ν the values E1, d1, ρ1, ν1 and E2, d2, ρ2, ν2, respectively:

K1 = q0(1+L1q4
0) tanh q0H =−qm(1+L1q4

m) tan qmH, (3.22a)

K2 = p0(1+L2p4
0) tanh p0H =−pm(1+L2p4

m) tan pmH (3.22b)

with

Kn =Ω/(1−ΩBn), Ln =Dn/(1−ΩBn) (n= 1, 2). (3.23a,b)

The functions G(n)
p (n= 1, 2) in (3.19) and (3.21) are equal to the function Gp in (3.13)

replacing the values K ,L , s0 by the values K1,L1, q0 at n= 1 and K2,L2, p0 at
n= 2, respectively.

The unknown constants Rm, Cm, Sm, Tm in (3.19)–(3.21) can be determined from
matching conditions (3.16a–d). In the far field, the wave with wavenumber q0
propagates to the left as x− ξ→−∞, and the wave with wavenumber p0 propagates
to the right as x− ξ→∞. The limiting values of the Green’s function as x− ξ→±∞
are equal to

G1 = V1(ξ , η)f (y, q0)eiq0x (x− ξ→−∞), (3.24a)
G3 = V2(ξ , η)f (y, p0)e−ip0x (x− ξ→∞), (3.24b)

where

V1(ξ , η)= R0 − 2iπα1(1+L1q4
0)e
−iq0ξ f (η, q0)/Z′(q0), (3.25)

V2(ξ , η)= T0eip0L − 2iπα3(1+L2p4
0)e

ip0ξ f (η, p0)Z′(p0). (3.26)
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3.3. Integral equation
Using boundary condition (2.5) on the cylinder surface S, we obtain the following
integral equation to determine the source distribution σj(x, y)

πσj(x, y)−
∫

S
σj(ξ , η)

∂G
∂n

ds= nj ( j= 1, 2, 3). (3.27)

This is a Fredholm integral equation of the second kind for the source distribution.
Once the distribution of the sources σj(x, y) has been calculated, we can determine
the radiation potentials (3.1).

Using (3.17) and (3.24a,b), we can readily note that the radiation potentials in the
far field have the form:

for the case of the platform
ϕj = A±j e∓ik0xf (y, k0) (x→±∞), (3.28)

for the case of polynya

ϕj =
{

E−j eiq0xf (y, q0) (x→−∞),
ϕj = E+j e−ip0xf (y, p0) (x→∞), (3.29)

where

A−j =
∫

S1

Q1(ξ , η)σj(ξ , η) ds+
∫

S2+S3

R0(ξ , η)σj(ξ , η) ds, (3.30)

A+j = eip0L
∫

S1+S2

T0(ξ , η)σj(ξ , η) ds+
∫

S3

Q2(ξ , η)σj(ξ , η) ds, (3.31)

E−j =
∫

S1

V1(ξ , η)σj(ξ , η) ds+
∫

S2+S3

R0(ξ , η)σj(ξ , η) ds, (3.32)

E+j = eip0L
∫

S1+S2

T0(ξ , η)σj(ξ , η) ds+
∫

S3

V2(ξ , η)σj(ξ , η) ds. (3.33)

Here, Si (i= 1, 2, 3) is the part of contour S located in the subdomain Γi.
The vertical displacements of the free surface and elastic plates can be determined

from (2.3) and (3.1):

wj(x)=
∫

S
σj(ξ , η)

∂G
∂y

∣∣∣∣
y=0

ds. (3.34)

In accordance with (3.28) and (3.29) in the far field we have:
for the case of the platform

wj = k0A±j e∓ik0x tanh k0H (x→±∞), (3.35)

for the case of polynya

wj =
{

q0E−j eiq0x tanh q0H (x→−∞),
p0E+j e−ip0x tanh p0H (x→∞). (3.36)

4. Hydrodynamic load and reciprocity relations
The radiation load acting on an oscillating submerged body is determined by the

force F= (F1,F2) and the moment F3 which, without taking account of the hydrostatic
term, have the form (e.g. Linton & McIver 2001)
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Fk =
3∑

j=1

ζjτkj (k= 1, 2, 3), τkj = ρ0ω
2
∫

S
ϕjnk ds=ω2µkj − iωλkj. (4.1)

The coefficients τkj represent the complex force acting in the direction k and associated
with the sinusoidal motion of the body with unit amplitude in the direction j, and µkj

and λkj are the added mass and damping coefficients, respectively.
We will derive some general identities relating the quantities that have been

introduced. The method of generating these so-called reciprocity relations is
well-known for the body submerged beneath an infinitely extended free surface
(e.g. Linton & McIver 2001). Let ϑ(x, y) and χ(x, y) be two harmonic potentials
both satisfying bottom boundary condition (2.7) and surface conditions (2.8)–(2.10)
for the case of the elastic platform (or corresponding conditions for the case of
polynya). Using the Green’s identity for the fluid region outside the submerged body,
we obtain ∫

S

(
ϑ
∂χ

∂n
− χ ∂ϑ

∂n

)
ds+

∫ ∞
−∞

(
ϑ
∂χ

∂y
− χ ∂ϑ

∂y

)∣∣∣∣
y=0

dx

+
∫ 0

−H

(
ϑ
∂χ

∂x
− χ ∂ϑ

∂x

)∣∣∣∣x=∞
x=−∞

dy= 0. (4.2)

We denote the second of integrals in (4.2) as

I ≡
∫ ∞
−∞

(
ϑ
∂χ

∂y
− χ ∂ϑ

∂y

)∣∣∣∣
y=0

dx. (4.3)

For the case of the platform, we have

I = D
Ω

∫ L

0

(
∂5ϑ

∂4x∂y
∂χ

∂y
− ∂5χ

∂4x∂y
∂ϑ

∂y

)∣∣∣∣
y=0

dx=D[U(L)−U(0)]/Ω, (4.4)

where

U(x)=
[
∂4ϑ

∂x3∂y
∂χ

∂y
− ∂3ϑ

∂x2∂y
∂2χ

∂x∂y
+ ∂2ϑ

∂x∂y
∂3χ

∂x2∂y
− ∂ϑ
∂y

∂4χ

∂x3∂y

]
y=0

. (4.5)

Here, boundary conditions (2.8) and (2.9) are used. Taking free-edge conditions (2.10)
into account, we have U(L)=U(0)= 0 and hence I = 0 in (4.4).

For the case of polynya, we have

I = D1

Ω

∫ 0

−∞

(
∂5ϑ

∂4x∂y
∂χ

∂y
− ∂5χ

∂4x∂y
∂ϑ

∂y

)∣∣∣∣
y=0

dx

+ D2

Ω

∫ ∞
L

(
∂5ϑ

∂4x∂y
∂χ

∂y
− ∂5χ

∂4x∂y
∂ϑ

∂y

)∣∣∣∣
y=0

dx

= [D2U(∞)−D1U(−∞)]/Ω. (4.6)

For the functions ϑ and χ , we can take both various pairs of ϕj and their
complex conjugate values ϕ̄j. Suppose ϑ = ϕj and χ = ϕk are two radiation potentials
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corresponding to two different modes of motion. Then the first integral in (4.2) with
using (2.5) and (4.1) is equal to∫

S

(
ϕj
∂ϕk

∂n
− ϕk

∂ϕj

∂n

)
ds=

∫
S
(ϕjnk − ϕknj) ds= 1

ρ0ω2
(τkj − τjk). (4.7)

Taking into consideration the behaviour of the radiation potentials in the far field
(3.28) and (3.29), we obtain the second and third integrals in (4.2) which are equal
to zero. Consequently, the added mass and damping coefficients given by (4.1) are
symmetric

µjk =µkj, λjk = λkj ( j, k= 1, 2, 3). (4.8a,b)

This takes place both in the case of the platform and in the case of polynya.
If we use ϑ = ϕj and χ = ϕ̄k in (4.2), then the first integral in (4.2) using (2.5) and

(4.1) can be written as ∫
S

(
ϕj
∂ϕ̄k

∂n
− ϕ̄k

∂ϕj

∂n

)
ds=− 2i

ρ0ω
λkj. (4.9)

Consequently, we can relate the damping coefficient to the far-field form of the
radiation potentials with regard to (3.28) and (3.29): for the case of the platform

λkj = ρ0ωk0Y(k0)(A−k Ā−j + A+k Ā+j ), (4.10)

for the case of polynya

λkj = ρ0ω(Υ1E−k Ē−j +Υ2E+k Ē+j ), (4.11)

where
Υ1 = q0[2D1q4

0 tanh2 q0H/Ω + Y(q0)], (4.12a)

Υ2 = p0[2D2p4
0 tanh2 p0H/Ω + Y(p0)], (4.12b)

Y(α)= 1
cosh2αH

∫ 0

−H
cosh2[α(y+H)] dy= 1

2

[
H(1− tanh2 αH)+ tanh αH

α

]
. (4.13)

From (4.10) and (4.11) it follows that the diagonal damping coefficients are always
non-negative. Equation (4.10) is coincident with the reciprocity relation for a body
submerged beneath an infinitely extended free surface (e.g. Linton & McIver 2001,
equation (1.52)). Equation (4.11) repeats the corresponding relation for a body
submerged under an ice cover with a crack (Sturova 2015). These reciprocity relations
are useful for testing accuracy in numerical calculations.

5. Numerical results

The calculations are performed for the elliptic contour S : (x− c)2/a2 + (y+ h)2/b2 = 1,
where a and b are the major and minor axes of the ellipse, respectively, and the
coordinates of its centre are equal to x = c, y = −h(h > 0). Rotational oscillations
occur with respect to the point x0 = c, y0 =−h in (2.6). We will consider ice sheets
as floating elastic plates. The following values are used for model parameters:

E= 5 GPa, ρ = 922.5 kg m−3, ν = 0.3, ρ0 = 1025 kg m−3,

d= 2 m, b= 10 m, a= h= 20 m, H = 500 m.

}
(5.1)
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In order to solve the integral equation (3.27) the method of boundary elements is
used. The body contour S is divided into N elements. An additional middle point
inside each of the elements is introduced and the distribution of an unknown quantity
is approximated by a quadratic function of the arc coordinate. Fragmentation of the
contour S occurs in such a way that none of the input points does not belong to the
boundary between the subdomains Γi and Γi+1 (i = 1, 2). Thus, we should solve a
2Nth-order system of linear equations for each j= 1, 2, 3 to determine the values of
σj in all nodal points of the contour S. Only the right-hand side of this system depends
on the number j.

The numerical integration in (3.27) is carried out using the Gauss six-point
integration formula. At each of these points, the value of the Green’s function is
determined using the reduction method. Only M of the first terms is taken into
account in series (3.3), (3.5), (3.20), and M + 2 of the first terms is taken into
account in series (3.4), (3.19), (3.21). In each case, the total number of unknown
constants Rm, Cm, Sm, Tm is equal to 4M + 8. The matching conditions (3.16a,b) and
(3.16c,d) must be satisfied integrally. For the case of finite elastic plate, substituting
expansions (3.3) and (3.4) in the first equation (3.16a,b), multiplying both sides of the
equation by f (y, k0) and ψ(y, km)(m= 1, . . . ,M) and integrating the result in y from
−H to 0, we arrive at a system of M+ 1 linear algebraic equations. The same is done
for the second equation in (3.16a,b), and we obtain another set of M + 1 equations.
Substituting expansions (3.4) and (3.5) in the first and second equations (3.16c,d)
and carrying out the same steps as for (3.16a,b), we obtain another set of 2M + 2
equations. As a result, we obtain a system of 4M + 4 linear algebraic equations
which must be supplemented with four equations following from substitution of (3.4)
into free-edge conditions (2.10). Thus, the total number of equations is equal to the
number of the unknown constants 4M + 8.

The right-hand side of the resulting system of linear algebraic equations contains
singular integrals by virtue of the integral representation of functions Gf and Gp in
(3.9) and (3.13), respectively. To calculate the singular integral as

J ≡
∫ b

a

f (x)
g(x)

dx, (5.2)

where the integrand has only a simple pole at x= x0 (a< x0 < b), i.e. g(x0)= 0 and
f (x0) 6= 0, can be used next representation

J =
∫ b

a

[
f (x)
g(x)
− f (x0)

g′(x0)(x− x0)

]
dx+ f (x0)

g′(x0)

∫ b

a

dx
x− x0

. (5.3)

Now the integrand of the first integral in (5.3) has no singularities, and the second
integral is equal to ∫ b

a

dx
x− x0

= ln
(

b− x0

x0 − a

)
. (5.4)

In the case of polynya, the problem is solved in a similar way. Numerical
convergence of results obtained by the method MEE is shown in table 1 for the
case of the finite elastic platform. The dimensionless coefficients of the radiation load
µ∗22 and λ∗22 (5.5) are given at L/b= 30, c/b= 5, Ωb= 2. We see that using N = 20
and M = 90 produce three-significant-figure accuracy. In the numerical results given
below, these values N and M are used.
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FIGURE 2. (a) Heave damping coefficient for the cylinder submerged at c/b = 5
underneath the platform with the length L/b= 19 (solid line) and L/b= 30 (dashed line).
The dash-dotted line is for the semi-infinite elastic plate, and open circles are the results
of Tkacheva (2015) at L/b= 19 obtained with using WHT. (b) Reflection coefficient for
the finite elastic platform with the length L/b= 19 (solid line) and L/b= 30 (dashed line).

The calculations of radiation load as function of the oscillation frequency of the
elliptical cylinder were given by Tkacheva (2015) in the case of a finite platform at
L/b= 15, 19 and c/b=−7, 0, 5 using WHT and input data (5.1). A comparison of the
results WHT and MEE at L/b= 15 and c/b= 5 was shown by Sturova & Tkacheva
(2015). Good agreement of the numerical results of these two methods makes us
more confident of the MEE results which are produced. The radiation load matrix
is completely filled in the problem under consideration, whereas for an infinitely
extended free surface or elastic plate, only the diagonal coefficients τjj ( j = 1, 2, 3)
and τ13 = τ31 in (4.1) are non-zero.

The greatest influence of finite length of the platform takes place if the body is
submerged underneath the platform. Figure 2(a) shows the dimensionless damping
coefficient λ∗22 (5.5) as a function of dimensionless frequency Ωb = ω2b/g at c/b =
5. The results for two ice floes of lengths L/b = 19 and L/b = 30 are compared
with the results for the semi-infinite elastic plate (Sturova 2014). It is known that
the resonance frequencies exist for the floating elastic platform are subject to incident
wave forcing (e.g. Meylan & Tomic 2012). For diffraction problem (see appendix A),
the resonance frequencies correspond to frequencies at which the reflection coefficient
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(b) (c) (d )

( f ) (g) (h)

0.2 0.4 0.6 0.8 1.0 0.20 0.4 0.6 0.8 1.0 0.20 0.4 0.6 0.8 1.0 0.20 0.4 0.6 0.8 1.0

3
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1
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(a)

(e)

FIGURE 3. Plate deflection amplitudes |w2| generated by vertical oscillations of the
cylinder at c/b = 5. The solid lines are for the finite elastic platform with the length
L/b= 19 and the dashed lines are for the semi-infinite plate. (a) Ωb= 0.5; (b) Ωb= 1;
(c) Ωb= 1.5; (d) Ωb= 2; (e) Ωb= 2.5; (f ) Ωb= 3; (g) Ωb= 3.5; (h) Ωb= 4.

M N = 10 N = 15 N = 20 N = 25
µ∗22 λ∗22 µ∗22 λ∗22 µ∗22 λ∗22 µ∗22 λ∗22

10 3.1050 0.17322 3.1070 0.17327 3.1072 0.17327 3.1073 0.17328
30 3.1727 0.17335 3.1746 0.17341 3.1749 0.17342 3.1749 0.17342
50 3.1860 0.17285 3.1879 0.17291 3.1882 0.17292 3.1882 0.17292
70 3.1902 0.17275 3.1922 0.17281 3.1924 0.17282 3.1925 0.17282
90 3.1920 0.17271 3.1940 0.17278 3.1943 0.17278 3.1943 0.17279

TABLE 1. Convergence of values of µ∗22 and λ∗22 with N and M for the case of finite
elastic platform at L/b= 30, c/b= 5, Ωb= 2.

is zero. Figure 2(b) presents the reflection coefficient R as a function of frequency at
L/b = 19 and L/b = 30. This figure shows the existence of zeros of R for discrete
values of frequency. The number of zeros increases when the length of the platform
L increases. Comparison of figures 2(a) and 2(b) shows that the peaks of the damping
coefficient λ∗22 occur at frequencies which correspond to zero reflection for both values
of length of the platforms.

Figure 3 shows the plate deflection amplitudes |w2| generated by vertical oscillations
of the cylinder at frequencies Ωb = 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4. The cylinder
is submerged underneath the plate at c/b = 5. The results for the finite platform at
L/b = 19 are compared with the similar results for the semi-infinite plate. We can
see that the behaviour of the elastic plates is very different in these two cases. For
the finite platform, a sharp increase in plate oscillations occurs in the vicinity of the
resonance frequencies at Ωb= 1 and Ωb= 3.5. As follows from the solution of the
diffraction problem (see figure 2b), the resonance frequencies are approximately equal
to Ωb≈ 1.14 and Ωb≈ 3.65. The maximum deflections are achieved at the free edges
of the elastic platform.

Consider next the influence of polynya on the wave motion generated by an
oscillating submerged cylinder. Figures 4 and 5 present the radiation load for a
cylinder submerged under polynya at L/b= 10 and c/b= 5 as a function of frequency.
A sketch of the geometry is shown in figure 4(a). The dimensionless radiation load
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FIGURE 4. Added mass coefficients: (diagonal), (a) sway; (c) heave; (e) roll; (off-
diagonal), (b) sway–heave; (d) sway–roll; (f ) heave–roll for the cylinder submerged under
the polynya at L/b= 10, c/b= 5 and d2= 2 m. The solid lines are for the identical plates
(d1= d2), the dashed lines are for the non-identical ones (d1= 0.5 m), and the dash-dotted
lines are for infinitely extended free surface.

coefficients are introduced as follows:

µ∗kj =
µkj

πρ0b2
, λ∗kj =

λkj

πρ0ωb2
, µ∗k3 =

µk3

πρ0b3
, λ∗k3 =

λk3

πρ0ωb3
(k, j= 1, 2),

µ∗33 =
µ33

πρ0b4
, λ∗33 =

λ33

πρ0ωb4
.

(5.5)

Three cases are compared: the elastic plates are the same (d1= d2= 2 m), the elastic
plates have different thicknesses (d1 = 0.5 m, d2 = 2 m) and infinitely extended free
surface. As a consequence of symmetry, we have τ12= τ23= 0 in (4.1) for the first and
third cases. The oscillations of the coefficients of radiation load occur near the curves
for an infinitely extended free surface. For low and high frequencies, the difference
between the three cases is small.
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FIGURE 5. As figure 4 but for the damping coefficients.

The most noticeable difference in the maximum values of the diagonal damping
coefficients takes place for rotational oscillations of the cylinder. Figure 6 shows
vertical displacement amplitudes |w3| of the free surface generated by oscillations of
the cylinder at frequencies Ωb = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2. At low
frequency Ωb= 0.25, the behaviour of the free surface for all three cases is the same,
but with increasing frequency differ significantly. For the considered frequencies, the
largest displacements of the fluid in polynya arises in the case of identical plates at
Ωb= 1.75.

The solution of the diffraction problem on polynya is given in appendix B. Figure 7
shows the reflection coefficient R as a function of frequency at L/b = 10 for the
identical plates (d1 = d2 = 2 m) and non-identical ones: (d1 = 0.5 m, d2 = 2 m) and
(d1 = 2 m, d2 = 0.5 m). It is seen that in the latter two cases, the values of the
reflection coefficient are very close. As noted by Chung & Linton (2005) for identical
plates, there are an infinite number of discrete frequencies at which reflection is zero.
The curves appear not to reach zero, but this is simply a facet of the resolution in
frequency used. All the curves for the magnitude of the reflection coefficient that
were presented in that paper for zero incident wave angle are confirmed fully using
the present method. For non-identical plates, in comparison with the identical ones,
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FIGURE 6. Vertical displacement amplitudes |w3| of the free surface generated by
rotational oscillations of the cylinder at L/b = 10, c/b = 5 and d2 = 2 m. The solid
lines are for the identical plates (d1 = d2), the dashed lines are for the non-identical ones
(d1= 0.5 m), and the dash-dotted lines are for infinitely extended free surface (Ωb= 0.25
(a), 0.5 (b), 0.75 (c), 1 (d), 1.25 (e), 1.5 (f ), 1.75 (g), 2 (h)).

1.0

0

0.2

0.4

0.6
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0.5 1.0 1.5 2.0

R

FIGURE 7. Reflection coefficient R as a function of frequency for the polynya with the
length L/b= 10. The solid line is for the identical plates (d1= d2= 2 m), the dashed and
dash-dotted lines are for the non-identical plates (d1 = 0.5 m, d2 = 2 m) and (d1 = 2 m,
d2 = 0.5 m), respectively.

local maxima of the reflection coefficient significantly decrease and increase the
value of local minima. The frequencies at which radiation load has local extrema in
figures 4 and 5 to some degree correspond to the frequencies at which there are local
extrema of the reflection coefficient in figure 7. The amplification of fluid oscillations
in polynya at Ωb = 1.75 (figure 6) can be explained by the fact that the reflection
coefficient R (figure 7) has a local minimum in the vicinity of this frequency.

Figures 8 and 9 present the radiation load for a cylinder submerged underneath the
right plate at L/b= 3 and c/b= 8. A sketch of the geometry is shown in figure 8(a).
The cases of identical (d1 = d2 = 2 m) and non-identical (d1 = 0.5 m, d2 = 2 m)
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FIGURE 8. Added mass coefficients: (diagonal), (a) sway; (c) heave; (e) roll; (off-
diagonal), (b) sway–heave; (d) sway–roll; (f ) heave–roll for the cylinder submerged
underneath the right plate in the case of polynya at L/b= 3, c/b= 8 and d2 = 2 m. The
solid lines are for the identical plates (d1= d2), the dashed lines are for the non-identical
plates (d1 = 0.5 m), and the dash-dotted lines are for infinitely extended elastic plate.

plates, as well as an infinitely extended uniform ice cover with thickness 2 m, are
compared. As a consequence of symmetry, we have τ12= τ23= 0 in (4.1) for infinitely
extended ice cover. It can be seen that the most noticeable oscillatory dependence
of the radiation load on the frequency is shown in the case of identical plates. The
presence of open water can both increase and decrease the radiation load compared
with infinitely extended ice cover.

Figure 10 shows the vertical displacement amplitudes |w2| of the elastic plates and
free surface at L/b = 3 and c/b = 8 for the identical plates (d1 = d2 = 2 m) and
non-identical ones (d1 = 0.5 m, d2 = 2 m) at frequencies Ωb = 0.5, 1, 1.5, 2, 2.5,
3, 3.5 and 4. It is interesting that the right plate deflections are in close agreement
for the two cases considered, and the left plate deflections are somewhat larger in
the case of non-identical plates. However, the displacements of the free surface at
certain frequencies differ sharply. As is seen from figure 10, the amplitude of the wave
elevation in the gap becomes large. This is due to resonance of the wave in the gap.
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FIGURE 9. As figure 8 but for the damping coefficients.

A similar phenomenon also occurs at the solution of the linear diffraction problem
about the interaction of free-surface waves with floating flexible strips separated by a
channel of water (e.g. Hermans 2004). In solving these problems in a more complete
manner, waves splashing over the deck of the platform should be taken into account,
although this is a much more complicated problem than the one covered in this paper.

The maximal values of the vertical displacement amplitudes max |wj| in open water
at L/b= 3 and c/b= 8 are shown in figures 11(a) and 11(b) for the identical plates
(d1 = d2 = 2 m) and non-identical ones (d1 = 0.5 m, d2 = 2 m), respectively. In both
cases, the largest free surface displacements have occurred at the vertical oscillations
of a cylinder ( j= 2), and the lowest ones at the rotational oscillations of a cylinder
( j = 3). Figure 11(c) shows the reflection coefficient R for the diffraction problem
(appendix B) as function of frequency at L/b= 3 for the identical plates (d1 = d2 =
2 m) and non-identical ones: (d1 = 0.5 m, d2 = 2 m) and (d1 = 2 m, d2 = 0.5 m). It
can be seen that the local maxima of max |wj| occur at those frequencies at which the
reflection coefficient R has local minima, regardless of the type of oscillations of the
cylinder. For all calculations, reciprocity relations (4.8a,b), (4.10), (4.11) were fulfilled
with a relative error not greater than 1 %.
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FIGURE 10. Vertical displacement amplitudes |w2| of the elastic plates and free surface
generated by vertical oscillations of the cylinder at L/b= 3, c/b= 8 and d2 = 2 m. The
solid lines are for the identical plates (d1 = d2) and the dashed lines are for the non-
identical plates (d1 = 0.5 m) (Ωb= 0.5 (a), 1 (b), 1.5 (c), 2 (d), 2.5 (e), 3 (f ), 3.5 (g),
4 (h)).

6. Conclusion

Within the framework of linearized theory, the two-dimensional problem of wave
motion generated by oscillations of a rigid submerged body has been solved. Two
classes of geometry are considered, both involving a fluid domain of infinite extent
that is partially covered by a floating thin-elastic plate. In one case, the covering
is finite, representing an ice floe, and in the second one, the covering is two semi-
infinite elastic plates separated by a region of open water (polynya). The solution
is written as a distribution of mass sources over the surface of the body and an
integral equation used for the unknown source strength. The corresponding Green’s
function is constructed using MEE. The radiation load and the amplitudes of vertical
displacement of the free surface and elastic plates are calculated. It is shown that the
wave motion essentially depends on the position of the submerged body relative to
the elastic plate edges. Reciprocity relations which demonstrate both symmetry of the
radiation load coefficients and the relation of damping coefficients with the far-field
form of the radiation potentials are found. The results of solving the radiation problem
are compared with the solution of the diffraction problem. It is noted that the resonant
frequencies in the radiation problem correlate with those frequencies at which the
reflection coefficient in the diffraction problem has a local minimum. The approach
proposed in this paper can be extended to the case of a three-dimensional submerged
body. It is the author’s opinion that the simplest problem is the radiation problem of
a sphere submerged under a floating semi-infinite elastic plate.
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FIGURE 11. Maximal values of the vertical displacement amplitudes max |wj| of sway
( j= 1), heave ( j= 2) and roll ( j= 3) as a function of frequency at L/b= 3, c/b= 8 and
d2= 2 m: (a) identical plates (d1= d2); (b) non-identical plates (d1= 0.5 m). (c) Reflection
coefficient R as a function of frequency for the polynya with the length L/b= 3. The solid
line is for the identical plates (d1 = d2 = 2 m), the dashed and dash-dotted lines are for
the non-identical plates (d1 = 0.5 m, d2 = 2 m) and (d1 = 2 m, d2 = 0.5 m), respectively.
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Appendix A. Surface wave diffraction on a floating elastic platform
The problem of two-dimensional floating elastic plate of finite length and zero

draft is the simplest and best-studied problem in hydroelasticity. At the present time,
there are many methods for solving this problem. Extensive literature can be found
in Squire (2011) and Sahoo (2012). The most simple method is based on the use of
MEE. The solution of this problem is outlined below.

Let us assume that at the free surface of a fluid layer of depth H there is freely
floating elastic platform of width L, uniform mass density ρ and thickness d. The
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fluid–structure system is similar to that shown in figure 1(a) except for the submerged
cylinder. A train of surface gravity waves propagates from left to right. The incoming
wave is sinusoidal in time with angular frequency ω and wavenumber k0. Then its
velocity potential can be expressed by

Φ0(x, y, t)=Re{f (y, k0) exp[i(ωt− k0x)]}, (A 1)

where notation (3.6a,b) and (3.7) is used. The resulting velocity potential can be
presented as follows:

Φ(x, y, t)=Re[ϕ(x, y) exp(iωt)]. (A 2)

In order to determine the function ϕ(x, y) the boundary-value problem should be
solved similarly to (2.4), (2.7)–(2.10). Using the results of § 3.1, the value of ϕ(x, y)
in the subdomain Γi is denoted ϕi(x, y) (i= 1, 2, 3) and can be found in the form:

ϕ1 = (e−ik0x + R0eik0x)f (y, k0)+
∞∑

m=1

Rmekmxψ(y, km) (x, y ∈ Γ1), (A 3)

ϕ2 = [C0e−is0x + S0eis0(x−L)] f (y, s0)+
∞∑

m=−2
m6=0

[Cme−smx + Smesm(x−L)]ψ(y, sm) (x, y ∈ Γ2),

(A 4)

ϕ3 = T0eik0(L−x)f (y, k0)+
∞∑

m=1

Tmekm(L−x)ψ(y, km) (x, y ∈ Γ3). (A 5)

The system of linear algebraic equations for determining the unknown constants
Rm,Cm, Sm, Tm is obtained analogously to § 5.

The quantities R0 and T0 are called the reflection and transmission coefficients and
satisfy the well-known energy flux condition

R2 + T2 = 1, R= |R0|, T = |T0|. (A 6a−c)

Appendix B. Wave propagation across a polynya

It will be assumed that two thin semi-infinite elastic plates with different properties
freely float on the surface of the fluid. There is a finite gap of free surface between
these plates. The fluid–structure system is similar to that shown in figure 1(b) except
for the submerged cylinder. Previously, this problem was solved by Chung & Linton
(2005) for identical plates and Chakrabarti & Mohapatra (2013) for non-identical
ones. In the first paper, the method of solution was based on the residue calculus
technique. In the second paper, the method of least squares as well as singular value
decomposition have been employed.

The potential for flexural-gravity wave incoming from the left infinity becomes

Φ0(x, y, t)=Re{f (y, q0) exp[i(ωt− q0x)]}, (B 1)

where notation (3.6a,b) and (3.22a) is used. The resulting velocity potential can be
written in the form (A 2). For determination of the function ϕ(x, y), the boundary-value
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problem should be solved similarly to § 3.2 and the value of ϕ(x, y) in the subdomains
Γi can be found in the form

ϕ1 = (e−iq0x + R0eiq0x)f (y, q0)+
∞∑

m=−2
m6=0

Rmeqmxψ(y, qm) (x, y ∈ Γ1), (B 2)

ϕ2 = [C0e−ik0x + S0eik0(x−L)] f (y, k0)+
∞∑

m=1

[Cme−kmx + Smekm(x−L)]ψ(y, km) (x, y ∈ Γ2),

(B 3)

ϕ3 = T0eip0(L−x)f (y, p0)+
∞∑

m=−2
m6=0

Tmepm(L−x)ψ(y, pm) (x, y ∈ Γ3). (B 4)

Using the results of § 4, the energy flux condition can be expressed

R2 +Υ2T2/Υ1 = 1, R= |R0|, T = |T0|, (B 5)

where the values Υ1 and Υ2 are given in (4.12a,b). In the case of identical plates,
energy identity (B 5) has the form (A 6a−c).

Energy-balance relation for non-identical plates was given by Chakrabarti &
Mohapatra (2013) in the form

R2 +QT2 = 1, (B 6)

where

Q= p0 tanh p0H cosh2 q0H
q0 tanh q0H cosh2 p0H

[
2p0H(D2p4

0 + 1−ΩB2)+ (5D2p4
0 + 1−ΩB2) sinh 2p0H

2q0H(D1q4
0 + 1−ΩB1)+ (5D1q4

0 + 1−ΩB1) sinh 2q0H

]
.

(B 7)

It can be shown that (B 5) and (B 6) coincide. It is interesting to note that the energy
identity (B 6) was obtained by Barrett & Squire (1996) for the problem of propagation
of flexural-gravity waves across an abrupt change of properties within a continuous ice
sheet.
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