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GOODSTEIN SEQUENCES BASED ON A PARAMETRIZED

ACKERMANN–PÉTER FUNCTION

TOSHIYASU ARAI, STANLEY S. WAINER, AND ANDREAS WEIERMANN

Abstract. Following our [6], though with somewhat different methods here, further

variants of Goodstein sequences are introduced in terms of parameterized Ackermann–Péter

functions. Each of the sequences is shown to terminate, and the proof-theoretic strengths

of these facts are calibrated by means of ordinal assignments, yielding independence results

for a range of theories: PRA, PA, Σ11-DC0, ATR0, up to ID1. The key is the so-called

“Hardy hierarchy” of proof-theoretic bounding finctions, providing a uniform method for

associating Goodstein-type sequences with parameterized normal form representations of

positive integers.

§1. Introduction. The original Goodstein sequence [14] was derived from
the unique base-x representation of a natural number n > x ≥ 2:

n = xb0+xb1+ ···+xbm,

where for each i, xbi ≥ xbi+1 .
If each positive bi is in turn base-x represented as bi = xbi0 + ···+xbiki ,
and then each positive bij is base-x represented, and so on until no further
decomposition is possible, this produces the so-called hereditary base-x
representation of n.
The non-hereditary or hereditary base-x representations then give rise
to two “Goodstein sequences” {Bk(x;n)}k , {Ck(x;n)}k as follows, where
again, n > x ≥ 2 are natural numbers. In all cases, however, and those
that follow, the Goodstein sequence is generated by iterating a “Goodstein
process”: increase the base by 1 and subtract 1 from the numerical value.
The chosen method of representation is what gives rise to the variation in
“strength” of the processes.

1. B0(x;n) = C0(x;n) = n.
2. If Bk(x;n) = 0, then Bk+1(x;n) = 0. Similarly for Ck(x;n).
3. If Bk(x;n) > 0 then throughout the base-(x + k) representation of
Bk(x,n), replace the base parameter (x+k) by (x+k+1), and then
subtract by 1 to get the next term Bk+1(x;n).
This means if Bk(x;n) = (x+k)

b0+ ···+(x+k)bm , then Bk+1(x;n) =
(x+k+1)b0+ ···+(x+k+1)bm – 1.

Received January 16, 2021.
2020Mathematics Subject Classification. 03F15, 03F25, 03F30, 03F35, 03D55.
Key words and phrases. proof-theoretic ordinals, fast-growing functions, Hardy hierarchy,

independence results.
© 2021, Association for Symbolic Logic

1079-8986/21/2702-0002

DOI :10.1017/bsl.2021.30

168

https://doi.org/10.1017/bsl.2021.30 Published online by Cambridge University Press

www.doi.org/10.1017/bsl.2021.30
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/bsl.2021.30&domain=pdf
https://doi.org/10.1017/bsl.2021.30


ACKERMANN–PETER FUNCTION 169

4. If Ck(x;n) > 0 then throughout the hereditary base-(x+k) represen-
tation of Ck(x,n), replace the base parameter (x+k) by (x+k+1),
and then subtract by 1 to get the next term Ck+1(x;n).

Clearly both B and C are recursive sequences, so termination-in-0 is
expressible in the language of arithmetic. {Ck(x;n)}k is (a special case of)
the Goodstein sequence originating in Goodstein [14]. See Rathjen [16] for
a more recent discussion of this.
The known independence results, stemming from Goodstein’s work,
are summarized as follows. Kirby and Paris [15] were the first to prove
independence from PA, and Cichon [10] supplied the concise recursion-
theoretic method which underpins this paper.

Proposition 1.1.

1. (Abrusci, Girard and Van de Wiele [1] and Cichon [10]) Every sequence
{Bk(x;n)}k terminates in 0 for any x ≥ 2 and n > x, and this fact is
expressible in but independent from PRA, or the fragment I Σ01 of first-
order arithmetic.

2. (Kirby and Paris [15] and Cichon [10]) Every sequence {Ck(x;n)}k
terminates in 0 for any x ≥ 2 and n, and this fact is expressible in but
independent from first-order arithmetic PA.

These representations, based on the exponential function, provide
“compact” representation of natural numbers. In what follows, even more
compact representations are considered, based on parameterized versions
of the Ackermann-Péter function Fa(b) on natural numbers a,b, given by:

F0(b) = b+1, Fa+1(b) = F
(b)
a (b) =

b times
︷ ︸︸ ︷

Fa ◦ ··· ◦Fa (b) .

There is a hierarchy of such representations, each with associatedGoodstein
sequences. Calibration of their proof-theoretic strengths is achieved here by
assigning appropriate levels of the Hardy hierarchy as in Cichon’s original
[10]. For other related approaches, see [1, 3–6, 8, 19, 20].

§2. Level-one and -two Goodstein sequences. At the first level (see [4, 5])
one obtains a new unique representation of numbers n, relative to a given
“starting base” x ≥ 2, as follows (assuming obvious majorization properties
of F):
Ifn<x then n is its own representation.Otherwise take the least a such that

x ≤ n < Fa+1(x) and the least i < x such that n < F
(i+1)
a (x). If F (i)a (x) = n

then this is the representation of n. If F (i)a (x) < n then repeat the process

with x replaced by x1 = F
(i)
a (x). One thus obtains an a1 < a and an i1 < x1

such that F (i1)a1 (x1)≤ n < F
(i1+1)
a1 (x1). Continuing this process, and since F0

is the successor, one must reach a final stage ℓ at which

n = F (iℓ )aℓ ··· F (i2)a2 F
(i1)
a1
F (i)a (x)
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170 T. ARAI ET AL.

where aℓ < ···a2 < a1 < a and each ij < F
(ij–1)
aj–1 ··· F (i1)a1 F

(i)
a (x). This is our

next base-x representation of n. Note that the form of representation is
preserved under any increase in the base. It is clear from the construction
that this representation is unique, modulo the base x (a more formal proof
would follow the lines of Lemma 3.2).
Now Fa =Hùa where {Hα} is the so-called “Hardy hierarchy” (see e.g.,
[12, 17]) given by:

H0(x) = x, Hâ+1(x) =Hâ(x+1), Hë(x) =Hëx (x) at limits ë= sup
i

ëi

where the subscripts are“tree ordinals,” that is: each “limit” ë is determined
by a fixed choice of fundamental sequence {ëi}. In particular, ù is chosen
to be the identity sequence ù = supi i and ù

a+1 = supi ù
a · i . It is easy to

check, by induction on ã, that H then satisfies

Hα+ã =Hα ◦Hã

and hence, for all a and n,Hùa (n) = Fa(n).
Therefore the above base-x representation of n may be rewritten:

n =Hα(x) where α = ù
aℓ · iℓ + ···+ùa1 · i1+ù

a · i .

In other words, this representation of n has an ordinal notation as a code:
n =Hα(x), but α is written in reverse Cantor normal form. Conversely, any
such normal form will, under H, be an x-representation.
If we begin with n = Fa(x) =Hùa (x) and subtract 1 then, by unravelling
the recursion down to F0, and removing the outermost occurrence of F0, we
obtain the base-x representation of the predecessor:

n – 1 = F (xa)0 F
(xa–1)
1 ··· F (x2)

a–2 F
(x1)
a–1 (x) =Hâ(x),

where x1 = x – 1, xi+1 = F
(xi )
a–i (xi +1) – 1 and (in reverse Cantor normal

form), â = xa+ù ·xa–1+ ···+ùa–2 ·x2+ùa–1 ·x1.
This â , when written in standard Cantor normal form, has rank ‖â‖ <
ùa ≤ ‖α‖. We denote â by â = Qx(ùa) with Qx defined accordingly as
follows:

Definition 2.1. Qx(ù0) = 0 and if a > 0, Qx(ùa) = Qx1(ù
a–1)+ùa–1 ·

(x – 1) where x1 =Hùa–1·(x–1)(x) = F
(x–1)
a–1 (x).

Then on (reversed) Cantor normal forms α = ùaℓ · iℓ +α′, define:

Qx(α) =Qx′(ù
aℓ )+ùaℓ · (iℓ – 1)+α

′ where x′ =Hùaℓ ·(iℓ–1)+α′(x).

Thus ‖Qx(α)‖ < ‖α‖ < ùù. (Qx is a more complex variant of Cichon’s
[10] original predecessor function Px , which will play a crucial role in later
sections. In contrast to Qx , Px operates on standard Cantor normal forms
thus: Px(ùa) = ùa–1 · (x – 1)+Px(ùa–1).)

Lemma 2.2. HQx(α)(x) =Hα(x) – 1.

Proof. Proceed by induction on |α| where α = ùaℓ · iℓ +α′ in reversed
Cantor normal form (iℓ > 0). If α′ is non-zero or iℓ > 1 then ùaℓ < |α|
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so with Qx(α) and x′ defined as above, we have, inductively: HQx(α)(x) =
HQx′ (ùaℓ )(x

′) =Hùaℓ (x
′) – 1=Hα(x) – 1. If, on the other hand,α isùaℓ with

aℓ > 0, then again by induction, HQx(α)(x) =HQx′ (ùaℓ –1)(x
′) =Hùaℓ –1(x

′) –

1 = Hα(x) – 1. Finally, if α = 1 then Qx(α) = 0 and so HQx(α)(x) = x =
Hα(x) – 1. ⊣

Our “first level” Goodstein sequence {Dk(x;n)} now runs as follows,
beginning with n represented in base-x form as n = Hα(x) (α in reverse
Cantor normal form):

Update base x to x +1; subtract 1; D1(x;n) = Hα1(x +1) with α1 =
Qx+1(α).
Update base x+1; subtract 1;D2(x;n) =Hα2(x+2) with α2 =Qx+2(α1).
Repeat ···Dk(x;n) =Hαk (x+k) where αk =Qx+kQx+k–1 ... Qx+1 (α).

Theorem 2.3 (cf. Prop.1.1.1). ∀n∀x ≥ 2∃k(Dk(x;n) = 0) is a consequence
of transfinite induction up to ùù, and this fact is independent of Primitive
Recursive Arithmetic (PRA), or the fragment IΣ01 of first-order arithmetic.

Proof. Beginning with n = Hα(x), the sequence {αk} is a decreasing
sequence of ordinals below ùù. Therefore, by induction up to ùù, there is
a stage k at which αk = 0 and hence Dk(x;n) = x+k. From this point on,
since the number is less than the base, it takes x+k more predecessors to
reach Dx+2k(x;n) = 0.
Assuming termination of theGoodstein sequence startingwith n=Fa(x),
the stage s at which Ds(x;n) = 0 is s = x + 2k where αk = 0. Hence
n = Hùa (x) ≤ Hα1(x +1) ≤ Hα2(x +2) ≤ ··· ≤ Hαk (x + k) = x + k. This
k bounds the number of steps needed to compute Fa(x). Hence termination
of all Goodstein sequences implies the computability of Fa(x) which, as a
function of both variables, is not primitive recursive. Thus, termination of
all level-one Goodstein sequences is not provable in PRA. ⊣

Note. It is a general feature of Goodstein sequences that they increase
up to a maximum where αk = 0, and from there descend, in as many
steps, to 0.

2.1. Level-twoGoodstein sequences. These are based on a stronger formof
representation than that used above. As before, one first uniquely represents
n relative to base x as

n = F (iℓ )aℓ ··· F (i2)a2 F
(i1)
a1
F (i)a (x) =Hα(x)

withα=ùaℓ ·iℓ+ ···+ùa1 ·i1+ùa ·i in reverseCantor normal form.But now,
each F-subscript aj is again uniquely represented relative to base x, and each
of their subscripts aj,k etcetera, hereditarily until no further decomposition is
possible. A more formal proof that this hereditary representation is unique
would again follow similar lines to that of Lemma 3.2.
Whereas, at level one, α ranged over ordinals less than ùù, the hereditary
nesting means that α must now vary below ε0.

https://doi.org/10.1017/bsl.2021.30 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.30


172 T. ARAI ET AL.

Definition 2.4. With each hereditary base-x representation

n = F (iℓ )aℓ ··· F (i2)a2 F
(i1)
a1
F (i)a (x)

associate its “representing ordinal” α =ùαℓ · iℓ+ ···+ùα1 · i1+ùα · i where,
inductively, each αj is the representing ordinal of aj .

The definition ofQx is extended appropriately at limit ordinals ë= supi ëi ,
to preserve reverse Cantor normal forms.

Definition 2.5.

Qx(ù
0) = 0, Qx(ù

â+1) =Qx1(ù
â)+ùâ · (x – 1), Qx(ù

ë) =Qx(ù
ëx ),

where x1 =Hùâ ·(x–1)(x).
If α = ùαℓ +α′ in reverse Cantor normal form, then define

Qx(α) =Qx′(ù
αℓ )+α′ where x′ =Hα′(x).

Lemma 2.6. If α is the representing ordinal of n relative to starting-base x
then

Hα(x) = n and HQx(α)(x) = n – 1,

that is, Qx(α) is the representing ordinal of n – 1.

Proof. Note first that if â is the representing ordinal of m relative to
the starting base x, then by Definition 2.4, ùâ is the representing ordinal
of Fm(x). That Hα(x) = n now follows by induction, assuming α = ùαℓ ·
iℓ + ···+ùα · i where each αj is the representing ordinal of aj relative to the
appropriate xj ,

Hα(x) = H
(iℓ )
ùαℓ

···H (i)ùα (x) = F
(iℓ )
aℓ

··· F (i)a (x) = n .

For HQx(α)(x) = n – 1 unravel the recursive definition of Qx(α). One has,

letting α =ùαℓ +α′ as above,Qx(α) =Qx(ùαℓ )+α′ =Qx1(ù
â)+α′′ where

‖â‖< ‖αℓ‖ andHQx(α)(x) =HQx1 (ùâ )(x1) with x1 =Hα
′′(x). The next stage

yieldsQx(α) =Qx2(ù
â ′)+α′′′ where ‖â ′‖< ‖â‖,HQx(α)(x) =HQx2 (ùâ

′ )(x2)

and x2 = Hα′′′(x1). Continuing this, one has at some terminal stage k,
Qx(α) =Qxk (ù

0+α
′′
···

′

) =α
′′
···

′

and henceHQx(α)(x) =Hα′′
···

′ (x). At each
stage of this process, the numerical value ofHα(x) is preserved - only at the
final stage is one successor Hù0 removed. Thus,

HQx(α)(x) =Hα(x) – 1 .

Note that the reduction α 7→ Qx(α) preserves reverse Cantor normal
form. As a consequence note also that representing ordinals are always
in reverse Cantor normal form. For suppose n has x-representation

F
(iℓ )
aℓ ··· F (i1)a1 F

(i)
a (x) with representing ordinal α = ù

αℓ · iℓ + ···+ùα1 · i1+
ùα · i . Assume inductively that each αj (representing aj) is in reverse Cantor
form. If aj1 < aj2 we have, for an appropriately large x1 and appropriate
sequence of applications ofQx ,Hùαj1 (x1) =HQxQx ...Qx(ù

αj2 )(x). This means

‖ùαj1‖< ‖ùαj2‖, so α is in reverse Cantor form. ⊣
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Lemma 2.7. If n has hereditary base-x representation F (iℓ )aℓ ··· F (i1)a1 F
(i)
a (x),

let n′ denote the result of increasing the base from x to x+1 throughout. Then

the resulting term F (iℓ )
a′ℓ

··· F (i1)
a′1
F
(i)
a′ (x+1) is the base-x+1 representation of

n′. Furthermore (n – 1)′ < n′; hence if m< n then m′ < n′.

Proof. Proceeding by induction on (the numerical value of) n, one
has aj < aj+1 < n, hence a ′j < a

′

j+1. The bounding conditions on the

iterates (ij) continue to hold under the “dash” operation because it

increases the upper bounds. Therefore F (iℓ )
a′ℓ

···F (i1)
a′1
F
(i)
a′ (x+1) is a hereditary

base-x +1 representation. For shorthand, write it as n′ = F (iℓ )
a′ℓ
(z ′) with

z = F (iℓ–1)aℓ–1 ···F (i1)a1 F
(i)
a (x + 1). Now the predecessor is represented as:

n – 1 = F (xa)0 F
(xa–1)
1 ···F (x2)

a–2 F
(x1)
a–1 F

(iℓ–1)
aℓ (z) where a = aℓ and each xj+1 =

F
(xj)
a–j (xj+1) – 1. Therefore (n – 1)

′ = F (xa)0 F
(xa–1)
1 ···F (x2)

(a–2)′
F
(x1)
(a–1)′
F
(iℓ–1)
a′ℓ
(z ′).

Applying the successor F0 to this, and repeatedly using the recur-

sion equation Fc(F
(y–1)
c (y)) = Fc+1(y), one obtains (n – 1)′ < ··· <

F(a–1)′(F
(x1)
(a–1)′
F
(iℓ–1)
a′ℓ
(z ′)) < Fa′F

(iℓ–1)
a′ℓ
(z ′), using the induction hypothesis

(a – 1)′ ≤ a ′ – 1. Since a = aℓ this last term gives (n – 1)′ < F
(iℓ )
a′ℓ
(z ′) = n′. ⊣

Definition 2.8. Let {Ek(x;n)}k denote the “level-two” Goodstein
sequence starting with E0(x;n) as the hereditary base-x representation of n,
then successively updating the base and subtracting one.

Theorem 2.9 (cf. Prop.1.1.2). ∀n∀x ≥ 2∃k(Ek(x;n) = 0) is (over PRA) a
consequence of transfinite induction up to ε0, and this fact is independent of
Peano Arithmetic.

Proof. The first step of the Goodstein sequence is to increase the
base from x to x + 1, and subtract one. By the lemmas we therefore
have E1(x;n) = HQx+1(α)(x + 1) where α is the representing ordinal of
n relative to base x, which is the same as the representing ordinal of
the updated n′ relative to base x + 1. Repeating this, with α replaced
by Qx+1(α), E2(x;n) = HQx+2Qx+1(α)(x + 2) and at stage s, Es(x;n) =
HQx+s ···Qx+2Qx+1(α)(x+ s). Transfinite induction up to ε0 now yields a stage k
where Ek(x;n) =H0(x+k) = x+k after which the sequence terminates at
0 in a further x+k steps.
Conversely, termination of the sequence implies the “computability”
(“defined-ness”) of Hα(x). Termination of all level-two Goodstein
sequences is therefore a re-statement of the computability of all Hα
functions, for α ≺ ε0. This cannot be proven in PA. ⊣

§3. Level-three and -fourGoodstein sequences. Againwe represent natural

numbers, with respect to a “base” x, by terms F (i)a (...) built up from the
Ackermann–Péter function, but whereas the iteration number i previously
remained fixed throughout the Goodstein process, it too will now be subject
to representation, and representing ordinals will now be more complex.
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In order to distinguish from the previous section, base-x representations
will now be called “base-x normal forms.” There will again be two kinds,
according as whether or not the subscript a is hereditarily decomposed.
We concentrate on the case where it is (so decomposed) and call this the
level-four Goodstein process. This yields an independence result for ATR0,
the subsystem of second order arithmetic commonly regarded as codifying
predicative methods. The other (level-three) case, in which the a’s remain
as fixed numerals, gives an independence from Σ11-DC0, but this will follow
easily. A later section then deals with a further generalization to ID1, the
theory of uniterated inductive definability.

Definition 3.1. For any fixedx ≥ 2, a base-x normal form is a termF (r)a (b)
where a,b,r are themselves base-x normal forms, r is numerically less than

b, and b is either x or a term F (s)c (d ) where a < c.

If F (r)a (b) is a base-x normal form with numerical value m, we say that m

has base-x normal form F (r)a (b) and write m =xNF F
(r)
a (b).

Aweak base-x normal form is one in which the subscripts a,c are numerals
(independent of x).

Lemma 3.2. Base-x normal forms are unique.

Proof. Whereas level-one and level-two representations were, from their
construction, easily seen to be unique, it is not quite the case for normal
forms, and so a more detailed proof is given.

Suppose m has two different normal forms F (r)a (b) and F
(s)
c (d ). We

derive a contradiction, assuming inductively that the result already holds
for numbers less than m. (Identity between F-terms is denoted t1 ≡ t2 and
numerical equality/inequality are denoted t1 = t2/t1 < t2.)
If, numerically, a < c (and similarly with roles reversed if c < a) we may

unravel the recursive definition of F (s)c (d ) to F
(si )
a (···F

(s1–1)
c–1 (F

(s–1)
c (d )) ···)

where si = di = ···F (s1–1)
c–1 (F

(s–1)
c (d )) ··· . Then, by cancelling the outermost

occurrence of Fa , we obtain, using the induction hypothesis, two identical

base-x normal forms: F (r–1)a (b) ≡ F (si–1)a (di). Hence r = si = di = b and this

contradicts the demand of the normal form F (r)a (b) that r < b.

Therefore a and c are identical and m has the two normal forms F (r)a (b)

and F (s)a (d ). If, say, r < s , then we can cancel r occurrences of Fa to obtain

b ≡F (s–r)a (d ), but this contradicts the demand that the term b does not begin
with any occurrences of Fa . Similarly we cannot have s < r. Hence r ≡ s and

m has the two normal forms F (r)a (b) and F
(r)
a (d ). Cancelling F

(r)
a from both

leaves b = d . Thus by the induction hypothesis, b ≡ d , so the normal forms
are identical. ⊣

Lemma 3.3. If m =xNF F
(r)
a (b) then its predecessor in base x is

m – 1 =xNF F
(ra–1)
0 (···F (r2–1)

a–2 (F
(r1–1)
a–1 (F

(r0–1)
a (b0)) ···)

where r0 ≡ r, b0 ≡ b, ri+1 ≡ bi+1 and bi+1 ≡ F
(ri–1)
a–i (bi).
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Proof. This follows by unravelling the recursive definition of F (r)a (b)

as F (r)a (b) = Fa(F
(r–1)
a (b)) = F (r1)

a–1 (F
(r–1)
a (b)) = F (r1)

a–1 (b1) ··· etc., finally
cancelling one F0. ⊣

Lemma 3.4. For any base-x normal form t, let t′ be the result of updating the
base x to x+1 throughout. Then t′ is a base-x+1 normal form. Furthermore
(t – 1)′ < t′ hence t1 < t2 implies t′1 < t

′

2.

Proof. Proceed by induction on the numerical value of t. If t ≡ F (r)a (b)

then t′ ≡ F (r
′)

a′ (b
′). The induction hypothesis gives: (i) assuming Fc to be the

leading term in b, a < c implies a ′ < c ′; and (ii) if r < b then r′ < b′. Thus
t′ is in base-x+1 normal form.
The base-x predecessor of t is, as above,

t – 1 ≡ F (ra–1)0 (···F (r2–1)
a–2 (F

(r1–1)
a–1 (F

(r–1)
a (b))) ···) .

Updating the base from x to x+1 then yields:

(t – 1)′ ≡ F (ra–1)
′

0 (···F (r2–1)
′

(a–2)′
(F (r1–1)

′

(a–1)′
(F (r–1)

′

a′ (b′))) ···),

whereas, by unravelling a steps in the recursive definition of t′, one obtains

t′ = F
(r′a)
a′–a(···F

(r′2–1)

(a′–2)
(F
(r′1–1)

(a′–1)
(F (r

′–1)
a′ (b′))) ···) .

Now comparing these two numerically, starting from the right-hand end, we
have by induction, (r – 1)′ ≤ (r′ – 1). Then (a – 1)′ ≤ (a ′ – 1) and (r1 – 1)′ ≤

(r′1 – 1). Therefore as F
(r)
a (b) is increasing in each variable,

F
(r1–1)′

(a–1)′
(F (r–1)

′

a′ (b′)) ≤ F
(r′1–1)

(a′–1)
(F (r

′–1)
a′ (b′)).

Similarly F (r2–1)
′

(a–2)′
(F (r1–1)

′

(a–1)′
(F (r–1)

′

a′ (b′))) is numerically less than or equal to

F
(r′2–1)

(a′–2)
(F
(r′1–1)

(a′–1)
(F (r

′–1)
a′ (b′))). Continuing in this way one finally obtains

(t – 1)′ ≡ F (ra–1)
′

0 (···) ≤ F
(r′a–1)
a′–a (···) < t

′ .

This completes the proof. ⊣

3.1. Ordinal assignment, tree ordinals. The level-four Goodstein process
is, given m represented in base-x normal form:

Update the base to x+1, and subtract 1 (in base x+1).
Then continue updating the base and subtracting 1.

The sequence obtained is here denoted {Ak(x;m)}k . Termination:

∀m∀x ≥ 2∃k(Ak(x;m) = 0)

will be shown independent of ATR0 by a new ordinal assignment ordx(m).
By ordinalswemean (countable) tree ordinals generated inductively by the
rules: (i) 0 is a tree ordinal; (ii) if â is a tree ordinal then so is â+1 (coded,
for instance, as â∪{â}); (iii) if, for each natural number i, ëi is a tree ordinal,

https://doi.org/10.1017/bsl.2021.30 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.30


176 T. ARAI ET AL.

then the sequence ë = 〈ëi〉i∈N is also a tree ordinal, in which case we write
ë = supi ëi and call ë a “limit.” Thus tree ordinals are partially ordered by
the well-founded “subtree” relation ≺ and each limit comes equipped with
a specified approximating sequence. Every tree ordinal clearly represents a
countable ordinal as its set-theoretic rank, and different limits with the same
rank simply correspond to different choices of approximating sequence.
Such approximating sequences may not always be increasing “fundamental
sequences” in the strict sense, however the “structured” ones singled out
below will be.

Definition 3.5 (Structuredness).

1. Px is Cichon’s [10] predecessor: Px(0) = 0, Px(â +1) = â, Px(ë) =
Px(ëx). Thus if α 6= 0 then Px(α) is the immediate predecessor of
the first successor encountered in the descending sequence α ≻ αx ≻
αx,x ≻ ··· .

2. α[x] = {P(i)x (α)}i>0.
3. α is said to be structured if for every limit ë � α and every x, ëx ∈
ë[x+1].

Note. In the sense of Buchholz et al. [7], α[x] consists of those
predecessors of α with “norm” < x.

Lemma 3.6. For every structured tree ordinalα,α[0]⊆α[1]⊆α[2]⊆ ··· and
furthermore, â ≺ α if and only if â ∈ α[n] for some n. Thus the well-ordering
{â : â ≺ α} is the direct union of the finite embeddings α[x] →֒ α[x+1].

Proof. See [12, 17] and Aguilera et al. [2]. ⊣

Definition 3.7. Extend Fa(b) to a tree-ordinal function ÷α(â) by
defining:

÷0(â) = â+1, ÷α+1(â) = ÷
(â)
α (â), ÷ë(â) = sup

i

÷ëi (â) .

We choose ù to be the identity sequence supi i , and the iterate ÷
(ã)
α (â) is

defined to be â if ã = 0, ÷α(÷
(ã–1)
α (â)) if ã is a successor, and supi ÷

(ãi )
α (â) if

ã is a limit.

Note. ÷ preserves structuredness (as in e.g., [12, 17] for different
functions).

Definition 3.8. The Slow Growing hierarchy {Gx(α)} is defined point-
wise at each x ∈N , over tree ordinals α, by

Gx(0) = 0, Gx(â+1) =Gx(â)+1, Gx(ë) =Gx(ëx) .

It is easy to see, by induction on â , that it preserves addition: Gx(α +
â) =Gx(α)+Gx(â) and exponentiation: Gx(2â) = 2Gx(â) where addition is
defined continuously on tree ordinals by:α+0=α, α+(â+1)= (α+â)+1,
α+ ë = supi(α+ ëi), and exponentiation by: 2

0 = 1,2â+1 = 2â +2â, 2ë =
supi 2

ëi . In fact Gx homomorphically collapses “all” natural operations on
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tree ordinals onto their corresponding operations on numbers. See e.g., [12,
17]. In particular, for countable tree ordinals α it is immediate that

GxPx(α) =Gx(α) ...1,

hence Gx(α) = |α[x] |, the cardinality of the finite set α[x].

Lemma 3.9. For all countable tree ordinals α, â ,

Gx(÷α(â)) = FGx(α)(Gx(â))

and for all ã,

Gx(÷
(ã)
α (â) = F

(Gx(ã))

Gx(α)
(Gx(â)) .

Proof. By induction on α, we first show Gx(÷α(â)) = FGx(α)(Gx(â)):

1. Gx(÷0(â)) =Gx(â+1) =Gx(â)+1 = F0(Gx(â)).

2. Gx(÷α+1(â)) =Gx(÷
(â)
α (â)) = F

(Gx(â))
Gx(α)

(Gx(â)) = FGx(α)+1(Gx(â)) =

FGx(α+1)(Gx(â)).

3. Gx(÷ë(â)) =Gx(÷ëx (â)) = FGx(ëx)(Gx(â)) = FGx(ë)(Gx(â)).

It is now easy to check, by induction on ã, that Gx(÷α(â)) =

FGx(α)(Gx(â)) implies Gx(÷
(ã)
α (â) = F

(Gx(ã))

Gx(α)
(Gx(â)). The successor

case is: Gx(÷
(ã+1)
α (â)) = Gx(÷α(÷

(ã)
α (â))) = FGx(α)(Gx(÷

(ã)
α (â))) =

FGx(α)(F
(Gx(ã))

Gx(α)
(Gx(â))) = F

(Gx(ã)+1)

Gx(α)
(Gx(â)) = F

(Gx(ã+1))

Gx(α)
(Gx(â)). The

other cases are immediate. ⊣

The next lemma shows that the numerical level-four Goodstein process
can be exactly mimicked by a parallel process on tree ordinals—namely
repeated application of Px+1, Px+2, Px+3 ...This is exactly analogous to the
previous situation at level-two, which relies upon repeated applications of
Qx+1, Qx+2, Qx+3 ...The difference between the two processes lies in the
different forms of recursion defining the Hardy function. One “unravels”
applications of successor, whereas the other “accumulates” them:

(i) Hα(x) =HQx(α)(x)+1 . (ii) Hα(x) =HPx(α)(x+1) .

Definition3.10. Givenm=xNF F
(r)
a (b), let ordx(m) denote the structured

tree ordinal ÷α(â) obtained by lifting x to ù as in Definition 3.7. Note that
by Lemma 3.9, Gx(ordx(m)) =m.

Lemma 3.11. For all base-x normal forms t ≡ F (r)a (b):

ordx(t – 1) = Px(ordx(t)) .

Proof. Proceeding by induction on the numerical value of t, with a sub-
induction on the value of a, we have (as in Lemma 3.3):

t – 1 ≡ F (ra–1)0 (···F (r2–1)
a–2 (F

(r1–1)
a–1 (F

(r–1)
a (b))) ···) .

Therefore, suppressing the “x” from Px and ordx ,

ord(t – 1) = ÷(Pord(ra))0 (···÷(Pord(r2))
PPord(a)

(÷(Pord(r1))
Pord(a)

(÷(Pord(r))
ord(a)

(ord(b)))) ···) .
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We claim this is P(ord(t)) as required. For, writing â = ord(b), α = ord(a),
ñ= ord(r), ñi = ord(ri) and using the induction hypothesis and the recursion
equations,

P(ordxt) = P(÷
(ñ)
α (â))

= P(÷(ñ1)Pα (÷
(Pñ))
α (â)))

= P(÷(ñ2)PPα(÷
(P(ñ1))
Pα (÷(Pñ))α (â)))

= ···

= P(÷(ña)0 (···(÷
(Pñ2)
PPα (÷

(P(ñ1))
Pα (÷(Pñ))α (â)))) ···)

= ÷(P(ña))0 (···(÷(Pñ2)PPα (÷
(P(ñ1))
Pα (÷(Pñ))α (â)))) ···)

and this last expression is just ordx(t – 1). ⊣

Theorem 3.12.

1. The Π02 sentence ∀n∀x ≥ 2∃k(Ak(x;n) = 0) follows from transfinite
induction up to the first strongly critical ordinal Γ0 and is independent of
ATR0.

2. Similarly, termination of all Goodstein sequences based on weak base-x
normal forms follows from transfinite induction up to the first primitive
recursively closed ordinal φù(0) and is independent of Σ

1
1-DC0.

Proof. For Ak(x;m) the Goodstein process is, starting with the base-x
normal form representation of m, and using ′ to denote update of base:

Ak(x;m) = (···(((m
′ – 1)′ – 1)′ – 1) ···)′ – 1 .

Beginning with m =xNF t, let α = ordx(m). The first step of the process is
to update the base x to x+1. Another way to think of this is to do x := ù,
then ù := x+1. Therefore ordx+1(m′) = ordx(m) = α and m′ = Gx+1(α)
by Lemma 3.9. The first step is then completed by subtracting 1, using
Lemma 3.11 thus: m′ – 1 = Gx+1(ordx+1(m′ – 1)) = Gx+1(Px+1(α)). In
the same way, with α1 = Px+1(α), the second step yields ordx+2((m′ –
1)′) = ordx+1(m′ – 1) and (m′ – 1)′ – 1 = Gx+2(ordx+2((m′ – 1)′ – 1)) =
Gx+2(Px+2(ordx+2((m′ – 1)′))) = Gx+2(Px+2(α1)) = Gx+2(Px+2Px+1(α)).
Repeating gives

Ak(x;m) = Gx+k(Px+k ···Px+2Px+1(α)) .

That the process terminates inAk(x;m) = 0 is now easily seen to be provable
by induction up to α = ordx(t).
On the other hand, assuming that the process terminates in 0, it follows
that, with α = ordx(t),

Hα(x+1) = least x+k such that Px+k ···Px+2Px+1(α) = 0

is defined. But this is theHardy functionwhich, asα ranges over the provable
ordinals of a theory, dominates all the provably recursive functions of it. See,
for example, [12, 17, 18].
Now the set-theoretic ordinal ranks of the (structured) tree ordinals
named by ÷ can be compared with those in the Veblen hierarchy φ of
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normal functions, equipped with fundamental sequences as in Feferman
[13]. Lemma 4.11, giving the comparison, is postponed to the end of the
paper because it deals also with a more general case needed in the final
section. But for ù � â one has

‖φα(â)‖ ≤ ‖÷α+2(ù ·â)‖ .

It follows that the ordinals, named by the above ÷-terms ordx(t), range over
the ordinals less than the first strongly critical ordinal Γ0. So induction up
to Γ0 proves that every level-four Goodstein sequence terminates in zero.
Conversely, termination of every Goodstein sequence implies that Hã is
totally defined for every ã ≤ Γ0, and therefore it cannot be proven in ATR0.
In particular, Lemma 4.11 gives ‖φα(ù)‖ ≤ ‖÷α+2(ù2)‖ ≤ ‖÷α+2(÷α+2(ù))‖

so by iterating the operation α 7→ ÷(2)
α+2(ù), starting with α =1, the sequence

{ãx}x so obtained is essentially the “standard” fundamental sequence to Γ0.
But ãx = ordx(mx) where mx is the result of iterating x times the numerical

operation a 7→ F (2)
a+2(x). Thus Hordx(mx)(x+1)≥HΓ0(x).

If one works instead with weak normal forms then only ÷n-terms are used
where n ∈N . Thus the ordinals named are just those below the first primitive
recursively closed ordinal. Termination of Goodstein sequences is therefore
independent of Σ11-DC0 by Cantini [9]. ⊣

§4. Extension to ID1. The final base-x representation we consider is con-
structed with respect to the Fast-Growing, Extended Grzegorczyk hierarchy
{Fa}a≺ε0 , rather than the Ackermann–Péter F. Here, the components a of
base-x representations are not integers, but Cantor normal forms to the
base ù. Clearly this requires the definition of Fa(b) to be extended to limits
a with standard fundamental sequences i 7→ ai . The simplest way to do this
is by diagonalization:

Fa(b) = Fab (b) .

Unravelling this, one sees that

Fa(b) = F
(b)
Pb(a)
(b)

where Pb is Cichon’s predecessor (as in Definition 3.5). It easily follows that

a ∈ c[b]⇒ Fa(b)< Fc(b).

The base-x normal form of m, defined below, is constructed as follows,
where ùk is the k+1-th member of the fundamental sequence to ε0 given
by ù0 = 0 and ùk+1 = ù

ùk . First choose k so that Fùk (x) ≤m < Fùk+1(x).
If m = Fùk (x) then this term is the base-x normal form of m. If not choose

a to be the least element of ùk+1[x] such that for some i < x, F
(i)
a (x)≤m<

F
(i+1)
a (x). If m = F (i)a (x) then this term is the base-x normal form of m.

If not set x1 = F
(i)
a (x) and choose a1 to be the least element of a[x1] such

that for some i1 < x1, F
(i1)
a1 (x1)≤m< F

(i1+1)
a1 (x1). Ifm = F

(i1)
a1 (x1) then this
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term is the base-x normal form of m. Otherwise continue this process until,

at some stage n, m = F (in)an (xn).

Definition 4.1. For fixed x ≥ 2, a base-x normal form relative to the Fast

Growing hierarchy is either a numeral less than x or a term F (r)a (b) where: a is
a Cantor normal form to base ù; b,r and all numerical coefficients in a are
themselves expressed as base-x normal forms (rel. to the FG hierarchy); r is
numerically less than b; and either (i) b is x and for some k,ùk � a ∈ùk+1[x]

or (ii) b is a term F (s)c (d ) where a ∈ c[b] (that is a = P
i
n(c) for some i > 0

where n is the numerical value of the normal form b).

Note. The base-x normal form of a number m ≥ x (rel. to the FG
hierarchy) is therefore expressed as

m =xNF F
(rn)
an
(···F (r2)a2 (F

(r1)
a1
(F (r0)a0 (x))) ···),

where ai+1 ∈ ai [bi ] and bi ≡ F
(ri )
ai (···F

(r0)
a0 (x) ···). The requirements on ri

imply that F (r0)a0 (x)≤m< F
(r0+1)
a0 (x)≤ F (x)a0 (x)≤ Fùk+1(x).

Lemma 4.2. Base-x normal forms (rel. to the FG hierarchy) are unique.

Proof. The proof runs much as before, by induction on numerical value.
Suppose m has two base-x normal forms

m =xNF F
(rn)
an
(···F (r2)a2 (F

(r1)
a1
(F (r0)a0 (x)) ···),

m =xNF F
(sℓ )
cℓ
(···F (s2)c2 (F

(s1)
c1
(F (s0)c0 (x)) ···) .

We show, by induction on i ≤min(n,ℓ) that bi and di are identical, where

bi ≡ F
(ri )
ai
(···F (r2)a2 (F

(r1)
a1
(F (r0)a0 (x))) ···),

di ≡ F
(si )
ci
(···F (s2)c2 (F

(s1)
c1
(F (s0)c0 (x))) ···) .

If a0 ∈ ùk+1[x] and c0 ∈ ùk′+1[x] and k < k
′ is assumed, then by the

previous note, m < Fùk+1(x) ≤ Fùk′ (x) ≤ m, a contradiction. Similarly if
k′ < k. Hence k = k′ and then both a0 and c0 lie in the linearly ordered

set ùk+1[x]. If a0 ≺ c0 then, as above, m < F
(x)
a0 (x) ≤ Fc0(x) ≤ m, again

a contradiction, and similarly if c0 ≺ a0. They are therefore identical, and

hence b0 ≡ F
(r0)
a0 (x) and d0 ≡ F

(s0)
c0 (x) are identical, for if r0 6≡ s0 then the

values of m would be different (again by the same argument).
For the induction step, assume bi and di are identical, where i <min(n,ℓ).

Then bi+1 ≡ F
(ri+1)
ai+1 (bi) where ai+1 ∈ ai [bi ] and di+1 ≡ F

(si+1)
ci+1 (bi) where, also,

ci+1 ∈ ai [bi ]. Since ai+1 and ci+1 are both Pbi -predecessors of ai they may
be compared. If ai+1 ≺ ci+1 then we obtain a contradiction:

m< F (bi )ai+1 (bi)≤ Fci+1(bi)≤m

and similarly if ci+1 ≺ ai+1. Hence ai+1 = ci+1 and consequently ri+1 ≡ si+1.
Thus bi+1 and di+1 are identical and this completes the induction.
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It now only remains to note that since the two normal forms of m
are identical up to length min(n,ℓ), neither can be longer than the other
(otherwise their values would be different). Hence they are identical. ⊣

Lemma 4.3. If m =xNF F
(r)
a (b) then for some n,

m – 1 =xNF F
(rn–1)
0 (···F (r2–1)a2

(F (r1–1)a1
(F (r–1)a (b))) ···),

where ri+1 ≡ bi+1, bi+1 ≡ F
(ri–1)
ai (bi) and ai+1 = Pbi+1(ai).

Proof. As before, this follows by unravelling the outermost Fa in the

recursive definition of F (r)a (b) and finally subtracting 1 by canceling one F0.
⊣

Lemma 4.4. For any base-x normal form t (rel. to the FG hierarchy) let t′ be
the result of updating the base x to x+1 throughout. Then t′ is a base-x+1
normal form. Furthermore, (t – 1)′ < t′ hence t1 < t2 implies t′1 < t

′

2.

Proof. Proceed by induction on the numerical value of t. If t ≡ F (r)a (b)

then t′ ≡ F (r
′)

a′ (b
′) where a ′ is the result of updating the base throughout all

the coefficients in the Cantor normal form a.
Claim, to be proven at the end: a ∈ c[b] implies a ′ ∈ c ′[b′].
Now if b ≡ x thenùk � a ∈ùk+1[x] for some k, so by the claim,ùk � a

′ ∈
ùk+1[x+1] because ùk is an exponential stack with no coefficients other
than 1, which is < x. If b 6≡ x and Fc is the leading term in b then a ∈ c[b]
and so a ′ ∈ c ′[b′]. Also, if r < b then r′ < b′ by the induction hypothesis.
Since the normal form requirements are met after update, t′ is in base-x+1
normal form.
The base-x predecessor of t is as in the lemma above:

t – 1 ≡ F (rn–1)0 (···F (r2–1)a2
(F (r1–1)a1

(F (r–1)a (b))) ···) .

Updating the base from x to x+1 then yields:

(t – 1)′ ≡ F (rn–1)
′

0 (···F (r2–1)
′

(a2)′
(F (r1–1)

′

(a1)′
(F (r–1)

′

a′ (b′))) ···) .

However, applying the last lemma to t′ gives, for an appropriate ℓ,

t′ – 1 ≡ F ((r
′)ℓ–1)

0 (···F ((r
′)2–1)

c2
(F ((r

′)1–1)
c1

(F (r
′–1)

a′ (b′))) ···)

where, by the induction hypothesis, r′ – 1 ≥ (r – 1)′. Therefore (b′)1 =

F
(r′–1)
a′ (b′) ≥ F (r–1)

′

a′ (b′) = (b1)′. Hence (r′)1 ≥ (r1)′ and a ′[b′1] ⊃ a
′[(b1)′],

so by the claim, c1 = P(b′)1(a
′) lies above (a1)′ = (Pb1(a))

′ inside a ′[(b′)1].

Consequently, (b′)2 = F
((r′)1–1)
c1 ((b′)1) ≥ F

(r1–1)′

(a1)′
(b1)′) = (b2)′, hence (r′)2 ≥

(r2)′ and c1[(b′)2] ⊃ (a1)′[(b2)′], so c2 = P(b′)2((a
′)1) lies above (a2)′ =

(Pb2(a1))
′ inside (a ′)1[(b′)2]. Continuing in this way, one sees that ci+1 =

P(b′)i+1(ci) lies above (ai+1)
′ = (Pbi+1(ai))

′ inside ci [(b′)i+1]. Thus ℓ ≥ n and
the subterms of t′ – 1 are correspondingly greater than or equal to the
subterms of (t – 1)′. Hence (t – 1)′ ≤ t′ – 1. It follows immediately that
t1 < t2 implies t′1 < t

′

2.
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Proof of the Claim. It is sufficient to show that (Pb(c))
′ = P(i)

b′
(c ′) for

some i > 0, where c = d +ùe is a Cantor normal form to the base ù, with
numerical coefficients written in base-x normal form. Then

Pb(c) = d +ù
Pb(e) · (b – 1)+ùPbPb(e) · (b – 1)+ ···+(b – 1)

and so

(Pb(c))
′ = d ′+ù(Pb(e))

′

· (b – 1)′+ù(PbPb(e))
′

· (b – 1)′+ ···+(b – 1)′ .

Inductively on c we may assume that each exponent (Pb(e))
′, (PbPb(e))

′

etc. can be expressed as an iterate of Pb′ applied to e
′. Also (b – 1)′ ≤ b′ – 1

by induction. Therefore, starting with c ′ = d ′+ùe
′

, one may reconstruct
(Pb(c))

′ by iterating Pb′ an appropriate number of times. This completes
the proof. ⊣

4.1. Goodstein sequences up to Bachmann–Howard.

Definition 4.5. Definition 3.7 of the tree ordinal function ÷α(â) is now
extended to elements α of the third number-class, by addition of the
following diagonalization clause in the case where α is a “large” limit,
α = sup

î

αî obtained by sequencing over all countable tree ordinals î:

÷α(â) = ÷αâ (â) .

In [11, 12, 17] it is shown how Gx extends also to the third number class
by means of the definition Gx(sup

î

αî) = sup
i∈N

Gx(αi). Thus for sequences

<αî > which satisfy the “ Gx-condition”: Gx(αî) =Gx(αGx(î)) one has the
so-called “separation property”:

Gx(αî) =Gx(α)Gx(î) .

Now choose Ω = sup
î

î in the third number class, and note that Gx(Ω) =

supiGx(i) = supi i = ù. Then Cantor normal forms to base Ω satisfy the
Gx-condition, and so they are collapsed under Gx onto their corresponding
Cantor normal forms to base ù. Lemma 3.9 extends accordingly.

Lemma 4.6. Forα a countable tree ordinal, or an element of the third number
class ≺ εΩ+1 given by a Cantor normal form to the base Ω,

Gx(÷α(â)) = FGx(α)(Gx(â)).

Proof. The proof goes just as before in Lemma 3.9, by induction over α
in the second and third number class below εΩ+1. The additional case, where
α is a large limit, is handled immediately because of the aforementioned
separation property:

Gx(÷α(â)) = Gx(÷αâ (â)) = FGx(αâ )(Gx(â))
= FGx(α)Gx (â)(Gx(â))

= FGx(α)(Gx(â)) . ⊣
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Definition 4.7. If t is a base-x normal form relative to the Fast Growing
hierarchy, let ordx(t) be the tree ordinal obtained recursively by (i) changing
F to ÷ throughout, (ii) updating the base x to ù throughout, and (iii)
lifting each Cantor normal form a ≺ ε0 to α ≺ εΩ+1 by replacing ù with Ω
throughout, and each coefficient c with ordx(c).

Note that by lemma 4.6, Gx reverses the “lifting” procedure from t to
ordx(t), that is Gx(ordx(t)) = t.

Lemma 4.8. If t is a base-x normal form relative to the Fast Growing
hierarchy then

ordx(t – 1) = Px(ordx(t)) .

Proof. (A more complex version of Lemma 3.11.) If t ≡ F (r)a (b) then

ordx(t) = ÷
(ñ)
α (â) where ñ = ordx(r), â = ordx(b) and α ≺ εΩ+1 is the lifted

version of a ≺ ε0. (Since the base x is fixed we suppress it). We have (as in
Lemma 4.3):

t – 1≡ F (rn–1)0 (···F (r2–1)a2
(F (r1–1)a1

(F (r0–1)a (b0))) ···)

where r0 ≡ r, b0 ≡ b, ri+1 ≡ bi+1, bi+1 ≡ F
(ri–1)
ai (bi) and a0 = a, ai+1 =

Pbi+1(ai). Proceeding by induction over the numerical value of t,

ord(t – 1) = ÷(Pord(rn))0 (···÷(Pord(r2))α2
(÷(Pord(r1))α1

(÷(Pord(r))α (ord(b)))) ···) .

Here, αi+1 is the “lifted” version of ai+1 = Pbi+1(ai). It may be written as
αi+1 = Px,ord (bi+1)(αi) where Px,î(ã) is the generalized Cichon predecessor,
defined to be 0 if ã =0, ã – 1 if ã is a successor,Px,î(ãx) if ã is a small limit, and
Px,î(ãî) if ã is a large limit. To see this, one easily notes (using the separation
property) that GxPx,î(ã) = PGx(î)(Gx(ã)). Hence with î = ord(bi+1) and
αi+1 = Px,ord (bi+1)(αi) we have Gx(αi+1) = Pbi+1(ai) = ai+1 as required. We
informally denote αi+1 as Pαi . Then, writing â = ord(b), ñ = ord(r) and
using the induction hypothesis and the recursion equations,

P(ordxt) = P(÷
(ñ)
α (â))

= P(÷(ñ1)Pα (÷
(Pñ))
α (â)))

= P(÷(ñ2)PPα(÷
(P(ñ1))
Pα (÷(Pñ))α (â))))

= ···

= P(÷(ñn)0 (···(÷
(Pñ2)
PPα (÷

(P(ñ1))
Pα (÷(Pñ))α (â)))) ···))

= ÷(P(ñn))0 (···(÷(Pñ2)PPα (÷
(P(ñ1))
Pα (÷(Pñ))α (â)))) ···)

and this last expression is just ordx(t – 1). ⊣

Definition 4.9. The Goodstein sequence relative to the Fast Growing
hierarchy is denoted {Ik(x;m)}k∈N where I0(x;m) =m and if Ik(x;m)> 0,
then Ik+1(x;m) is the result of increasing the base by 1 and subtracting 1.

Theorem 4.10. The Π02 sentence ∀m∀x ≥ 2∃k (Ik(x;m) = 0) is (over
PRA) a consequence of induction up to the Bachmann–Howard ordinal, and
is independent of ID1 or parameter-free Π11-CA0.
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Proof. This goes much as before. Take a number m with base-x normal

form t ≡ F (r)a (b). Then ordx(t) is the structured tree ordinal ÷
(ñ)
α (â) where,

by Lemma 4.6,Gx(α) = a,Gx(ñ) = r, andGx(â) = b. Thus I0(x;m) =m =
Gx(ordx(t)). Now the first step of the Goodstein process yields I1(x;m) =
m1 – 1 where m1 =(x+1)NF t

′, the result of the first base-update. Thus t′

has exactly the same structure as t, but with the base x increased to x+1
throughout. So replacing either base by ù yields the same tree ordinal; that

is, ordx(t) = ordx(F
(r)
a (b)) = ÷

ord(r)
ord(a)
(ord(b)) = ÷ord(r

′)
ord(a′)

(ord(b′)) = ordx+1(t′).

Therefore

I1(x;m) =Gx+1(ordx+1(t
′)) – 1 =Gx+1(ordx(t)) – 1

=Gx+1(Px+1(ordx(t))).

Updating the base again yields m2 =(x+2)NF (t
′ – 1)′ = Gx+2(ordx+2((t′ –

1)′)). But, as before, ordx+2((t′ – 1)′) = ordx+1(t′ – 1) and this =
Px+1(ordx+1(t′))) by Lemma 4.8. Therefore, since ordx+1(t′) = ordx(t),
we have

I2(x;m) =m2 – 1 =Gx+2(Px+1(ordx(t))) – 1 =Gx+2(Px+2Px+1(ordx(t))) .

Repeating the process,

Ik(x;m) = Gx+k(Px+kPx+k–1 ···Px+2Px+1(ordx(t))) .

Transfinite induction up to ordx(t) now proves that the Goodstein process
terminates in zero. Conversely, assuming that the Goodstein process does
terminate, it follows that the Hardy function

Hordx(t)(x+1) = least x+k s.t. Px+kPx+k–1 ···Px+2Px+1(ordx(t)) = 0

is defined/computed.
As t ranges over all base-x normal forms relative to the fast growing
hierarchy, ordx(t) ranges over the (set-theoretic) ordinals < supi ‖÷Ωi (ù)‖
where Ω0 = 0 and Ωi+1 = ΩΩi . But by the Ordinal Comparison Lemma

4.11 below, ‖φα(0)‖ ≤ ‖÷(2)
α+2(ù)‖, so with α = εΩ+1 it follows that the

Bachmann–Howard ordinal is ≤ supi ‖÷
(2)
Ωi+2
(ù)‖= supi ‖÷Ωi+1(ù)‖. Hence

the first order formula expressing termination of every Goodstein sequence
(relative to the Fast Growing hierarchy) implies (modulo PRA) that ∀ã �
the Bachmann–Howard ordinal (Hã is totally defined ). It therefore cannot
be proven in ID1. In particular, choosing t ≡ Fùx–1(x) we have ùx–1 ∈ùx[x]
and so ordx(t) = ÷(εΩ+1)x–1(ù). Therefore as x varies, Hordx(t) computes the
Hardy function at the Bachmann–Howard ordinal itself. ⊣

Lemma 4.11. Comparing the set-theoretic ranks of the tree ordinals ÷α(â)
and φα(â), we have, for infinite â :

‖φα(â)‖ ≤ ‖÷α+2(ù ·â)‖ .

Proof. In what follows we shall abbreviate ‖φα(â)‖ ≤ ‖÷α+2(ù ·â)‖ as
φα(â)≪ ÷α+2(ù · â). Proceed by induction on α ≺ εΩ+1, noting that for
structured limits, ëi +1� ëi+1.
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If α = 0 then φα(â) = ùâ ≪ 2ù·â = ÷
(ù·â)
1 (1)≪ ÷2(ù ·â).

If α is a successor we may assume inductively that φα–1(â)≪ ÷α+1(ù ·â).

Since ÷α is positive and increasing, this is≪ ÷α+1(ù ·2â) = ÷α+1(÷
â

1 (ù))≪

÷α+1(÷2(â)) ifù � â . Therefore φα–1(â)≪ ÷
(2)
α+1(â) on infinite â and hence,

with S the ordinal successor,

φα(â) = (φ
(ù)
α–1 ◦S)

(â)(0)≪ (÷(ù)
α+1)

(â)(â)≪ ÷(ù·â)
α+1 (â)≪ ÷α+2(ù ·â) .

Similarly, if α is a small limit, the induction hypothesis again gives

φα(â) = (sup
i

φ(i)αi ◦S)
(â)(0)≪ (sup

i

÷(i)αi+2 ◦S)
(â)(â)≪ (÷(ù)α )

(â)(â)

≪ ÷α+2(ù ·â).

If α is a large limit then by structuredness αã+1� αã+1 and so on infinite

ã, φαã (0) ≪ ÷αã+2(ã) ≪ ÷αã+2(ã) ≪ ÷αã+2(ã + 2) = ÷α(ã + 2) ≪ ÷
(2)
α (ã).

Therefore with îα(ã) =def φαã (0),

φα(â) = (î
(ù)
α ◦S)(1+â)(0)≪ (÷(ù)α )

(â)(â)≪ (÷(ù·â)α (â)≪ ÷α+2(ù ·â) .

For an alternative ordinal comparison involving ÷ see Aguilera et al. [2]. ⊣
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